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Abstract

The synchronizer is a simulation methodology for simulating a synchronous net-
work by an asynchronous one, thus enabling the execution of a synchronous algorithm
on an asynchronous network. Previously known synchronizers are obtrusive, in the
sense that they require each processor in the entire network to participate in the syn-
chronization process, even if the protocol executed involves only a small sub-network,
and the rest of the processors would much prefer being left alone. Obtrusiveness can
be evaluated by means of the communication complexity of the synchronizer: a non-
obtrusive synchronizer is one whose communication complexity depends only on the
number of processors active in the synchronized protocol, and not on the total number
of processors in the network. This paper presents a non-obtrusive synchronizer, whose

complexities are at most a polylog(n) factor away from the optimum.

“Dept. of Mathematics and Lab. for Computer Science, M.I.T., Cambridge, MA 02139; Supported by
Air Force Contract TNDGAFOSR-86-0078, ARO contract DAAL03-86-K-0171, NSF contract CCR8611442,
and a special grant from IBM.

"Department of Applied Mathematics, The Weizmann Institute, Rehovot 76100, Israel. Supported in
part by an Allon Fellowship and by a Bantrell Career Development Fellowship.




1 Introduction

The synchronizer is a simulation methodology for simulating a synchronous network by
an asynchronous one, thus enabling the execution of a synchronous algorithm on an asyn-
chronous network. The availability of such a tool enables us to design distributed net-
work algorithms under the assumption of a synchronous environment, which makes it eas-
ier to comprehend and reason about the behavior of the algorithm. Synchronizers were

defined in [Awe85a], and various aspects or applications of them were further studied in
[Awe85b, CGZ86, SM86, FLS87, LT87, PU89, AS88, ER90].

In many cases, the protocol that needs to be executed involves only a small sub-network,
and the rest of the processors in the network are not required by the problem specification
to participate in it. In such a case, it would be highly desirable to allow these processors to
stay out of the execution in the synchronized process (i.e., on the asynchronous network) as
well. Unfortunately, previously known synchronizers have the undesirable property (hence-
forth referred to as obtrusiveness) that they require each processor in the entire network to
participate in the synchronization process. In fact, each processor is required to send some

messages in every pulse of the run.

Obtrusiveness can be evaluated by means of the communication complexity of the syn-
chronizer. An obtrusive synchronizer is one whose communication complexity depends on
the total number of processors in the network, n. In contrast, a non-obtrusive synchronizer
is one whose communication complexity depends only on the number of processors active in
the protocol 7, denoted v,.

The synchronizer operates by generating a sequence of local clock pulses at each processor
of the network, satisfying the following property:

pulse number p is generated by a processor only after it received all the messages

of the algorithm sent to it by its neighbors during their pulse number p — 1.

Intuitively, the problem lies in the fact that in case processor v did not send any message
to its neighbor u at a certain pulse, u cannot deduce this by simply waiting for a fixed period
of time, as link delays in the asynchronous network are unpredictable. The solution proposed
in [Awe85a] is based on first requiring every processor receiving a message from a neighbor
to send back an acknowledgment. This enables every processor to learn, within finite time,
that all the messages it sent during a particular pulse have arrived. Such a processor is said
to be safe with respect to that pulse. Note that the acknowledgments do not increase the

message complexity or the time complexity of the algorithm by more than a constant factor.



A processor may generate a new pulse whenever it learns that all its neighbors are safe
with respect to the current pulse. Thus the second and main phase of the synchronizer
involves delivering this “safety” information. This phase is thus responsible for the additional

time and message requirements per pulse, denoted by Cpyise and Tpyise-

The complexities of a synchronous algorithm S are related to those of the asynchronous
algorithm A resulting from combining S with a synchronizer v by Cy = Cs + Ts - Cpuise and
= P

P
of an initialization phase which may be needed for setting the synchronizer up.)

uise- (We ignore, for the purposes of the present discussion, any additional costs

The complexities of the synchronizers «, 3,7 of [Awe85a] and § of [PU89] all involve
Cpuise = Q(n). Thus at every pulse, essentially every processor must participate in the

collective effort of synchronizing the network.

This paper presents a non-obtrusive synchronizer. Its complexities are

Coulse = O(v,,r-logsn)

Lol = O(log*n)

These complexities are at most a polylog(n) factor away from the optimum.

2 The model

We consider the standard model of an asynchronous point-to-point communication network
(e.g. [GHS83]). The network is described by an undirected graph G = (V, E). The nodes
of the graph represent the processors of the network and the edges represent bidirectional
communication channels between the processors. We use V' (respectively, F) also to denote
the number of vertices (resp., edges). The diameter of the network is denoted by D(G), and
we denote § = [log, D(G)].

