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Abstract

This paper deals with the problem of maintaining a distributed directory server,
that enables us to keep track of mobile users in a distributed network. The paper intro-
duces the graph-theoretic concept of regional matching, and demonstrates how finding
a regional matching with certain parameters enables efficient tracking. A polynomial-
time algorithm that constructs such a regional matching is presented. The communi-
cation overhead of our tracking mechanism is within a polylogarithmic factor of the
lower bound.
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1 Introduction

This paper deals with the problem of tracking mobile users in a distributed communication
network. When users are allowed to move from one network vertex to another, it is necessary
to have a mechanism enabling one to keep track of such users and contact them at their
current residence. The purpose of this work is to design efficient tracking mechanisms, based
on distributed directory structures (cf. [LEH]), minimizing the communication redundancy

involved.

Networks with mobile users are by no means far-fetched. A prime example is that of
cellular phone networks. In fact, one may expect that in the future, all telephone systems
will be based on “mobile telephones numbers,” i.e., ones that are not bound to any spe-
cific physical location. Another possible application is a system one may call “distributed
yellow pages,” or “distributed match-making” [MV, KV]. Such a system is necessary in an
environment consisting of mobile “servers” and “clients.” The system has to provide means
for enabling clients in need of some service to locate the whereabouts of the server they are
looking for. (Our results are easier to present assuming the servers are distinct. However,
they are applicable also to the case when a user is actually looking for one of the closest
among the set of identical servers.)

In essence, the tracking mechanism has to support two operations: a “move” operation,
causing a user to move to a new destination, and a “find” operation, enabling one to contact
the current address of a specified user. However, the tasks of minimizing the communication
overhead of the “move” and “find” operations appear to be contradictory to each other. This

can be realized by examining the following two extreme strategies (considered also in [MV]).

The full-information strategy requires every vertex in the network to maintain a complete
directory containing up-to-date information on the whereabouts of every user. This makes
the “find” operations cheap. On the other hand, “move” operations are very expensive, since
it is necessary to update the directories of all vertices. Thus this strategy is appropriate only

for a near static setting, where users move relatively rarely, but frequently converse with
each other. :

In contrast, the no-information strategy opts not to perform any updates following a
“move,” thus abolishing altogether the concept of directories and making the “move” op-
erations cheap. However, establishing a connection via a “find” operation becomes very
expensive, as it requires a global search over the entire network. Alternatively, trying to
to eliminate this search, it is possible to require that whenever a user moves, it leaves a

“forwarding” pointer at the old address, pointing to the new address. Unfortunately, this



heuristic still does not guarantee any good worst-case bound for the “find” operations.

Our purpose is to design some intermediate “partial-information” strategy, that will
perform well for any communication/travel pattern, making the costs of both “move” and
“find” operations relatively cheap. This problem was tackled also by [MV, KV]. However,
their approach was to consider only the global worst-case performance. Consequently, the
schemes designed there treat all requests alike, and ignore considerations such as locality.
Our goal is to design more refined strategies that take into account the inherent costs of the
particular requests at hand. It is clear that in many cases these costs may be lower than
implied by the global worst-case analysis. In particular, we would like moves to a near-by
location, or searches for near-by users, to cost less. (Indeed, consider the case of a person who
moves to a different room in the same hotel. Clearly, it is wasteful to update the telephone
directories from coast to coast, and notifying the hotel operator should normally suffice.)
Thus we are interested in the worst case overhead incurred by a particular strategy. This
overhead is evaluated by comparing the total cost invested in a sequence of “move” and “find”
operations against the inherent cost (namely, the cost incurred by the operations themselves,
assuming full information is available for free.) This comparison was done over all sequences
of “move” and “find” operations. The strategy proposed in this paper guarantees overheads
that are polylogarithmic in the size of the network.

The rest of the paper is organized as follows. The next section contains a precise definition
of the model and the problem. In Section 3 we give an overview of the proposed solution. The
directory mechanism is described in Section 4. Its complexity and correctness are analyzed
in Section 5. This mechanism is based on the availability of a structure called a regional
matching in the graph. The construction of a regional matching is described in Section 6
and analyzed in Section 7. Finally, Section 8 concludes with a discussion.

2 The problem

2.1 The model

We consider the standard model of a point-to-point communication network. The network
is described by a connected undirected graph G = (V, E), |V | = n. The vertices of the graph
represent the processors of the network and the edges represent bidirectional communication
channels between the vertices. A vertex may communicate directly only with its neighbors,

and messages to non-neighboring vertices u and v are sent along some path connecting them
in the graph.



We assume the existence of a weight function w : £ — R, assigning an arbitrary non-
negative weight w(e) to each edge e € E. For two vertices u, w in G, let distg(u, w) denote the
length of a shortest path in G between those vertices, where the length of a path (e,...,e,)
is Y1<ics w(e;). For two sets of vertices U, W in G, let diste(U, W) = min{diste(u,w) | u €
U,w € W}. (We sometimes substitute w for a singleton W = {w}.) Let Diam(G) denote
the (weighted) diameter of the network GG, namely, the maximal distance between any two
vertices in G.

Communication complexity is measured as follows. The basic message length is O(logn)

bits. Longer messages are charged proportionally to their length (i.e., a message of length

£
logn

£ > logn is viewed as [;=——| basic messages). The communication cost of transmitting a
basic message over an edge e is the weight w(e) of that edge. The communication cost
of a protocol 7, denoted Cost(r), is the sum of the communication costs of all message
transmissions performed during the execution of the protocol. For simplicity, we assume
that Diam(G) = poly(n). Thus the distance between two vertices can be transmitted in a

single message, as log Diam(G) = O(log n).

We assume the existence of efficient routing facilities in the system. More specifically,
assume that whenever a processor v wishes to send a message to a processor u, the message

will be sent along a route as efficient as possible in the network, and the cost of the routing
is O(dist(u,v)).

