
LimitLESS Directories: A Scalable Cache Coherence Scheme

David Chaiken, John Kubiatowicz, and Anant Agarwal

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract

Caches enhance the performance of multiprocessors by re-
ducing network tra�c and average memory access latency.
However, cache-based systems must address the problem of
cache coherence. We propose the LimitLESS directory pro-
tocol to solve this problem. The LimitLESS scheme uses a
combination of hardware and software techniques to realize
the performance of a full-map directory with the memory
overhead of a limited directory. This protocol is supported
by Alewife, a large-scale multiprocessor. We describe the ar-
chitectural interfaces needed to implement the LimitLESS
directory, and evaluate its performance through simulations
of the Alewife machine.

1 Introduction

The communication bandwidth of interconnection networks
is a critical resource in large-scale multiprocessors. This sit-
uation will remain unchanged in the future because physi-
cally constrained communication speeds cannot match the
increasing bandwidth requirements of processors. Caches
reduce the volume of tra�c imposed on the network by au-
tomatically replicating data where it is needed. When a
processor attempts to read or to write a unit of data, the
system fetches the data from a remote memory module into
a cache, which is a fast local memory dedicated to the pro-
cessor. Subsequent accesses to the same data are satis�ed
within the local processing node, thereby avoiding repeat
requests over the interconnection network.

In satisfying most memory requests, a cache increases the
performance of the system in two ways: First, memory ac-
cess latency incurred by the processors is shorter than in a
system that does not cache data, because typical cache ac-
cess times are much lower than interprocessor communica-
tion times (often, by several orders of magnitude). Second,
when most requests are satis�ed within processing nodes,
the volume of network tra�c is also lower.

However, replicating blocks of data in multiple caches
introduces the cache coherence problem. When multiple

Appeared in ASPLOS-IV. April, 1991.

processors maintain cached copies of a shared memory loca-
tion, local modi�cations can result in a globally inconsistent
view of memory. Buses in small-scale multiprocessors o�er
convenient solutions to the coherence problem that rely on
system-wide broadcast mechanisms [4, 13, 15, 20, 24]. When
any change is made to a data location, a broadcast is sent so
that all of the caches in the system can either invalidate or
update their local copy of the location. Unfortunately, this
type of broadcast in large-scale multiprocessors negates the
bandwidth reduction that makes caches attractive in the
�rst place. In large-scale multiprocessors, broadcast mech-
anisms are either ine�cient or prohibitively expensive to
implement. Furthermore, it is di�cult to make broadcasts
atomic.

A number of cache coherence protocols have been pro-
posed to solve the coherence problem in the absence of
broadcast mechanisms [3, 6, 14, 23]. These message-based
protocols allocate a section of the system's memory, called
a directory, to store the locations and state of the cached
copies of each data block. Instead of broadcasting a modi-
�ed location, the memory system sends an invalidate mes-
sage to each cache that has a copy of the data. The protocol
must also record the acknowledgment of each of these mes-
sages to ensure that the global view of memory is actually
consistent.

Although directory protocols have been around since the
late 1970's, the usefulness of the early protocols (e.g., [6])
was in doubt for several reasons: First, the directory itself
was a centralized monolithic resource which serialized all
requests. Second, directory accesses were expected to con-
sume a disproportionately large fraction of the available net-
work bandwidth. Third, the directory became prohibitively
large as the number of processors increased. To store point-
ers to blocks potentially cached by all the processors in the
system, the early directory protocols (such as the Censier
and Feautrier scheme [6]) allocate directory memory pro-
portional to the product of the total memory size and the
number of processors. While such full-map schemes per-
mit unlimited caching, their directory size grows as �(N2),
where N is the number of processors in the system.

As observed in [3], the �rst two concerns are easily dis-
pelled: The directory can be distributed along with main
memory among the processing nodes to match the aggre-
gate bandwidth of distributed main memory. Furthermore,
required directory bandwidth is not much more than the
memory bandwidth, because accesses destined to the direc-
tory alone comprise a small fraction of all network requests.

1

Thus, recent research in scalable directory protocols focuses
on alleviating the severe memory requirements of the dis-
tributed full-map directory schemes.

Scalable coherence protocols di�er in the size and the
structure of the directory memory that is used to store the
locations of cached blocks of data. Limited directory proto-
cols [3], for example, avoid the severe memory overhead of
full-map directories by allowing only a limited number of si-
multaneously cached copies of any individual block of data.
Unlike a full-map directory, the size of a limited directory
grows as �(N logN) with the number of processors, because
it allocates only a small, �xed number of pointers per entry.
Once all of the pointers in a directory entry are �lled, the
protocol must evict previously cached copies to satisfy new
requests to read the data associated with the entry. In such
systems, widely shared data locations degrade system per-
formance by causing constant eviction and reassignment, or
thrashing, of directory pointers. However, previous stud-
ies have shown that a small set of pointers is su�cient to
capture the worker-set of processors that concurrently read
many types of data [7, 19, 25]. The performance of limited
directory schemes can approach the performance of full-map
schemes if the software is optimized to minimize the number
of widely-shared objects.

This paper proposes the LimitLESS cache coherence pro-
tocol, which realizes the performance of the full-map direc-
tory protocol, with the memory overhead of a limited direc-
tory, but without excessive sensitivity to software optimiza-
tion. This new protocol is supported by the architecture
of the Alewife machine, a large-scale, distributed-memory
multiprocessor. Each processing node in the Alewife ma-
chine contains a processor, a oating-point unit, a cache,
and portions of the system's globally shared memory and
directory. The LimitLESS scheme implements a small set
of pointers in the memory modules, as do limited directory
protocols. But when necessary, the scheme allows a memory
module to interrupt the processor for software emulation of
a full-map directory. Since this new coherence scheme is
partially implemented in software, it can work closely with
a multiprocessor's compiler and run-time system.

The LimitLESS scheme should not be confused with
schemes previously termed software-based, which require
static identi�cation of non-cacheable locations. Although
the LimitLESS scheme is partially implemented in software,
it dynamically detects when coherence actions are required;
consequently, the software emulation should be considered
a logical extension of the hardware functionality. To clarify
the di�erence between protocols, schemes may be classi-
�ed by function as static (compiler-dependent) or dynamic
(using run-time information), and by implementation as
software-based or hardware-based.

