. MASSACHUSETTS

LABORATORY FOR il INSTITUTE OF
COMPUTER SCIENCE 1= [l TECHNOLOGY

(: —

MIT/LCS/TM-417

SYNTHESIS OF EFFICIENT
| DRINKING PHILOSOPHERS
ALGORITHMS

Jennifer L. Welch
Nancy A. Lynch

November 1989)

545 TECHNOLOGY SQUARE, CAMEBRIDGE. MASSACHUSETTS 02139

Synthesis of Efficient Drinking Philosophers Algorithms

Jennifer L. Welch
University of North Carolina
Chapel Hill, NC 27599

Mancy A. Lynch
MIT Laboratory for Computer Science
Cambridge, MA 02139

This work was supported in part by the Advanced Research Projects Agency of the
Department of Defense under Contract N00014-83-1K-0125, the National Science
Foundation under Grants DCR-83-02391 and CCR-86-11442, the Office of Army
Research under Contract DAAG29-84-K-0058. and the Office of Naval Research
under contract N00014-85-IK-0168.

Abstract: A variant of the drinking philosophers algorithm of Chandy and Misra
is described and proved correct in a modular way, using the I/O automaton model
of Lynch and Tuttle. The algorithm of Chandy and Misra is based on a particular
dining philosophers algorithm, and relies on certain properties of its implementa-
tion. The drinking philosophers algorithm presented in this paper is able to use
an arbitrary dining philosophers algorithm as a true subroutine; nothing about
the implementation needs to be known, only that it solves the dining philosophers
problem. An important advantage of this modularity is that by substituting a
more time-efficient dining philosophers algorithm than the one used by Chandy
and Misra, a drinking philosophers algorithm with O(1) worst-case waiting time is
obtained, whereas the drinking philosophers algorithm of Chandy and Misra has
O(n) worst-case waiting time (for n philosophers). Formal definitions are given to
distinguish the drinking and dining philosophers problems and to specify precisely
varying degrees of concurrency.

Key words: dining philosophers. distributed algorithms, drinking philosophers,
modularity, resource allocation, time complexity.

1. Introduction

We present a modular description and proof of correctness for an algorithm to
solve the drinking philosophers problem in a message-passing distributed system.
Our algorithm uses an arbitrary solution to the dining philosophers problem as a
subroutine; by using a time-efficient subroutine, one can obtain a drinking philoso-
phers algorithm with O(1) worst-case waiting time. Formal definitions are given to
distinguish the drinking and dining philosophers problems and to specify precisely
varying degrees of concurrency.

The drinking philosophers problem is a dynamic variant due to Chandy and
Misra (1984) of the dining philosophers problem, a much-studied resource alloca-
tion problem. In the original dining philosophers problem of Dijkstra (1971), five
philosophers (processes) are arranged in a ring with one fork (resource) between
each pair of neighbors, and in order to eat (do work), a philosopher must have ex-
clusive access to both of its adjacent forks. A more general version of the problem
. allows any number of processes and puts no restrictions on which processes share
resources. In the drinking philosophers problem, for each process there is a maxi-
mum set of resources that it can request, and each time a process wishes to do some
work, it may request an arbitrary subset of its maximum set.

2

Our drinking philosophers algorithm is a variant of the one of Chandy and Misra
(1984). Their algorithm is based on a particular dining philosophers algorithm, and
relies on certain properties of its implementation. QOur drinking philosophers algo-
rithm is able to use an arbitrary dining philosophers algorithm as a true subroutine;
nothing about the implementation needs to be known, only that it solves the dining
philosophers problem. We show that in a system of n philosophers the maximum
waiting time for a drinking philosopher to enter its eritical region is roughly equal to
the maximum waiting time for a dining philosopher to enter its critical region in the
subroutine. Thus, by replacing the dining philosophers algorithm of Chandy and
Misra (1984), which has waiting time O(n), with a dining philosophers algorithm
such as the one of Lynch (1981), which has waiting time O(1), we obtain a more
efficient drinking philosophers algorithm.

We provide definitions that distinguish the drinking and dining philosophers
problem, and that specify precisely varying degrees of concurrency. We use the
model of Lynch and Tuttle (1987), which is useful for stating properties that concern
the infinite behavior of a system, such as no-deadlock and no-lockout, and which
supports modular algorithm design and verification. This model, together with the
particular definitions developed in this paper for expressing the safety and liveness
properties for resource allocation problems, make possible a clear and precise proof
of correctness for our construction.

In Section 2, the dining philosophers and drinking philosophers problems are
defined. In Section 3, we describe our algorithm, as an automaton. Section 4
contains the proof of correctness of our algorithm, and Section 5 analyzes the per-
formance of our algorithm with respect to various complexity measures. Section 6
contains our conclusions.

2. Problem Statement

There are n user processes in the system being modeled, and at various times,
each one needs some of the system resources. Only one user at a time may have
access to any one resource. Each user’s states are partitioned into four regions. In
its trying region, the user is vying for access to its required resources. Once the
resources are obtained, the user may enter its erifical region. When the user is
through with the resources, it enters its ewxit region, which usually involves some
“cleaning up” activities. Otherwise, the user is in its remainder region. The user
cycles through these four regions.

A resource allocation algorithm decides which user gets which resources at
which time; thus, it supplies the code for the trying and exit regions. A distributed
resource allocation algorithm consists of one component for each user; the compo-
nents communicate with each other by message passing.

We define two resource allocation problems, dining philosophers and drinking
philosophers, as external schedule modules, that is, as sets of allowable interactions
between inputs and outputs. (See Appendix A for a summary of the [/O automaton
model of Lynch and Tuttle (1987).) We imagine an automaton that, given input
from some number of users informing the automaton of their desire to gain or
give up a set U7 of resources (with input actions T;(U') and E;(U) for each user i),
decides which users are allowed to enter their critical and remainder regions at which
times (with output actions C;(U) and R;(U)). The automaton, then, represents the
algorithm used to allocate the resources.

In the dining philosophers problem, each user (or philosopher) always requests
the same set of resources. In the drinking philosophers problem, each user can
request a different set of resources each time it enters its trying region.

We consider several versions of the dining and drinking philosophers problems,
each satisfying successively stronger liveness properties. First we define the basic
dining and drinking philosophers problems, which only satisfy safety conditions.
Then the no-deadlock versions are defined, in which as long as some user is in
its trying region, eventually some user enters its critical region. In the no-lockout
versions, any user that enters its trying region eventually enters its critical region.
The no-deadlock and no-lockout conditions assume that no user keeps resources
forever.

A dining philosophers algorithm can be used to solve the drinking philosophers
problem by treating each resource request as a request for the entire set of resources
which that user will ever need. However, users may be blocked unnecessarily in
such a scheme. A preferable solution would not rule out two users that share a
resource from entering their critical regions simultaneously, if their current resource
requirements are disjoint. We capture part of this intuition by defining the “more-
concurrent” condition for the drinking philosophers problem — if a user requests a
set of resources, none of which is currently being sought or used by another user,
then the first user eventually enters its critical region, even if some other resources
are never relinquished. (In our conclusions we discuss even stronger forms of the
drinking philosophers problem.)

Let S be a finite non-empty set of resources. Define an n-user resource require-
ment to be a collection of n sets S;, 1 < i < n, such that each §; is a non-empty
subset of S. and no resource is in more than two S;’s. The last restriction makes
the algorithm much simpler to describe and reason about, but is not substantial.
If a resource is shared by k users, then it can be represented by k choose 2 virtual
resources, one shared between each pair of the original k users; to gain the “real”
resource, a user must gain the k — 1 virtual resources shared with it.

In the context of the dining philosophers problem, resources will be referred
to as forks; in the context of the drinking philosophers problem, resources will be
referred to as bottles.

2.1 Dining Philosophers

Fix an n-user fork requirement F = {F; : 1 <i < n}. The following definitions
are all made relative to this fork requirement.

For each i, let the set {T;,Ci, E;, R;} be denoted F-TCER;. (The letter F
stands for “fork.”) T; is the action by which user i enters its trying region, desiring
the resources F, and analogously for the other actions and regions. Since each user
i must request the same set F; of forks each time, we do not explicitly include the
set of forks in the action names. Let F-TCER = |J;_, F-TCER;.

In order to specify the external schedule module for the dining philosophers
problem, we define the following predicates on any sequence . (Throughout this
paper, Greek letters stand for sequences from a set, and Roman letters for single
elements.) If a is a sequence from a set § and T is a subset of 5, then «|T is defined
to be the subsequence of a consisting of elements in T.

¢ o is dining-well-formed if for all i, the subsequence of a restricted to F-TCER;
conforms to the pattern T;C;E;R;.. ..

e « satisfies (REL-F) if for all i, if a|F-TCER; is finite, then a|F-TCER; does
not end in C;. (REL-F) states that every user eventually releases the resources
it is granted, by leaving its critical region.

e a satisfies (EX-F)if foralli and j, i # j,if @ = 5,Ci8:C;f; and if F;NF; # 0,
then f3, contains E;. (EX-F) states that each user has exclusive access to a

needed resource when it is in its critical region.

5

e a satisfies (ND-F) if for all i, if «|F-TCER is finite, then a|F-TCER; ends
in R; or is empty. (ND-F) states that the system is not deadlocked, i.e., that
users stop taking steps only if they are all in their remainder regions.

e a satisfies (NL-F) if for all i, if «|F-TCER,; is finite, then a|F-TCER,; ends in
R; or is empty. (NL-F) states that the system has no-lockout, i.e., that any
individual user stops taking steps only if it is in its remainder region.

The dining philosophers problem for F is the external schedule module DiPh
such that:

o in(DiPh) = {T;,E; : 1 <i < n},

o out(DiPh) = {Ci,Ri:1 <1 < n},

s DiPh preserves dining-well-formedness (see Appendix A for the definition of
“preserves”), and

e scheds(DiPh) is the set of all sequences a of actions satisfying the following
implication:
Exclusion: If & is dining-well-formed, then a satisfies (EX-F).

The exclusion implication states that if the schedule is dining-well-formed, then
no two users are in their critical regions at the same time with the same resource,

The no-deadlock dining philosophers problem for F is the external schedule
module that is the same as the dining philosophers problem except that in addition
to the exclusion implication, schedules must satisfy the following implication:

No-deadlock: If a is dining-well-formed and a satisfies (REL-F), then a satisfies
(ND-F).

The no-deadlock implication states that if the schedule is dining-well-formed and no
user keeps resources forever (by staying in its critical region forever), then eventually
some user will enter its critical region.

The no-lockout dining philosophers problem for F is the external schedule mod-
ule that is the same as the dining philosophers problem except that in addition to
the exclusion implication, schedules must satisfy the following implication:

No-lockout: If a is dining-well-formed and a satisfies (REL-F), then a satisfies
(NL-F).

The no-lockout implication states that if the schedule is dining-well-formed and no
user keeps resources forever (by staying in its critical region forever), then eventually
every user that wishes will enter its critical region.