2.2 Statement of the problem

Denote by Addr(£) the current address of a specific user £. A directory D with respect to the
user  1s a distributed data structure which enables to move and to find the user, namely, to
perform the following two operations.

Find(D,&,v) : invoked at the vertex v, this operation delivers a search message from v to

the location s = Addr(£) of the user £.

Move(D,§,s,t) : invoked at the current location s = Addr(€) of the user ¢, this operation

moves £ to a new location ¢ and performs the necessary updates in the directory.

We assume that individual activations of the operations Find and Move do not interleave
in time, i.e., are performed in an “atomic” fashion, and thus avoid the issues of concurrency
control, namely, questions regarding the simultaneous execution of multiple Find / Move

operations. These issues are briefly discussed in the concluding section.



2.3 Complexity measures

We are interested in measuring the communication complexity of the Find and Move opera-
tions in our directories. More specifically, we study the overheads incurred by our algorithms,
compared to the minimal “inherent” costs associated with each Find and Move operation.
Consequently, let us first identify these optimal costs.

Consider a Move instruction M = Move(D,¢,s,t). Let Reloc(£,s,t) denote the actual
relocation cost of the user ¢ from s to . We define the optimal cost of the operation M as
Opt_cost(M) = Reloc(€, s,t), which is the inherent cost assuming no extra operations, such
as directory updates, are taken. This cost depends on the distance between the old and new
location, and we assume it satisfies Reloc(é, s,t) > dist(s,t). (In fact, the relocation of a
server is typically much more expensive than just sending a single message between the two
locations.)

Now consider a Find instruction F = Find(D,&,v). Define the optimal cost of F' as
Opt_cost(F') = dist(v, Addr(£)).

Recall that Cost(F") (respectively, Cost(M)) denotes the actual communication cost of
the operation F' (resp., M).

We would like to define the “amortized overhead” of our operations, compared to their
optimal cost. For that purpose we consider mixed sequences of Move and Find operations.
Given such a sequence & = ¢y,...,0y, let F(&) denote the subsequence obtained by picking
only the Find operations from &, and similarly let M (&) denote the subsequence obtained

by picking only the Move operations from & (i.e., & consists of some shuffie of these two
subsequences).

Define the optimal cost and the cost of the subsequence F(5) = (Fi,...,F}) in the
natural way, setting

k
Opt.cost(F(5)) = Y Opt_cost(F;)
=1

k
Cost(}_(a')) = ECOSt(F,‘).

i=1

The find-stretch of the directory with respect to a given sequence of operations & is
defined as

_\ _ Cost(F(a))
St?"etchfind(a) 5 Opt_cosf(}—(a)) '

The find-stretch of the directory, denoted Stretchying, is the least upper bound on Stretchyging (o),
taken over all finite sequences 7.



For the subsequence M (&), define the optimal cost Opt_cost(M (7)), the cost Cost(M(7))
and the mowve-stretch factors Stretch,,,,(5) and Stretchy, .. analogously.

We comment that our definitions ignore the initial set-up costs involved in organizing the

directory when the user first enters the system.

Finally, define the memory requirement of a directory as the total amount of memory

bits it uses in the processors of the network.

2.4 Main results

Our main result is the construction of a dynamic directory server, D, guaranteeing Stretchsing =
O(log?n) and Stretchpoe = O(log?n), and requiring a total of O(nlog®n + N log®n) bits
of memory (including both data and bookkeeping information) throughout the network, for
handling NV users.

3 Overview of the solution

Our scheme is based on a distributed data structure storing pointers to the locations of each
user in various vertices. These pointers are updated as users move in the network. In order
to localize the update operations on the pointers, we allow some of these pointers to be out of
date. That is, we frequently update pointers at nearby locations but rarely update pointers

at distant ones.

Formally, our dynamic directory D is composed of a hierarchy of § = [log Diam(G)]
regional directories RD;, 1 < 1 < §, covering successively larger portions of the network.
The purpose of the regional directory RD; at level 7 of the hierarchy is to enable a user to
track any other user residing within distance 2! from it. To prevent waste in performing a
Move operation we use a mechanism of “forwarding addresses”. Our update policy can be
schematically described as follows. Whenever a user moves to a new location at distance d
away, a pointer is left at the old location. Only the log d lowest levels of the hierarchy of the
dynamic directory are updated, so that nearby searchers would be able to locate the right
address directly. Searchers from distant locations fail in locating the user using the lower-
level regional directories (since they are in a different region). They therefore have to use
higher levels of the hierarchy. These levels will indeed have some information on the searched
user, but this information may be out of date, and lead to some old location. The searcher

will then be redirected to the new location through a chain of forwarding pointers. The



crucial point is that updates at the low levels are local, and thus require low communication

complexity.

The 2i-regional directory is implemented as follows. As in the match-making strategy of
[MV], the process is based on intersecting “read” and “write” sets. A vertex v reports about
every user it hosts to all vertices in some specified write set, Write(v). While looking for
a particular user, the searching vertex w queries all the vertices in some specified read sef,
Read(w). We define the graph-theoretic concept of a 2-regional matching as a collection
consisting of a read set and a write set for each vertex, with the property that the read
set of a vertex intersects with the write set of any vertex within distance 2° from it. (The
match-making functions of [MV, KV] do not have any distance limitation, and they insist
on having exactly one element in each intersection.) The relevant parameters of a regional
matching are its radius, which the maximal distance from a vertex to any other vertex in
its read or write set, and its degree, which is the maximal number of vertices in any read or
write set. Now, the communication overhead of performing the Find and Move operations
in a 2'-regional directory grows as the product of the degree and the radius of the related
2i-regional matching. There appears to be a trade-off between these two parameters, making

simultaneous minimization of both of them a nontrivial task.