All the processors have distinct identities. There is no common memory, and algorithms
are event-driven (i.e., processors cannot access a global clock in order to decide on their
action). Messages sent from a processor to its neighbor arrive within some finite but unpre-
dictable time. Each message contains a fixed number of bits, and therefore carries only a

bounded amount of information.

A synchronous network is a variation of the above model in which all link delays are
bounded. More precisely, each processor keeps a local clock, whose pulses must satisfy the
following property. A message sent from a processor v to its neighbor u at pulse p of v must
arrive at u before pulse p + 1 is generated by u.
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Our complexity measures are defined as follows. The communication complezity of an
algorithm A, Cj, is the worst-case total number of messages sent during the run of the algo-
rithm. The time complezity of an algorithm A, T, is defined as follows. For a synchronous
algorithm, T4 is the number of pulses generated during the run. For an asynchronous algo-
rithm, T4 is the worst-case number of time units from the start of the run to its completion,
assuming that each message incurs a delay of at most one time unit. This assumption is
used only for performance evaluation, and does not imply that there is a bound on delay in

asynchronous networks.

3 Preliminaries

3.1 Basic properties of local synchronizers

The main new ingredient for the local case is that nodes may be sleeping, and in that case

we would hate to have to wake them up just in order to synchronize.

Notation 3.1 Itis assumed that if a processor v is awaken by a message carrying a pulse number
p, it sends its first messages only at pulse p+ 1. We let first(v) = p + 1, the first pulse in which
v sends any messages.

We denote by Nodes(p) the set of all nodes that participate in the protocol by pulse p.
Specifically, if first(v) = p+ 1 then v € Nodes(p + 1) — Nodes(p). Also, denote

Nodes;(v,p) = Nodes(p) N Nyi(v),

i.e., the set of nodes at distance 2' from v that participate in pulse p.

We state the following trivial facts for future use.
Fact 3.2 For every vertex v,
1. if 2’ <z and p’ < p, then Nodes; (v, p’) C Nodes;(v, p).

2. Nodes;(v,p) = Nodess(v, p) for every ¢ > 6.

Accordingly, we require a generalized safety principle, whose definition is stated as follows:

Definition 3.3 The processor v is said to be safe with respect to pulse p, denoted SAFE(v, p),
if either v ¢ Nodes(p), or v € Nodes(p) and all the messages it sent during pulse p have arrived.



In order to detect safety, for every message in the protocol, an acknowledgement is sent.
In particular, ack indicates whether the sender has been chosen as a parent or not. Once all
acks have been collected for messages of a particular pulse, node is declared to be safe w.r.t.

this pulse.
The following trivial fact will be used later without reference.
Fact 3.4 If v satisfies SAFE(v,p) then also SAFE(v, ¢) for every ¢ < p.
As in the usual, global case, we characterize a processor’s readiness to increase its pulse

in terms of its neighbors’ safety.

Definition 3.5 the processor w is done with pulse p (i.e., it is ready to increase its counter to
pulse p + 1), denoted DoNE(w, p), if all the messages sent to w from its neighbors at pulse p
have already arrived.

Fact 3.6 A processor w satisfies DoNE(w, p) if each of its neighbors v satisfies SAFE(v, p).

3.2 Execution trees

When a processor v is awaken by a message for the first time, it remembers the sender w
of the message as its parent, and sets parent(v) = w. (for originators v, parent(v) = nil).
The parent relation defines a directed subgraph called the ezecution forest, with one tree per

originator. Let child be the inverse relation, i.e., u € child(v) iff v = parent(u).

In order to control processors locally, we would like to keep track of the lowest (most
recent) layer of the execution tree. The depth of this layer depends on p as follows. Through-
out the paper we associate with every pulse number p a level number £(p), defined as follows.
Let 2 > 0, j > 1 be integers such that p = (2j — 1) - 2. Then £(p) = min{s, §}. Hence there
are 6 = [log, D(G)] possible levels.

We associate with the pulse p a forest, denoted tree,, as follows. Let ¢ = £(p). The set of
child nodes of tree, is

Children, = {u | p — 2' < first(u) < p}.
The set of roots of tree, is
Roots, = {v | first(v) < p—2*, Ju € Children, (v = parent(u))}.

The forest tree, is then the subgraph of the execution tree induced by Children, URoots,.
Thus tree, is a forest of subtrees of the execution forest, all of depth 2¢, consisting of all the
trees forming the layer of depth p — 2' + 1 to p in the execution forest.
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For every vertex v € tree,, let tree,(v) denote the (connected) tree containing v in tree,,

and let root,(v) denote the root of tree,(v).

Observe that when node u wakes up it knows parent(u), and it is straightforward to

ensure that the parent v knows that u enters child(v) at this pulse.