G

2.2 Drinking Philosophers

Fix an n-user bottle requirement B = {B; : 1 € i < n}. The following
definitions are made relative to this bottle requirement; most are analogous to
those in Section 3.1. Two new conditions, (N5-B); and (NOV-B);, both indexed by
user id i, are used to create implications to distinguish the drinking philosophers
problem from the dining philosophers problem, as will be discussed.

For each t, let the set {T(B),Ci(B),Ei(B),R;(B) : B C B; and B # 0} be
denoted B-TCER;. (The letter B stands for “bottles.”) Let B-TCER = |J._, B-
TCER;. The following predicates are defined for any sequence a.

o ais drinking-well-formed if for all 1, the subsequence of o restricted to B-TCER;
conforms to the pattern T;(B)Ci(B)E;(B)R;(B)T:(B')C:(B')E;(B")R;(B').. ..

a satisfies (REL-B) if for all i. if a|B-TCER; is finite, then a|B-TCER; does
not end in Cy(B) for any B. (REL-B) states that every user eventually releases
all resources that it is granted. by leaving its critical region.

a satisfies (EX-B) if for all i and j, i # j, if @ = $,C;(B)B:C;(B")fs and
if BN B' # 0, then §; contains E;(B). (EX-B) states that every user has
exclusive access to needed resources when it is in its critical region.

* a satisfies (ND-B) if for all ¢, if a|B-TCER is finite, then a|B-TCER; ends in
R;(B) for some B or is empty. (ND-B) states that the system is not deadlocked,
i.e., that users stop taking steps only if all users are in their remainder regions.

a satisfies (NL-B) if for all i, if a|B-TCER, is finite, then a|F-TCER; ends in
R;(B) for some B or is empty. (NL-B) states that the system has no-lockout,
l.e., that any particular user stops taking steps only if it is in its remainder
region.

The drinking philosophers problem for B is the external schedule module DrPh
such that:

o in(DrPh) = {Ty(B),E{B):1<i<n,BC B; and B # 0},

o out(DrPh) = {Ciy(B),Ri(B):1<i<n,BC B; and B # 0},

¢ DrPh preserves drinking-well-formedness, and

¢ scheds(DrPh) is the set of all sequences a of actions satisfying the following
implication:
Exclusion: If « is drinking-well-formed. then a satisfies (EX-B).

T

The no-deadlock drinking philosophers problem for B is the external schedule
module that is the same as the drinking philosophers problem except that in addition
to the exclusion implication, schedules must satisfy the following implication:

No-deadlock: If a is drinking-well-formed and a satisfies (REL-B), then o satisfies
(ND-B).

The no-lockout drinking philosophers problem for B is the external schedule
module that is the same as the drinking philosophers problem except that in addition
to the exclusion implication, schedules must satisfy the following implication:

No-lockout: If a is drinking-well-formed and a satisfies (REL-B), then a satisfies
(NL-B).

The next two predicates are introduced to create an implication that will dis-
tinguish between the drinking and dining philosophers problems.

e (NOV-B); (1 £ i € n) For all j and any B and B' with Bn B' #£ {:
(1) if @ = BTi(B)B:T;(B')F3, then f; contains Ci(B); and (2) if &« =
B1T;(B")3,T;(B)fs, then 8y contains E;(B'). (NOV-B); (NOV for “no over-
lap™) states that whenever user i requests a resource, (1) no other user requests
that resource until after user ¢ enters its critical region, and (2) any other user
that has previously requested that resource has already released it.

e (NS-B); (1 £1i <n) If a|B-TCER,; is finite, then a|B-TCER; does not end in
Ti:(B) or Ei(B) for any B. (NS-B); (NS for “not stuck™) states that user i is
never stuck in its trying or exit regions.

The next problem statement requires a degree of concurrency in the drink-
ing philosophers problem, concerning users being simultaneously in their eritical
regions, that cannot be obtained with a dining philosophers algorithm.

The more-concurrent drinking philosophers problem for B is the external sched-
ule module that is the same as the drinking philosophers problem except that in

addition to the exclusion implication, schedules must satisfy the following n impli-
cations:

More concurrent for ¢, 1 <4 < n: If a is drinking-well-formed and satisfies (NOV-
B);, then a satisfies (NS-B);.

For each i, the implication “more concurrent for ¢" states that as long as the
no-overlap condition is true for ¢, ¢ will eventually enter its critical region, even if

8

some user j, with B; N B; # 0, stays in tts critical region forever (of course, j must
have only resources not needed by). Thus, simply using a dining philosophers
algorithm for B would not satisfy this implication, since user i would be stuck in
its trying region forever.

The no-lockout and more-concurrent drinking philosophers problems are in-
comparable in the sense that there is an algorithm for the first that does not solve
the second and vice-versa.

3. Drinking Philosophers Automaton

In this section we describe an automaton Drinl{ B) to solve the drinking philoso-
phers problem for the n-user bottle requirement B = {B; : 1 €< ¢ €< n}, in a
message-passing distributed system. It is created by composing several automata,
to be described, and then hiding most of the actions, in order for the external actions
to be consistent with the definition of the problem. The component automata are
D(i), for 1 <i < n, and any automaton Dine(5) that solves the dining philosophers
problem for B. D(i) represents the part of the drinking philosophers algorithm for
user i; Dine(B) is the subroutine. First we describe the algorithm informally, then
we present the D(i) automata, and then we define Drink(5).

When drinker : enters its trying region needing a certain set of resources, it
sends requests for those that it needs but lacks. Recipient j of a request satisfies
the request unless j currently also wants the resource or is already using it. In the

latter two cases, j defers the request and satisfies it once j is finished using the
resource.

In order to prevent drinkers from deadlocking, a dining philosophers algorithm
is used as a subroutine. The “resources” manipulated by the dining subroutine
are priorities for the “real” resources (there is one dining resource for each drinking
resource). As soon as drinker i is able to do so in its drinking trying region (without
violating dining-well-formedness), it enters its dining trying region, that is, it tries
to gain priority for all its adjacent resources. If i ever enters its dining critical region
while still in its drinking trying region, it sends demands for needed bottles that are
still missing. A recipient j of a demand must satisfy it even if j wants the resource,
unless j is using the resource. In the latter case, j defers the request and satisfies
it when j is through using the resource.

Once drinker ¢ is in its dining ecritical region. we can show that it eventually
receives all its needed resources and never gives them up. Then it may enter its

9

drinking critical region. When i enters its drinking eritical region, it relinquishes
its dining critical region. The benefits of having the priorities are no longer needed.
Doing so allows some extra concurrency: even if ¢ stays in its drinking critical region
forever, other drinkers needing other resources can continue to make progress.

A couple of points about the code deserve explanation. We can show that when
a request is received, the resource is always at the recipient; thus it is not necessary
for the recipient to check that it has the resource before satisfying or deferring the
request. However, it is possible for old leftover demands to be in the system, so
before satisfying or deferring a demand, the recipient must check that it has the
resource.

Another point concerns when the actions of the dining subroutine should be
performed. Drinker ¢’s dining output actions are T; and E; and are enabled (using
Boolean flags) in such a way as to preserve dining-well-formedness. Some drinkers
could be locked out if drinker i never relinquishes the dining critical region. To
avoid this situation, ¢ cannot enter its drinking critical or remainder regions as long
as E; is enabled. The fairness assumption about the underlying model ensures that
once E; is enabled eventually i enters its dining exit region, after which it may enter
the appropriate drinking region.

We now present the automaton D(z).
The set of possible messages is {reg(b), sat(b),dem(b) : b € S}.

The state of D(i), 1 < i < n. consists of values for the following variables:
drink-region(i), dine-region(i), deferred(i), bottles(i), req-bottles(i), buffiz,) for all
j #1, do-T(i), and do-E(i). The region(i) variables take on the values T, C, E and
R, and indicate which region the i** dining and i'* drinking philosophers are in. The
deferred(i) variable is a set of pairs (b, j), indicating that user j's request for bottle
b has been deferred at user i. The bottles(i) and reg-bottles(i) variables are sets of
bottles, and indicate which bottles user i has and which it requires, respectively.
For each j # i, the variable buff{i,7) is a FIFO queue of messages from D(i)
to send to D(j), and is manipulated with operations enqueue and dequeue. The
do-T(i) and do-E(i) variables are Booleans and control when the output actions
T; and E; respectively are enabled. In the unique start state, the region(i)’s are
R; deferred(i), req-bottles(i), and all the buffli,7) are empty; do-T'(i) and do-E(i)
are false; and bottles(i) is an arbitrary subset of B;. (We have actually defined a
class of automata D(i), with different start states, depending on the initial value of
bottles(i). Later, we will require consistency between the D(i)’s.)

10

The actions of D(i) are listed below, together with their preconditions and
effects. (There are no internal actions.) First we define two macros, SAT and
DEFER. SAT satisfies a request or demand from D(j) for bottle b by sending the
message sat(b) to D(j) and removing b from bottles(i) and (b,j) from deferred().
DEFER defers a request or demand from D(j) for bottle b, if b is currently required
by D(i), by adding (b,j) to deferred(i); if b is not currently required, then the
request or demand is satisfied.

SAT(i,b,j) == enqueue(buffi, j).sai(D))
hottles(i) +— bottles(i) — {b}
deferred(i) — deferred(i) — {(b.7)}

DEFER(i,b,j) == if b € reg-bottles(i) then deferred(z) «— deferred(i) U {(b,7)}
else SAT(i.b.7)

Input actions:

e Ti(B), B C B;
Effect:
drink-region(i) — T
reg-bottles(i) — B
for all j £ i and b € reg-bottles(i) N Bj:
if b ¢ bottles(i) then enqueue(buffz, j),req(b))
if dine-region(i) = R then do-T(i) + true

E(B), B C B;
Effect:
drink-region(i) — E
for all (b,;) € deferred(i): SAT(i,b,7)

deliver{sat(b), j,i1) for all j # i, b€ B; N B;
Effects:
bottles(i) « bottles(i) U {b}

deliver{reg(b),j.i) for all j 1, b€ B; N Bj
Effects:
if drink-region(i) = T or drink-region(i) =C
then DEFER(i,b,j)
else SAT(i,b,7)

deliver{dem(b), j,i) for all j £ ¢, be B; N B;

11

Effect:
if b € bottles(i) then
if drink-region(i) = C or (drink-region(i) = T & dine-region(i) = C)
then DEFER(i,b,7)
else SAT(1,h.7)

o C;
Effect:
dine-region(i) — C
if drink-region(i) = T then |
for all j # i and b € reg-bottles(i) NB; : if b & bottles(i) then
enqueue(buffii,), dem(b))]
else do-E(i) « true

e R;
Effect:
dine-region(i) — R
if drink-region(i) = T then do-T(i) «— true

Qutput actions:

e Ci(B), B CB;

Precondition:
drink-region(i) =T
B = reg-bottles(i) T bottles()
do-E(i) = false

Effect:
drink-reqion(i) — C
if dine-region(i) = C then do-E(i) — true

e Ri(B), BC B;
Precondition:
drink-region(i) = E
B = reg-bottles(i)
do-E(1) = false
Effect:
drink-reqion(i) — R

o deliver(m,1,j) for all j i, m € {req(b), sat(b),dem(d) : b € B; N B,}
Precondition:

12

=

m is at head of buff{i.7)
Effect:
dequeue(buffii, 7))

Precondition:
do-T(i) = true
Effect:
dine-region(t) «— T
do-T(i) + false

Precondition:
do-E(t) = true
Effect:
dine-region(i) «— E
do-E(i) + false

The output actions of D(i) are partitioned into n classes, one for the deliv-
ery of messages in each buff(i, j), and one for all the other actions. Formally, the
subsets of the output actions are {C;(B), Ri(B), T;, E; : B C B;}, and for each
j # 1, {deliver(m,i,7) : m = req(b), dem(b), or sat(h), b € B;N B;}. This partition
guarantees that messages are eventually delivered in fair executions, since the mes-
sage queues are FIFO. In essence, the buff variables are modeling separate pieces of
hardware, the communication links.

