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The Complexity of Continuous Optimization

Phillip Rogaway

Abstract

Given a polynomial objective function f(z1,...,%,), we consider the problem of finding the
maximum of this polynomial inside some convex set D = {z : Az < B}. We show that, un-
der a complexity assumption, this extremum cannot be approzimated by any polynomial-time
algorithm, even ezceedingly poorly. This represents an unusual interplay of discrete and contin-
uous mathematics: using a combinatorial argument to get a hardness result for a continuous
optimization problem.

1 Introduction

An enormous literature exists on finding the maximum (or minimum) of an objective function f(z)
inside some “feasible region” z € D.

Positive results have attracted the most attention. For certain special cases, polynomial-time
algorithms are known. The most celebrated example of this is LINEAR PROGRAMMING, where the
objective function is linear function, f(z1,...,2,) = ¥ ¢;2; and the constraints specify a convex
set D = {z: Az < B}.

Negative results for continuous optimization are less well studied. One example is that of
QUADRATIC PROGRAMMING, which is NP-hard [6]. This is useful information for the algorithm
designer, suggesting that Le not seek a polynomial-time algorithm for solving the general case of
this problem. In cases such as this, a reasonable strategy is to seek provably good approximation
algorithms.

Here we give strong evidence that this, too, can sometimes be too much to hope for. In partic-
ular, we show that, under a complexity assumption, it is impossible to approximate the maximum
of a polynomial objective function inside some convex set. (Some complexity assumption would
appear necessary, insofar as the conclusion implies PZNP.) Even finding a very poor approximation
is impossible. The instance of the problem consists of a a polynomial f(z1,...,2,), described as a
formal sum of terms, Eizl ¢k [Tica, %i, together with a matrix A and vector b specifying the region
D ={z: Az <b}.

In fact, the instance problem can be more constrained. It can be taken as a polynomial given
by a formal sum of “terms,” each “term” a product of some collection of z;’s and (1 — z;)’s; that

is, an instance looks like f(z) = 3";_, {(H;Mk ;) ([Tien (1 - mJ))] , Where the A;’s and B,’s are
disjoint. The problem is to find the maximum of this polynomial inside the unit hypercube.

Our result represents an unusual interplay of discrete and continuous mathematics for achieving
a negative result: in particular, we are using a combinatorial argument to say that we (probably)
can not solve a class of optimization problems with objective functions that are well-behaved,
continuous functions.

The proof of this theorem is to observe that there is an approzimation-preserving reduction from
our optimization problem to the problem of computing the size of a maximal cardinality clique in
a graph. This reduction underlies a simple special case of a theorem of Ebenegger, Hammer, and



de Werra [1], which says that the maximal size of an independent set in a graph is the maximum
of some multivariate polynomial associated to it. One concludes our theorem by using the recent
result of Feige, Goldwasser, Lovdsz, Safra and Szegedy [2], which shows that, under a complexity
assumption, the size of a maximal clique in a graph can not be estimated even exceedingly poorly
(not within any constant, say).

2 Framework for Optimization and Approximation

In this section we modify somewhat earlier notions for approximation-preserving reductions put
forth by Papadimitriou and Yannakakis [5], Panconesi and Ranjan [4], and others. We begin by
defining the class of problems we will consider.

2.1 NP-Approximation Problems

We are interested only in NP-optimization problems, which we now define. Such a problem is given
by a polynomial-time computable function f : {0,1}* x {0,1}* — R, which associates to each
instance x and solution y a real-valued utility f(z,y). Saying f is polynomial-time computable
means it can be computed in time polynomial in the length of its first argument.

As a matter of convenience, we consider maximization problems. For an optimization problem f,
we define its mazimum at z by f*(z) = maxyez- f(z,y). This maximum is a well-defined and
Turing-computable real number by the assumption that f is polynomial-time. A solution y* for
which f(z,y*) = f*(z) is called an optimal solution to f.