A related graph-theoretic problem is that of designing “sparse” graph covers, i.e., covering
the graph by (not necessarily disjoint) clusters of vertices. The parameters of interest in that
problem are the degrees of vertices in the cover (viewing it as a hypergraph on the set of
vertices) and the maximal radius of cluster. Here, too, it is possible to trade-off radius for
degree; for example, merging together a number of clusters, we may reduce the maximal
degree at the expense of increasing the radius. Although the relationship between matchings
and covers is not immediate (and in particular, the definitions of degree seem to measure
different quantities), there is a strong connection between the two constructs, and given a

cover it is possible to achieve a matching with the same degree and radius.

Algorithms for computing sparse covers are studied in [P1], and their applications to
directory problems are proposed in [P2]. Unfortunately, the radius-degree trade-off achieved
therein is not sufficient for the purposes of the current paper, since the maximal degree
can only be bounded by n®/16" where r is the maximal cluster radius and c is a constant.
Trying to balance off the radius with the degree brings both parameters to the order of
90(y/logn) _ O(nO(loglogn/logn))

However, it is much easier to construct a cover with small average degree. In the algorithm
of [P1], the average degree drops more rapidly with the increase in the radius r, namely, as
n°/". Thus, balancing off the average degree and the radius allows us to upper-bound both



parameters by O(logn).

In this paper, we show that an algorithm producing a cover with small average degree
can be transformed into an algorithm producing a matching with small mazimal degree, with
the same radius. The idea is that in a cover with small average degree, “most” vertices have
small degrees. For such vertices, we construct a “partial matching”, and delete them from
the graph. We repeat this algorithm for the remaining vertices, until no vertices are left.
We show that this process has to be repeated only for a small (k¥ = log n) number of phases.
In other words, we obtain a regional matching with small maximal degree from a family of

covers with small average degrees.

4 The main construction

4.1 The concept of a regional matching

The basic components of our construction are a read set Read(v) C V and a write set
Write(v) € V, defined for every vertex v. Consider the collection RW of all pairs of sets,
namely

RW = { Read(v), Write(v) |v eV }.

Definition 4.1 The collection RW is an m-regional matching (for some integer m > 1) if for
all v,u € V such that dist(u,v) < m, Write(v) | Read(u) # 0.

For any m-regional matching RW define the following parameters.

Degwrite(Rw) = Inea“;{ IWI‘itC(U”
1
Radi1(RW) = — m:é)‘g{dist(u, v) | u € Write(v)}

Degread (RW) = meaf;{ |Read(v)|

Rad,e,a(RW) = . ma%g{dist(u,v) | u € Read(v)}

1
m  u,we

In what follows we use a hierarchy of 2'-regional matchings in order to design our direc-
tories, and show that the complexities of the Move and Find operations in these directories



depend on the above parameters of the matchings. We then proceed to describe the con-
struction of efficient regional matchings with respect to these parameters (in Sections 6 and
7). The construction has the property that the parameters are independent of m, i.e., the
2i-regional matchings to be used on levels 1 < i < § all have the same radius and degree

parameters.

4.2 Regional directories

Our constructions are based on hierarchically organizing the tracking information in regional
directories. A regional directory is based on defining a “regional address” R_Addr(§) for every
user £. In the hierarchical context, this address represents the most updated local knowledge
regarding the whereabouts of the user. In particular, the regional address R_Addr(¢) may
be outdated, as { may have moved in the meantime to a new location without bothering to
update the regional directory. Nevertheless, the structure of the global directory enables one

to use the regional address in order to track the current location of the user.

The basic tasks of a regional directory are basically similar to those of a regular (global)
directory, namely, to enable the retrieval of the regional address, and to change it whenever
needed. For technical reasons, the basic modification tasks are easier to represent in the form
of “insert” and “delete” operations, rather than the more natural “move” operation. Thus
an m-regional directory RD supports the operations R£ind(RD,£,v), R-del(RD, ¢, s) and
R_ins(RD,,t). These operations are defined as follows.

R_ins(RD,£,t) : invoked at the location ¢, this operation sets ¢ to be the regional address
of £, i.e., it sets R_Addr(§) « t.

R-del(RD,¢E,s) : invoked at the regional address s = R_Addr(£), this operation nullifies the
current regional address of ¢, i.e., sets R_.Addr(€) « nil.

R£ind(RD,&,v) : invoked at the vertex v, this operation returns (to node v) the regional
address R_Addr({) of the user {. This operation is guaranteed to succeed only if
dist(v,R-Addr(£)) < m. Otherwise, the operation may fail, i.e., it may be that no
address is found for ¢. If that happens then an appropriate message is returned to v.

The construction of an m-regional directory is based on an m-regional matching RW.
The basic idea is the following. Suppose that the regional address of the user £ is s =

R_Addr(¢). Then each vertex in the write set Write(s) keeps a pointer Pointer(¢), pointing
to s.



In order to implement the operation R_find(RD, £, v), the searcher v successively queries
the vertices in its read set, Read(v), until hitting one that has a pointer Pointer(¢) leading
to the regional address of {. In case none of the vertices in Read(v) has the desired pointer,
the operation is said to end in failure.

Operation R_del(RD,¢, s), invoked at s = R_Addr(£), consists of deleting the pointers
Pointer(¢) pointing to s at all the vertices in Write(s). Similarly, operation R_ins(RD, ¢, 1),
invoked at the vertex ¢, consists of inserting pointers Pointer(£) pointing to ¢ at all the
vertices in Write(t), thus effectively setting R_Addr({) = ¢t. The two operations will be

performed together, so ¢ cannot end up having more than one address in the directory.

A formal presentation of operations R_find, R_del and R_ins is given in Figure 1. The
presentation of the algorithms follows the “token language” of [KKM]. That is, the algorithm
maintains a “token”, which represents the center of activity of the protocol, and moves it
around the network. Some algorithms, e.g., Depth-First Search, are very easy to represent
in this language.

