MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/TM-453

COST-SENSITIVE ANALYSIS
OF COMMUNICATION
PROTOCOLS

Baruch Awerbuch
Alan Baratz
David Peleg

June 1991

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139




Cost-Sensitive Analysis of Communication Protocols

Baruch Awerbuch * Alan Baratz | David Peleg *

June 13, 1991

Abstract

This paper introduces the notion of cost-sensitive communication complexity and
exemplifies it on the following basic communication problems: computing a global
function, network synchronization, clock synchronization, controlling protocols’ worst-
case execution, connected components, spanning tree, etc., constructing a minimum
spanning tree, constructing a shortest path tree.

*Department of Mathematics and Laboratory for Computer Science, M.IT., Cambridge, MA 02139,
ARPA: baruch@theory.lcs.mit.edu. Supported by Air Force Contract TNDGAFOSR-86-0078, ARO contract
DAALO03-86-K-0171, NSF contract CCR8611442, DARPA contract N00014-89-J-1988, and a special grant
from IBM. Part of the work was done while visiting IBM T.J. Watson Research Center.

'IBM T.J. Watson Research Center, Yorktown Heights, NY 10598.

{Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100,
Israel. BITNET: peleg@wisdom. Supported in part by an Allon Fellowship, by a Bantrell Fellowship and by
a Haas Career Development Award. Part of the work was done while visiting MIT and IBM T.J. Watson
Research Center.



1 Introduction

1.1 Motivation

Traffic load is one of the major factors affecting the behavior of a communication network.
This fact is well recognized, and is the reason why most models for communication networks
and most algorithms for routing, traffic analysis etc. model the network using a weight
function on the edges, capturing this factor. In this model, the weight of an edge reflects
the estimated delay for a message transmitted on this edge, and thus also the cost for
using this edge. The significance of the load factor has also motivated the intense study of
efficient methods for performing basic network tasks such as computing shortest paths and
constructing minimum weight spanning trees (with length / weight defined with respect to
the weight function).

However, in most of the previous work on distributed algorithms for these and other
tasks, the design and analysis of the algorithms themselves completely disregards this weight
function. That is, transmission over all the edges is assumed to be equally costly and
completed within the same time bound. Such assumptions are made even when the task
performed by the algorithm is directly related to the edge costs, and the algorithm has to be
executed over the same network, and thus suffer the same delays. This seems to contradict
the very purpose towards which the tasks are performed. It is sometimes argued that it is not
crucial to take the weights into account when considering such “network service” algorithms,
since these algorithms occupy only a thin slice of the network’s bandwidth. Nonetheless, it
is clear that an algorithm that can do well in that respect is preferable to one that ignores
the issue.

This paper proposes an approach enabling us to take traffic loads into account in the
design of distributed algorithms. This issue is addressed by introducing cost-sensitive com-
plexity measures for analysis of distributed protocols. We consider weighted analogs for both
communication and time complexity. We then examine a host of basic network problems,
such as connectivity, computing global functions, network synchronization, controlling the
worst-case execution of protocols, and constructing minimum spanning trees and shortest
path trees. For each of these problems we seek to establish some lower bounds and propose
some efficient algorithms with respect to the new complexity measures.

We feel that the approach proposed in this paper may serve as a basis for a more accurate
account of the behavior of distributed algorithms in communication networks.



1.2 The model

We consider the standard model of (static) asynchronous communication networks. We
consider a communication graph G = (V, E,w), where a weight w(e) is associated with each
(undirected) edge of the network. We denote n = |V|, m = |E|. We also denote by W the
maximal weight w(e) of a network edge, W = maX(y,.)eE W(u,v). We make the assumption
that W = poly(n), and thus log W = O(logn). For any subgraph G’ = (V', E',w) of G,
let w(G") denote the total weight of G, i.e., w(G') = 2ecer w(e). Let dist(u,v,G") be the
weighted distance from u to v in G, i.e., the minimum of w(p) over all paths p from u to
v in G, and let Path(u,v,G’) denote some arbitrary path achieving this minimum. Let
Diam(G’) denote the diameter of @, i.e., max, ey dist(u,v,G’). Given a tree T and two
vertices z,y in it, denote by Path(z,y,T) the path from z to yin T,

Next let us define some basic graph notation. For a vertex v € V, let
Rad(v,G) = mg,‘}((distg(v, w)).

Given a set of vertices S C V, let G(S) denote the subgraph induced by S in G. A cluster
is a subset of vertices S C V such that G(S) is connected. The radius of a cluster S is
denoted Rad(S) = min,e¢s Rad(v, G(S)). A coveris a collection of clusters S = .. 58
such that U; S; = V. Given a collection of clusters S, let Rad(S) = max; Rad(S;). For
every vertex v € V, let degs(v) denote the degree of v in the hypergraph (V,8), i.e., the
number of occurrences of v in clusters § € S. The mazimum degree of a cover S is defined
as A(S) = max,ev degs(v).

Given two covers § = {$y,...,S,} and T = {Th,..., Ty}, we say that T subsumes S if
for every S; € S there exists a T; € T such that S; C T;.

In the sequel we make use of the following theorem of [AP91].

Theorem 1.1 [AP91] Given a graph G = (V,E), [V| = n, an initial cover S and an integer
k > 1, it is possible to construct a cover 7 that satisfies the following properties:

(1) 7 subsumes S,
(2) Rad(T) < (2k — 1)Rad(S), and

(3) A(T) = O(k|S|'7¥).



1.3 The complexity measures

This paper introduces weighted complexity measures analogous to the traditional time and
communication measures. We define the cost of transmitting a message over an edge e
as w(e). The communication complezity of a protocol 7, denoted c,, is the sum of all
transmission costs of all messages sent during the execution of 7. The time complezity of the
protocol 7, denoted ¢,, is the maximal physical time it takes 7 to complete its execution,
assuming that the delay on an edge e varies between 0 and w(e). The classical complexity
measures correspond to the case where w(e) =1 for all e € E.

Traditionally, communication protocols are evaluated in terms of E , V, D, which denote,
respectively, the number of edges, the number of vertices, and the unweighted (hop based)
diameter of the network. It turns out that it is convenient to evaluate the weighted com-
plexity of protocols using the “weighted analogs” of E,V, D, denoted by &,V, D, which are
defined as follows:

£ = w© (= > u(e) )
e€E
V = w(T) where T is an MST of G

D = Diam(G)

The analogy between these parameters and their unweighted counterparts is manifested
in the fact that £ equals the total cost of transmitting a single message over all the edges of
the network, V is the minimal cost of reaching (or, disseminating a message to) all vertices,

and D is the maximal cost of transmitting a message between a pair of network nodes.

In the sequel we express the complexity of our algorithms in terms of £,V and D. This
gives results that are conveniently similar in appearance to the results of the unweighted

case, as follows from the statement of results in the following subsection.

1.4 Problems and results
1.4.1 Global function computation

The problem: We are concerned here with computing global functions in a network. We
assume that the structure of the network is known to all the vertices (including the edge
weights). The only unknowns are the values of the n arguments of the function, which are
initially stored at different vertices of the network, one at each vertex. The outputs must be
be produced at all the vertices.

We restrict ourselves to the family of functions called symmetric compact in [GS86].
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| Global function computation I

! I Communication [ Time—l
| Upper bound | o(V) | o(D) |
Il,ower bound I QV) I Q(DTI

Figure 1: Lower and upper bounds for global function computation.