A set of automata {D(i): 1 < < n} is resource-compatible if for all ¢, and all
bin B;: bis in bottles(j) in the start state of D(j) for exactly one j. Let Dine(B)
be an automaton whose input actions are {T;,E; : 1 < ¢ < n} and whose output
actions are {C;, R; : 1 <i < n}. The automaton Drink(B) is formed by composing
a resource-compatible set {D(i) : 1 € i < n}, and Dine(B), and then hiding all
actions except | Ji_, B-TCER;. See Figure 1.

4. Proof of Correctness

In Section 4.1, we show that Drink(B) solves the drinking philosophers problem,
that is, the safety properties are true, regardless of the behavior of the Dine(B)
subroutine. Section 4.2 consists of the proof that Drink({) solves the no-deadlock
(resp., no-lockout) drinking philosophers problem if the Dine(B) subroutine solves
the no-deadlock (resp., no-lockout) dining philosophers problem. In Section 4.3

13

Dine(B)

T1 2

El R2

Deliver{m,1,2)

Deliver(m,2,1)

T1(B)... C1(B)... T2(B)...

ca(B)...

E1(B)... R1(B)... E2(B)... R2(B)...

Figure 1: Drink(B), a system of two drinking philosophers.

we show that Dine(B) solves the more-concurrent drinking philosophers problem if
the Dine(B) subroutine preserves dining-well-formedness. The proofs rely heavily
on invariants about the states of the automata. The proofs of the invariants are
relegated to Appendix B.

4.1 Drinking Philosophers

We show that Drink(B) solves the drinking philosophers problem, regardless of
the behavior of Dine(B). That is, we show that correct exclusion is maintained by
the algorithm, although no liveness properties are guaranteed. Three lemmas are
used in the proof of the main result, Theorem 4. Lemma 1 states some simple re-
lationships between states and actions in an execution, for example, drink-region(i)
and dine-region(i) reflect the most recent drinking and dining actions at node i.
Lemma 2 asserts that Drink{B) preserves drinking-well-formedness. Lemma 3 con-
sists of several invariants needed to show the exclusion property.

Let buff(i,j)|b be the subsequence of buff(i,j) consisting exactly of sat(b),
reg(b) and dem(b).

Lemma 1: Let e = spa;5; ... be an execution of Drink(B). Choose any i and m.
with 1l <i <n and s,, in e.

(a) Let k be the largest integer such that k < m and a; is in B-TCER;. (Let
k = 0 if there is no such ax.) If k = 0 or a; = R;(B), then drink-region(i) = R

14

in sm. If ap = Ti(B), then drink-region(i) = T in sp. If ap = Ci(B), then drink-
region(i) = C in sy. If ay = E;(B), then drink-region(i) = E in sm.

(b) Let k be the largest integer such that k < m and a = Ti(B) for any B. (Let
k = 0 if there is no such ap.) If k = 0, then reg-bottles(i) = 0 in s,»; otherwise
reg-bottles(i) = B in sp.

(¢) Let k be the largest integer such that k < m and ay is in F-TCER;. (Let k=0
if there is no such ay.) If k = 0 or ax = Ri, then dine-region(i) = R in spm. If
ar = T;, then dine-region(i) = T in sp. If aj = C;, then dine-region(i) = C in sm.
If a; = E;, then dine-region(i) = E in s,,.

(d) For all j # i, buff{i, j)|b is empty unless b is in B; N Bj, in $m.

(e) If (b,7) is in deferred(i), then j # i and b is in B; N B;, for all b and j, in $p.
Proof: By an easy induction on m, inspecting the code. O
Lemma 2: Drink(B) preserves drinking-well-formedness.

Proof: Suppose a is a schedule of Drink(B), and fa is a prefix of « such that
is drinking-well-formed and a is a locally-controlled action of Drink(B). We show
that Ja is drinking-well-formed.

Let e be any execution of Drink(B) with schedule Sa; let s be the state of e
between § and a. There are two cases.

Case 1: a = C;(B) for some ¢ and B. We must show that 3|B-TCER; ends in
b = T;(B). By precondition of C;(B), drink-region(i) = T and B = reg-boitles(z) in
5. By Lemma 1(a), b = Ti(B") for some B', and by Lemma 1(b), B' = B.

Case 2: a = Ri(B) for some i and B. We must show that 2|B-TCER; ends in
b = E;(B). By precondition of R;(B). drink-region(i) = E and B = reg-bottles(i)
in s. By Lemma 1(a), b = E;(B’) for some B'. Since 3 is drinking-well-formed,
B|B-TCER; ends in T}(B")Ci(B')E;(B'). By Lemma 1(b), B' = B. O

The following lemma states some invariants of the algorithm, that is, predicates
true in every reachable state of Drink{B). Recall that each bottle is in at most two
B;’s.

Lemma 3: Let ¢ be an execution of Drink(3) whose schedule is drinking-well-
formed. Then in every state of e, the following are true, for all ¢, j and b.

15

(A)Ifbisin B;NB;, i # j, then exactly one of the following is true: b is in bottles(i),
or b is in bottles(j). or sat(b) is in buffii, i), or sat(b) is in buffij,7). If b is in B;
only, then b is in botiles(i).

(B) If (b,7) is in deferred(i), then
(a) b is in bottles(i),
(b) drink-region(j) =T, and
(c¢) b is in reg-bottles(j).

(C) If req(b) is at the head of buffii, j)|b, then b is in bottles(j).

(D) If req(b) is in buff(i, 7). then
(a) at most one req(b) is in buffiz,),
(b) no sat(b) follows it in buffii,),
(c) (b,i) is not in deferred(j),
(d) drink-region(i)=T,
(e) b is in reg-bottles(i), and
(f) b is not in bottles(i).

(E) If sat(b) is in buff(i,j), then
(a) at most one sat(b) is in buffiz, 7),
(b) no dem(b) immediately follows it in buff(i,j)|b,
(c) drink-region(j) =T, and
(d) b is in reg-bottles(y).

(F) If dem(b) is at the head of buffi,j)|b and b is in bottles(j), then (b,7) is in
deferred(j).

(G) If drink-region(i) = T and b is in req-botiles(i) and b is in B;, j # 1, then exactly
one of the following is true: req(b) is in buff(i, j). or (b.1) is in deferred(j), or sat(b)
is in buff(j.i). or b is in bottles(i).

(H) If b is in req-bottles(i) and drink-region(i) = C. then b is in bottles(i).

Proof: In Appendix B. O
Here is the main theorem.

Theorem 4: Drink(B) solves the drinking philosophers problem for B.

Proof: Drink(B) has the correct input and output actions by inspection and pre-
serves drinking-well-formedness by Lemma 2.

16

Let ¢ be a fair execution of Drink{B) with schedule a. We verify the exclusion
implication.

Suppose « is drinking-well-formed. We must show a satisfies (EX-B). Suppose
in contradiction that & = a;C;(B)a;C;(B')a; for some i and j, with BN B’ # {,
vet as contains no E;(B). By drinking-well-formedness, i # j. Let s be the first
state of ag.

Since « is drinking-well-formed, a;|B-TCER; ends in T;(B), and az|B-TCER;
is empty. By Lemma 1(a) and (b), drink-region(i) = C, and B = reg-bottles(i) in s.
Thus by Lemma 3 (H), B C bottles(i) in s.

Again by drinking-well-formedness, a;C;(B)a;|B-TCER; ends in T;(B'). By
Lemma 1(a) and (b), drink-region(j) = C, and B' = reg-bottles(j) in s. Thus by
Lemma 3 (H), B’ C bottles(j) in s.

But since BN B’ # 0, there is some b in BN B', and thus in B; N Bj, such
that b is in bottles(z) and b is in bottles(;) in s, contradicting Lemma 3 (A). Thus o
satisfies (EX-B).

We conclude that Drink(B) solves the drinking philosophers problem. O

4.2 No Deadlock and No Lockout

In this subsection we show that Drink(B) solves the no-deadlock (resp., no-
lockout) drinking philosophers problem if Dine(B) solves the no-deadlock (resp.,
no-lockout) dining philosophers problem.

Lemma 5 consists of some invariants that are useful in doing the liveness proofs.
Lemma 6 is a technical lemma relating to dining-well-formedness. Lemma T states
that Dine(B) behaves properly in the composition, which means that the appro-
priate implications are true (e.g., exclusion and no-deadlock for dining, if Dine(B)
solves the no-deadlock dining philosophers problem). Lemma 8 states that if all
bottles are eventually released, then all forks are eventually released. The heart
of Lemma 8 is showing that once a process in its drinking trying region enters its
dining critical region, it subsequently enters its drinking critical region and releases
its forks. Showing this depends on the dining exclusion implication (Lemma 7).

Lemma 9 is the key lemma and states that the no-deadlock implication for
dining philosophers implies the no-deadlock implication for drinking philosophers
(if all bottles are eventually released), and similarly for no-lockout. Lemma 9 is

17

proved as follows. Since all bottles are released, Lemma 8 implies that all forks
are released. Then Lemma 7 implies that (ND-F) (or NL-F as appropriate) is true,
which in turn implies that eventually the dining critical region is entered and the
drinking critical region is entered. Theorems 10 and 11 put the pieces together.

Lemma 5: Let e be an execution of Drink(B) whose schedule is drinking-well-
formed. Then in every state of e, the following are true, for all i.

(A) If do-T(i) is true, then dine-region(i) = R.
(B) If do-E(i) is true, then dine-region(i) = C.
Proof: In Appendix B. O

Lemma 6: Let e be an execution of Drink(BB) whose schedule a is drinking-well-
formed. If Dine(B) preserves dining-well-formedness, then

(a) e is dining-well-formed, and
(b) for any i, if a|B-TCER; is finite, then a|F-TCER; is finite.

Proof: (a) We show a is dining-well-formed by induction on the length of its
prefixes. The empty prefix is obviously dining-well-formed. Let Sa be a prefix of «
such that 3 is dining-well-formed. Let e be any execution of Drink{B) with schedule
Ba: let s be the state of e between 3 and a.

Case 1: a = T; for some i. By precondition of T;, do-T(t) is true in s. By
Lemma 5 (A), dine-region(i) = R in s. By Lemma 1(c), 5|F-TCER,; either ends in

R; or is empty.

Case 2: a = C; for some i. Since Dine(B) preserves dining-well-formedness,
B|F-TCER; ends in T;.