In the code we use several commands suitable for this language. The first is “transfer-
control-to v” which means that the token is moved to vertex v. When we mention a variable

of the protocol, we refer to the variable at the current location of the token.

When we write “Local_var := remote-read Remote_var at v’ while the token is
located at u, we mean the following: go from u to v, read variable Remote_var, return to
u and write the retrieved value into variable Local_var at u. At the end of this operation,
The center of activity remains at u.

Similarly, “ Remote_var at v := remote-write Local_var” means that the value Local_var
at u is retrieved, and the token carries it from u to v and writes it into Remote_var variable
at v. The token then returns to u.

It is straightforward to verify the correctness of the above implementation. Hence we
have

Lemma 4.2 If RW is an m-regional matching then the three procedures described above (Fig-
ure 1) correctly implement the operations R_find, R-del and R_ins of an m-regional directory.

Lemma 4.3 The implementation of the regional operations in Figure 1 has the following com-
plexities:

(1) Cost(R-£ind(RD,£,v)) < 2m - Deg, .,q(RW) - Rad,caa( RW),
(2) Cost(R-del(RD,¢,s)) < m - Degyrire(RW) - Radyrize(RW),

9



R£ind(RD,¢,v): /* invoked at a vertex v */
repeat forall u € Read(v)
address «— remote-read Pointer(¢) from u
until address # nil or all vertices u are exhausted

R_del(RD,¢&,s): /* invoked at s = R_Addr(¢) */
for all u € Write(s)
remote-write Pointer(§) « nil at u

R_ins(RD, &, 1) /* invoked at a vertex ¢ */
for all u € Write(t)
remote-write Pointer({) « ¢ at u

Figure 1: The three operations of the m-regional directory RD, based on an m-regional matching RW.
(3) Cost(R_ins(RD,¢,t)) < m - Deg,yrire(RW) - Radyrite(RW).

Proof: To prove (1), observe that each R_find operation is answered after at most Deg,..,.(RW)

searches, each involving sending a query and getting a reply along a path of length at most
mRad,c.q( RW).

Let us now turn to (2). Note that the operation R_del(RD,¢,s) involves deleting point-
ers to s at all the vertices of Write(s). These deletions require sending an appropriate
message from s to all vertices in Write(s). The number of such update messages is at most
Deg.,.i:.(RW), and each of them traverses a distance of at most mRadyrise(RW). A similar
argument applies to (3). |

4.3 The dynamic directory

Finally we define our family of dynamic directories D as follows. Let § = [log Diam(G)].
For 1 < i < 4, construct a 2'-regional directory RD; based on a 2*-regional matching as
described in the previous subsection. Further, the collection of 2-regional matchings used
for these regional directories is constructed so that all of them have the same Rad,eqq,
Deg,eoq, Radyyrite and Deg,,;,. values, i.e., these parameters are independent of the distance
parameter 2¢. (As mentioned earlier, the construction described and analyzed in Sections 6

and 7 enjoys this independence property.)

10



Each processor v and each user ¢ participate in each of the 2'-regional directories RD;,
for 1 <¢ < 6. In particular, each vertex v has sets Write;(v) and Read;(v) in each RD;, and
each user ¢ has a regional address Addr;(£) stored for it in each RD;.

As discussed earlier, the regional address v = Addr;(€) (stored at the regional directory
of level i) does not necessarily reflect the true location of the user ¢, since ¢ may have moved
in the meantime to a new location v’. (As a rule, the lower the level, the more up-to-date is
the regional address.) This potential problem is rectified by maintaining at v a forwarding
trace, which is a pointer Forward(¢) = v’ pointing at v/. It should be clear that the user
may in the meantime have moved further, and is no longer at v’. In fact, the only variable
that definitely maintains the true current address of ¢ is its lowest level regional address,

Addry(é).

The invariant maintained by the dynamic directory regarding the relationships between
the regional addresses stored at the various levels and the pointers is expressed by the
following reachability condition:

Definition 4.4 The collection (Addr(£),..., Addrs(¢)) satisfies the reachability condition if

for every level 1 < i < 4, either Addr(€) = Addr(€) or Addr;(£) stores a pointer Forward({)
pointing to the vertex Addr,_,(¢),

Figure 2 depicts an example in which the reachability condition is maintained.

As users move about in the network, the system attempts to maintain its information as

accurately as possible, and avoid having chains of long forwarding traces. This is controlled
as follows.

The vertex s = Addr(¢) hosting the user ¢ maintains also the tuple of regional addresses
(Addr(€),...,Addrs(€)) and a tuple of counters (C1(£),--.,Cs(€)). Each counter C;(¢)
counts the distance traveled by ¢ since the last time addr;(¢) was updated in RD;. Another
invariant maintained by the updating algorithm is that 0 < Cle) =2 1.

A Find(D, €, v) instruction is performed as follows. The querying vertex v successively is-
sues instructions R-£ind(RD;, £, v) in the regional directories RD;, RD; etc., until it reaches
the first level z on which it succeeds in reaching the regional address Addr;(§). (There must
be such a level, since the highest level always succeeds. )

At this point, the searcher v starts tracing the user through the network, starting from
Addr;(£), and moving along forwarding pointers. This tracing eventually leads to the real
address of the user, Addr(¢). The procedure Find(D, &, v) is formally described in Figure 3.

A Move(D, ¢, s,t) operation is carried out as follows. All counters C; are increased by

11



Addrs(§) = Addrg(€) = Addr(£)

Addry(§) = Addry(€)

@Addm(g)

Addry(€) = Addrs(€)

Figure 2: Forwarding pointers and trajectory of a user £. The dashed arrows represent the trajectory of the
user; the solid arrows represent forwarding pointers.