The functions f, : X® — X in this family are symmetric (i.e., any two arguments can
be switched) and compact, in the sense that the contribution of any subset of arguments
can be represented in “compact form” by a string of size log, | X|. The latter condition is
formalized by assuming that there exists a function ¢ : X2 — X such that for any k < n,

f(z1,22...2,) = g(fi(er, 22 . . 2k), Fai(Tht1s Thgz - - - T0)).-

Computing such functions is quite a basic task in the area of network protocols. Many
functions belong to this family, e.g. maximum, sum, basic boolean functions (XOR, AND,
OR). Many other tasks, e.g. broadcasting a message from a given node to the rest of the
network, termination detection, global synchronization, etc. can be represented as computing

a symmetric compact function. A similar class of functions is considered in [ALSY88].

The results: We show that the computation of global functions requires O(V) messages
and O(D) time.

The upper bound is derived as follows. Define a spanning tree as shallow-light tree (SLT)
if its diameter is O(D) and its weight is O(V). We then show that SLT trees are effectively
constructible, which implies that computing the value of our global function can be performed
(optimally) with O(V) messages and O(D) time.

We are also concerned with efficient distributed constructions of SLT trees, or, in short,

SLT algorithms. We present a specific SLT algorithm that requires O(V -n?) communication
and O(D - n?) time.

1.4.2 Clock Synchronization

Problem: The purpose of the clock synchronization is to generate at each node a sequence
of pulses, such that pulse p at a node is generated after (in the “causal” sense [Lam78]) all
neighbors generate pulse p — 1.

As argued by Even and Raijsbaum [ER90], the relevant complexity measure here is the
“pulse delay”, which is the maximal time delay in between two successive pulses at a node.
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Let us denote d = max(y)ecg dist(u,v), i.e., d is largest distance between neighbors in the
network. Clearly d < W, and the problem is interesting when d < W. A lower bound of
Q(d), and an upper bound of O(W) are derived in [ER90]. (It is worth pointing out that
the main emphasis of [ER90] is on somewhat different “directed” version of this problem.)

Results: In this paper, we show that one can achieve a pulse delay of O(d-log® n), i.e. leave
a gap of log® n between the lower and upper bounds. This result relies heavily on a number
of existing techniques, like the “Network Partition” of [AP91], and the “Synchronizer v” of
[Awe85a].

1.4.3 Network Synchronization

The problem: Asynchronous algorithms are in many cases substantially inferior in terms
of their complexity to corresponding synchronous algorithms, and their design and analysis
are more complicated. This motivates the development of a general simulation technique,
known as the synchronizer, that allows users to write their algorithms as if they are run
in a synchronous network. Implicitly, such techniques were proposed already in [Jaf80] and
[Gal82]. The first explicit statement of the problem was given in [Awe85a], and better
constructions for various cases were given in [PU89, AP90a]. Our goal is to extend the
concept of the synchronizer to the weighted case and provide an appropriate construction.

On a conceptual level, the synchronizer (as well as the controller, described in following
sections) is a protocol transformer, transforming a protocol 7 into a protocol ¢ that is
equivalent to 7 in some sense but enjoys some additional desirable properties. Recall that ¢,
and t, denote the communication and time complexity of the protocol 7, and similarly for
¢ and t4. Qur purpose is to guarantee that the transformation maintains ¢y and t4 small
compared to ¢, and %,.

The synchronizer can be viewed as a way to remove variations from link delays in an
asynchronous network. In the “unweighted” case, this means that we want to “force” all
link delays to be exactly 1. In the “weighted” case, the most natural and most useful
generalization of this concept is to force the delay on each link e to be exactly w(e). In a sense,
the synchronizer enables to simulate a “weighted” synchronous network G(V, E,w) with each
link e having a delay of exactly w(e) by a “weighted” asynchronous network G(V, E, w). Such
simulations may be useful for various applications, for which the absence of variations in edge
delays significantly simplifies the tasks in hand, e.g., shortest paths [Awe89], constructing
routing tables [ABLP89], and others. However, in addition to simplifying protocol design and

analysis, synchronizers actually lead to complexity improvements for concrete algorithms.
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For example, the algorithm SPT,y.; derived via a synchronizer (presented in Subsection
9.1), is the best known shortest path algorithm for certain values of V, D, £.

We define the amortized costs of a synchronizer ¢ (i.e., the overhead per pulse) in com-

munication and time as follows.

Ge) = 2=
TE = &

At first sight, the clock synchronization problem from Subsection 1.4.2 seems to resem-
ble the problem of simulating an “unweighted” synchronous network G’ (V, E) (with all link
delays being exactly 1) by a “weighted” asynchronous network G(V, E,w). The main differ-
ence is in the fact that the only goal of the network synchronizer is to simulate a particular
protocol, whereas the purpose of the clock synchronizer is to generate pulses. In general, it
would be ineffective to use clock synchronizers for network synchronization, and vice versa.
Even though the methods that we use to handle both problems have certain techniques in

common, the differences are quite substantial.

The results: We construct a synchronizer <, which is an analog of synchronizer v of
[Awe85a], such that for any fixed parameter k,

Co(vw) = O(kn -logn)
To(vw) = O(logyn-logn)

1.4.4 Controllers

Problem: The controller [AAPS87] is a protocol transformer transforming a protocol 7
into a protocol ¢ that is equivalent to 7 in terms of its input-output relation on a static
network, but is more “robust” than 7 in the sense that it has “reasonable” complexity even

if it operates on “wrong” data.

Results: In the unweighted case, [AAPS87] presents a controller guaranteeing t, = ¢y =
O(cx - log® ;). We show that the same bounds hold for the weighted case as well.

1.4.5 Connected components, spanning tree

The problems: The problems considered here are finding connected components and con-
structing a (not necessarily minimum) spanning tree [Seg83, AGPV89]. These problems are



[ Connectivity |

I [ Communication I Time I
DFS o) 0(€)
CON 1504 0o(¢) 0o(D)
CONpyoria O(min{&,n-V}) | O(min{&,n-V})
Lower bound I Q(min{&,n - V}) | QUD) |

Figure 2: Our Connectivity algorithms.

equivalent to each other.

The results: We show that performing any of the above tasks requires O(min{&,n - V})
communication by providing matching upper and lower bounds. To be more precise, we

prove that

1. For every distributed connectivity algorithm A and for any n there exists a family of n
vertex graphs G on which A requires communication complexity Q(n-V) and a family
of n vertex graphs G' on which A requires communication complexity QE).

2. There is a distributed connectivity algorithm with communication complexity
O(min{&,n - V}) on any graph G.

1.4.6 Constructing minimum spanning trees

Problem: The minimum spanning tree (MST) of the graph G is a tree of minimum weight
spanning G.

Results: We develop a number of MST algorithms, based on modifications of the algo-
rithms of [GHS83, Awe87].

1. An algorithm with communication complexity O(min{€ + V -logn, n - V}).

2. An algorithm with communication complexity O(€ - logn log V) and time complexity
O(D-n-logn-logV).



| Minimum Spanning Trees (MST) l

] Algorithm | Communication | Time I
MSTghs O(£+V -logn) O(£ +V -logn)
MSTcentr O(n ) V) O(ﬂ. ) Dz’am(MST)
MSTfqst O(€ -lognlogV) O(D -n-logn-logV).
MSThybrid O(min{&,n-V -logn}) | O(min{€,n-V -logn})
[ Lower bound | Q(min{&,n - V}) | Q(D) —I

Figure 3: Our MST algorithms.

| Shortest Path Trees (SPT) |

] Algorithm I Communication | Time |
SPTcentr O(w(SPT) -n) = 0(n?-V) O(D-n)
SPTrecur O(&1+¢) O(Dte)
SPTsynch O(E+D -kn - logn) D -log.nlogn
SPThysria | O(min{€ + D - kn -logn), £1+¢}) O(D'+e)

Lower bound ' Q(min{&,n-V}) l QD) l

Figure 4: Our SPT algorithms.