Case §: a = E; for some i. By precondition of E;, do-E(t) is true in s. By
Lemma 5 (B), dine-region(i) = C in s. By Lemma 1(c), 8|F-TCER; ends in C;.

Case 4: a = R; for some 1. Since Dine(B) preserves dining-well-formedness,
B3|F-TCER; ends in E;.

(b) Assume in contradiction that for some i, o|B-TCER; is finite but «|F-
TCER; is infinite.

18

Case 1: «a|B-TCER; ends with T;(B) for some B. By Lemma 1, drink-
region(i) = T for the remainder of e. By dining-well-formedness, some C; action
occurs in e after the final T;(B). By dining-well-formedness and Lemmas 1 and 5
(B), do-E(i) is false when this C; occurs. By the code, do-E(i) never becomes true
after this point, since drink-region(i) = T when the C; occurs and no C;(B) ac-
tion occurs subsequently. Thus there is no subsequent E; action in e, contradicting
dining-well-formedness.

Case 2: «|B-TCER; ends with C;(B), E;(B) or R;(B) for some B. By
Lemma 1, drink-region(i) is never equal to T in the remainder of e. By dining-
well-formedness, some R; action occurs in e after the final action in B-TCER;. By
dining-well-formedness and Lemmas 1 and 5 (A), de-T(7) is false when this R; oc-
curs. By the code, do-T(i) never becomes true after this point, since drink-region(i)
is not T when the R; occurs and no T;(B) action occurs subsequently. Thus there
is no subsequent T; action in e, contradicting dining-well-formedness. O

Lemma 7 shows that Dine(8) behaves properly in the composition.

Lemma 7: Let e be a fair execution of Drink(B) whose schedule a is drinking-well-
formed.

(a) Suppose Dine(B) solves the dining philosophers problem. Then « satisfies (EX-
F).

(b) Suppose Dine(B) solves the no-deadlock dining philosophers problem. If a
satisfies (REL-F), then a satisfies (EX-F) and (ND-F).

(¢) Suppose Dine(B) solves the no-lockout dining philosophers problem. If a satisfies
(REL-F), then « satisfies (EX-F) and (NL-F).

Proof: In all three cases, Lemma 6(a) implies that a is dining-well-formed. Let
e' = e|Dine(B) and &' = sched(e'). Thus o' is also dining-well-formed, and if o
satisfies (REL-F), then so does a'. By a result in [LT], ¢’ is a fair execution of
Dine(B). Thus o satisfies (EX-F) and either (ND-F) or (NL-F) (as appropriate),
and so does a. 0

Next we show that if all bottles are eventually released, then all forks are
eventually released.

Lemma 8: Let e be a fair execution of Drink(B) whose schedule « is drinking-well-
formed and satisfies (REL-B). If Dine(B) solves the dining philosophers problem
for B, then o satisfies (REL-F).

139

Proof: We must show that for all ¢, a|F-TCER; does not end in C;. Lemma 6(a)
implies that « is dining-well-formed. By Lemma 7(a), « satisfies (EX-F). Suppose
in contradiction that for some i, e = €,C;es, where no action from F-TCER; occurs
in €. By Lemma 1(c), dine-region(i) = C throughout e;. Let s be the last state of
€1.

Case 1: drink-region(i) = C, E or R in s. By the code, do-E(:i) = true
throughout e;. Thus C;(B) and R;(B) are disabled for all B throughout e; and
hence never occur in e;. By assumption, T; and E; never occur in e;. Yet E; is
enabled throughout es, contradicting e being fair.

Case 2: drink-reqion(i) = T in s. Let reg-bottles(i) = B in s. If do-E(2) ever
becomes true in e;, then the same argument as in Case 1 gives a contradiction.
Thus do-E(i) never becomes true in e;. By the code, then, C;(B') never occurs in
eq for any B’', and by Lemma 1(a) and (b) and drinking-well-formedness, no E;(B')
occurs. drink-region(i) = T, and reg-botiles(i) = B throughout es.

At the beginning of ez, D(i) sends dem(b) for all b in B that it is still missing,.
‘We now show that eventually every missing bottle will be in bottles(i). By fairness
of e, each dem(b) is eventually received. Consider recipient D(j).

Case 2.1: b & botiles(j) when dem(b) is received by D(j). Throughout es,
D(i) never adds sat(b) to buffii,j), since requests and demands are deferred and
no E;(B') occurs. Since the queues are FIFO, Lemma 3 (A) implies that the only
possibilities when dem(b) is received are that bis in bottles(i) or sat(b) is in buff7,1).

Case 2.2: b € bottles(j) when dem(b) is received by D(j). By the code, there
are only two situations in which sat(b) is not immediately added to buffj,).

Case 2.2.1: drink-region(j) = C and b € reg-botiles(j) when dem(b) is received
by D{j). By (REL-B), eventually some E;(B') occurs subsequently in e; and thus
by the code sat(b) is added to buff{j,i) then.

Case 2.2.2: drink-region(j) = T and dine-region(j) = C and b € reg-bottles(;)
when dem(b) is received by D(j). Since a satisfies (EX-F), dine-region(j) can never
be C in e; by dining-well-formedness and Lemma 1(c), and this case cannot occur.

In both Cases 2.1 and 2.2, by fairness of e, the sat(h) message eventually arrives
at D(i) in es.

Since ey contains no C;(B) action, by drinking-well-formedness no R;(B') or
Ci(B') occurs in ey for any B'. Yet once any bottle in B is in bottles(i) in e,, it

20

stays there for the rest of es. Thus after some point in e;, Cj(B) is continuously
enabled, yet no action in that class of the partition occurs, contradicting e being
fair. O

The next lemma states that no-deadlock for forks imphes no-deadlock for bot-
tles, and similarly for no-lockout.

Lemma 9: Let e be a fair execution of Drink(B) whose schedule e 1s drinking-well-
formed and satisfies (REL-B). If Dine(B) solves the no-deadlock (resp., no-lockout)
dining philosophers problem, then « satisfies (ND-B) (resp., (NL-B)).

Proof: By Lemma 6(a), a is dining-well-formed. If Dine(B) solves either the no-
deadlock or the no-lockout dining philosophers problem, then Dine(B) obviously
solves the dining philosophers problem, and by Lemma 8, a satisfies (REL-F).

Suppose in contradiction that « does not satisfy (ND-B) (resp., (NL-B)), i.e.,
there exists an i such that a|B-TCER (resp., a|B-TCER;) is finite and a|B-TCER;
ends in E;(B) or T;(B) for some B. (Ending in C;(B) is ruled out by (REL-B).)

We now show that a|F-TCER; ends in R;.

No-deadlock: Since a|B-TCER is finite, «|F-TCER is also finite by Lemma
6(b). By Lemma 7(b), « satisfies (ND-F), implying that «|F-TCER; ends in R;.

No-lockout: Since a|B-TCER; is finite, a|F-TCER; is also finite by Lemma
6(b). By Lemma T7(c), a satisfies (NL-F), implying that «|F-TCER; ends in R;.

We now show that both possibilities for the final action in o|B-TCER; lead to
a contradiction.

Case 1: «|B-TCER; ends in T;(B) for some B. By Lemma 1(a), drink-
region(i) = T for the rest of e. Since a|F-TCER; ends in R;, dine-region(i) = R
for the rest of e by Lemma 1. If the final R; occurs before the final T;(B). then
do-T\(i) is set to true when the T;(B) occurs. If the final R; occurs after the final
Ti(B), then do-T(i) is set to true when the R; occurs. In both cases, after some
point, do-1Y(1) is true for the rest of e. Thus after some point in e, T; is continuously
enabled, yet no action from that class of the partition occurs, contradicting e being
fair.

Case 2: a|B-TCER; ends in E;(B) for some B. After this point, drink-region(i)
remains E and reg-bottles(i) remains B, by Lemma 1. Since a|F-TCER; ends in

21

R;. after some point in e dine-region(i) remains R by Lemma 1. Thus by Lemma 5
(B), do-E(i) remains false. So after some point in e, R;i(B) is continuously enabled,
yet no action in that class of the partition occurs, contradicting e being fair. u}

The main theorems follow.

Theorem 10: If Dine(B) solves the no-deadlock dining philosophers problem for
B, then Drink(B) solves the no-deadlock drinking philosophers problem for B.

Proof: Drink(B) has the correct input and output actions by inspection and pre-
serves drinking-well-formedness by Lemma 2.

Let e be a fair execution of Drink(B). We verify the exclusion and no-deadlock
implications. The exclusion implication is true by the same argument as in the
proof of Theorem 4. The no-deadlock implication is true by Lemma 9. o

Theorem 11: If Dine(B) solves the no-lockout dining philosophers problem for B,
then Drink(B) solves the no-lockout drinking philosophers problem for B.

Proof: Analogous to the proof of Theorem 10. O

4.3 Concurrent Drinking

In this subsection we show that Drink(B) solves the more-concurrent drinking
philosophers problem, regardless of the behavior of Dine(B) (as long as it preserves
dining-well-formedness). In essence, the condition (NOV-B); is so strong that the
dining subroutine is not needed to arbitrate disputes. Lemma 12 proves several
invariants about dem(b) messages and is used in the proof of the next lemma (as
well as in the complexity analysis). Lemma 13 is the main one, stating that the
no-overlap condition implies the never-stuck condition. Theorem 14 puts the pieces
together.

A demn(b) message in buff(i,j) is current if one of the following is true: a
sat(b) message precedes it in buff{i, j), or b is in bottles(j), or a sat(b) message is in

buffi,1).

Lemma 12: Suppose Dine(B) preserves dining-well-formedness. Let e be an execu-
tion of Drink(B) whose schedule is drinking-well-formed. The following predicates
are true in every state of e, for any ¢, j and b.

(A) If there is a current dem(b) message in buffii, j), then

22

(a) drink-region(i) =T,

(b) dine-region(i) = C,

(c) b is in reg-bottles(z), and
(d) do-E(i) is false.

(B) There is at most one current dem(b) message in buffii,j).
(C) There is at most one non-current dem(b) message in buffz, j).
Proof: In Appendix B. O

Lemma 13: Let ¢ be a fair execution of Drink(B) whose schedule « is drinking-
well-formed and satisfies (NOV-B);, for some fixed i. If Dine(B) preserves dining-
well-formedness, then a satisfies (NS-B);.

Proof: Recall that (NOV-B); states that for all § and any B and B' with BNB' #),
the following two conditions hold: (1) if « = 51 Ti(B)B2T;(B)f3s, then 52 contains
Ci(B); and (2) if a« = 51T;(B")3.Ti(B)5s, then 32 contains E;(B').

Suppose in contradiction to (NS-B); that a|B-TCER; ends in T;(B) or Ei(B)
for some B.

Case 1: a|B-TCER; ends in Tj(B). By (NOV-B);, drinking-well-formedness
and Lemma 1(a), for all j # i, drink-region(j) = E or R for the rest of e after the
final T;(B). When the final Ti;(B) occurs, a request message for each bottle b in B
that is not in bottles(i) is placed in the appropriate buffii,j). Since e is fair, it is
eventually delivered. By Lemma 3(c), b is in bottles(7) when the request is received
and by the code D(j) immediately satisfies the request. Since e is fair, the satisfy
message is eventually delivered to D(i).