10 /* level of the hierarchy */
address « nil /* potential pointer to Addr;(§) */
repeat /* get hold of the Addr;(£) for smallest z */
te—1+1 /* increment counter */
address «— R£ind(RD;, £, v)
until address # nil /* address points to Addr;(£) */
transfer-control-to vertex address /* move to Addry(¢) */
repeat /* trace down ¢ along forwarding pointers */
transfer-control-to vertex Forward(¢) /* trace the user */
until Forward(§) = nil /* now, located at Addr(¢) */

Figure 3: Procedure Find(D, £, v), invoked at the vertex v.

12




Forl1<:</{
Ci(&) « Ci(&) + dist(s,t)
J — max{s | C;(£) > 271}
remote-write Forward(¢) « ¢ at vertex Addryy,(€) /* pointer to new location */
For 1 <:< J do:
transfer-control-to vertex Addr;(¢)
R_del(RD;, £, Addr;(€))
end-for
Relocate user £ to vertex ¢, along with its (Addr;) and (C;) tuples.
For1 <:< J do:
R_ins(RD;, ¢, 1)
Ci(§) <0

end-for

Figure 4: Procedure Move(D, ¢, s,t), invoked at s = Addr(§).

dist(s,t). Let C; be the highest level counter that wraps around 27~ as a result of this
increase. Then we elect to update the regional directories at levels 1 through J. This
involves erasing the old listing of £ in these directories using procedure R_del and inserting
the appropriate new listing (pointing at ¢ as the new regional address) using R_ins. It is
also necessary to leave an appropriate forwarding pointer at Addryy;(£) leading to the new

location #, and of course perform the actual relocation of the user. The update procedure
Move(D, ¢, s, t) is described in Figure 4.

5 Analysis of the main construction

Lemma 5.1 Procedure Move maintains the reachability invariant.

Proof: By inspection on the algorithm, every time that Addr;(¢) is changed, the forwarding
pointer at Addr;;,(¢) is updated appropriately. |

For every 1 <1 < § and every user £, at any time, the regional address Addr;(£) is either
{’s current address, Addr(¢), or one of its previous residences. This accounts for the following

somewhat stronger claim.

Lemma 5.2 For every 1 < i < § and every user ¢, at any time, the path p obtained by starting
at the regional address Addr;({) and tracing the forwarding traces Forward(¢) has the following

13



properties:

1. pleads to Addn(£), and

2. pis no longer than the actual path taken by ¢ in its migration from Addr;(£) to Addr(¢).

Proof: The first property follows directly from the reachability invariant. For the second
property, observe that dist(Addr;(¢), Addr;_;(£)), the “span” of the forwarding pointer on
the 7’th level, can only be smaller than or equal to the actual path taken by ¢ in its migration
since the last time Addr; was changed until the last time Addr;_; was changed. |

Lemma 5.3 The dynamic directory D satisfies Stretchsing = O(Deg,eqq - Radreas).

Proof: Consider a sequence & of operations, with a subsequence F(&) of Find operations.
We shall actually prove a stronger claim than the lemma, namely, we will upper bound
the worst-case stretch %&‘;%,—) of any single Find operation F' € F(&), rather than just

the amortized stretch Stretchyinq. Clearly, this worst-case stretch upper-bounds the average
stretch, i.e.,

Y rer(z) Cost(F) o Cost(F)
Y rer(z) Optcost(F) — FeF(s) Opt_cost(F)

Stretchﬁnd(&) =

Suppose that a processor v issues an instruction F = Find(D, ¢, v) for some user £ in the
network. Recall that Opt_cost(F) = dist(v, Addr(¢)). Let 8 = [log dist(v, Addr(€))] (i.e.,
2671 < dist(v, Addr{(€)) < 26).

Recall that the querying vertex v successively executes find operations RF; = R_find(RD;, ¢, v)
foriz =1,2,..., until it reaches the first level ; on which it succeeds in reaching Addr;(£). Suc-
cess on level i is guaranteed if dist(v, Addr;(£)) < 2'. Since dist(Addr(€), Addrs,1(€)) < 2°,
by the triangle inequality we deduce that

dist(v, Addrg,1(£)) < dist(v, Addr(€)) + dist(Addr(€), Addrgy,(£)) < 26 + 28 = 9P+,

It follows from the definition of a regional directory that the operation RFp,; = Rfind(RDgy1,&,v)
must succeed, hence the first level i on which RF; succeeds satisfies i < B +1,

At this point v starts tracing the user through the network, starting from Addr;(£), and
moving along forwarding pointers. By Lemma 5.2 this tracing leads to Addr(¢) along a path
no longer than C;(¢), which in turn is kept no larger than 2i-1,

Therefore the actual communication cost Cost(F ) for the search operation F' = Find(D, ¢, v)
(which equals the total length of the combined path traversed by the search messages), sat-

kl
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isfies by Lemma 4.3

B+1 gl :
9.96 £ Z COSt(RE) <2. 98 + 2(2 22t Deg,pud Rad’rcad)

i=1 =1

< (1/2+42- Deg,.pq - Radyeqq) - 2°F2
< 8(1/242- Deg,enq - Radreqd) - dist(v, Addr(£)),

Cost(F)

IA

establishing
Cost(F)
—— < §(1/2+4+2-D - Rad,eqq)-
Opt_COSt(F) — 8( / b €9read a d)
1

Lemma 5.4 The dynamic directory D satisfies
Stretchmove = O(Radyyrite - Degyire - log Diam(G)).

Proof: Consider any sequence & of operations, and its subsequence M(5) = (My,..., My)
of Move operations, where M; = (D, ¢, s',s'"!). Let paq denote the total length of the path
taken by £ since its insertion into the system,
pm= Y, dist(s',s1).
1<i<k
Observe that
Opt_cost(M(7)) = > Reloc(¢,s',sT) > pu.
1<i<k
Let us consider one move operation M = (D,¢,s,t). Let J(M) denote the highest
counter that wrapped around in this move. Denote s; = Addr;(¢) prior to that move, for
every 1 < ¢ < J + 1. In this update, Addr;(£) is changed from s; to ¢, for every 1 < i < J.
We will charge the entire cost of the operation M to the index J(M).