1.4.7 Constructing shortest path trees

Problem: The shortest paths tree (SPT) of the graph G with respect to a source vertex
s € V is a tree defined by the collection of shortest paths from s to all other vertices in G.

Results: We develop a number of SPT algorithms:

1. An algorithm with communication complexity O(£'*¢) and time complexity O(D*¢).
This is analogous to the result of [Awe89], which achieves same result for the unweighted

case.

2. An algorithm with communication complexity O(£ +D-kn-logn) and time complexity
O(D - log,, nlogn).

1.5 Structure of this paper

The paper proceeds as follows. Section 2 gives tight upper and lower bounds on the compu-
tation of global functions. Section 3 contains clock synchronization algorithms. In Section 4,
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we give upper and lower bounds for network synchronizers. Section 5 deals with controller
algorithms. Section 6 discusses basic algorithmic techniques for network problems such as
broadcast, depth first search and construction of minimum spanning trees and shortest path
trees. Section 7 discusses the problems of broadcast and constructing connected components
and spanning trees. Finally, Sections 8 and 8 describe efficient algorithms for constructing
minimum spanning trees and shortest path trees, respectively.

2 Optimal computation of global functions

2.1 The lower bound

Theorem 2.1 The computation of global symmetric compact functions requires Q(V) commu-
nication and Q(D) time.

Proof: Suppose that the value of the function has been computed at the vertex v. Since
the value of a global function depends on the value of all of its arguments, there must be
some information flow from each of the vertices to v. Thus the subgraph G’(V, E’), defined
by the set of edges E’ traversed by messages of the protocol, must contain a path from v to
any other vertex in V, i.e., it must contain some spanning tree of G.

Observe that the distance dist(u,v,G") from v to any other vertex u € V is a lower
bound on time complexity of the protocol. Picking a pair of vertices u, v realizing D (i.e.,
maximizing the distance dist(u,v, G)) and noting that dist(u, v, G") > dist(u,v,G) = D, we
get that D is a lower bound on the time complexity of the protocol.

Furthermore, the total weight of the edges of G’, w(G"), is a lower bound on the com-
munication complexity of the computation. Now, since G’ contains a spanning tree of G, its
total weight satisfies w(G’) > V. Thus V lower bounds the communication complexity of
the protocol. ||

2.2 The upper bound

It is easy to see that given a spanning tree T for the network, a global function can be
computed with communication complexity w(T') and time complexity Diam(T). Clearly,
any shortest path tree Ts has small depth, namely Diam(Ts) = O(D), but its weight may
be as big as w(Ts) = Q(n - V) [BKJ83]. Analogously, any minimum spanning tree Tjs has
small weight, namely w(Ta) = V; but its depth may be as high as Diam(Tr) = Q(n - D)



[BKJ83]. Thus in [BKJ83, Jaf85] it is advocated to approach such problems by attempting
to construct a tree approximating both a shortest-path tree and a minimum-weight spanning
tree.

Recall that a spanning tree is shallow-light tree (SLT) if its diameter is O(D) and its
weight is O(V). Such trees minimize simultaneously both weight and depth; existence of such
tree would imply that in any graph, one can compute global functions with communication
complexity O(V) and O(D) time. However, it is not clear that such trees exist. In the next
subsection we establish

Theorem 2.2 Every graph has a shallow-light spanning tree.

Corollary 2.3 The computation of global symmetric compact functions can be performed with
communication complexity O()) and O(D) time. |

The shallow-light tree algorithm

We next provide an algorithm (hereafter referred to as the SLT algorithm) for constructing
an SLT for an arbitrary graph, thus proving Theorem 2.2.

1. Construct an MST Ty and an SPT T for G, rooted at an arbitrary vertex vp.

2. Traverse Tys in a depth-first search (DFS) fashion, starting from vy. We think of
the DFS as carried out by a “token”, representing the algorithm’s center of activity.
Observe that in the tour taken by this token through the tree according to the specifi-
cations of the DFS, each tree edge is traversed exactly twice. Define the “mileage” of
the DFS token at a given time to be the number of steps (forward and backward tree
edge traversals) up to this time. Denote by (i) (0 <i < 2(n — 1)) the location of the
DFS token at the time its mileage is exactly i. For example, v(0) = v(2n — 2) = v,
where v is the source of the DFS.

3. Construct the “line-version” L of Ty, which is a (weighted) path graph containing
vertices 0,1,...,2n — 2. A vertex 7 on the path corresponds to v(i). We assign each
edge e = (¢,7+ 1) on the line L the weight of the corresponding edge (v(3), »(i + 1)) in
the graph G. Observe that neighboring vertices on the line L correspond to neighbors
in Ty. Observe that the total weight of the line is at most twice the total weight of
the MST Ty, i.e., w(L) < 2V.

4. Fix a parameter ¢ > 0. Construct “break-points” B; on L by scanning it from left to
right according to the following rules.
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Construct a minimum spanning tree Ty for G.
Construct a shortest path tree T for G.
Construct L based on T, as described above.
Assign each edge e of L the same weight as v(e) in G.
E — Ty
X—0Y 0
repeat
repeat Y « Y +1
until dist(X,Y,L) > q- dist(X,Y,Ts)
E' «— E'\J Path(X,Y,Ts)
X+«Y
untilY = n
Construct a shortest path tree T in G’ = (V, E')
output T

Figure 5: The SLT algorithm

(a) Break-point B, is vertex 0 on the line L.

(b) Break-point B;;; is the first point to the right of B; such that
dist(B,', Biy, L) >q- dist(V(B;), V(B.,'.H), Ts),
meaning that the distance from B; to B;;; in Ths exceeds that in Ts by a factor
of at least q.

5. Create a subgraph G’ of G by taking Tjs and adding Path(u(B;), v(B;iy1),Ts) for all
break-points B;, i > 1.

6. Construct a shortest path tree T rooted at v in the resulting graph G'.

7. Qutput T.

The algorithm is presented formally in Figure 5. In the algorithm, T denotes the set of
edges selected to the shallow-light tree and X,Y are pointers to nodes on the line L. An
example for a possible execution of the algorithm is given in Figure 6.

2.3 Analysis

Lemma 2.4 The tree T' constructed by the algorithm satisfies w(T) < (1 + g)v

11
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Figure 6: An example run of the SLT algorithm

Proof: The tree T is a subgraph of G’, created by adding the paths Path(v(B;), v(Bis1), Ts),
for ¢ > 1, to Tas. Therefore

w(T) < w(G') =w(Tu) + > w(Path(v(B:), v(Biy1), Ts)).

i>1

But by choice of the breakpoints B;,
1
w(Path(v(B;), v(Biy1), Ts)) = dist(v(B;), v(Biy1), Ts) < E - dist(B;, Biy1, L),
hence

S w(Path(v(By), v(Bin1), Ts)) < ~ 3 dist(B;, Biss, L) <

-
i>1 i>1 g

and thus w(7T) < (1+ %)V. g
Lemma 2.5 The tree T constructed by the algorithm satisfies Diam(T) < (¢ + 1)D.