We now show that once b is in bottles(i) after the final T;(B), it remains there.
Since drink-region(j), 7 # i, is never equal to T after the final T;(B), Lemma 3 (D-d)
implies that D(i) never receives reg(b) after the final T;(B). Similarly, Lemma 11
(A-a) implies that D(i) never receives a dem(b) message for b in bottles(i) after the
final T;(B). Thus there is a point in e after which every bottle in B is in bottles(i)
and remains there.

By Lemma 6(b), a|F-TCER; is finite. Consider the point in e after the latter
of (1) the last action in F-TCER; and (2) the point after the final T;(B) when B C
bottles(i). If do-E(i) is true at this point, then E; is continuously enabled for the
rest of e, yet no action in that class of the partition occurs, contradicting e being

23

fair. If do-E(i) is false at this point, then C;(B) is continuously enabled for the rest
of e, yet no action in that class of the partition occurs, contradicting e being fair.

Case 2: a|B-TCER; ends in E;(B). By Lemma 6(b), a|F-TCER; is finite.
After the latter of the final action in F-TCER; and the final E;(B), do-E(i) is
either true or false. If do-E(i) is true at this point, then E; is continuously enabled
for the rest of e, yet no action in that class of the partition occurs, contradicting
e being fair. If do-E(i) is false at this point, then C;(B) is continuously enabled
for the rest of e, yet no action in that class of the partition occurs, contradicting e
being fair. 0

Theorem 14: If Dine(B) preserves dining-well-formedness, then Drink(B) solves
the more-concurrent drinking philosophers problem for B.

Proof: Drink(B) has the correct input and output actions by inspection and pre-
serves drinking-well-formedness by Lemma 2.

Let e be a fair execution of Drink{B) with schedule a. We verify the exclusion,
and more-concurrent for ¢ (1 < ¢ € n) implications. The exclusion implication is
true by the same argument as in the proof of Theorem 4. The more-concurrent for
¢ implications, 1 < ¢ < n, are true by Lemma 13. (Lemma 13 is applicable because
Lemma 6(a) implies that o is dining-well-formed.) o

5. Complexity Analysis

In this section, we analyze the worst-case waiting time of our algorithm as well
as evaluating it using the criteria listed in [CM]. The analysis of the worst-case
waiting time shows that the limiting factor is the no-lockout dining philosophers
subroutine. By replacing the O(n) time subroutine of [CM] with an O(1) time
subroutine (for instance, that of [Ly]), we obtain an O(1) time drinking philosophers
algorithm.

We would like to bound how long a user must wait after requesting to enter
its critical region until it does so. The following definitions provide a measure of
time complexity for our model that is analogous to that in [PF], in which an upper
bound on process step time, but no lower bound, is assumed. (Thus, all interleavings
of system events are still possible.) Our timing definitions provide distinct upper
bounds on process step time and on message delivery time.

Given an execution e of automaton A, where ¢ = sga;81as . . ., a timing function
for e is an increasing function f, mapping positive integers to nonnegative real

24

numbers such that for each real number ¢, only a finite number of integers @ satisfy
t.(t) < t. Intuitively, t.(i) is the real time at which a; occurs; we rule out an infinite
number of actions occurring before a finite real time.

Let f be a function mapping each class of the partition part(A) to a positive
real number. Execution e is f-bounded if the following condition is true for each
class C of the partition part(A). For each i > 0, either

(1) there exists j > i such that a; isin C and t.(j) —t(i) < f(C), or

(2) there exists j = ¢ such that no action of C is enabled in s; and t.(j) — te(i) <

F(C).

That is, starting at any point in the execution, within time f(C') either some output
action in C occurs, or else the automaton passes through a state in which no output
action in C is enabled. Each class of the partition is considered separately, since
each class corresponds, in some sense, to a distinct entity in a larger system.

Now we analyze the worst-case time behavior of the no-lockout drinking
philosophers algorithm, automaton Drink(B), which uses any no-lockout dining
philosophers subroutine Dine(B) for B. Let f map each class {Ci(B), Ri(B), T, E; :
B C B;} to some positive real ¢ and each class {deliver(m.1,j) : m = req(b), dem(b)
or sat(b)} to some positive real d. Thus, ¢ is the upper bound on process step time
and d is the upper bound on the message delay. Let £ be the set of all fair f-bounded
executions of Drink(B) whose schedules are drinking-well-formed and satisfy (REL-
B).

Let tryprine be the maximum time, over all ¢ and all B € B;, between any
T;(B) action and the subsequent C;(B) action, in any execution in £. Let critprink
be the maximum time, over all i and all B C B;, between any C;(B) action and the
subsequent E;(B) action, in any execution in £.

Let frypine be the maximum time over all i between any T; action and the
subsequent C; action, in any execution in £. Let ¢rilp;,, be the maximum time
over all ¢ between any C; action and the subsequent E; action, in any execution
in £. Let ezitpin. be the maximum time over all ¢ between any E; action and the
subsequent R; action, in any execution in £.

We assume that erilp,int and eziip;,. are constants.

Theorem 16 gives an upper bound on #ryprink, the maximum time a user
process must wait after requesting to enter its critical region until it is allowed to

25

do so. It is proved using Lemma 15, which bounds the number of messages in any
buffi,j). The proof of Lemma 15 in turn uses Lemma 12.

First we show that there is a bounded number of messages in any buff. Let r
be the maximum number of bottles shared by any two drinkers.

Lemma 15: Suppose Dine(B) preserves dining-well-formedness. Let e be any
execution of Drink(B) whose schedule is drinking-well-formed. Then in any state
of e, there are at most 4r messages in buff(:, j) for any i and j.

Proof: Choose any i and j, i # j. Let s be any state in e. By Lemma 1(d),
buffi, 7)|b is empty unless b is in B; N B;. There are at most r bottles in B; N B;.
Choose any such b. By (D-a) of Lemma 3, there is at most one req(b) message
in buffi,j) in s. By (E-a) of Lemma 3, there is at most one sat(b) message in
buff(i,7) in s. By (B) of Lemma 12, there is at most one current dem(b) message
in buff(i,j) in s. By (C) of Lemma 12, there is at most one non-current demn(b)
message in buffi,j) in s. Thus there are at most four messages in buffii, j)|b. The
result follows. O

The main theorem follows.
Theorem 16: tryprink < 3¢+ 8rd + ezit pine + 1Y pine + €T Drink-

Proof: Choose e in £ and fix i. Suppose T;(B) occurs at time ¢, for some B. In
the worst case, dine-region(i) = C at time ¢. By time ¢ later, E; occurs, by time
ezitpine later, R; occurs, by time ¢ later, T; occurs, and by time trypi,. later, T;
occurs.

When this T; occurs, D(i) sends a dem(b) message for all required and missing
bottles. By Lemma 15, the demand is received by time 4rd later. As in the proof
of Lemma 8 (Case 2.2.2), either the recipient immediately sends sat(b) to D(i) or
else the recipient is in its drinking critical region and sends sai(b) by time eritprink
later. By Lemma 15, the sat(b) is received by time 4rd later. By time c later, C;(B)
OCCUrs, O

Since we assume that eritprint. €ZiDine. . d and ¢ are constants, the worst-
case waiting time of this solution depends on #rypin., the worst-case waiting time of
the dining philosophers subroutine. For any dining philosophers algorithm, trypine
depends on critpine. We now give an informal argument for an upper bound on
critpine. Once C; occurs, E; will not occur until after D(i) has sent demands for
needed bottles, these demands have been satisfied, and D(7) has entered its drinking

26

critical region. The upper bound then is 2¢ 4+ 8rd+ critprink. Thus crilpine is also
a constant, under our assumptions.

The dining philosophers subroutine used by Chandy and Misra (1984) has
trypine of O(n). By replacing it with, for instance, the dining philosophers algo-
rithm of Lynch (1981), which has worst-case waiting time of O(1), we obtain a more
efficient drinking philosophers algorithm. The algorithm of Lynch (1981) has time
O(1) in the sense that the worst-case waiting time is a function of local information,
including the maximum number of users for each resource, and the maximum num-
ber of resources for each user, and is not necessarily a function of the total number
of users.

Our drinking philosophers algorithm could be modified to replace r with a
small constant. if the request, demand, and satisfy messages took a set of bottles
as arguments instead of a single bottle.

Five criteria for evaluating resource allocation algorithms are given by Chandy

and Misra (1984) — fairness, symmetry, economy, COnCUrrency and boundedness.
We discuss each in turn.

Fairness corresponds to our definition of no-lockout. Our drinking philosophers

solution has the no-lockout property as long as the dining philosophers subroutine
has it.

Symmetry means that each process runs the identical program. This property
is true of our solution, as long as it is true of the subroutine.

Economy means that processes send and receive a finite number of messages
between subsequent entries to their critical regions, and a process that enters its
critical region a finite number of times does not send or receive an infinite number
of messages. Our solution has this property: Recall that when Ti(B) occurs, D(i)
sends req(b) messages for all missing resource. It defers any req(b) messages it
receives when drink-region(i) = T, but yields to dem(b) messages. When dine-
region(i) becomes C, it sends dem(b) messages for any missing resources. Thus at
most four messages (req(b), sat(b), dem(b), sat(b)) are sent on behalf of any bottle
for any one trying attempt. Furthermore, once a drinker stops wanting to enter its
critical region, it may receive a request for each of its bottles, but after satisfying
the requests, it never sends or receives any more messages.

Concurrency means that “the solution does not deny the possibility of simul-
taneous drinking from different bottles by different philosophers.” This is certainly

27

true of our algorithm, since it satisfies the more-concurrent condition. More precise
formulations of “concurrency” were given in our definitions (see Sections 3 and 6).

Boundedness means that the number of messages in any buffi,j) variable is
bounded. and the size of each message is bounded. This is certainly true of our
solution, by Lemma 15.

6. Conclusions

We have given precise definitions of several versions of the dining philosophers
and drinking philosophers problems, each version satisfying different liveness and
concurrency conditions. We described a modular drinking philosophers algorithm
that used as a true subroutine any dining philosophers algorithm. We proved the
correctness of our algorithm, and analyzed its time complexity. One advantage of
our modular approach is that an algorithm with improved worst-case time perfor-
mance can be obtained by using a time-efficient dining philosophers subroutine. We
close with a discussion of other versions of the drinking philosophers problem.

The version of the drinking philosophers problem specifying the most concur-
rency would require that if a drinker requests a set B of bottles, it should eventually
enter its critical region, as long as no other drinker uses any of the bottles in B
forever. (Some bottles in B could be kept forever after this request is satisfied.)
Unfortunately, neither the algorithm in this paper nor that of Chandy and Misra
(1984) satisfies this conditions. An interesting problem would be to devise one that
does.