Chained directory protocols [14], another scalable alter-
native for cache coherence, avoid both the memory over-
head of the full-map scheme and the thrashing problem of
limited directories by distributing directory pointer infor-
mation among the caches in the form of linked lists. But
unlike the LimitLESS scheme, chained directories are forced
to transmit invalidations sequentially through a linked-list
structure (unless they implement some form of combining),

and thus incur high write latencies for very large machines.
Furthermore, chained directory protocols lack the Limit-
LESS protocol's ability to couple closely with a multipro-
cessor's software, as described in Section 6.

To evaluate the LimitLESS protocol, we have imple-
mented the full-map directory, limited directory, and other
cache coherence protocols in ASIM, the Alewife system sim-
ulator. Since ASIM is capable of simulating the entire
Alewife machine, the di�erent coherence schemes can be
compared in terms of absolute execution time.

The next section describes the details of the Alewife ma-
chine's architecture that are relevant to the LimitLESS di-
rectory protocol. Section 3 introduces the LimitLESS pro-
tocol, and Section 4 presents the architectural interfaces
needed to implement the new coherence scheme. Section 5
describes the Alewife system simulator and compares the
di�erent coherence schemes in terms of absolute execution
time. Section 6 suggests extensions to the software compo-
nent of the LimitLESS scheme, and Section 7 concludes the
paper.

2 The Alewife Machine

Alewife is a large-scale multiprocessor with distributed
shared memory. The machine, organized as shown in Fig-
ure 1, uses a cost-e�ective mesh network for communication.
This type of architecture scales in terms of hardware cost
and allows the exploitation of locality. Unfortunately, the
non-uniform communication latencies make such machines
hard to program because the onus of managing locality in-
variably falls on the programmer. The goal of the Alewife
project is to discover and to evaluate techniques for auto-
matic locality management in scalable multiprocessors, in
order to insulate the programmer from the underlying ma-
chine details. Our approach to achieving this goal employs
techniques for latency minimization and latency tolerance.

Alewife's multilayered approach, in which the compiler,
runtime system, and hardware cooperate in enhancing com-
munication locality, reduces average communication latency
and required network bandwidth. Shared-data caching in
Alewife is an example of a hardware method for reduc-
ing communication tra�c. This method is dynamic, rather
than static. Compiler partitioning and placement together
with near-neighbor scheduling are Alewife's software meth-
ods for achieving the same e�ect.

When the system cannot avoid a remote memory request
and is forced to incur the latency of the communication net-
work, an Alewife processor rapidly schedules another pro-
cess in place of the stalled process. Alewife can also tolerate
synchronization latencies through the same context switch-
ing mechanism. Because context switches are forced only
on memory requests that require the use of the intercon-
nection network and on synchronization faults, the proces-
sor achieves high single-thread performance. Some systems
have opted to use weak ordering [1, 11, 12] to tolerate certain
types of communication latency, but this method lacks the
ability to overlap read-miss and synchronization latencies.
Although the Alewife cache coherence protocol enforces se-

2

Cache

DataX:

Distributed Shared Memory

FPU

X: C

Distributed Directory

Cache
Controller

Network
Router DataX:

X:

Alewife node

Alewife machine

SPARCLE

Figure 1: Alewife node, LimitLESS directory extension.

quential consistency [18], the LimitLESS directory scheme
can also be used with a weakly-ordered memory model.

We have designed a new processor architecture that can
rapidly switch between processes [2]. The �rst-round imple-
mentation of the processor called SPARCLE will switch be-
tween processes in 11 cycles. The rapid-switching features of
SPARCLE allow an e�cient implementation of LimitLESS
directories.

An Alewife node consists of a 33 MHz SPARCLE pro-
cessor, 64K bytes of direct-mapped cache, 4M bytes of
globally-shared main memory, and a oating-point copro-
cessor. Both the cache and oating-point units are SPARC
compatible [22]. The nodes communicate via messages
through a direct network [21] with a mesh topology us-
ing wormhole routing [10]. A single-chip controller on each
node holds the cache tags and implements the cache co-
herence protocol by synthesizing messages to other nodes.
Figure 1 is an enlarged view of a node in the Alewife ma-
chine. Because the directory itself is distributed along with
the main memory, its bandwidth scales with the number of
processors in the system. The SPARCLE processor is being
implemented jointly with LSI Logic and SUN Microsystems
through modi�cations to an existing SPARC design. The
design of the cache/memory controller is also in progress.

3 The LimitLESS Protocol

As do limited directory protocols, the LimitLESS directory
scheme capitalizes on the observation that only a few shared
memory data types are widely shared among processors.
Many shared data structures have a small worker-set, which
is de�ned as the set of processors that concurrently read a

memory location. The worker-set of a memory block cor-
responds to the number of active pointers it would have in
a full-map directory entry. The observation that worker-
sets are often small has led some researchers to propose the
use of a hardware cache of pointers to augment the limited-
directory for a few widely-shared memory blocks [19]. How-
ever, when running properly optimized software, a directory
entry overow is an exceptional condition in the memory
system. We propose to handle such \protocol exceptions"
in software. This is the integrated systems approach |
handling common cases in hardware and exceptional cases
in software.

The LimitLESS scheme implements a small number of
hardware pointers for each directory entry. If these pointers
are not su�cient to store the locations of all of the cached
copies of a given block of memory, then the memory module
interrupts the local processor. The processor then emulates
a full-map directory for the block of memory that caused
the interrupt. The structure of the Alewife machine pro-
vides for an e�cient implementation of this memory system
extension. Since each processing node in Alewife contains
both a memory controller and a processor, it is a straightfor-
ward modi�cation of the architecture to couple the respon-
sibilities of these two functional units. This scheme is called
LimitLESS, to indicate that it employs a Limited directory
that is Locally Extended through Software Support. Fig-
ure 1 is an enlarged view of a node in the Alewife machine.
The diagram depicts a set of directory pointers that corre-
spond to the shared data block X , copies of which exist in
several caches. In the �gure, the software has extended the
directory pointer array (which is shaded) into local memory.