Proof: Consider an arbitrary vertex z € V. We need to show that its depth in 7' is at most
(g +1)D. For that it suffices to bound dist(vo,z,G"). Let j denote the point corresponding
to z on the line L. Suppose that B, < j < Byy;, i.e., j occurs on the line L between B, and
By for some £. Since Path(v(B;),v(Biy1),Ts) is included in G for every 1 < i < £—1, it
follows that the entire path Path(v(B),v(By),Ts) connecting the nodes corresponding to
By and By in Ts is included in G’, and hence

dist(vo, v(By),G") < D.
If ;7 = B, then we are done. Otherwise, by the choice of By,
dist(By, j, L) < q- dist(v(By),z,Ts).
Put together, we get that dist(ve,2z,G") < (¢+1)D. 1

Corollary 2.6 The tree T' constructed by the algorithm is an SLT.

12



2.4 Distributed construction of shallow-light trees

Theorem 2.7 There is a distributed algorithm for constructing an SLT requiring O(V - n?)
communication and O(D - n?) time.

Proof: By Subsection 6.3, the MST Tys can be constructed using Algorithm MST,.,;, with
O(n - V) communication and O(n? - D) time.

Now, the rest involves stretching the MST into a line. By Fact 6.3, the total weight
of the MST is at most n — 1 times the diameter, or, V < (n — 1)D. Thus the time and
communication of the main body of the SLT algorithm are both O(n? - D).

Finally, we need to compute one more SPT in order to get the final tree T out of the
subgraph G’. This is done using Algorithm SPT,ns of Subsection 6.4, and costs us additional
O(D - n) time and O(n? - V) communication.

Overall, the algorithm invests O(D - n?) time and O(V - n?) communication. [

3 Clock synchronization

In this section we describe three methods of clock synchronization, called synchronizer a*,

B* and ¥*. These are modifications of synchronizers @, # and 7 of [Awe85a].

3.1 Clock synchronizer o*

As pointed out in [ER90], the most natural approach to clock synchronization is to use the

following synchronization mechanism, called synchronizer o*.

Pulse generation: whenever a node generates pulse p, is send messages to all neighbors,

and when it receives messages of pulse p from all neighbors, it generates pulse p + 1.

This method clearly requires time proportional to the highest edge weight, namely O( W).
Our goal is to approach the lower bound, which is O(d) (recall that d is largest distance
between neighbors).

The naive way to improve the delay is to construct a shortest path Path(u,v) for all
(u,v) € E and to communicate with each neighbor over such path. The problem with this
method is that a particular edge may belong to many paths (up to E), and thus the resulting
congestion will slow down the communication time by the corresponding factor (up to E).

13



3.2 Clock synchronizer §*

In order to minimize congestion, we may try the following method, called synchronizer 8*.

Preprocessing: We construct a spanning tree T of the network, and select a “leader” to
be the root of this tree.

Pulse generation: Information about the completion of the current pulse is gathered up
the tree by means of a communication pattern referred to as convergecast, which is started
at the leaves of the tree and terminates at the root. Namely, whenever a node learns that it
is done with this pulse and all its descendants in the tree are done with it as well, it reports
this fact to its parent. Thus within finite time after the execution of the pulse, the leader
eventually learns that all the nodes in the network are done. At that time it broadcasts a

message along the tree, notifying all the nodes that they may generate a new pulse.

The time complexity of Synchronizer 8* is (D), because the entire convergecast and
broadcast process is performed along a spanning tree, whose depth is at least the diameter
of the network.

3.3 Clock synchronizer ~+*

Our final synchronizer, called synchronizer v*, combines synchronizer ~ of [Awe85a]) with
the network partitions of [AP91, AP90b].

Definition 3.1 Given an n-vertex weighted graph G(V, E,w), a tree edge-cover for G is a
collection M of trees, such that

1. every edge of G is shared by at most O(log n) trees of M,
2. the depth of each tree in M is at most O(log n - d), and
3. for each edge, there exists at least one tree containing both endpoints.

Lemma 3.2 For every n-vertex weighted graph G(V, E,w), it is possible to construct a tree
edge-cover.

Proof: The desired collection of trees can be constructed as follows. Apply Thm. 1.1 to
the graph G, with the initial cover taken to be S = {Path(u,v,G) | (u,v) € E}, and the

parameter k = logn. The tree edge-cover is now constructed by selecting a shortest path
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spanning tree for each of the clusters of 7. The desired properties are guaranteed by the
theorem (noting, in particular, that Rad(S) < d and |§| = n, and therefore the output cover
T satisfies Rad(T) = O(dlogn) and A(T) = O(logn)). |

Preprocessing: Construct a tree edge-cover for G. Inside each tree, a leader is chosen to

coordinate the operations of tree. We call two trees neighboring if they share a node.

Pulse generation: The process is performed in two phases. In the first phase, Synchro-
nizer 3 is applied separately in each tree. Whenever the leader of a tree learns that its tree
is done, it reports this fact to all the nodes in the tree which relay it to the leaders of all the
neighboring trees. Now, the nodes of the tree enter the second phase, in which they wait
until all the neighboring trees are known to be done and then generate the next pulse (as if
Synchronizer «* is applied among trees). More details will be given in the full paper.

Complexity: The “congestion” caused by the fact that messages of different trees cross
the same edge, adds at most an O(log n) multiplicative factor to the time overhead. Since the
height of each tree is O(dlog n), it follows that the time to simulate one pulse is O(d-log? n).

4 Network synchronizers

4.1 Construction outline

The synchronizers discussed in this section operate by generating sequences of ”clock-pulses”
at each vertex of the network, satisfying the following property: pulse p is generated at a
vertex only after it receives all the messages of the synchronous algorithm that arrive at that
vertex prior to pulse p. This property ensures that the network behaves as a synchronous
one from the point of view of the particular synchronous algorithm.

The problem arising with synchronizer design is that a vertex cannot know which mes-
sages were sent to it by its neighbors and there are no bounds on edge delays. Thus, the
above property cannot be achieved simply by waiting “enough time” before generating the
next pulse, as may be possible in a network with bounded delays. However, it may be

achieved if additional messages are sent for the purpose of synchronization.

In the unweighted synchronizers of [Awe85a), incoming links are “cleaned” from transient

messages in between any two consecutive pulses, similar to the clock synchronizers in Section
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3. In our (weighted) case, this would be very inefficient since cleaning the links requires
time proportional to the maximal link weight W > 1, which would therefore dictate the
multiplicative overhead of the synchronization. The idea for overcoming this problem is that
links of high weight should be cleaned less frequently, thus enabling to amortize the cost of

cleaning them over longer time intervals.

Our synchronizer, denoted 7, is also a modification of synchronizer v of [Awe85a).
Synchronizer + is a combination of the two simple synchronizers a and 3, which are, in
fact, generalizations of the techniques of [Gal82]. Synchronizer « is efficient in terms of
time but wasteful in communication, while synchronizer J3 is efficient in communication but
wasteful in time. However, we manage to combine these synchronizers in such a way that the
resulting synchronizer is efficient both in time and communication. Before describing these

synchronizers, we introduce the concept of safety for the weighted case.

Definition 4.1 A message sent from a vertex v to one of its neighbors u over the edge e = (v, u)
at pulse ¢ is said to affect a later pulse p if ¢ + w(e) < p. A vertex v is said to be safe with
respect to pulse p if each affecting message of the synchronous algorithm sent by v at earlier
pulses has already arrived to its destination.

Each vertex eventually becomes safe w.r.t. a pulse p some time after sending all of its
messages from earlier pulses. If we require that an acknowledgment is sent back whenever
a message of the algorithm is received from a neighbor, then each vertex may detect that it
is safe w.r.t. pulse p whenever all its affecting messages have been acknowledged. Observe
that the acknowledgments do not increase the asymptotic communication complexity, and
each vertex learns that it is safe w.r.t. pulse p within constant time after it executed its
pulse p — 1.