The following situation shows that our algorithm does not solve the “most
concurrent” drinking philosophers problem. (Essentially the same scenario shows
that the algorithm of Chandy and Misra (1984) also does not.) Suppose there are
three drinkers, 1, 2 and 3; 1 and 2 share bottle a, 2 and 3 share bottle b. First,
1 gets bottle a, enters its drinking critical region, and stays there forever. Then 2
requests a and b, obtains b, and enters its dining critical region. Since 2 can never
obtain a, it stays in its dining critical region forever. Finally, 3 requests b. Drinker
2 does not relinquish b upon a mere request, and 3 can never demand b, because
it can never enter its dining critical region. Thus, even though 3’s bottle request
inclides no bottle that is ever in use, it can never enter its drinking critical region.

There is a version of the drinking philosophers problem specifying a degree of
concurrency intermediate between strongest and more-concurrent, that the algo-
rithm of Chandy and Misra (1984) solves and ours does not. The informal deserip-
tion is that if a drinker requests a set B of bottles, it should eventually enter its

28

critical region, as long as no other drinker uses or wants any of the bottles in B
forever.

The following scenario shows that our algorithm does not solve this problem.
Suppose there are five drinkers, 1 through 5. Drinkers 1 and 2 share bottle a, 2
and 3 share b, 3 and 4 share ¢, and 3 and 5 share d. First, 1 gets a, enters its
drinking critical region and stays there forever. Then 2 requests a and b, obtains b
and enters its dining critical region. As in the previous scenario, 2 remains in its
dining critical region forever. Next, 3 requests ¢ and d. It obtains ¢ from 4. Then
4 requests ¢ from 3, the request is deferred. 4 demands ¢ from 3, and the request
is satisfied. Now 3 obtains d from 5. But 3 will never get ¢ from 4, because it can
never demand it. Thus, although none of the bottles required by 3 are ever wanted
forever by another drinker, 3 cannot enter its drinking critical region.

In contrast, the algorithm of Chandy and Misra (1984) will allow 3 to enter
its drinking critical region. The forks in the dining philosophers algorithm provide
a priority for the use of the corresponding bottles by the drinkers. The priority
alternates between the two processes sharing the resource. Thus, once 3 obtains ¢ it
will not relinquish it until it has gotten to use it. In general, priority is broken down
on a link-by-link basis, whereas in our {(more modular) algorithm, the priority comes
only with entering the dining critical region. In other words, one can optimize to
gain extra concurrency at the expense of violating modularity.

Acknowledgments

We thank Alan Fekete and Prasad Sistla for helpful discussions.

References

Chandy KM and Misra J (1984) The Drinking Philosophers Problem, ACM Trans.
on Programming Languages and Systems, 6:632-646.

Dijkstra EW (1971) Hierarchical Ordering of Sequential Processes, Acte Informat-
tca, 1:115-138.

Lynch NA (1981) Upper Bounds for Static Resource Allocation in a Distributed
System, JCSS, 23:254-278.

Lynch NA and Tuttle MR (1987) Hierarchical Correctness Proofs for Distributed
Algorithms, Proc. 6'" Ann. ACM Symp. on Principles of Distribuied Computing,

29

pp. 137-151. (Also available as technical report MIT/LCS/TR-387, Laboratory for
Computer Science, Massachusetts Institute of Technology, 1987.)

Peterson GL and Fischer MJ (1977) Economical Solutions for the Critical Section
Problem in a Distributed System, Proc. 9" Ann. ACM Symp. on Theory of Comp.,
pp. 91-97.

Appendix A

In this Appendix, we review the aspects of the model of Lynch and Tuttle
(1987) that are relevant to this paper.

An input-output automaton A is defined by the following four components. (1)
There is a (possibly infinite) set of states with a subset of start states. (2) There is
a set of actions, associated with the state transitions. The actions are divided into
three classes, input, output, and internal. Input actions are presumed to originate
in the automaton’s environment; consequently the automaton must be able to react
to them no matter what state it is in. Qutput and internal actions (or, locally-
controlled actions) are under the local control of the automaton; internal actions
model events not observable by the environment. The input and output actions are
the ezternal actions of A, denoted ext(A). (3) The transition relation is a set of
(state, action, state) triples, such that for any state s' and input action w, there is
a transition (s', 7, s) for some state s. (4) There is an equivalence relation part(A)
partitioning the output and internal actions of A. The partition is meant to reflect
separate pieces of the system being modeled by the automaton. Action 7 is enabled
in state s' if there is a transition (&', 7, s) for some state s.

An ezecution e of A is a finite or infinite sequence sgwys; ... of alternating
states and actions such that sy is a start state, (s;_1, 7, ;) is a transition of A for
all 7, and if e is finite then e ends with a state. The schedule of an execution e is
the subsequence of actions appearing in e.

We often want to specify a desired behavior using a set of schedules. Thus
we define an erternal schedule module S to consist of a set of input actions. a set
of output actions, and a set of schedules. Each schedule of S is a finite or infinite
sequence of the actions of S. Internal actions are excluded in order to focus on the
behavior visible to the outside world.

Let A be an automaton or schedule module and P be a predicate on sequences
of actions of A. A preserves P if for every schedule fa of A such that P is true of
3 and a is a locally-controlled action of A, then P is also true of Fa.

30

Automata can be composed to form another automaton, presumably modeling
a system made of smaller components. Automata communicate by synchronizing on
shared actions; the only allowed situations are for the output from one automaton
to be the input to others, and for several antomata to share an input. Thus,
automata to be composed must have no output actions in common, and the internal
actions of each must be disjoint from all the actions of the others. A state of the
composite automaton is a tuple of states, one for each component. A start state
of the composition has a start state in each component of the state. Any output
action of a component becomes an output action of the composition, and similarly
for an internal action. An input action of the composition is an action that is input
for every component for which it is an action. In a transition of the composition
on action 7., each component of the state changes as it would in the component
automaton if = occurred; if = is not an action of some component automaton,
then the corresponding state component does not change. The partition of the
composition is the union of the partitions of the component automata.

Given an automaton A and a subset II of its actions, we define the automaton
Hider(A) to be the automaton A' differing from A only in that each action in II
becomes an internal action. This operation is useful for hiding actions that model
interprocess communication in a composite automaton, so that they are no longer
visible to the environment of the composition.

An execution of a system is fair if each component is given a chance to make
progress infinitely often. Of course, a process might not be able to take a step every
time it is given a chance. Formally stated, execution e of automaton A is fair if for
each class C of part(A), the following two conditions hold. (1) If e is finite, then no
action of C is enabled in the final state of e. (2) If e is infinite, then either actions
from C appear infinitely often in e, or states in which no action of C is enabled

appear infinitely often in e. Note that any finite execution of A 1s a prefix of some
fair execution of A.

The following result from [LT] is very useful: If e is a fair execution of a compo-
sition of automata, and A4 is one of the components, then e|4 is a fair execution of
A. (If e = som 51 . .., we define €| 4 to be the sequence obtained from e by deleting
7:5; if m; is not an action of A, and replacing the remaining s; with 4’s component.

A problem is (specified by) an external schedule module. Automaton A solves
the problem P if A and P have the same input and output actions, and if {alext(A):
a is the schedule of a fair execution of A} is a subset of the set of schedules of P.

31

In other words, the behavior of A visible to the outside world is consistent with the
behavior required in the problem specification.

Appendix B

This appendix contains the proofs of Lemmas 3, 5 and 12, all of which state
that certain predicates are invariants.

Lemma 3: Let e be an execution of Drink(B) whose schedule is drinking-well-
formed. Then in every state of e, the following are true, for all 1, j and b.

(A) Ifb is in B;NB;, i # j, then exactly one of the following is true: b is in bottles(z),
or b is in bottles(j), or sat(b) is in buff(i,j), or sat(b) is in buffij,i). If b is in B;
only, then b is in bottles(1).

(B) If (b, 7) is in deferred(i), then
(a) b is in bottles(i),
(b) drink-region(j) =T, and
(¢) b is in reg-bottles(j).

(C) If req(b) is at the head of buff(i,7)|b, then b is in bottles(j).

(D) If req(b) is in buff{i,j), then
(a) at most one reg(b) is in buff(i, j),
(b) no sat(b) follows it in buffli,),
(c) (b,?) is not in deferred(j),
(d) drink-region(i) = T,
(e) b is in req-bottles(i), and
(f) b is not in bottles(i).

(E) If sat(b) is in buffli, j), then
(a) at most one sat(b) is in buffiz,),
(b) no dem(b) immediately follows it in buffi.j)|b,
(¢) drink-region(j) = T, and
(d) b is in reg-bottles(j).

(F) If dem(b) is at the head of buff(i,j)|b and b is in botitles(j), then (b,i) is in
deferred(j).

(G) If drink-region(i) = T and b is in req-bottles(i) and b is in B;, j # 1, then exactly
one of the following is true: req(b) is in buff(i,). or (b,7) is in deferred(j), or sat(d)
is in buff(j,1), or b is in botiles(i).

32

(H) If b is in reg-bottles(i) and drink-region(i) = C, then b is in bottles(i).

Proof: Let e = $9a151 -+ . GmSm - --- We proceed by induction on m, which indexes
the states of e.

(A) through (H) are obviously true of s¢, since it is a start state of a composition
of compatible automata. Assuming (A) through (H) are true of s, 1, we show they
are true of s,,. We consider every possible value of a.

Casze 1: a, = Ti(B).

Claims about 8;3,—1:

drink-region(i) = R, by drinking-well-formedness and Lemma 1(a).

(b,4) is not in deferred(j), for all b and j, by Claim 1 and (B-b).

sat(b) is not in buff{j,:), for all b and j, by Claim 1 and (E-c).

reg(b) is not in buff{(i, j), for all b and j, by Claim 1 and (D-d).

5. If sat(b) is not in buffii,j) and b is not in bottles(¢), then b is in bottles(j), where
bis in Bj, j # i, for all b, by Claim 3 and (A).

6. If buffi,j) is empty and b is not in bottles(i), then b is in bottles(j), where b is
in B;, j # i, for all b, by Claim 5.

P50 B

Claims about sp,:
7. req(b) is in buff{i,j) iff b is not in bottles(:) and b is in req-bottles(i) and b is in
BN Bj, for all b and j, by Claim 4 and code.

8. If reg(b) is at the head of buff{i,) and b is not in bottles(:), then bisin bottles(j),
for all b and j, by Claim 6 and code.

9. If req(b) is at the head of buff{z,), then b is in boitles(j), for all b and j, by
Claims 7 and 8.

(A) No relevant change.

(B) Only (B-c) is affected. for (b,7). By Claim 2 and code, no (b, 1) is in
deferred(j) in sm, so the predicate is vacuously true.

(C) Only changes affect reg(bh) in buff(s,j); by Claim 9.

(D) Only changes affect req(b) in buffii,j). (a) and (b) by Claim 4 and code.
(¢) by Claim 2 and code. (d) by code. (e) and (f) by Claim 7.

(E) Only (E-d) is affected, for sat(b) in buffj,i). None by Claim 3 and code,
so vacuously true.

33

(F) No relevant changes.

(G) Only changes involve 7. Suppose b is in reg-bottles(i) in sp,. By Claims
2 and 3 and code, we only need to show that reg(b) is in buff(i,j) iff b is not in
bottles(i), which is true by Claim 7.

(H) Only changes involve i. By code, drink-region(i) = T in sm, so vacuously
true.