Since Alewife's SPARCLE processor is designed with a
fast trap mechanism, the overhead of the LimitLESS inter-
rupt is not prohibitive. The emulation of a full-map di-
rectory in software prevents the LimitLESS protocol from
exhibiting the sensitivity to software optimization that is
exhibited by limited directory schemes. But given current
technology, the delay needed to emulate a full-map directory
completely in software is signi�cant. Consequently, the Lim-
itLESS protocol supports small worker-sets of processors in
its limited directory entries, implemented in hardware.

3.1 A Simple Model of the Protocol

Before discussing the details of the new coherence scheme,
it is instructive to examine a simple model of the relation-
ship between the performance of a full-map directory and
the LimitLESS directory scheme. Let Th be the average
remote memory access latency for a full-map directory pro-
tocol. Th includes factors such as the delay in the cache and
memory controllers, invalidation latencies, and network la-
tency. Given Th, the formula Th + mTs approximates the
average remote memory access latency for the LimitLESS
protocol. Ts (the software latency) is the average delay for
the full-map directory emulation interrupt, and m is the
fraction of memory accesses that overow the small set of
pointers implemented in hardware.

For example, our simulations of a Weather trace on a
64 node Alewife system (see Section 5) indicate that Th �

3

Type Symbol Name Data?
Cache RREQ Read Request
to WREQ Write Request
Memory REPM Replace Modi�ed

p
UPDATE Update

p
ACKC Invalidate Ack.

Memory RDATA Read Data
p

to WDATA Write Data
p

Cache INV Invalidate
BUSY Busy Signal

Table 1: Protocol messages for hardware coherence.

35 cycles. If Ts = 100 cycles, then remote accesses with
the LimitLESS scheme are 10% slower (on average) than
with the full-map protocol when m � 3%. In the Weather
program, 97% of accesses hit in the limited directory.

LimitLESS directories are scalable, because the mem-
ory overhead grows as �(N logN), and the performance
approaches that of a full-map directory as system size in-
creases. Although in a 64 processor machine, Th and Ts are
comparable, in much larger systems the internode commu-
nication latency will be much larger than the processors'
interrupt handling latency (Th � Ts). Furthermore, im-
proving processor technology will make Ts even less signif-
icant. This approximation indicates that if both processor
speeds and multiprocessor sizes increase, handling cache co-
herence completely in software (m = 1) will become a vi-
able option. The LimitLESS protocol is the �rst step on
the migration path towards interrupt-driven cache coher-
ence. Other systems [9] have experimented with handling
cache misses entirely in software.

3.2 Protocol Speci�cation

In the above discussion, we assume that the hardware la-
tency (Th) is approximately equal for the full-map and the
LimitLESS directories, because the LimitLESS protocol has
the same state transition diagram as the full-map protocol.
The memory controller side of this protocol is illustrated in
Figure 2, which contains the memory states listed in Ta-
ble 2. These states are mirrored by the state of the block
in the caches, also listed in Table 2. It is the responsibil-
ity of the protocol to keep the states of the memory and
the cache blocks coherent. The protocol enforces coherence
by transmitting messages (listed in Table 1) between the
cache/memory controllers. Every message contains the ad-
dress of a memory block, to indicate which directory entry
should be used when processing the message. Table 1 also
indicates whether a message contains the data associated
with a memory block.

The state transition diagram in Figure 2 speci�es the
states, the composition of the pointer set (P), and the tran-
sitions between the states. Each transition is labeled with
a number that refers to its speci�cation in Table 3. This
table annotates the transitions with the following informa-
tion: 1. The input message from a cache that initiates the
transaction and the identi�er of the cache that sends it. 2. A
precondition (if any) for executing the transition. 3. Any di-

Read-Write
P={i}

P={i}
Write Transaction

6

7

8

4

P={i}
Read Transaction

Read-Only
k

2
,P={ k

1
, k

n
,... }

S: n > p

9

10

5

2

31

Figure 2: Directory state transition diagram.

rectory entry change that the transition may require. 4. The
output message or messages that are sent in response to the
input message. Note that certain transitions require the use
of an acknowledgment counter (AckCtr), which is used to
ensure that cached copies are invalidated before allowing a
write transaction to be completed.

For example, Transition 2 from the Read-Only state to
the Read-Write state is taken when cache i requests write
permission (WREQ) and the pointer set is empty or con-
tains just cache i (P = fg or P = fig). In this case, the
pointer set is modi�ed to contain i (if necessary) and the
memory controller issues a message containing the data of
the block to be written (WDATA).

Following the notation in [3], both full-map and Limit-
LESS are members of the DirNNB class of cache coher-
ence protocols. Therefore, from the point of view of the
protocol speci�cation, the LimitLESS scheme does not dif-
fer substantially from the full-map protocol. In fact, the
LimitLESS protocol is also speci�ed in Figure 2. The ex-
tra notation on the Read-Only ellipse (S : n > p) indicates
that the state is handled in software when the size of the
pointer set (n) is greater than the size of the limited direc-
tory (p). In this situation, the transitions with the square
labels (1, 2, and 3) are executed by the interrupt handler
on the processor that is local to the overowing directory.
When the protocol changes from a software-handled state
to a hardware-handled state, the processor must modify the
directory state so that the memory controller can resume
responsibility for the protocol transitions.

The Alewife machine will support an optimization of the
LimitLESS protocol that maximizes the number of transac-
tions serviced in hardware. When the controller interrupts
the processor due to a pointer array overow, the proces-
sor completely empties the pointer array into local memory,
allowing the controller to continue handling read requests
until the next pointer array overow. This optimization is
called Trap-On-Write, because the memory controller must
interrupt the processor upon a write request, even though
it can handle read requests itself.

4

Component Name Meaning
Memory Read-Only Some number of caches have read-only copies of the data.

Read-Write Exactly one cache has a read-write copy of the data.
Read-Transaction Holding read request, update is in progress.
Write-Transaction Holding write request, invalidation is in progress.