A new pulse p may be generated at a vertex whenever it is guaranteed that no affecting
message sent at the previous pulses of the synchronous algorithm may arrive at that vertex
in the future. Certainly, this is the case whenever all the neighbors of that vertex are known
to be safe w.r.t. pulse p. It remains to find a way to deliver this information to each vertex

with small communication and time costs.

We need to state a number of definitions first.

Definition 4.2 Given a synchronous protocol 7 running on a synchronous weighted network
G(V, E,w), we say that 7 is in synch with G if 7 transmits a message on edge ¢ only at times
that are divisible by w(e).

Definition 4.3 A weighted network G(V, E,w) is said to be normalized if all weights w(e) are

powers of 2.
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Informally, our solution proceeds according to the following plan.

1. Design a synchronizer for normalized networks and protocols that are in synch with
the networks on which they are run.

2. Show that one can transform an arbitrary synchronous protocol 7 and synchronous
network G, so that the above assumptions are satisfied, without significantly increasing
the complexities.

These two steps are described in the following two subsections.

4.2 Synchronizer 7,

We assume now that the weights of all network edges are powers of 2, and messages are sent
on an edge of weight 2! only at times divisible by 2°.

Let 6 = log W. We define a collection of sub-networks {G;(V, E;) | 0 < i < 6}, by defining
E; to be the set of edges whose weights are divisible by 2'. (Note that an edge e with weight
w(e) = 27 occurs in all graphs G; for j > 1.)

The idea is that pulses divisible by 2* are handled by a so-called synchronizer +;, which
is exactly synchronizer v of [Awe85a], applied to the graph G;. The synchronizer 5; treats
pulse p - 2 as “super-pulse” p. It guarantees that super-pulse p is executed only after all
messages sent along edges in E; at super-pulse (p — 1) have arrived.

A vertex has to satisfy all é synchronizers in order to proceed with a pulse. More specif-
ically, consider a pulse p = 27 - (2r + 1), i.e., such that 2/ is the maximal power of 2 dividing
p- Then pulse p is postponed until super-pulse (2r + 1) - 2/=% of synchronizer +; is executed.
For example, pulse 24 = 3 - 2° is completed only after the synchronizers o, 1, 72, and 73
are done carryng their pulses 24, 12, 6 and 3, respectively.

Lemma 4.4 Synchronizer v, is correct.

Proof Sketch: We need to show that under synchronizer 7,, a vertex v generates pulse
p only after receiving all messages it would receive by pulse p were the protocol executed
on a synchronous network. This follows from the fact that the set of messages it would get
by pulse p, i.e., the set of messages affecting this pulse, includes messages sent on edges
belonging to G; sent at pulse p — 2!, and the arrival of these messages is guaranteed by
synchronizer v;. |
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4.3 Designing the protocol transformation

In order to justify the assumptions of the previous subsection we need to prove the following

claim.

Lemma 4.5 Given a synchronous protocol 7 running on a synchronous weighted network G(V, E, w),
there exist a synchronous protocol 7’ and a synchronous network G'(V, E, w') with the following
properties:

1. G' is normalized.
2. The protocol 7’ is in synch with G'.
3. The output of 7’ on G’ is identical to the output of 7 on G.

4. The time and communication complexities of a run of 7/ on G’ are at most twice higher
than the complexities of the corresponding run of = on G.

The lemma is proved throughout the rest of this subsection. We proceed as follows.
Consider a message M transmitted by « on the edge e = (u,v) with weight w(e) = w. For

this message we define the following quantities.

Sar: the time by which M is sent by w.
Rar: the time by which M is received by v.

Ppr: the processing time of M at v, which is the first time (at v) by which the contents of
that message might actually be used, i.e., by which the vertex program at v behaves
differently depending on the contents of M or the fact that M has not been sent.

Clearly, Sy + w = Ry < Puy. However, without loss of generality, we can assume
Ppr = Ry for the protocol 7.

Step 1: Transform 7 into a synchronous protocol 7/ slowed down by a factor of 4, i.e.,
where events that happen at time ¢ at 7 now happen at time ¢’ = 4¢ at 7’. That is, for any

message M, the sending, receiving, and processing times S’ h e, Pl in ' are shifted as
) 3 ’ p MyftMy 4 M

follows.
Sy = 4Sum
R;\A’ = }rw +w=45y+w

P;VI = 4Ry = 4(SM + 411))
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Observe, however, that edge delays are not stretched by a factor of 4, and hence the
arrival time R}, of M in 7’ clearly precedes its processing time Pj,. This is not a problem,
since the message can be kept in an edge buffer and be effectively ignored until time ¢’ + 4w.
This implies that the artificial increase in the delay of edge e from w to any value below 4w
is not going to affect the protocol. This explains the next step.

Definition 4.6 Let power(w) denote the smallest power of 2 that is larger than or equal to w,
i.e., power(w) = 2Mgvl

Observe that w < power(w) < 2w.

Step 2: Instead of running 7’ on G, run 7’ on the network G(V E,®), where (e) =

power(w(e)). The sending, receiving, and processing times S}, R}, P in 7' on G are
SM = S’
Ry = Sy + power(w)
Py = Py

Next, it is necessary to guarantee that messages are sent on e only at times divisible by

power(w).
Definition 4.7 Define next,(t) as the first time after ¢ that is divisible by power(w).

Observe that ¢t < nezt,(t) <t + (w—1).

Step 3: Modify 7’ to obtain a new protocol ", running on G, where for the above message
M, the sending, receiving, and processing times S%;, R%;, P4 in 7" all shifted as

Sy = nexty(Shy)
Ry = Sy + power(w)
Py = P

The main difference between 7’ and 7" is that the transmission of M in 7 may be delayed
by at most w. This does not cause a problem, because the message M is being ignored until
time Ppy = 4w + S} at the receiving end; thus P}y > Rl = S% + power(w) still holds.

4.4 Complexity

Lemma 4.8 The synchronizer v, described above has the following com plexities:
Co(tw) = O(k-n-logW)=0(k-n-logn)
Tp(1w) = O(logyn -logW) = O(log, n - logn)
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Proof: Synchronizer 4; is invoked on the graph G; once every 2' time units. This costs us
O(2' - n - k) in communication and O(2¢ - log, n) time. This waste is amortized over 2! time
units, and then summed over all 0 < i <log W graphs G;. 1

5 Controllers

Controllers are applicable in situations where one suspects the possibility that errors in
the input data, or processor faults, may cause a given protocol 7 to diverge away from
its specification. The danger is that while the protocol may have firm bounds ¢, and ¢,
on its communication and time complexity under normal circumstances (i.e., for correct
executions), it may waste valuable resources in an uncontrolled fashion once it diverges at
some processors in the network. The task of a controller is to transform the protocol = into
a “controlled” protocol ¢ whose semantics is identical to that of the original 7= under correct

input but whose complexities are reasonably bounded even on incorrect input.

We consider here the same model as in [AAPS87]. The protocol starts at a certain vertex,
called the initiator, and vertices enter the protocol as a result of receiving a message of the
protocol. This model is referred to as “diffusing computation” by Dijkstra and Scholten
[DS80]. It is worth mentioning that it is easy to extend the case of a single initiator to the
general case of multiple initiators.

Suppose that at the time a vertex receives the first message of the protocol, it marks
the edge over which the message has been received. It is easy to see that the collection of
marked edges forms, at all times, a dynamically growing tree rooted at the initiator vertex.
This tree is called the ezecution tree of the protocol.