Let us now analyze this cost. The first thing we do is sending a message to vertex s; and
performing R_del(RD;,¢,s;) from s;, for all ¢ < J. Observe that for every 1, dist(s,s;) <
2i-1 which bounds the cost of these messages. By Lemma 4.3, the overall communication
complexity of R-del(RD;,¢,s;) is at most 2° - Radyrise - Degypise. Thus overall we pay at

most
Y (2742 Radyrite - Degyrire) < 2771(1/2 + Radyrire - Deg,,,.,.).
1<i<J
Sending a message to vertex syy; (informing it to change the value of the pointer
Forward({) so that it points to ¢ and not to s;) costs at most 27 by the same argument.
Relocating the user { to vertex ¢ costs us Reloc(¢, s,t). Finally, performing R.ins(RD;,&,t)
from ¢, for all ¢ < J, costs at most 27+ . Rad,is - Deg,,;,. by Lemma 4.3 again.
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Overall, we charge the index J(M) a total of Reloc(¢, s,t)+2772.(1/24+ Radyrite- Deg,, s, )-

However, notice that whenever an index J is charged for a move in the sequence M(5),
the counter C; has completed at least one entire undisturbed wrap. Thus J could have
been selected as the index J(M) of an operation in the sequence (and thus charged for the
operation) at most £A4 times. '

Summing over all updates of all regional directories, we get the following bounds.

k
Cost(M(a)) < Z(Reloc(s,s‘,s*'“)+2J<M*)+2-(1/2+Radm-Degw,,-te))

=1

§
Opt cost(M(5)) + % - 2742 (1/2 + Radyrie - Degoyis,)
J=1

= Optcost(M(G)) +8-6-pm-(1/2 + Radyrite - Degrize)-

IA

Hence
Cost(M(a))

Stretchmove(5) = Opt_cost(M(5))

<1+ 8[log Diam(G)|(1/2 + Radyrite - Degipyize)-

Lemma 5.5 The directory constructed as above can be implemented for N users using a total
of O((N - Deg,pize + 1 - Deg,.,,) log Diam(G) - logn) memory bits throughout the network.

Proof: The regional directory implementation involves the following space requirements.
Each user { posts its address v = Addr(£) at the vertices of Write(v). Summing over N users
and ¢ levels, this gives a total memory of O(N - Deg,,,;. - log Diam(G) - logn). In addition,
each processor v needs to know the identity of the vertices in Read(v). This requires a total
additional amount of O(Deg,,, - n - log Diam(G) - logn) bits. 1

Summarizing the above three lemmas, we get

Lemma 5.6 Given an appropriate family of regional matching, the directory D constructed as
above satisfies Stretchying = O(Deg, ..y - Rad,.qq) and Stretch,,,,, = O(Radyyrite - Degypiy. -

logn), and requires a total of O((N - Deg,,,;1. +n- Deg,.,,) log® n) memory bits throughout the
network in order to handle N users. |1

The next section develops the family of regional matchings RW,, i that are actually used
for the regional directories. Essentially, we prove the following theorem.

Theorem 5.7 Forall m,k > 1, it is possible to construct an m-regional matching RW,,, ;. with

Degread(RWm,k) S k (1)

16



Radyeaa(RWny) < 2k+1 2)
Degwrite(Rmek) s n2/k (3)
Radwrite(me,k) S 2k + 1 (4)

Using Lemma 5.6 and the last theorem we get

Theorem 5.8 Using a family of regional matchings RW,, ;. as in Lemma 5.6, the directory D
constructed as above satisfies Stretchying = O(k?) and Stretchpone = O(k - n?/* . logn), and
requires a total of O((V - n¥* 4 n . k) log® n) memory bits throughout the network in order to
handle NV users. I

Now, consider the directory D obtained by picking k = logn.

Corollary 5.9 The directory D satisfies Stretchying = O(log® n) and Stretchm,oe = O(log? n)
and uses a total of O(N - log®n + n - log® n) memory bits for handling NV users. |

6 Constructing a regional matching

In this section we describe the construction of an efficient m-regional matching. In the

next section we analyze the radius and degree parameters of the matching and thus prove

Theorem 5.7.

6.1 Preliminaries

The j-neighborhood of a vertex v € V is defined as T';(v) = {w | dist(w,v) < j}.

For a vertex v € V, let Rad(v,G) = max,ev(distg(v,w)). Let Rads denote the ra-
dius of the network, i.e., min,ev(Rad(v,G)). A center of G is any vertex v realizing the
radius of G (i.e., such that Rad(v, G) = Rad(G)). In order to simplify some of the follow-
ing definitions we avoid problems arising from 0-diameter or 0-radius graphs, by defining
Rad(G) = Diam(G) = 1 for the single-vertex graph G = ({v},0). Observe that for every
graph G, Rad(G) < Diam(G) < 2Rad(G). (In all of the above notations we may sometimes
omit the reference to G where no confusion arises.)

Let us now introduce some definitions relevant for covers. Given a set of vertices § C V,
let G(S) denote the subgraph induced by S in G. A cluster is a subset of vertices S C V such
that G(S) is connected. A coveris a collection of clusters S = {Si, ..., S,,} such that |J; S; =

17



Vv e V, Write(v) — 0, Read(v) < 0
S—{Tn(v)|veV} /* 8 is the basic cover containing all m-neighborhoods */
RV /* R is the set of “remaining” vertices */
repeat
Call Procedure Cover(R,S,T) /* the output 7 is a cover of R */
Call Procedure Update(R,S,7) /* low-degree vertices are deleted from R */
until R =0

Figure 5: Algorithm Main.

V. We use Rad(v,S) (respectively, Rad(S), Diam(S)) as a shorthand for Rad(v,G(S))
(resp., Rad(G(S)), Diam(G(S))). Given a cover S, let Diam(S) = max; Diam(S;) and
Rad(S) = max; Rad(S;). For every vertex v € V, let degs(v) denote the degree of v in the
hypergraph (V,S), i.e., the number of occurrences of v in clusters S € S.