The optimal solution problem associated to an optimization problem f is the following: given
instance z, find an optimal solution *.

We shall be interested in algorithms which fall short of this goal. To measure how close an
algorithm comes to it, we speak of an approximation as being multiplicatively within some factor
u; addatively within some amount o; and, because we may wish u and a to be functions of the

input, we require a “norm” || - || measuring the size of input instances, and let x and o depend on
this. This is formalized below.

Definition 2.1 A (u,a)-approximation for the NP-optimization problem f and the norm ||-||, where
pso, and || - || : {0,1}* — R, is a function A which, on any instance z, gives a solution §j = A(x)
for which

[ (=)

)~ o) £ f(@,9) < un)- (=) +aln),

where n = ||z||. A p-approximation is a (., «)-approzimation for some constant a.. A constant-factor
approximation is a (u, a)-approzimation, for some constants i and a.

This definition holds equally well for maximization and minimization problems, though, in each
case, obviously only one of the two inequalities above is relevant.

We may wish to admit probabilistic approximation algorithms A. In this case, A’s input is the
pair (z,1*) and, for any instance z, with probability at least 1 — 2-%, algorithm A must find a 7
meeting the constraints above.

2.2 Approximation-Preserving Reductions

Rather than mimicking the usual “Cook reductions” we prefer to define approximation-preserving
“Turing reducibility.” (A terminological history appears in [3].) Though this added generality is
not needed here, we expect it to be significant in other contexts.



Consider algorithms A with access to an oracle § computing approximate solutions for some
optimization problem g. Such an algorithm will be denoted A?. An oracle call by A is counted as
taking one unit of time.

Definition 2.2 Let f and g be optimization problems. We say that f (i, a)-reduces to g with respect
to norms || - ||; and || - ||y, written f <, o g, if there is a polynomial-time Turing machine A such
that if § is any (u, a)-approzimation to g (with respect to || - ||, ), then A% is a (u,a)-approzimation
algorithm for f (with respect to || -||;). We say that f approximation-preserving reduces to g (with
respect to norms || - ||; and || -||,), written f <4 g, if there is a polynomial-time Turing machine A
such that, for any constants pu and o, if § is a (y, o)-approzimation to g with respect to || - ||, then
A7 is a (u,a)-approzimation algorithm for f with respect to || - ||g. If f <a g and g <4 f, then the
problems are said to be equivalent with respect to approrimation, written f =4 g.

3 Preliminaries

3.1 Some Continuous and Discrete Optimization Problems

We define the following optimization problems. Solutions which do not encode the specified com-
binatorial structure have utility 0.

CLIQUE

Instance: A (simple, finite, undirected) graph G = (V, E).

Utility of solutions: A solution W for the instance G has utility |W| if W C V is a clique: for
each v,w € W = {v,w} € E.

INDEPENDENT SET

Instance: A (simple, finite, undirected) graph G = (V, E).

Utility of solutions: A solution W for the instance G has utility |W|if W C V is an independent
set: for each v,w € W = {v,w} ¢ E.

PoLYNOMIAL PROGRAMMING

Instance: A polynomial in some number of variables, encoded as a formal sum f(zi,...,2,) =
> k=1 [(TTica, #:)], plus an n X m matrix A and an m-vector b.
Utility of solutions: A n-vector z satisfying Az < b has utility f(z).

PoLyNOMIAL PROGRAMMING — RESTRICTED CASE
Instance: A number n and some number ¢ of disjoint sets Ay, By € {1,...,n}, encoding the

polynomial f(21,...,2) = They [([liea, 20) - ([ies, (1 - 7)) -
Utility of solutions: A solution z € [0,1]" has utility f(z).

3.2 Properties of Approximation-Preserving Reduction
The following proposition can be verified immediately from the definition:

Proposition 3.1 Approzimation-preserving reductions are transitive: if f <, g and g <4 h, then
fFLah

The straightforward map between INDEPENDENT SET and CLIQUE instances establishes the
following (where ||G|| = |V(G)] is the cardinality of G’s vertex set):

Proposition 3.2 CLIQUE =4 INDEPENDENT SET.