Cache Invalid Cache block may not be read or written.
Read-Only Cache block may be read, but not written.
Read-Write Cache block may be read or written.

Table 2: Directory states.

Transition Input Precondition Directory Entry Output
Label Message Change Message(s)
1 i ! RREQ | P = P [fig RDATA ! i

2 i ! WREQ P = fig | WDATA ! i

i ! WREQ P = fg P = fig WDATA ! i

3 i ! WREQ P = fk1; : : : ; kng ^ i 62 P P = fig, AckCtr = n 8kj INV ! kj
i ! WREQ P = fk1; : : : ; kng ^ i 2 P P = fig, AckCtr = n� 1 8kj 6= i INV ! kj

4 j ! WREQ P = fig P = fjg, AckCtr = 1 INV ! i

5 j ! RREQ P = fig P = fjg, AckCtr = 1 INV ! i

6 i ! REPM P = fig P = fg |
7 j ! RREQ | | BUSY ! j

j ! WREQ | | BUSY ! j

j ! ACKC AckCtr 6= 1 AckCtr = AckCtr� 1 |
j ! REPM | | |

8 j ! ACKC AckCtr = 1, P = fig AckCtr = 0 WDATA ! i

j ! UPDATE P = fig AckCtr = 0 WDATA ! i

9 j ! RREQ | | BUSY ! j

j ! WREQ | | BUSY ! j

j ! REPM | | |
10 j ! UPDATE P = fig AckCtr = 0 RDATA ! i

j ! ACKC P = fig AckCtr = 0 RDATA ! i

Table 3: Annotation of the state transition diagram.

4 Interfaces for LimitLESS

This section discusses the architectural features and hard-
ware interfaces needed to support the LimitLESS directory
scheme. We describe how these interfaces are supported in
the Alewife machine. Since the Alewife network interface
is somewhat unique for shared-memory machines, it is ex-
amined in detail. Afterwards, we introduce the additional
directory state that Alewife supports, over and above the
state needed for a limited directory protocol, and examine
its application to LimitLESS.

To support the LimitLESS protocol e�ciently, a cache-
based multiprocessor needs several properties. First, it must
be capable of rapid trap handling, because LimitLESS is an
extension of hardware through software. The Alewife ma-
chine couples a rapid context switching processor (SPAR-
CLE) with a �nely-tuned software trap architecture, per-
mitting execution of trap code within �ve to ten cycles from
the time a trap is initiated.

Second, the processor needs complete access to coherence
related controller state such as pointers and state bits in
the hardware directories. Similarly the directory controller
must be able to invoke processor trap handlers when neces-
sary. The hardware interface between the Alewife processor
and controller, depicted in Figure 3, is designed to meet
these requirements. The address and data buses permit

Address Bus

Data Bus

Trap Lines

Condition Bits

Processor Controller

Figure 3: Signals between processor and controller.

processor manipulation of controller state and initiation of
actions via load and store instructions to memory-mapped
I/O space. In Alewife, the directories are placed in this
special region of memory distinguished from normal mem-
ory space by a distinct Alternate Space Indicator (ASI) [2].
The controller returns two condition bits and several trap
lines to the processor.

Finally, a machine implementing the LimitLESS scheme
needs an interface to the network that allows the processor
to launch and to intercept coherence protocol packets. Al-
though most shared-memory multiprocessors export little
or no network functionality to the processor, Alewife pro-
vides the processor with direct network access through the
Interprocessor-Interrupt (IPI) mechanism. The following
subsections outline the implementations of the IPI mecha-
nism, the LimitLESS directory modes, and the trap han-

5

Source Processor
Packet Length

Opcode
operand 0
operand 1

...
operand m� 1
data word 0
data word 1

...
data word n� 1

Figure 4: Uniform packet format for the Alewife machine.

dlers.

4.1 Interprocessor-Interrupt (IPI)

The Alewife machine supports a complete interface to the
interconnection network. This interface provides the pro-
cessor with a superset of the network functionality needed
by the cache-coherence hardware. Not only can it be used
to send and receive cache protocol packets, but it can
also be used to send preemptive messages to remote pro-
cessors (as in message-passing machines), hence the name
Interprocessor-Interrupt.

We stress that the IPI interface is a single generic mecha-
nism for network access { not a conglomeration of di�erent
mechanisms. The power of such a mechanism lies in its
generality.

Network Packet Structure To simplify the IPI in-
terface, network packets have a single, uniform structure,
shown in Figure 4. This �gure includes only the information
seen at the destination; routing information is stripped o�
by the network. The Packet Header contains the identi�er
of the source processor, the length of the packet, and an op-
code. It is a single word in the Alewife machine. Following
the header are zero or more operands and data words. The
distinction between operands and data is software-imposed;
however, it is a useful abstraction supported by the IPI in-
terface.

Opcodes are divided into two distinct classes: proto-
col and interrupt. Protocol opcodes are used for cache-
coherence tra�c. While they are normally produced and
consumed by the controller hardware, they can also be
produced or consumed by the LimitLESS trap-handler.
Protocol opcodes designate the type of coherence trans-
action. For example, a cache read miss generates a mes-
sage with <opcode = RREQ>, <Packet Length = 2>, and
<Operand0 = Address>. Packets with protocol opcodes
are called protocol packets.

Interrupt opcodes have their most signi�cant bit set and
are used for interprocessor messages. Their format is de-
�ned entirely by the software. Packets with interrupt op-

Alewife Controller

To NetworkFrom Network

Message
Processor

SPARCLE
Processor

R
eceive Q

u
eu

e

IP
I In

p
u

t Q
u

eu
e

Memory

T
ran

sm
it Q

u
eu

e

IP
I O

u
tp

u
t Q

u
eu

e

Figure 5: Queue-based diagram of the Alewife controller.

codes are called interprocessor interrupts and are processed
in software at their destinations.

Transmission of IPI Packets A simpli�ed, queue-
based diagram of the Alewife cache/memory controller is
shown in Figure 5. This is a \memory-side" diagram; for
simplicity it excludes the processor cache.