Given two covers § = {Si,...,S,} and T = {T3,...,T}}, we say that 7 subsumes S if
for every S; € S there exists a T; € T such that S; C T;.

6.2 The construction of a regional matching

In this subsection we present the algorithm Main, whose task is to construct an m-regional
matching RWn, . The algorithm receives as input a graph G = (V, E), |V| = n, and an
integer k. The algorithm starts with constructing the basic cover § = {I',(v) | v € V}.
This cover satisfies Rad(S) < m. The algorithm maintains the set of “remaining” vertices
R. Initially, R = V. The algorithm terminates once R = ). The algorithm operates in at
most k phases. Each phase consists of the activation of two procedures, Cover and Update.
Algorithm Main is formally described in Figure 5.

Procedure Cover constructs the covers that are used as a basis for the regional matching.
At phase i, the procedure constructs a cover 7, which subsumes the basic cover S. For each
set T'€ 7, it also specifies a kernel K(T') C T and a center {(T) € K(T), with some special

properties, as summarized in Lemma 7.7.

The procedure is a variant of a similar algorithm presented in [P1, P2]. It operates in
iterations during which it picks a cluster in the original cover S and starts merging it with
intersecting clusters until reaching a certain sparsity condition. These iterations proceed
until § is exhausted. The result is a cover 7 subsuming S. (The original cover S is restored
for the next phase.) Procedure Cover is formally described in Figure 6.
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S8
T 10
repeat
Select an arbitrary cluster T € S.
$8-{T}
repeat
KT
Q—{518€8, SnK #0}.
T~ KUUgegq ¥
S—8&5-Q
until |[RNT| < n'/*|RN K|
Set T — T U{T}
K(T)~ K
set £(T’) to be any center of G(K(T)).
untilS§ =0
Output the collection of sets T

Figure 6: Procedure Cover(R,S,T), constructing a cover 7 of R.

Procedure Update is responsible for the construction of the m-regional matching RW.,, x
from the covers produced by Procedure Cover. Thus this procedure has to construct the
sets Read(v) and Write(v) for every vertex v. At phase 7, the procedure first identifies the
vertices u € R with small degrees, namely, such that degr(u) < n?/*. For such vertices, the
set Write(u) is now determined to be the collection of centers £(T") of all clusters 7' € 7 such
that v € T. The procedure next handles the Read sets. The cover 7 produced by Procedure
Cover at each iteration ¢ subsumes the original cover S, that is, for every vertex v € V there
1s a cluster ' € 7 such that I',,(v) C T. Consequently, the procedure adds the center of
T, {(T), to the set Read(v). (In case there are several appropriate clusters, the procedure
selects one arbitrarily.) Thus the set Write(v) is determined once and for all at some phase i,
while the set Read(v) is constructed gradually, adding one vertex at each phase. Procedure
Update is formally described in Figure 7.
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YveV,
pick some T € T such that T'),(v) C T
Read(v) — Read(v) | U{¢(T)},
Vv € R,
if deg7(v) < n?/* then
Write(v) = {{(T) | T € T, v € T}.
R — R — {v}.

Figure 7: Procedure Update.

7 Correctness and analysis of the regional matching

7.1 Properties of Procedure Cover

The properties of Procedure Cover are summarized by the following lemma.

Lemma 7.1 Given a graph G = (V, E), |V| = n, an integer k, a subset R C V and any cover
&, the collection 7 constructed by Procedure Cover(R,S,T) is a cover of R and it satisfies the
following properties:

(1) 7 subsumes S,
(2) Xverdegr(v) < n/*|R|, and

(3) Rad(¢(T),T) < (2k + 1)Rad(S) for every T € 7.

Proof: The proof mostly parallels that of the partitioning algorithm GV of [P2]. The
fact that the input S is a cover implies in particular that every S € S is a cluster (i.e., its
induced graph G(S) is connected) and that [JS = V. Consequently, the construction process
guarantees that every set T' added to 7 is a cluster. Furthermore, every cluster S € S is
merged into some cluster of 7. This implies that the clusters of 7 contain all vertices of V,

so 7 is a cover, and moreover, it subsumes S, and Property (1) holds.

Property (2) is derived as follows. From the termination condition of the internal loop it
is immediate that |[R N T| < n¥*|RN K(T)| for every T € T. Therefore

Y degr(v)= > |[RNT| < Y n'*|RN K(T)|.

vER TeT TeT

We now argue the following.
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Claim 7.2 K(T)NK(T") = 0 forevery T, T' € 7.

Proof: Suppose, seeking to establish a contradiction, that there is a vertex v such that
v € K(T;) N K(T;). Without loss of generality suppose that T} was created before T;. Since
v € K(T}), there must be a cluster S’ such that v € S’ and S’ was still in S when the
algorithm started constructing 7. But every such cluster S’ satisfies S’ N K(T;) # 0, and
therefore the final construction step creating T; from K(T}) should have merged S’ into T}
and eliminated it from S; a contradiction. ||

As a result of the last claim we get

> degr(v) <n'/*
vER

Rn | K(T)‘ < n'/*|R).
TeT

Finally we analyze the increase in the radius of clusters in the cover. Consider some
iteration of the main loop of Procedure Cover in Figure 6, starting with the selection of
some cluster T € S. Let J denote the number of times the internal loop was executed.
Denote the initial set T' by Tp. Denote the set T (respectively, K ) constructed on the ¢’th
internal iteration (1 < ¢ < J) by T; (resp., K;). Note that for 1 < : < J, T; is constructed
on the basis of K;, and K; = T;_;. We proceed along the following chain of claims.

Claim 7.3 |RNT;| > ni/* for every 0 < i < J — 1, and strict inequality holds for i > 1.