Our purpose is to control the growth of this tree, namely, to guarantee that not too
many messages are sent during the protocol, without affecting the “correct” executions of
the protocol.

Towards this goal, the MAIN CONTROLLER of [AAPS87] views every message sent by the
protocol as consuming one unit of some abstract “resource”. The protocol must authorize
every single consumption of the resource. That is, a vertex that wants to consume a resource
unit (i.e. send a message) must first send a special “request” up on the execution tree, and
then wait to get a special “grant” message, before the resource may actually be consumed.

The most naive (but inefficient) way of controlling the amount of resource units consumed
in a growing tree is to request the root to authorize the consumption of each resource unit.

That is, for each resource unit consumed, a request has to go up on the execution tree
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towards the root. Once this request reaches the root, the root increases its “permit counter”
by 1. In case this counter is still less than or equal to some “threshold”, it sends back a
permit, which authorizes the consumption of the appropriate resource. Otherwise, if the
counter has exceeded the “threshold”, execution is suspended and the execution tree stops
growing.

In our case, we need to set this threshold to the value of ¢,, which is the complexity
of 7 in a correct execution. Thus the naive controller above will not interfere with correct

executions; its only effect is to stop executions that are obviously incorrect.

The more efficient algorithm of [AAPS87] is similar to the naive controller above in that
the resource requests are propagated up to the root and the permits are distributed from
the root. The algorithm of [AAPS87] takes advantage of the fact that a single message
can represent a number of resource requests or a number of permits. The main idea is to
aggregate a large number of requests/permits together, represent them by a single message,
and allow this message to travel up the tree for a distance proportional to this number.
Permits are kept not only at the root, but also at intermediate vertices. The root keeps
an approrimate permit counter, so that the actual number of resource units consumed is at
most twice the value of this counter. For this reason, even though the root threshold remains
the same as in the naive controller above, the guaranteed upper bound on the number of
protocol messages sent will be twice greater than in the case of the naive controller, namely

2¢.. Again, the algorithm does not interfere with correct executions of the protocol.

It is shown in [AAPS87] that the communication overhead of the authorization mechanism
(namely, permit/grant messages) results in at most log” ¢, control messages traversing a given
edge of the execution tree. It follows that the total overhead of control messages, as well the
total complexity of the resulting protocol ¢ is ¢y = O(cx log® ¢x)-

When running this protocol on a “weighted network”, we consider a transmission of a
message on an edge w as a request to consume w(e) units of the resource. Essentially, this
is equivalent to running the same algorithm as in [AAPS87] on the “unweighted” version
G = (V, E, %) of the network, where an edge e is substituted by a path containing w, edges
and w, — 1 “dummy vertices”, and weight w(e) = 1 for all edges e. Since the results of

[AAPS8T7] do not depend on the type of resource being consumed, we deduce:

Corollary 5.1 The CONTROLLER protocol given in [AAPS87] transforms an arbitrary pro-
tocol 7 into an equivalent “controlled” protocol ¢ whose (weighted) communication and time
complexities are cg = O(c, log® ¢;) and ty = O(c, log® ¢,), respectively.
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6 Basic algorithmic techniques

In this section we briefly describe several standard network algorithms and state their com-
plexities in the weighted setting. These algorithms will be used as basic components in the
more involved algorithms to be presented later.

6.1 The flooding algorithm CONy,.g

The goal of the flooding algorithm CONy,04 (cf. [Seg83]) is to broadcast a message throughout
the network. This is done as follows. Each vertex that receives the message for the first time

forwards it further to all its neighbors. Future arrivals of the message are ignored.

Fact 6.1 Algorithm CONj;,0q has communication complexity O(€) and time complexity O(D).

6.2 The depth-first search algorithm DFS

The goal of the DFS algorithm DFS (cf. [Eve79, Awe85b]) is to traverse the network in
depth-first order. In order to make use of this algorithm as a component in the algorithms
described later, it is necessary to modify it as follows. At any time, the algorithm maintains
estimates of the total cost of all the edges traversed so far. Such estimates are kept both at
the center of the activity and at the root, and are called the root estimate ESTx and the
center estimate ST, respectively. The estimates are updated as follows.

1. Each time an edge is traversed, its weight is added to the center estimate ESTg.

2. The root estimate ESTR is updated only whenever the center of activity is about to
traverse an edge that will cause the center estimate EST¢ to double compared to the
current value of ESTg. The update is done via a message from the center of activity
to the root, which sets ESTR to be the new value of EST,.

Thus, the center estimate is the total sum of edge weights for all edges traversed so far,
while the root estimate is a lower bound on the total edge weight for all the edges traversed
so far, plus the next edge to be traversed. Moreover, this lower bound is within a factor of

two of the real value.

Observe that going to the root whenever the estimate is doubled can at most double
the communication complexity, as this complexity can be viewed as the sum of a geometric
progression. This establishes the following fact.
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Fact 6.2 Algorithm DFS has communication complexity O(€) and time complexity O(£).

6.3 The full-information minimum spanning tree algorithm MST,.,.;,

The full-information MST algorithm MST,.,,;, is similar in structure to Prim’s MST algorithm
(cf. [Eve79]). This algorithm proceeds in stages, each selecting the minimum-weight edge
connecting a vertex in the tree with a vertex outside the tree, and adding this edge to the
tree. The algorithm terminates when the tree spans all the vertices. The resulting tree is an

MST of the network. It remains to show how to implement each stage.

Throughout the execution, the invariant maintained by the algorithm is that each vertex
in the tree knows the structure of the whole tree. To preserve this invariant, whenever a new
vertex is added to the tree, its name is broadcast on the tree, so it reaches all other vertices.

This requires only one message on each tree edge for each new vertex added.

As in algorithm DFS, we maintain at the root an estimate on the total weight of all tree
edges, called the root estimate. Observe that in this algorithm, the root estimate is precise,
as the root knows the structure of the whole tree.

In order to analyze the algorithm we need the following fact, which gives an upper bound
on the diameter of an MST.

Fact 6.3 For any minimum spanning tree T of G, Diam(T) <V < (n —1)D.

Proof: The first inequality is trivial. For the second, consider an edge ¢ = (v;,v;) € T.
By definition of the MST, this edge induces a partition of V into two subsets of vertices,
V = ViUV, such that v; € Vj, v, € V, and e is the minimum weight edge connecting a
vertex in V; with a vertex in V5. It follows that e is a shortest path from v; to v,, since any
other path from v; to v, contains at least one edge with one endpoint in V; and the other
endpoint in V5. Thus w(e) < Diam(G) = D, and hence

V=w(T)= Z;w(e) <(n-1)D.

Each phase of the algorithm MSTe,.:, constructing a tree T requires O()) communication
and O(Diam(T)) time. There are exactly n — 1 phases. Consequently we have

Corollary 6.4 Algorithm MST,.n;, has communication complexity O(n-V) and time complexity

O(min{nV, n?D}).
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6.4 The full-information shortest path tree algorithm SPT...;,

The full-information SPT algorithm SPT,n, is in fact a distributed implementation of Di-
jsktra’s algorithm (cf. [Eve79, Gal82]), computing a shortest path tree rooted at a source s.
This algorithm is very similar to the MST algorithm MST,,.;, described above. The algorithm
proceeds in phases, each adding one more vertex to the tree. The tree vertices know the
structure of the whole tree.

The vertices outside the tree are labeled. The label of a vertex z is the minimum, over all
its neighbors y in the tree, of dist(s,y) + w(y, z). In each phase, the vertex with minimum
label is added to the tree. Once this vertex is chosen, its name is broadcast over the whole

tree.