The result of [2] and the notion of reducibility given immediately gives the following, where
“slightly superpolynomial time” means “time complexity of n®U°€!€n)» (The result of [2] gives
other tradeoffs for complexity assumptions and the quality of approximations as well.)

Proposition 3.3 Assume NP does not have slightly superpolynomial time algorithms. Then if
CLIQUE <4 f, f does not have any polynomial-time constant-factor approzimation algorithm.

4 The Complexity of Polynomial Optimization

Theorem. Assume NP does not have slightly superpolynomial algorithms. Then there is no
polynomial-time constant-factor approximation algorithm for POLYNOMIAL PROGRAMMING.

Proof: We show that the conclusion holds even for PoLYNOMIAL PROGRAMMING — RESTRICTED
CASE. In view of results given so far, it is enough to show that INDEPENDENT SET approximation-
preserving reduces to this. (In fact, the problems are approximation-equivalent.) Let G = (V, E)
be an instance of the INDEPENDENT SET problem. Without loss of generality, assume G has no
isolated nodes. We construct from G a polynomial f (an instance of POLYNOMIAL PROGRAMMING)
as follows. Introduce a formal variable z. for each edge ¢ € E. To each edge e = {v, w}, arbitrarily
order its endpoints (v,w) and associate the polynomial z. with endpoint v and associate the
polynomial 1— 2, with the other endpoint, w. Let z,,, = 2, and let z,, = 1 —z.. The polynomial f
is the sum, over all vertices, of the product of the polynomials associated to that vertex, f(z) =
>vev [luwen() Tow, where N(v) is the set of all vertices adjacent to v. This is a degree A =
max, deg(v) polynomial in n variables.

Let f* = maxo<..<1 f(2) denote f’s maximum on the n-dimensional unit hypercube, and let
w” denote the size of a maximum independent set of G. We first show that f* = w*.

To see this, we first observe that f* > w*. For given an independent set W of cardinality w, one
constructs an assignment ¢ = {z.} of utility at least w by setting z. = 1 if e is ordered (v,w) and
v € W; by setting z. = 0 if e is ordered (w,v) and v € W; and by setting z, arbitrarily otherwise.
The conclusion follows because f(z) > 3, cw Huzen(w)Zow = w.

Conversely, w* > f*. For given an assignment ¢ = {z.} construct an independent set W of
cardinality at least [f(z)] as follows: Choose an edge ¢ = {v, w} and let Let 7, =[], N(2)={uw} Tor
and let 7y, = [, cn(w)-{v} Twr- Now if m, < 7, then adjust = by “pushing” all z,, units from v
to w and obtain an assignment 2’ of at least as great a value as that of z; that is, letting o
apart from setting z. = 0 if e = (v,w) and z, = 1 if e = (w,v), we then have f(z') > f(nr:), as
f(&') — f(2) = 2yp(7Tyw — m,) > 0 I, instead, 7, > 7, then let 2/ = z except z, = 1 if e = (v, w)
and z, = 0 if e = (w,v); this again ensures that f(z') > f(z). Repeating this process for each
edge of G gives an assignment 2 with f(z2”) > f(z) and each 2 € {0,1}. Consider the set of
vertices W = {v € V : 2/, = 1 for all w € N(v)}. Then W is an independent set of vertices and
W= £(=") > f(2).

Now, we were given a graph G and mapped it to a polynomial f. Suppose we have a (1, @)-
approximate solution # to an optimal solution z* of f. Then, since f* = W*, we know f(&) >
|W*|/p— e, where [W* is the size of a maximal independent set in G. Mapping 7 to an independent
set accordmg to the construction above gives an independent set W of cardinality at least f(&).
For this set W, we have that |W| > |W*|/u — e, as required. |
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