Proof: By induction on i. The claim is immediate for i = 0. Assuming the claim for
t—1 >0, it remains to prove that

|RNTi| > n*|RNT,_4|,

which follows directly from the fact that the termination condition of the internal loop was
not met. ||

Corollary 7.4 J < k.
Claim 7.5 Forevery 0 << J, Rad(T;) < (2¢ + 1)Rad(S).
Proof: We first note that for 1 <i1<J,
Rad(T;) < Rad(K;) + Diam(S) < Rad(K;) + 2Rad(S),

since T; is created from K; by merging into it some neighboring clusters from S. The proof
now follows by straightforward induction on ,,sincelo=T €Sand K; =T;_;for1 <1 <.k
|

Since K(T) = K(Ty) = Ty_,, it follows from Corollary 7.4 and Claim 7.5 that
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Corollary 7.6 For every T' € T, Rad(K(T)) < (2k — 1)Rad(S).

This finally enables us to prove the last property of the Lemma, upon noting that
Rad({(T),T) < Rad(K(T)) + 2Rad(S).

This completes the proof of Lemma 7.1. |

7.2 Properties of Algorithm Main

The properties of the algorithm are summarized by the following lemma. Let 7 be the cover
T produced at phase i. In addition, let R’ denote the contents of the set R at the beginning

of phase 7, and let V' = R\ R'*!, i.e., the set of vertices assigned a read set and deleted
from R by Procedure Update in phase :.

Lemma 7.7 Given a graph G = (V, E), |V| = n and an integer k, Algorithm Main performs at
most k phases, and the covers 7" and sets V' constructed in these phases satisfy the following
properties, for every i:

(1) 7; subsumes the basic cover S = {T',(v) | v € V},

(2) degri(v) < n?* for every v € V7,

(3) degri(v) > n** for every v € R+, and

(4) Rad({(T'),T) < (2k+ 1)m for every T € T".
Proof: Property (1) is immediate from Property (1) of Lemma 7.1. Properties (2) and (3)
follow directly from the rule by which Procedure Update determines the vertices of V¢ in

each phase 7. Property (4) follows from Property (3) of Lemma 7.1 and the fact that the
basic cover § constructed by the algorithm satisfies Rad(S) < m.

It remains to bound the number of phases performed by the algorithm. This bound
relies on the following observations. By Property (2) of Lemma 7.1 and Property (3) of the
current lemma, in every phase :, at most i%i-,l- vertices of R remain in the set R*t!, i.e., are
not moved to the set V*. Consequently |Rf| < n'~*/*. Hence R is exhausted after no more
than k phases of Algorithm Main. |

7.3 Properties of Procedure Update

First let us comment that procedure Update never gets “stuck”. The only potentially prob-
lematic step is the first, namely, picking a cluster T € T such that F.(v) €T. Such a
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cluster exists by Property (1) of Lemma 7.7.

The correctness of the constructed regional matching RW,, ;. is proved by the following

lemma, relying on the properties of the cover 7° (as stated in Lemma 7.7).
Lemma 7.8 For any two vertices u, v such that dist(u,v) < m, Read(u) " Write(v) # 0.

Proof: Suppose that dist(v,u) < m for some processors v and u. Hence u € T'p(v). By
Lemma 7.7 there is some 1 < j < k such that u € V7. Let T € T be the cluster picked
for Read(v) during the first part of Procedure Update in phase j. Then the procedure adds
£(T) to Read(v). On the other hand note that T is selected such that T',,(v) € T, and thus
u€T. Since T € T7, £(T) is added during the second part of Procedure Update to Write()
as well. Thus, {(T) € Read(u) | Write(v). 1

This shows that the structure RW,, ;. described above is indeed an m-regional matching.
It remains to prove that this structure meets the requirements of Thm. 5.7.

Proof of Theorem 5.7: Property (1) follows from the fact that Algorithm Main performs

at most k phases (by Lemma 7.7), and each of these phases adds exactly one vertex to
Read(v).

Property (3) follows from the construction rule of Write(v) in Procedure Update and
from Property (2) of Lemma 7.7.

Finally, to prove Properties (2) and (4), note that any vertex added to the sets Read(v)
or Write(v) is the center £(T') of some cluster T such that » € T', and therefore the distance
from v to such vertex is no larger than Rad({(T),T). The claims now follow from Property
(4) of Lemma 7.7. |

& Discussion

The setting considered in this paper does not allow the operations of inserting a new user
into the system or deleting an existing user from the system. This is because these operations
require considerably heavy updates on the directories, which cannot be charged directly to
any “inherent cost.” It is possible to include such operations in the proposed framework by
making the assumption that inserting a new user is as expensive as moving the user across
the entire network, i.e., its inherent cost is at least Diam(G). A similar assumption has to

be made for deletions of users from the system.

As mentioned earlier, we made the assumption that the Find and Move operations are
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performed “sequentially,” i.e., that there is enough time for the system to complete its
operation on one request before getting the next one. Interesting problems arise when many
operations are issued simultaneously. Specifically, problems may occur if someone attempts
to contact a user while it is moving. It is necessary to ensure that the searcher will eventually
be able to reach the moving user, even if that user moves repeatedly. This calls for applying
elaborate locking and sweeping techniques, somewhat resembling ideas from atomicity theory
and concurrency control. Generalizing the present solution to the concurrent case will be

the subject of subsequent work.

An interesting area of research concerns developing good policies for moving servers in
the network, in response to a stream of requests, in order to achieve best performance. In
the literature on sequential algorithms this problem is known as the “k-server” problem (cf.
[MMS]). In the distributed setting there are additional complicating factors, having to do
with the effects of locality and partial information. Even though this question is not dealt
with in this paper, our contribution is in showing that the limitation of partial information is
not very restrictive, in the sense that one can get by paying no more than a polylogarithmic

factor in performance compared to an algorithm which obtains full information for free.
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