The processor interface uses memory-mapped store in-
structions to specify destination, opcode, and operands. It
also speci�es a starting address and length for the data por-
tion of the packet. Taken together, this information com-
pletely speci�es an outgoing packet. Note that operands
and data are distinguished by their speci�cation: operands
are written explicitly through the interface, while data is
fetched from memory. The processor initiates transmission
by storing to a special trigger location, which enqueues the
request on the IPI output queue.

Reception of IPI Packets When the controller wishes
to hand a packet to the processor, it places it in a special in-
put bu�er, the IPI input queue. This queue is large enough
for several protocol packets and overows into the network
receive queue. The forwarding of packets to the IPI queue
is accompanied by an interrupt to the processor.

The header (source, length, opcode) and operands of the
packet at the head of the IPI input queue can be examined
with simple load instructions. Once the trap routine has ex-
amined the header and operands, it can either discard the
packet or store it to memory, beginning at a speci�ed loca-
tion. In the latter case, the data that is stored starts from
a speci�ed o�set in the packet. This store-back capability
permits message-passing and block-transfers in addition to
enabling the processing of protocol packets with data.

6

Meta State Description

Normal Directory handled by hardware.
Trans-In-Progress Interlock, software processing.
Trap-On-Write Trap: WREQ, UPDATE, REPM.
Trap-Always Trap: all incoming packets.

Table 4: Directory meta states for LimitLESS scheme.

IPI input traps are synchronous, that is, they are capa-
ble of interrupting instruction execution. This is necessary,
because the queue topology shown in Figure 5 is otherwise
subject to deadlock. If the processor pipeline is being held
for a remote cache-�ll 1 and the IPI input queue overows,
then the receive queue will be blocked, preventing the load
or store from completing. At this point, a synchronous trap
must be taken to empty the input queue. Since trap code is
stored in local memory, it may be executed without network
transactions.

4.2 Meta States

As described in Section 3, the LimitLESS scheme consists
of a series of extensions to the basic limited directory pro-
tocol. That section speci�es circumstances under which the
memory controller would invoke the software. LimitLESS
requires a small amount of hardware support in addition to
the IPI interface.

This support consists of two components, meta states and
pointer overow trapping. Meta states are directory modes
listed in Table 4. They may be described as follows:

� The hardware maintains coherence for Normal-mode
memory blocks. The worker-sets of such blocks are no
larger than the number of hardware pointers.

� The Trans-In-Progress mode is entered automatically
when a protocol packet is passed to software (by plac-
ing it in the IPI input queue). It instructs the con-
troller to block on all future protocol packets for the
associated memory block. The mode is cleared by the
LimitLESS trap code after processing the packet.

� For memory blocks in the Trap-On-Write mode, read
requests are handled as usual, but write requests
(WREQ), update packets (UPDATE), and replace-
modi�ed packets (REPM) are forwarded to the IPI in-
put queue. When packets are forwarded to the IPI
queue, the directory mode is changed to Trans-In-
Progress.

� Trap-Always instructs the controller to pass all pro-
tocol packets to the processor. As with Trap-On-
Write, the mode is switched to Trans-In-Progress when
a packet is forwarded to the processor.

1While the Alewife machine switches contexts on remote cache
misses (see [2]) under normal circumstances, certain forward-
progress concerns dictate that we occasionally hold the processor
while waiting for a cache-�ll.

The two bits required to represent these states are stored in
directory entries along with the states of Figure 2 and �ve
hardware pointers.

Controller behavior for pointer overow is straightfor-
ward: when a memory line is in the Read-Only state and
all hardware pointers are in use, then an incoming read re-
quest for this line (RREQ) will be diverted into the IPI
input queue and the directory mode will be switched to
Trans-In-Progress.

Local Memory Faults What about local processor ac-
cesses? A processor access to local memory that must be
handled by software causes a memory fault. The controller
places the faulting address and access type (i.e. read or
write) in special controller registers, then invokes a syn-
chronous trap.

A trap handler must alter the directory when processing
a memory fault to avoid an identical fault when the trap
returns. To permit the extensions suggested in Section 6,
the Alewife machine reserves a one bit pointer in each hard-
ware directory entry, called the Local Bit. This bit ensures
that local read requests will never overow a directory. In
addition, the trap handler can set this bit after a memory
fault to permit the faulting access to complete.

4.3 LimitLESS Trap Handler

The current implementation of the LimitLESS trap han-
dler is as follows: when an overow trap occurs for the
�rst time on a given memory line, the trap code allocates a
full-map bit-vector in local memory. This vector is entered
into a hash table. All hardware pointers are emptied and
the corresponding bits are set in this vector. The direc-
tory mode is set to Trap-On-Write before the trap returns.
When additional overow traps occur, the trap code locates
the full-map vector in the hash table, empties the hardware
pointers, and sets the appropriate bits in the vector.

Software handling of a memory line terminates when the
processor traps on an incoming write request (WREQ) or
local write fault. The trap handler �nds the full-map bit
vector and empties the hardware pointers as above. Next, it
records the identity of the requester in the directory, sets the
acknowledgment counter to the number of bits in the vector
that are set, and places the directory in the Normal mode,
Write Transaction state. Finally, it sends invalidations to
all caches with bits set in the vector. The vector may now
be freed. At this point, the memory line has returned to
hardware control. When all invalidations are acknowledged,
the hardware will send the data with write permission to the
requester.

Since the trap handler is part of the Alewife software
system, many other implementations are possible.

5 Performance Measurements

This section describes some preliminary results from the
Alewife system simulator, comparing the performance of

7

ALEWIFE Simulator

Mul-T program

SPARCLE machine language program

Network transactions

Memory requests/acknowledgements

Parallel Traces

Cache/Memory Simulator

Dynamic Post-Mortem
Scheduler

Network Simulator

SPARCLE Simulator

Alewife RuntimeMul-T Compiler

Figure 6: Diagram of ASIM, the Alewife system simulator.

limited, LimitLESS, and full-map directories. The proto-
cols are evaluated in terms of the total number of cycles
needed to execute an application on a 64 processor Alewife
machine. Using execution cycles as a metric emphasizes the
bottom line of multiprocessor design: how fast a system can
run a program.