Case 2: am = Ei(B).

Claims about s;m—1:

drink-region(i) = C, by drinking-well-formedness and Lemma 1(a).

(b,1) is not in deferred(j), for all b and j, by Claim 1 and (B-b).

req(b) is not in buff(i, j), for all b and j, by Claim 1 and (D-d).

sat(b) is not in buff{j,?), for all b and j, by Claim 1 and (E-c).

If (b, j) is in deferred(i), then b is in bottles(i), for all b and j, by (B-a).

If (b, j) is in deferred(i), then j # i, by Lemma 1(e).

. If (b,) is in deferred(i), then b is not in bottles(j), sat(b) is not in buff(i,), and
sat{b] is not in buff{j, 1), for all b and j, by Claims 5 and 6 and (A).

8. If (b,) is in deferred(i), then req(b) is not in buff(j,7), for all b and j, by Claim
(D-¢).

9. If (b,j) is in deferred(i), then drink-region(j) = T and b is in req-bottles(7), for
all b and j, by (B-b) and (B-c).

10. If (b, j) is in deferred(i), then req(b) is not in buff(j, i), for all b and j, by Claim
9 and (G).

=

(A) Only affects b such that (b,7) is in deferred(i) in $;m—1. By Claim 7 and
code.

(B) Only affects deferred(i) and deferred(j). By Claim 2 and code, no (b,1)

is in deferred(j), so vacuously true. By code, no (b,j) is in deferred(i) in sm, so
vacuously true.

(C) Only affects buff(j,), where (b,j) is in deferred(i) in $m-1. By Claim 8
and code, no req(b) is in bufflj,i) in sm, so vacuously true.

(D) Only affects buffii,j). By Claim 3 and code, no reg(b) is in buffli,j) in

$m, S0 vacuously true.

34

(E) Only affects buff(i,) such that (b, j) is in deferred(i) in sm—1, and buff(j,i)
for all j. By Claim 4 and code, no sat(b) is in buff(j,?) in sm, so vacuously true.
Suppose sat(b) is added to buff(i,j) in sp, Then (b,7) is in deferred(i) in spm—1. (2)
By Claim 7 and code. (b) By code. (¢) and (d) By Claim 9 and code.

(F) Only affects i. Since (F) is true in sm-1 and by code b is removed from
bottles(i) if and only if b is removed from deferred(i) in sm, still true.

(G) Only affects j, where (b,j) is in deferred(:) in sm—1. By Claim 10 and
code, reg(b) is not in bufflj,i) in sp. By Claim 7 and code, b is not in bottles(7) in
sm. By code, (b, j) is not in deferred(i) and sat(b) is in buff(;,1) in sm.

(H) Only affects i. By code, drink-region(i) = E in sy, so vacuously true.

Case 8: an = deliver(sat(h),j.1).

Clatms about s;m_y:
sat(b) is at the head of bufflj. i), by precondition.

bis in B; N Bj, by Claim 1 and Lemma 1(d).
b is not in bottles(i), by Claims 1 and 2 and (A).
b is not in bottles(;), by Claims 1 and 2 and (A).

sat(b) is not in buff{i,), by Claims 1 and 2 and (A).
At most one sat(b) is in buffij.1), by Claim 1 and (E-a).
No dem(b) immediately follows sat(b) in buff{j,), by Claim 1 and (E-b).
drink-region(i) = T, by Claim 1 and (E-c).
. bis in req-bottles(i), by Claim 1 and (E-d).

10. req(b) is not in buffii,), by Claims 1, 8 and 9 and (G).
11. (b,i) is not in deferred(j), by Claims 1, 8 and 9 and (G).
12. bis not in bottles(i), by Claims 1, 8 and 9 and (G).

il - 5 ol S

oo e

(A) Only affects b. By Claims 4, § and 6 and code.
(B) No relevant change.
(C) Only affects buff{j,i)|b. By code, since b is added to bottles().

(D) Only affects b. By Claim 10 and code, no req(b) is in buff(z, 7), so vacuously
true.

(E) No relevant change.

(F) Only affects buff{j.i). By Claim 7 and code, dem(b) is not at head of
buffij,i), so vacuously true.

(G) Only affects b and ¢. By Claims 6., 10 and 11 and code.

(H) No relevant change.

Case 4: am = deliver(req(b).7.1).

Claims about sy _1:

1. reg(b) is at the head of buffij,t), by precondition.

2. bis in B; N Bj, by Claim 1 and Lemma 1(d).

3. bis in bottles(i), by Claim 1 and (C).

4. bis not in bottles(j), by Claims 2 and 3 and (A).

5. sat(b) is not in buff{z, 5), by Claims 2 and 3 and (A).
6. sat(b) is not in buffij,i), by Claims 2 and 3 and (A).
7. Exactly one reg(b) is in buff{j,1), by Claim 1 and (D-a).
8. drink-region(j) = T, by Claim 1 and (D-d).

9. bis in reg-bottles(j), by Claim 1 and (D-e).

10. req(bd) is not in buffii, j), by Claim 3 and (D-f).

(A) Only affects b. By Claims 4, 5 and 6 and code.
(B) Only affects (b,j). (a) by code. (b) by Claim 8. (¢) by Claim 9.

(C) Only affects buffij,¢). By Claim 7 and code, no reg(b) is in buff(j, i), so

vacuously true.

(D) Only affects buffii,j) and buff(j,7). By Claims T and 10 and code, no
req(b) is in either buff, so vacuously true.

(E) Only affects buffii,j) if sat(b) is added. (a) by Claim 5 and code. (b) by
code. (c) by Claim 8 and code. (d) by Claim 9 and code.

(F') Only affects buff(:,7)|b. By code, b is removed from bottles(i) if and only if
(b,7) i1s removed from deferred(i).

(G) Only affects b and j. By Claim 7 and code, no reg(b) is in buff{j,) in sm.
By Claim 4 and code, b is not in boitles(j) in s,,. By Claim 5 and code, sat(b) is in
buffiz, 7) if and only if (b, 7) is not in deferred(z) in s,,.

36

(H) Only affects b and i. By Claim 3 and code.

Case 5: a,, = deliver(dem(b),j,i). If b is not in bottles(t) in $m—1, then no
relevant changes are made. Assume b is in bottles(i)in Sm—i1-

Claims about sp5_1:

b is in bottles(i), by assumption.

dem(b) is at the head of buff{j.1). by precondition.
bis in B; N B;, by Claim 2 and Lemma 1(d).

b is not in bottles(j), by Claims 1 and 3 and (A).
sat(b) is not in buff(i,j), by Claims 1 and 3 and (A).
sat(b) is not in buff{j,i), by Claims 1 and 3 and (A).
(b, 7) is in deferred(i), by Claims 1 and 2 and (F).
drink-region(j) = T, by Claim 7 and (B-b).

. bis in reg-bottles(), by Claim 7 and (B-¢).

10. reg(b) is not in buffij,), by Claim 7 and (D-c).

11. req(b) is not in buffi,j), by Claim 1 and (D-f).

= Bl i

(A) Only affects b. By Claims 4, 5 and 6 and code.

(B) Only affects (b,j). By Claims 1, 8 and 9 and code.

(C) Only affects buff{j,7)|b. By Claim 10 and code, vacuously true.

(D) Only affects buff(j,i) and buff(i,j). By Claims 10 and 11, vacuously true.

(E) Suppose sat(b) is added to buffi¢,j). (Nothing else is affected.) (a) By
Claim 5 and code. (b) by code. (c¢) by Claim 8 and code. (d) by Claim 9 and code.

(F) Only affects buff(i,j)|b. By code, if b remains in bottles(:), then (b,7) is in
deferred(i) in sm.

(G) Only affects j and b. By Claim 10, no req(d) is in buff(j,1) in sm. By
Claim 4. b is not in bottles(j) in sm. By code, (b.j) is in deferred(i) if and only if
sat(b) is not in buffi,j) in sn,.

(H) By Claim 1 and code.

37

Case 6: am = Ci.

Claims about spm_q: If drink-region(i) # T in sm—1, then no relevant changes occur.
Suppose otherwise. Only b in req-bottles(i) and not in bottles(1) is affected.

1. drink-region(i) = T, by assumption.

2. bis in reg-bottles(i) N Bj, j # i, by assumption.

3. bis not in bottles(i), by assumption.

4. req(b) is in buff(i,), or (b,7) is in deferred(i), or sat(b) is in buffj,), by Claims
1, 2 and 3 and (G).

5. If sat(b) is in buffii,), then no sat(d) is in buffj, 1) and b is not in bottles(j), by
(A).

6. If sat(b) is in buff(i,7), then (b,i) is not in deferred(j), by Claim 5 and (B-a).
7. If sat(b) is in buffi,j), then req(d) is in buff{i,j), by Claims 4, 5 and 6.

8. If sat(h) is in buffli,j), then req(b) follows it in buff(i,j), by Claim 7 and (D-b).
9. If buffli,j)|b is empty and b is in bottles(j), then no sat(b) is in buff{j.i), by
Claim 2 and (A).

10. I buff(i,j)|b is empty and b is in bottles(j), then (b,1) is in deferred(j), by
Claims 4 and 9.

(E-b) by Claim 8.
(F) by Claim 10.

Rest are not affected.

Case 7: am = Ci(B). By Lemma 2, sched(e) is drinking-well-formed; thus
in sched(e)|B-TCER;, a,, is immediately preceded by T:(B). By Lemma 1(b),
reg-bottles(i) = B in $m-1.

Claims about s;_1:

1. drink-region(i) = T, by precondition.

9. If b is in reg-bottles(i), then b is in bottles(i), for all b, by precondition.

3. If b is in reg-bottles(i), then b is not in bottles(j), where b is in Bj, j # i, for all
b, by Claim 2 and (A).

4. If (b, i) is in deferred(j), then i # j and bis in B; N Bj, for all b and j, by Lemma
1(e).

5. (b,1) is not in deferred(j). for all b and j, by Claims 3 and 4 and (B-a) and (B-c).
6. reg(b) is not in buff(i, j), for all b and j, by Claim 2 and (D-e) and (D-f).

38

7. If b is in reg-bottles(i), then sat(d) is not in buff(j, i), where bis in Bj, j # 1, for
all b, by Claim 2 and (A).

8. If b is not in reg-bottles(i), then sat(bh) is not in buff(j, i), where bisin Bj, j # t,
for all b, by (E-d).

9. buff{j,1)|sat(b) is empty for all b not in Bj, by Lemma 1(d).

(B-b) vacuously true by Claim 5.
(D-d) vacuously true by Claim 6.
(E-c¢) vacuously true by Claims 7, 8 and 9.

The rest are unaffected.

Case 8: a,, = Ri(B). The only change is that drink-region(i) becomes R in
$m. By Lemma 2, sched(e) is drinking-well-formed; thus in sched(e)|B-TCER;, am
is immediately preceded by E;(B). By Lemma 1(a), drink-region(i) = E in sm-1.
Thus (B-b), (D-d) and (E-c) are still true in s;,.