Again, we need a basic fact giving an upper bound on the total weight of a shortest path
tree in order to analyze the algorithm.

Fact 6.5 For any vertex s and any shortest path tree T for s in G, w(T) < (n —1)V.

Proof: Consider an edge e = (u,v) € T. Let T’ be an MST of G, and let P denote
Path(u,v,T"), the path connecting u with v in 7". By the definition of an SPT,

w(e) L w(P) L w(T)=V.

Thus,
w(T) =) w(e) < (n—1)V.

eeT

Each phase of the algorithm SPTc.ns, constructing a tree T' requires O(w(T')) communi-

cation and O(D) time. There are exactly n — 1 phases. Consequently we have

Corollary 6.6 Algorithm SPT...: has time complexity O(nD) and communication complexity

O(n2V).

7 Connected components and spanning tree construc-

tion

In this section, we prove matching upper and lower bounds on the communication complexity

of performing the tasks of finding connected components and constructing a spanning tree.
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Figure 7: The graph Go
7.1 Lower bounds

Let us first point out that an Q(&) lower bound on communication is given in [AGPV89] for
the case where all edge weights are unity. In the rest of this subsection, we prove an Q(n-V)

lower bound on the communication complexity.

Consider the family of graphs G, = (V, E,w) defined as follows. V = {1,...,n}. The
set of edges is composed of two subsets, E = E, U E;, where the first subset creates a
path, E, = {(i,i+1) | 1 < i < n -1}, and the second subset consists of bypassing edges,
Ey={(i,n+1—1)| 1<t <n/2}. The weights are defined as

A eE o
w(e):{X4 eEE:

where X is some large value, say X > n. Figure 7 depicts the graph G, for n = 9.
Note that the MST for G is the subgraph (V| E,) based on the path alone, so V =nX.

We make some assumptions similar to those of [AGPV89] regarding the model. In par-
ticular, we assume that the only operation one can do with ID’s is comparisons; this can be

extended also to general operations in case the ID’s are allowed to be sufficiently large.

In addition, let us formulate the following concepts. Note that every vertex in our graphs
has two or three neighbors. Let us assume that each vertex maintains its own id in register
R and the id’s of its neighbors in input registers R;, R, and R (if needed). The only things
that can be done with these id’s is comparing them to each other and to other id’s. The
vertex does not distinguish between the registers. In particular, it cannot tell which register
contains the id of its neighbor along the bypassing edge. However, in order to enable us to

speak about this particular register, let us refer to it also as the bypassing register, Rp.

Messages may include vertex id’s, as well as information about the relationships between
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id’s, e.g., “the contents of register R; at vertex id ¢ is the id ¢.” A vertex : may know any
other vertex j only by its id, ¢(j). When we say “vertex 7 obtains the contents ¢’ of register
R, of vertex j” we mean that at some stage of the run, 7 learns the fact that register Ry at
the vertex whose id is ¢(7) contains the id ¢’. This can happen either by ¢ being itself j or
by its getting a message with that statement. Similarly, when saying “vertex ¢ obtains the
id of vertex j” we mean that at some stage of the run, the id ¢(j) becomes available to z,
l.e., either ¢ is itself j or it gets a message containing ¢(j) (as the id of a vertex, i.e., as the

contents of register Ry of some vertex).

Let A be a deterministic algorithm that succeeds in computing a spanning tree on every
input graph and whose communication complexity is f(n) = o(n*). In particular, this means
that there exists a constant ng such that for every n > ng, the algorithm A completes the
construction of tree on G, with communication cost less than n. Clearly, then, the algorithm
does not send any messages over any bypassing edge in these graphs, since using such an
edge immediately incurs a cost of n*. Henceforce we restrict attention to graphs G, for

n > ng.

Our proof is based on the following lemma.

Lemma 7.1 In the execution of A on G, for every 1 < i < n/2 there is some vertex j such
that one of the following two events must happen.

1. j receives both the id of ¢, ¢(¢), and the id stored in (n + 1 —7)’s bypassing register Rp.

2. j receives both the id of n +1 — ¢, ¢(n + 1 —¢), and the id stored in i's bypassing register
Hy.

Proof: Suppose that there is some 1 <7 < n/2 for whom the lemma does not hold. Consider
the graph G% obtained from G, by adding two vertices v, w and replacing the edge (t,m+1—17)
with the two edges (¢,v) and (n+1—14,w), both with weight X*. Figure 8 depicts the graph
Gi forn =9 and i = 3.

Select the id assignment ¢(k) = 2k for k € V, and the id’s ¢(v) =2(n +1 —13i) — 1 and
d(w) =21 — 1.

Consider the run of A on the graph Gi. We claim that the executions of A on G, and
G;, are similar. This is proved inductively on the length of the runs, noting that as long
as no messages are sent over the edges connecting v and w to the rest of the graph, any
comparison made by any vertex has the same result except a comparison of the id of i to
the contents of the bypassing register Rg of n + 1 — i, or a comparison of the id of n +1 — 3

to the contents of the bypassing register Rg of 7. Since no vertex holds both these values,
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the runs will remain similar. This implies that in G%, the vertices v and w will not join the

spanning tree, contradicting the assumption that A operates correctly on every graph. |
Lemma 7.2 Algorithm A requires Q(n)) messages. |

Proof: Consider the execution of A on G, and pick some 1 < ¢ < n/2. It follows from the
previous lemma that messages containing the names i or n + 1 — i were passed over at least

n + 1 — 2¢ edges during the run. Thus the message complexity of A is at least

n/2
XY (n+1-2i) > n?X/4 = Q(n)).

i=1

7.2 An upper bound

Claim 7.3 Algorithm CONyyiq (presented below) requires O(min{&,n - V}) messages.

We now describe Algorithm CONpybrig, whose communication complexity is the minimum
between those of the algorithms DFS and MST,... presented above. In effect, algorithm
CONpybrig runs algorithms DFS and MST..,; in parallel. The idea is that the root vertex
“controls” both algorithms and suspends the more expensive one. Towards this goal, the
root maintains the variables W, and W, which are the root estimates of algorithms DFS and
MSTcentr, respectively. In addition, the root maintains the variable Permit which takes values
{DFS,MSTcens, } and is updated whenever W, or W, are updated at the root. As a rule,

DFS, W, < W,
MST.ent-, otherwise.

Permit = {
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When Permit = DFS, algorithm DFS is running and algorithm CON_en, is suspended, and

vice versa.

Observe that it is easy to suspend either of the two algorithms, as algorithm DFS (re-
spectively, MSTc.n:r) needs to be suspended only when W, (resp., W;) is increased. At that
moment, the center of activity of algorithm DFS (resp., MSTcen:r) is located at the root, so
the algorithm can be suspended by requesting that the center of activity stays at the root.

Since at any time the root estimates are within a factor of two of the actual commu-
nication costs of both algorithms, and since only the algorithm with the smaller estimate
is enabled at any given time, the total complexity of algorithm CONjy-i¢ cannot exceed the

complexity of the cheaper of the two algorithms by more than a factor of four.

8 Fast minimum spanning tree algorithms

This section proceeds as follows. In order to explain the more complex algorithms MST;,,; and
MSThybria, We start with a description of the algorithm of [GHS83], referred to as “algorithm
MSTyhs”, and show that it has communication complexity O(€+V-logn) and time complexity
O(£ +V -logn). Then, we develop our new algorithms:

¢ An algorithm MSTjy,ig With communication complexity O(min{€ + Vlogn,n - V}).