5.1 The Measurement Technique

The results presented below are derived from complete
Alewife machine simulations and from dynamic post-
mortem scheduler simulations. Figure 6 illustrates these
two branches of ASIM, the Alewife Simulator.

ASIM models each component of the Alewife machine,
from the multiprocessor software to the switches in the in-
terconnection network. The complete-machine simulator
runs programs that are written in the Mul-T language [16],
optimized by the Mul-T compiler, and linked with a run-
time system that implements both static work distribution
and dynamic task partitioning and scheduling. The code
generated by this process runs on a simulator consisting of
processor, cache/memory, and network modules.

Although the memory accesses in ASIM are usually de-
rived from applications running on the SPARCLE proces-
sor, ASIM can alternatively derive its input from a dynamic
post-mortem trace scheduler, shown on the right side of Fig-
ure 6. Post-mortem scheduling is a technique that generates
a parallel trace from a uniprocessor execution trace that
has embedded synchronization information [8]. The post-
mortem scheduler is coupled with the memory system simu-
lator and incorporates feedback from the network in issuing
trace requests, as described in [17]. The use of this input
source is important because it lets us expand the workload
set to include large parallel applications written in a variety

of styles.

The simulation overhead for large machines forces a
trade-o� between application size and simulated system
size. Programs with enough parallelism to execute well on
a large machine take an inordinate time to simulate. When
ASIM is con�gured with its full statistics-gathering capa-
bility, it runs at about 5000 processor cycles per second on
an unloaded SPARCserver 330. At this rate, a 64 processor
machine runs approximately 80 cycles per second. Most of
the simulations that we chose for this paper run for roughly
one million cycles (a fraction of a second on a real machine),
which takes 3.5 hours to complete. This lack of simulation
speed is one of the primary reasons for implementing the
Alewife machine in hardware | to enable a thorough eval-
uation of our ideas.

To evaluate the potential bene�ts of the LimitLESS co-
herence scheme, we implemented an approximation of the
new protocol in ASIM. The technique assumes that the over-
head of the LimitLESS full-map emulation interrupt is ap-
proximately the same for all memory requests that overow
a directory entry's pointer array. This is the Ts parameter
described in Section 3. During the simulations, ASIM sim-
ulates an ordinary full-map protocol. But when the sim-
ulator encounters a pointer array overow, it stalls both
the memory controller and the processor that would handle
the LimitLESS interrupt for Ts cycles. While this evalu-
ation technique only approximates the actual behavior of
the fully-operational LimitLESS scheme, it is a reasonable
method for determining whether to expend the greater ef-
fort needed to implement the complete protocol.

5.2 Performance Results

Table 5 shows the simulated performance of four applica-
tions, using a four-pointer limited protocol (Dir4NB), a
full-map protocol, and a LimitLESS (LimitLESS4) scheme
with Ts = 50. The table presents the performance of
each application/protocol combination in terms of the time
needed to run the program, in millions of processor cycles.
All of the runs simulate a 64-node Alewife machine with
64K byte caches and a two-dimensional mesh network.

Multigrid is a statically scheduled relaxation program,
Weather forecasts the state of the atmosphere given an ini-
tial state, SIMPLE simulates the hydrodynamic and ther-
mal behavior of uids, and Matexpr performs several mul-
tiplications and additions of various sized matrices. The
computations in Matexpr are partitioned and scheduled by
a compiler. The Weather and SIMPLE applications are
measured using dynamic post-mortem scheduling of traces,
while Multigrid and Matexpr are run on complete-machine
simulations.

Since the LimitLESS scheme implements a full-edged
limited directory in hardware, applications that perform
well using a limited scheme also perform well using Lim-
itLESS. Multigrid is such an application. All of the proto-
cols, including the four-pointer limited directory (Dir4NB),
the full-map directory, and the LimitLESS scheme require
approximately the same time to complete the computation
phase. This con�rms the assumption that for applications

8

Application Dir4NB LimitLESS4 Full-Map
Multigrid 0.729 0.704 0.665
SIMPLE 3.579 2.902 2.553
Matexpr 1.296 0.317 0.171
Weather 1.356 0.654 0.621

Table 5: Performance for three coherence schemes, in terms
of millions of cycles.

with small worker-sets, such as multigrid, the limited (and
therefore the LimitLESS) directory protocols perform al-
most as well as the full-map protocol. See [7] for more evi-
dence of the general success of limited directory protocols.

To measure the performance of LimitLESS under extreme
conditions, we simulated a version of SIMPLE with bar-
rier synchronization implemented using a single lock (rather
than a software combining tree). Although the worker-
sets in SIMPLE are small for the most part, the globally
shared barrier structure causes the performance of the lim-
ited directory protocol to su�er. In contrast, the LimitLESS
scheme performs almost as well as the full-map directory
protocol, because LimitLESS is able to distribute the bar-
rier structure to as many processors as necessary.

The Matexpr application uses several variables that
have worker-sets of up to 16 processors. Due to these
large worker-sets, the processing time with the LimitLESS
scheme is almost double that with the full-map protocol.
The limited protocol, however, exhibits a much higher sen-
sitivity to the large worker-sets.

Weather provides a case-study of an application that has
not been completely optimized for limited directory proto-
cols. Although the simulated application uses software com-
bining trees to distribute its barrier synchronization vari-
ables, Weather has one variable initialized by one processor
and then read by all of the other processors. Our simula-
tions show that if this variable is agged as read-only data,
then a limited directory performs just as well for Weather
as a full-map directory.

However, it is easy for a programmer to forget to perform
such optimizations, and there are some situations where it
is very di�cult to avoid this type of sharing. Figure 7 gives
the execution times for Weather when this variable is not
optimized. The vertical axis on the graph displays several
coherence schemes, and the horizontal axis shows the pro-
gram's total execution time (in millions of cycles). The re-
sults show that when the worker-set of a single location in
memory is much larger than the size of a limited directory,
the whole system su�ers from hot-spot access to this loca-
tion. So, limited directory protocols are extremely sensitive
to the size of a heavily-shared data block's worker-set.