3.3 The concept of a regional matching

The basic components of our construction are a read set Read(v) C V and a write set
Write(v) C V, defined for every vertex v. Consider the collection RW of all pairs of sets,
namely

RW = { Read(v), Write(v) |[veV }.

Definition 3.7 The collection RW is an m-regional matching (for some integer m > 1) if for
all v,u € V such that dist(u,v) < m, Write(v) Read(u) # 0.

4 The construction of the local synchronizer

For every level 0 < ¢ < 4, and every node v, we define “read” and “write” sets, denoted
by Read;(v) and Write;(v). Every node w in every set Write;,;(v) maintains lists List}(p)
for every pulse p. These lists keep track of processors marked as clean w.r.t. pulse p. This

notion is defined as follows.

Definition 4.1 o A node v is said to satisfy LisTED;(v,p) if it is marked in each of the
lists List¥(p), for every 0 < j <1 and every node w € Write;;:1(v).

o A processor v may mark itself in any of the lists List¥(p) only when it is clean with respect
to pulse p, denoted CLEAN(v, D)

o A node v ¢ Roots, satisfies CLEAN (v, p) iff it satisfies SAFE(v,p).

¢ Anodev € Roots, satisfies CLEAN (v, p) iff each of its descendants = € tree,(v) (excluding
itself) satisfies LISTED ;) (2, p).

During the course of attempting to increase its pulse number from p to p + 1, the node
v invokes two procedures, MARK_LIST"(p) and ScaN®(p). Let us next specify the roles of
these procedures.



Specification of MARK_LIST"(p):

e Precondition: CLEAN(v,p).

e Effect: v adds itself to all the lists ListY(p) at all nodes w € Write;;;(v), for every
0 < j < {(p). Thus upon termination of this procedure, LISTED)(v, p) holds.

Specification of Scan®(p):

e Precondition: Pulse p has been reached, v satisfies LISTED,)(v,p), and v wishes to

increase its pulse number to p + 1.

e Effect: v invokes in parallel, at all w € Ready()+1(v), the sub-procedure VERIFY*(v, p)

at w, which returns back to v at the first time that

Listy,)(p — 29) C Listy, (p)-

The node algorithm is thus as follows. Before raising pulse from p to p + 1, node v
has to mark itself, using procedure MARK_LI1ST"(p), and complete all ScaAN?(p) operations.

Schematically, the order of operations is described in Fig. 1.

A processor v that is awaken by a message carrying pulse number p needs to send an
acknowledgement back to the sender, view itself as satisfying SAFE(v,p) and proceed to

execute the algorithm of Fig. 1 in order to increase its pulse to p 4 1.

5 Correctness

Proving the correctness of the proposed synchronizer is centered around the following lemma.

Lemma 5.1 Consider a pulse p, and let : = £(p) and p = p — 2. Then,

1. for all v and for all x € Nodes;;;(v,p), x satisfies LisSTED;(z,p) upon invocation of
Scan’(p).

2. for all v and for all z € Nodes;;;(v,p), = satisfies CLEAN(z,p) upon termination of
Scan®(p).

3. for all v and for all € Nodes;(v,p), z satisfies LisTED;(z,p) upon termination of
Scan®(p).



1. When node v reachs pulse p:
2. Send pulse p messages; receive acknowledgements
3. once SAFE(v,p):
4. Case:
(a) v ¢ tree,: invoke MARK_LIST"(p)
(b) v € Children,:

i. invoke M ARK_LIST"(p)

ii. once v and all u € child(v) (if exist) reported termination of MARK _LI1ST*(p):

report termination of MARK_LIST*(p) to parent(v)

(c) v € Roots,: once all u € child(v) reported termination of MARK _LIST*(p), call
MARK_LIST(p).

5. once MARK_LIST"(p) terminates, invoke SCAN”(p) and await its termination.

6. Now, a new pulse p + 1 may be started.

Figure 1: Algorithm for node v.




Proof: We proceed by induction on p. We assume that all the claims are valid for p’ < p
and show that they must hold for p as well. The basis for the induction is the fact that the
claims trivially hold for p = 0. Let 7 = £(p). Note that i > i, with equality holding only if

=

Proof of Property (1): Consider a node z € Nodes;;;(v,p). Since eitherz >i+lorz=1=326,
by Fact 3.2, z € Nodes;(v,p). By induction hypothesis on Property (3), applied to v, P, 1,
we get that z satisfies L1sTED;(z, p) upon termination of Scan®(p). Since 2 > i, a certainly
satisfies L1sTED;(z, p) at that time. Also, since p < p, SCAN"(p) terminates before Scan®(p)
is tnvoked. The claim follows. e