¢ An algorithm MSTy,, with communication complexity O(€ logV logn) and time com-
plexity O(Diam(MST)log Vlogn) = O(nDlogV logn).

8.1 Algorithm MST,,

The algorithm consists of two stages, namely, a wake-up stage followed by a work stage. The
wake-up stage of [GHS83] is based on flooding a “wake-up” message through the network.
The work stage can be thought as a modification of the following simple algorithm. The
algorithm consists of logn phases. At each phase, we have a number of “fragments”, i.e.,
subtrees of the MST, that try to merge, in parallel, into larger fragments. Towards this goal,
each fragment performs the following steps:

1. The name of the fragment is broadcast from the root to all the vertices.

2. Each vertex scans, serially and in decreasing order of weights, all edges that have not
been scanned so far, until an edge outgoing from the fragment is found. The name of

that edge and its weight are reported to the parent.
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3. Each vertex collects reports from its children containing the name of the edge chosen
by the subtree rooted at the child. Among those, the minimum weight edge is selected
and propagated to the parent. The vertex also marks its edge to the child in whose

subtree the selected edge is located.

4. When the root selects its outgoing edge, the path from the selected edge to the root
has been marked. Now, the root of the tree is moved along this path, and the fragment

is hooked onto another fragment along the outgoing edge.

It is easy to implement the above algorithm if the phases of different fragments are
synchronized. However, synchronization requires scanning all the edges. The algorithm of

[GHS83] manages to accomplish its task without synchronization, thus saving communica-
tion. For more details, see [GHS83].

Lemma 8.1 Algorithm MST,, requires O(€ + V - logn) communication and O(€ +V - log n)

time.

Proof: The wake-up stage obviously takes O(£) communication and O(D) time. Throughout
the algorithm, each non-tree edge is scanned at most twice, and each tree edge is scanned
logn times. It follows that the communication complexity is O(€ + V - logn). The time
complexity is naturally bounded by the communication complexity. |

Unfortunately, this algorithm does not exhibit any parallelism; its time complexity could
be almost as high as its communication complexity. This is due to the fact that the edges
scanned in a given phases may be much heavier that the weight of the MST itself. Thus,
edge scanning contributes a term of £ to the time complexity. The communication over MST
contributes additional O(Diam(MST) -logn) = O(V - logn) time.

8.2 Algorithm MSTjyiq

The “hybrid” MST algorithm, called MSTpypri4, is obtained according to the following plan:

1. Modify the wake-up phase of algorithm MST,;, so that instead of flooding, wake-up is

performed via the DFS algorithm of the previous section.

2. Combine the resulting algorithm with algorithm MST,c,s, as in Section 7.2.

The idea of the first step is that the protocol becomes “controlled”, i.e., the root is aware
of the communication wasted so far. This makes it easy to perform the next step, where we

achieve the minimum between the two algorithms.
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Corollary 8.2 Algorithm MSTyy,iq has communication complexity O(min{€ + Vlogn,nV}).

8.3 Algorithm MST,y

The algorithm MST;, is a modification of algorithm MSTyns. The idea is to reduce the time
it takes to scan very heavy edges that obviously do not belong to the MST. Also, we wish
to avoid the time-consuming process of scanning the edges serially. Towards this goal, we

modify the process of selecting an outgoing edge of a fragment as follows.

In order to avoid the scanning of heavy edges, the root makes a “guess” for the weight
of the outgoing edge. Initially, this guess is 1. If the guess is too low, then the process of
searching for an outgoing edge fails. In this case, the root doubles its guess and repeats the
search. This continues until the search succeeds.

In order to achieve concurrency in the edge scanning process, the vertices scan all the
edges that are below the value guessed by the root in parallel. This guarantees that the time
of the search is upper-bounded by O(Diam(MST)).

Corollary 8.3 Algorithm MSTy,,; requires O(€ - log nlog V) communication and
O(Diam(MST)log Vlogn) = O(nDlogVlogn) time.

9 Fast shortest path tree algorithms

9.1 Algorithm SPT,,

Algorithm SPT,y,.;, is the fastest SPT algorithm we know of. It is obtained by combining
the synchronizer of Section 4 with the synchronous SPT algorithm.

Observe that the synchronous SPT algorithm runs in O(D) time and has O(£) com-
munication complexity (again, making the assumption that a message sent on edge e re-
quires precisely w(e) time). The synchronizer adds O(knlogn) communication overhead

and O(log; nlogn) time units for each of the D time units of the original synchronous pro-
tocol. We thus have

Corollary 9.1 The algorithm SPT,yncs requires O(E + D - kn - logn) in communication and
O(D - log; n - logn) time.
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9.2 Algorithm SPT,..,,

Observe that a “weighted” network G = (V, E,w) can be reduced to a BFS problem on an
“unweighted” network G = (V, E, %) where an edge e is substituted by a path containing
w, edges and w, — 1 “dummy vertices”, and weight w(e) = 1 for all edges e. Thus, we can
construct an SPT of the original graph by running the BFS algorithm as in [Awe89] on the
“unweighted” version G' = (V, £, %) of the network.

The BFS algorithm of [Awe89] is based an a very simple BFS algorithm, referred to in
the sequel as the DIIKSTRA Algorithm, due to its resemblance to Dijkstra’s shortest path
algorithm (cf. [Gal82]) and Dijkstra-Sholten distributed termination detection procedure
[DS80]. This algorithm is similar to Algorithm SPTeen:r of Section 6, with the only difference
being that the names of vertices that join the tree do not have to be broadcast along the

tree.

The algorithm maintains a tree rooted at the source vertex. Initially, the tree is empty.
Upon termination of the algorithm, the tree is the desired BFS tree. Throughout the algo-
rithm, the tree can only grow, and at any time it is a subtree of the final BFS tree. The
algorithm operates in successive iterations, each adding one more BFS layer to the tree. At
the beginning of a given iteration /, the tree contains all vertices in layers less than or equal
to [ — 1. Upon termination of iteration /, the tree is extended to layer [ as well.

The complexities of this algorithm are O(d - n + E) messages and O(d - D) time, where d
is the number of layers being processed. Indeed, there are d iterations and in each of them
synchronization is performed over the BFS tree, which requires O(n) messages and O(D)
time. In addition, one exploration message is sent over each edge once in each direction. Ob-
viously, the performance of the algorithm degrades as the number d of layers to be processed
increases.

The idea behind [Awe89] is to reduce the problem where a large number of layers needs
to be processed to a problem with a small number of layers. If the network has diameter B,
we can conceptually “slice” the network into % “strips” of length d, and process those strips
sequentially (see Figure 9).

In [Awe89], an efficient reduction strategy is proposed. It is proved in [Awe89] that, in
the unweighted case, O(D¢) time units are spent on each BFS layer, and O(E*) messages
traverse each network edge. In our (weighted) case, we have D layers, and &£ edges in the
“unweighted” version of our network. Thus, we have

Corollary 9.2 The weighted communication and time complexities of the resulting protocol
SPTrecur are O(E'*¢) and O(D*¢), respectively.
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Figure 9: Strip Method.

9.3 The hybrid SPT algorithm SPTj,4

As before, it is possible to combine the two SPT algorithms SPTsynch and SPT,ecur and obtain
an algorithm SPThyeri4 that is as efficient in communication as either one of the two. This is
done in a manner similar to design of the hybrid MST algorithm MSTj,,:4 in Section 8.2.

Corollary 9.3 The weighted communication and time complexities of the resulting protocol
SPThybria are given by O(min{E*, € + n - D}).
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