The e�ect of the unoptimized variable in Weather was
not evident in previous evaluations of directory-based cache
coherence [7], because the network model did not account
for hot-spot behavior. Since the program can be optimized
to eliminate the hot-spot, the new results do not contradict
the conclusion of [7] that system-level enhancements make
large-scale cache-coherent multiprocessors viable. Never-
theless, the experience with the Weather application rein-

|
0.00

|
0.40

|
0.80

|
1.20

|
1.60

 Weather

 Execution Time (Mcycles)

Full-Map

Dir1NB

Dir2NB

Dir4NB

Figure 7: Limited and full-map directories.

|
0.00

|
0.40

|
0.80

|
1.20

|
1.60

 Weather

 Execution Time (Mcycles)

Full-Map

Dir4NB

Ts = 150

Ts = 100

Ts = 50

Ts = 25

Figure 8: LimitLESS, 25 to 150 cycle emulation latencies.

forces the belief that complete-machine simulations are nec-
essary to evaluate the implementation of cache coherence.

As shown in Figure 8, the LimitLESS protocol avoids
the sensitivity displayed by limited directories. This �gure
compares the performance of a full-map directory, a four-
pointer limited directory (Dir4NB), and the four-pointer
LimitLESS (LimitLESS4) protocol with several values for
the additional latency required by the LimitLESS protocol's
software (Ts = 25, 50, 100, and 150). The execution times
show that the LimitLESS protocol performs about as well as
the full-map directory protocol, even in a situation where a
limited directory protocol does not perform well. Further-
more, while the LimitLESS protocol's software should be
as e�cient as possible, the performance of the LimitLESS
protocol is not strongly dependent on the latency of the
full-map directory emulation. The current implementation
of the LimitLESS software trap handlers in Alewife suggests
Ts � 50.

It is interesting to note that the LimitLESS protocol, with
a 25 cycle emulation latency, actually performs better than
the full-map directory. This anomalous result is caused by
the participation of the processor in the coherence scheme.
By interrupting and slowing down certain processors, the
LimitLESS protocol produces a slight back-o� e�ect that
reduces contention.

The number of pointers that a LimitLESS protocol imple-
ments in hardware interacts with the worker-set size of data
structures. Figure 9 compares the performance of Weather
with a full-map directory, a limited directory, and Limit-

9

|
0.00

|
0.40

|
0.80

|
1.20

|
1.60

 Weather

 Execution Time (Mcycles)

Full-Map

Dir4NB

LimitLESS1

LimitLESS2

LimitLESS4

Figure 9: LimitLESS with 1, 2, and 4 hardware pointers.

LESS directories with 50 cycle emulation latency and one
(LimitLESS1), two (LimitLESS2), and four (LimitLESS4)
hardware pointers. The performance of the LimitLESS pro-
tocol degrades gracefully as the number of hardware point-
ers is reduced. The one-pointer LimitLESS protocol is es-
pecially bad, because some of Weather's variables have a
worker-set that consists of two processors.

This behavior indicates that multiprocessor software run-
ning on a system with a LimitLESS protocol will require
some of the optimizations that would be needed on a system
with a limited directory protocol. However, the LimitLESS
protocol is much less sensitive to programs that are not
perfectly optimized. Moreover, the software optimizations
used with a LimitLESS protocol should not be viewed as
extra overhead caused by the protocol itself. Rather, these
optimizations might be employed, regardless of the cache
coherence mechanism, since they tend to reduce hot-spot
contention and to increase communication locality.

6 Extensions to the Scheme

Using the interface described in Section 4, the LimitLESS
protocol may be extended in several ways. The simplest ex-
tension uses the LimitLESS trap handler to gather statistics
about shared memory locations. For example, the handler
can record the worker-set of each variable that overows its
hardware directory. This information can be fed back to the
programmer or compiler to help recognize and minimize the
use of such variables. For studies of data sharing, locations
can be placed in the Trap-Always directory mode and han-
dled entirely in software. This scheme permits pro�ling of
memory transactions to these locations without degrading
performance of non-pro�led locations.

More interesting enhancements couple the LimitLESS
protocol with the compiler and run-time systems to im-
plement various special coherence, synchronization, and
garbage-collection mechanisms. Coherence types special-
ized to various data types [5] can be synthesized using the
Trap-Always and Trap-On-Write directory modes (de�ned
in Section 4). For example, the LimitLESS trap handler can
cause FIFO directory eviction for data structures known to
migrate from processor to processor, or it can cause updates
(rather than invalidates) when cached copies are modi�ed.

Synchronization objects, such FIFO lock data types, can
receive special handling; the trap handler can bu�er write
requests for a programmer-speci�ed variable and grant the
requests on a �rst-come, �rst-serve basis.

The mechanisms implementing the LimitLESS directory
protocol provide a set of generic interfaces that can be used
for many di�erent memory models. Judging by the num-
ber of synchronization and coherence mechanisms that have
been de�ned by multiprocessor architects and programmers,
it seems that there is no lack of uses for such a exible co-
herence scheme.

7 Conclusion

This paper proposed a new scheme for cache coherence,
called LimitLESS, which is being implemented in the
Alewife machine. Hardware requirements include rapid trap
handling and a exible processor interface to the network.
Preliminary simulation results indicate that the LimitLESS
scheme approaches the performance of a full-map directory
protocol with the memory e�ciency of a limited directory
protocol. Furthermore, the LimitLESS scheme provides a
migration path toward a future in which cache coherence is
handled entirely in software.

8 Acknowledgments

All of the members of the Alewife group at MIT helped
develop and evaluate the ideas presented in this paper.
Beng-Hong Lim wrote the prototype LimitLESS trap han-
dlers. David Kranz wrote the Mul-T compiler. Beng-Hong
Lim and Dan Nussbaum wrote the SPARCLE simulator,
the run-time system, and the static multigrid application.
Kirk Johnson supported the benchmarks. Kiyoshi Kurihara
found the hot-spot variable in Weather. Gino Maa wrote
the network simulator. G.N.S. Prasanna wrote the auto-
matic matrix expression partitioner and analyzed Matexpr.