Cuse 9: a,, = R;, T, or E;. None of the changes affects any of the predi-
cates. 0

Lemma 5: Let ¢ be an execution of Drink(B) whose schedule is drinking-well-
formed. Then in every state of e, the following are true, for all i.

(A) If do-TY(i) is true, then dine-region(i) = R.
(B) If do-E(i) is true, then dine-region(i) = C.

Proof: Let e = $g@151 - . Gmsm - - -- We proceed by induction on m, which indexes
the states of e.

(A) and (B) are obviously true of sq, since it is a start state. Assuming (A)
and (B) are true of s;,—1, we show they are true of s,,. We need only consider the
following values for am.

Case 1: a,, = T;(B).

39

(A) If dine-region(i) = Rin s,,_1. then by code. If dine-region(i) # R in sm-1,
then by induction hypothesis for (A). do-T; is false in sm_1; since by code it is still
false in 8., we are done.

(B) By the induction hypothesis, since there is no relevant change.

Case 2: an = C;. First note that ay...am—1|F-TCER; ends in T;, by dining-
well-formedness.

Claims about s;m—1:
1. dine-region(i) = T, by above note and Lemma 1(c).
2. do-T(i) = false, by Claim 1 and (A).

(A) by Claim 2 and code, vacuous.
(B) by code.

Case 8: a,, = R;. First note that a;...am—1|F-TCER; ends in E; by dining-
well-formedness.

Claims about s;n_1:
1. dine-region(i) = E, by above note and Lemma 1(c).
2. do-E(i) = false, by Claim 1 and (B).

(A) by code.

(B) by Claim 2 and code, vacuous.

Case 4: am = Ci(B).

(A) and (B) by induction hypothesis and code.
Case 5: am =T;.

(A) by code.

(B) By (A) and precondition, drink-region(i) = R in sm—1. By (B). do-E(1) =
false in s;—1, and still in s,,.

Case 6: a, = E;.

(A) By (B) and precondition, drink-region(i) = C in sm—1. By (A), do-T(¢) =
false in $,;,—1, and still in s,

40

(B) by code. O

Lemma 12: Suppose Dine(B) solves the dining philosophers problem. Let e be
an execution of Drink(B) whose schedule is drinking-well-formed. The following
predicates are true in every state of e, for any 1, J and b.

(A) If there is a current dem(b) message in buffli,j), then
(a) drink-region(i) =T,
(b) dine-region(i) = C,
(c) b is in reg-bottles(i), and
(d) do-E(i) is false.

(B) There is at most one current dem(b) message in buffiz, 7).
(C) There is at most one non-current dem(b) message in buffii, 7).

Proof: Let e = 802181 ...@mSm We proceed by induction on m, which indexes
the states of e.

(A) through (C) are obviously true of sg, since it is a start state. Assuming
(A) through (C) are true of s;,—1. we show that they are true of s;n. We consider
every possible value of a,,. By Lemma 6(a), sched(e) is dining-well-formed.

Case 1: am = Ti(B). Only messages in buff(i,), for all j, are affected.

Remark: By drinking-well-formedness, a; ... @am—1|B-it TCER; ends in R;(B')
for some B', or is empty.

Claims about sm_1:

1. drink-region(i) = R, by Remark and Lemma 1(a).

9. No current dem(b) is in buff{i.j) for any b and j, by Claim 1 and (A-a).
3. At most one non-current dem(b) is in buff(i,j) for any b and j, by (C).

Claims about s, :

4. No current dem(b) is in buffi,j) for any b and j, by Claim 2 and code.

5. At most one non-current dem(b) is in buff(i, j) for any b and j, by Claim 3 and
code.

(A) By Claim 4, vacuously true for buff(i,j) for all j.
(B) By Claim 4 for buffi¢, j) for all .

41

(C) By Claim 5 for buff(i,) for all ;.

Case 2: am = Ei(B). Only dem(b) messages in buff(z,7) and bufflj,i) are
affected, where (b, 7) is in deferred(i) in $pm—1. Fix such a b and j.

Remark: By drinking-well-formedness, a; ... am- |B-TCER; ends in C;(B).

Claims about ;1

drink-region(i) = C, by Remark and Lemma 1(a}.

No current dem(b) is in buff(i, j), by Claim 1 and (A-a).

At most one non-current dem(b) is in buffii,), by (C).

b is in bottles(i), by choice of b and Lemma 3 (B-a).

If dem(b) is in buffj,i). then dem(d) is current, by Claim 4.
At most one dem(b) is in buff(j,i), by Claim 5 and (B).

D) et

ol ot

Claims about sy

7. No current dem(b) is in buff(z,), by Claim 2 and code.

8. At most one non-current dem(b) is in buff{i, j), by Claim 3 and code.
9. At most one dem(b) is in buff{j,¢), by Claim 6 and code.

(A) By Claim 7 for buff{i,j). No relevant change for buffi7,i).
(B) By Claim 7 for buffli,j). By Claim 9 for buffij,1).

(C) By Claim 8 for buff{i,j). By Claim 9 for bufflj,1).

Case 3: am = deliver{sat(h),j,i). The only messages affected are dem(b) in
buff(i, j) or buffij.i).

Claims about 551

1. sat(b) is at the head of buffl;,), by precondition.

If dem(b) is in buff{j, 1), then it is current, by Claim 1.
At most one dem(b) is in buff(j,¢), by Claim 2 and (B).
If dem(b) is in buff{i,j), then it is current, by Claim 1.
At most one dem(bd) is in buff{i,j), by Claim 4 and (B).

S o

Claims about s,
6. At most one dem(b) is in buff{j, i), by Claim 3 and code.

42

7. At most one dem(b) is in buff(i, j), by Claim 5 and code.
(A) No relevant changes are made.
(B) By Claims 6 and 7.

(C) By Claims 6 and 7.

Case 4: am = deliver(reg(b), j, 1,). If the request is deferred, there is no relevant
change. Suppose the request is satisfied, i.e., sat(b) is added to buffli,j). The only
messages affected are dem(b) in buffii,) or buffij.1).

Claims about spm—1:

req(d) is at the head of buff(j,), by precondition.

2. bis in bottles(i), by Claim 1 and Lemma 3 (C).

3. If dem(b) is in buff(j,4), then it is current, by Claim 2.

4. At most one dem(b) is in buff{j,), by Claim 3 and (B).

5. bis in B; N Bj, by Claim 1 and Lemma 1(d).

6. If dem(b) is in buff{i,j), then it is not current, by Claims 2 and 5 and Lemma 3
(A

7.

ek

).
At most one dem(b) is in buff{i, j). by Claim 6 and (C).

Claims about sp,:
8. At most one dem(b) is in buff{;.1), by Claim 4 and code.
9. At most one dem(b) is in buff{i, 7). by Claim 7 and code.

(A) No relevant change.
(B) By Claims 8 and 9.

(C) By Claims 8 and 9.

Case 5: am = deliver(dem(b), j.i). If b is not in bottles(i) in s;u—1, then there
is no relevant change. Suppose b is in bottles(i) in spm—1. The only messages affected
are dem(b) in buffi, j) or buffij.1).

Claims about 87
1. dem(b) is at the head of buff{j,), by precondition.

43

b is in bottles(i), by assumption.

If dem(b) is in buff{j,¢), then it is current, by Claim 1.

There is exactly one dem(b) in buff{j, 1), by Claims 1 and 3.

bis in B; N Bj, by Claim 1 and Lemma 1(d).

If dem(b) is in buffi,), then it is non-current, by Claim 2 and Lemma 3 (A).
There is at most one dem(b) in buffii,j), by Claim 6 and (C).

e S o TR

Claims about s,

8. There is no dem(b) in buffij.1). by Claim 4 and code.

9. There is at most one dem(b) in buffii,j), by Claim 7 and code.

10. If dem(b) is in buff{i,), then it is non-current, by Claim 6 and code (i.e., sat(b)
is added to the end of buffli, 7), if it is added at all).

(A) By Claims 8 and 10.
(B) By Claims 9 and 10.

(C) By Claims 9 and 10.

Case 6: a,, = C;. First, suppose drink-region(i) % T in s,,_;. Then by (A-d),
no current dem(b) message is in buffiz,), for any b and j, in s, —;. Thus, setting
do-E(i) to true in s, does not falsify (A-d). There is no relevant change for the
rest of the invariants.

Now suppose drink-region(i) = T in s,,_;. We need only consider a dem(b)
added to some buffii, j) in 5. Fix such a b and j.

Remark: By dining-well-formedness, a; ...am_1|F-TCER; ends in T;.

Claims about 8§y

dine-reqion(i) = T, by Remark and Lemma 1(c).

If dem(b) is in buff{i,), then it is non-current, by Claim 1 and (A-b).

At most one dem(b) is in buffi¢, 7), by Claim 2 and (C).

b 1s not in bottles(1), by code and choice of b.

. sat(b) is in buff{i, 7), or b is in bottles(;), or sat(b) is in buffij,?), by Claim 4 and
Lemma 3 (A).

6. drink-region(i) = T, by assumption.

7. bis in reg-bottles(i), by choice of b.

8. do-E(1) is false, by Claim 1 and Lemma 5 (B).

s, S0 T

k1§

44

Claims about 54

9. The dem(b) message added to buffii,j) is current, by Claim 5 and code.

10. drink-region(i) = T, dine-region(i) = C, b is in reg-bottles(i), and do-E(i) is
false, by Claims 6. T and 8 and code.

11. One current dem(b) message is in buff{i, j), by Claims 2 and 9 and code.

(A) By Claim 10.
(B) By Claim 11.

(C) No relevant change.

Case 7: am = Ri. The only relevant change is to dine-region(i), affecting (A-b)
for i. By dining-well-formedness, a, ... a,—1|F-TCER; ends in E;. By Lemma 1(c),
dine-region(i) = E in 8,1, 20 by (A-b) there is no current dem(b) in buff(i,), for
any b and j in $,,_,. By code, the same is true in s, so (A-b) for 7 is vacuously
true in sm,.

Case 8: am = Cj(B). The only relevant change is to do-E(1), affecting (A-d)
for i. By precondition (reg-bottles(i) a subset of bottles(i)) and (A-c), there is no
current dem(b) in buffli, 7), for any b and j. By code, the same is true in s, so
(A-d) for 1 is vacuously true in s,,.

Case 9: a, = Ri(B). The only change is to drink-region(i), affecting (A-a) for
. By precondition, drink-region(i) = E in $,_;, so by (A-a), there is no current
dem(b) in buffii, 7), for any b and j. By code, the same is true in s,,, so (A-a) for ¢
is vacuously true in s,,.

Case 10: a, = T;. The only relevant change is to dine-region(i), affecting
(A-b) for :. By precondition and Lemma 5 (A), dine-region(i) = R in $;—1, so by
(A-b), there is no current dem(b) in buffz,7), for any b and j. By code, the same
is true in s, so (A-b) for 7 is vacuously true in s,,.

45

Case 11: ay, = E;. The only changes are to dine-region(i) and do-E(i), affect-
ing (A-b) and (A-d) for i. By precondition and (A-b), there is no current dem(b)
in buff(¢,7), for any b and j. By code, the same is true in s,,, so (A-b) and (A-d)
for i are vacuously true in s,,. O

46