Proof of Property (2): Consider z € Nodes;;;(v, ). By Property (1), = satisfies LIsTED;(, p)
upon invocation of ScANY(p). Therefore z € List¥(p) for every w € Write;1;(z) at that
time. At this point, we need to make use of the fact that Write;y;(z) NRead;+1(v) # 0, and
thus there exists some w € Read;4;(v) such that z € List?(p) upon invocation of Scan®(p).
This property must hold also upon invocation of VERIFY¥(v,p) at w, as the former time
clearly precedes the latter. ;From the specification of VERIFY¥(v,p), upon its termination
List¥(p) C List?(p), hence z € List¥(p). But z invokes MARK_LIST®(p) and gets marked
in the list List¥(p) only after it satisfies CLEAN(z,p). The claim follows. e

Proof of Property (3): For an = € Nodes;(v,p), select r, as

z, if z € Nodes;(v, p)
Ty = .
root,(z), otherwise

We now argue that r, € Nodes;;;(v,p). This is immediate if r, = z. Otherwise, the fact
that r, = root,(z) has the following two implications. First, dist(r,,z) < 2', and hence the
fact that = € N;(v) implies r, € Ni41(v). Secondly, first(r;) < p — 2! = p, so r,, € Nodes(p).
Put together, indeed 7, € Nodes;y1(v,p).

Applying Property (2) implies that, upon termination of SCAN"(p), r, satisfies CLEAN (7, p).
Since z € treey(r,), it follows that z satisfies LIsTED;(x,p) at that time. The claim follows.

This completes the proof. |

Corollary 5.2 A node v enters pulse p+ 1 only when it satisfies DoNE(v, p).

Proof: Processor v increases its pulse number only upon termination of Scan®(p). By
Property (3) of the Lemma, at that time every node z € Nodes;(v, p) satisfies LISTED;(z, p),
for ¢ = £(p). In particular, this holds for all neighbors z of v s.t. € Nodes(p), hence every
neighbor w of v already satisfies SAFE(w,p). |




6 Complexity analysis

For any m-regional matching RW define the following parameters.

Degwrite(RW) = mealz;(|Wr1te(v)|

Radyrite(RW) = . ma)é{dz'st(u, v) | u € Write(v)}

1
m uveE
-Degread(RW) = Ineai;{ [Read(v)l

Rad,eqq(RW) = - max {dist(u,v) | u € Read(v)}

1
m  uveV

Now, observing the protocol of local synchronizer, we state the following key observation.

Theorem 6.1 The total communication and time overhead per pulse are

Cpufse = Ur- 6. (RadTead + Radwritﬂ) : (Degread 5 Degwrite)
Tpulse = - (Radread 3 Radwrite)

Proof: Whenever a node v reaches pulse p, it makes a constant numbers of accesses to the
vertices of the sets Write;;1(v) and Read;41(v), for ¢ = £(p), in the procedures MARK _LIST"(p)
and Scan®(p).

Suppose that all those procedures have been called at time ¢5. Now, consider time
t, = to + 2! . Radyris. By time #;, all Safe_list¥(p) lists are completed. Now, consider
time t; = t; +2- 2. Rady,ie. At this time, all MARK_LIST"(p) procedures must terminate.
From this time ¢, and on, the process of convergence on the tree takes only 2' time, i.e.,
it is proportional to the height of the tree. Also, observe that the List¥(p) lists are fully
updated by time t3 = t,+2'+2"*!. Rad,, ite. Fromts and on, Scan®(p) procedures only need
2'Rad,qq time, i.e., proportional to the radius of read-sets. It follows that all the procedures
terminate by time t4 = o + O(2' - (Rad,cqa + Radyrite))-

This time investment is amortized over 2° time, yielding a charge of O( Rad,cqq + Radyyrise)
per pulse per level. The total charge per pulse becomes O(6 - (Rad,cqq + Rad,rize)) per pulse,
as every pulse may be charged by at most ¢ levels.

The account for communication is similar; the communication per node exceeds the time




per pulse by an O(Deg,..q + Deg,,i:.)) factor. The total charge per node per pulse in
communication becomes O(6 - (Rad,ceq + Radyrite) - (D€Greaq + D€Gurize))- |

We now make use of the following lemma of [AP89).

Lemma 6.2 [AP89] For all m,k > 1, it is possible to construct an m-regional matching
RW i with

Deg,epi(RWmi) < logn
Rad,ead(RWmi) < 2logn+1
Degyrite(RWnmy) < 4
Radyrite(RWmi) < 2-logn+1

Combining the lemma with Thm. 6.1, we deduce

Corollary 6.3

Cputse = O(vge-6- log® n)
Tpufse = 0(6 ) 10g TI,)
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