The notation for the transition state diagram borrows
from the doctoral thesis of James Archibald at the Univer-
sity of Washington, Seattle, and from work done by Ingmar
Vuong-Adlerberg at MIT.

Pat Teller and Allan Gottlieb of NYU provided the
source code of the Weather and SIMPLE applications.
Harold Stone and Kimming So helped us obtain the traces.
The post-mortem scheduler was implemented by Mathews
Cherian with Kimming So at IBM. It was extended by
Kiyoshi Kurihara to include several other forms of barrier
synchronization such as backo�s and software combining
trees, and to incorporate feedback from the cache controller.

Machines used for simulations were donated by SUN Mi-
crosystems and Digital Equipment Corporation. The re-
search reported in this paper is funded by DARPA contract
N00014-87-K-0825, and by grants from the Sloan Foun-
dation and IBM.

10

References

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering -
A New De�nition. In Proceedings 17th Annual Inter-

national Symposium on Computer Architecture, June
1990.

[2] Anant Agarwal, Beng-Hong Lim, David Kranz, and
John Kubiatowicz. APRIL: A Processor Architecture
for Multiprocessing. In Proceedings 17th Annual Inter-

national Symposium on Computer Architecture, June
1990.

[3] Anant Agarwal, Richard Simoni, John Hennessy, and
Mark Horowitz. An Evaluation of Directory Schemes
for Cache Coherence. In Proceedings of the 15th Inter-

national Symposium on Computer Architecture, New
York, June 1988. IEEE.

[4] James Archibald and Jean-Loup Baer. An Economical
Solution to the Cache Coherence Problem. In Proceed-

ings of the 12th International Symposium on Computer

Architecture, pages 355{362, New York, June 1985.
IEEE.

[5] John K. Bennett, John B. Carter, and Willy
Zwaenepoel. Adaptive Software Cache Management
for Distributed Shared Memory Architectures. In
Proceedings 17th Annual International Symposium on

Computer Architecture, June 1990.

[6] Lucien M. Censier and Paul Feautrier. A New Solution
to Coherence Problems in Multicache Systems. IEEE

Transactions on Computers, C-27(12):1112{1118, De-
cember 1978.

[7] David Chaiken, Craig Fields, Kiyoshi Kurihara, and
Anant Agarwal. Directory-Based Cache-Coherence in
Large-Scale Multiprocessors. IEEE Computer, June
1990.

[8] Mathews Cherian. A study of backo� barrier synchro-
nization in shared-memory multiprocessors. Master's
thesis, MIT, EECS Dept, May 1989.

[9] David R. Cheriton, Gert A. Slavenberg, and Patrick D.
Boyle. Software-Controlled Caches in the VMP Mul-
tiprocessor. In Proceedings of the 13th Annual Sympo-

sium on Computer Architecture, pages 367{374, New
York, June 1986. IEEE.

[10] William J. Dally. A VLSI Architecture for Concurrent

Data Structures. Kluwer Academic Publishers, 1987.

[11] Michel Dubois, Christoph Scheurich, and Faye A.
Briggs. Synchronization, Coherence, and Event Order-
ing in Multiprocessors. IEEE Computer, pages 9{21,
February 1988.

[12] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory Consistency and
Event Ordering in Scalable Shared-Memory Multipro-
cessors. In Proceedings 17th Annual International Sym-
posium on Computer Architecture, June 1990.

[13] James R. Goodman. Using Cache Memory to Reduce
Processor-Memory Tra�c. In Proceedings of the 10th

Annual Symposium on Computer Architecture, pages
124{131, New York, June 1983. IEEE.

[14] David V. James, Anthony T. Laundrie, Stein Gjessing,
and Gurindar S. Sohi. Distributed-Directory Scheme:
Scalable Coherent Interface. IEEE Computer, pages
74{77, June 1990.

[15] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins,
and R. G. Sheldon. Implementing a Cache Consistency
Protocol. In Proceedings of the 12th International Sym-
posium on Computer Architecture, pages 276{283, New
York, June 1985. IEEE.

[16] D. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-
Performance Parallel Lisp. In Proceedings of SIGPLAN
'89, Symposium on Programming Languages Design

and Implementation, June 1989.

[17] Kiyoshi Kurihara, David Chaiken, and Anant Agar-
wal. Latency Tolerance in Large-Scale Multiprocessors.
MIT VLSI Memo 1990 #90-626. Submitted for publi-
cation., October 1990.

[18] Leslie Lamport. How to Make a Multiprocessor Com-
puter That Correctly Executes Multiprocess Programs.
IEEE Transactions on Computers, C-28(9), September
1979.

[19] Brian W. O'Krafka and A. Richard Newton. An Em-
pirical Evaluation of Two Memory-E�cient Directory
Methods. In Proceedings 17th Annual International

Symposium on Computer Architecture, June 1990.

[20] Mark S. Papamarcos and Janak H. Patel. A Low-
Overhead Coherence Solution for Multiprocessors with
Private Cache Memories. In Proceedings of the 12th

International Symposium on Computer Architecture,
pages 348{354, New York, June 1985. IEEE.

[21] Charles L. Seitz. Concurrent VLSI Architectures.
IEEE Transactions on Computers, C-33(12), Decem-
ber 1984.

[22] SPARC Architecture Manual, 1988. SUN Microsys-
tems, Mountain View, California.

[23] C. K. Tang. Cache Design in the Tightly Coupled Mul-
tiprocessor System. In AFIPS Conference Proceedings,

National Computer Conference, NY, NY, pages 749{
753, June 1976.

[24] Charles P. Thacker and Lawrence C. Stewart. Fire-
y: a Multiprocessor Workstation. In Proceedings of

ASPLOS II, pages 164{172, October 1987.

[25] Wolf-Dietrich Weber and Anoop Gupta. Analysis of
Cache Invalidation Patterns in Multiprocessors. In
Proceedings of ASPLOS III, pages 243{256, April 1989.

11

