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Abstract

It has become apparent that the achieved performance of multiprocessors is
heavily dependent upon the quality of the available compilers. In this paper we
are concerned with compile-time techniques that can be used to achieve better
performance by improving cache utilization. Specifically, we investigate the prob-
lem of assigning data chunks to memory in a way that will minimize collisions in
direct-mapped multiprocessor caches. We show that while this problem is com-
putationally intractable, there are interesting special cases that can be solved
in polynomial time. We also present several techniques that can be used when
conflict-free assignment is not possible, or when finding a conflict-free assignment
is computationally infeasible. These techniques include uniform decaching, which
involves not caching specific data blocks, and data replication, which involves
making multiple copies of read-only data. Finally, we present a memory assign-
ment technique, grey coloring, that reduces latency in the presence of collisions
by distributing cache misses among processors in a way that minimizes the total
number of cache misses in any specific cache.
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data partitioning, graph-coloring.

Authors’ e-mail: agarwal@mit.edu, guttag@mit.edu, marios@theory.lcs.mit.edu.



1 Introduction

Multiprocessors that support the shared-memory programming model provide the abstrac-
tion of a single coherent memory that is equally easily and equally efficiently accessible by
multiple processors. Processors communicate with each other by reading and writing the com-
mon memory. Typically, the shared-memory abstraction is implemented by a large amount
of physical memory, accessed through a network. In bus-based machines, the memory is
implemented as a single module accessed over the bus, while in most large-scale machines
the memory is physically distributed among all the processing nodes. However, virtually all
machines that support the shared-memory programming abstraction provide local caches at
each processor [18, 23, 19, 13, 16, 2]. Caches automatically replicate memory locations close
to the processor and avoid expensive network traversals for most memory accesses.

The existence of caches does not change the memory abstraction. The hardware is re-
sponsible for maintaining the illusion that all reads and writes take place directly to main
memory. This illusion is called cache transparency. Maintaining it involves detecting and
handling attempts to read or write from a location not contained in the cache. Such at-
tempts are called misses. When a miss occurs, the hardware reads a line from main memory
into the cache. A line typically contains four or eight consecutive words of main memory.

Caches can be either fully associative, direct-mapped, or n-way set associative. They
differ in the way in which the hardware decides which (if any) cache entry corresponds to a
particular location in the shared memory. In an associative cache, tag bits are associated with
each entry. These bits indicate which part of main memory the entry corresponds to. When
a processor attempts to access a location in main memory the hardware checks all the tag
fields. In a fully associative cache, these fields are all checked simultaneously. The problem
with fully associative caches is that they are extremely expensive to build; so expensive, that
they are rarely used in practice.

In a direct-mapped cache, each line in the main memory corresponds to a unique entry
in the cache memory. If the direct-mapped cache has a total of S lines, this entry is specified
by the log;(S) low order bits of the line’s address in the main memory. The problem with
a direct-mapped cache is that when a processor accesses two or more locations in the main
memory that correspond to the same location in the cache, there is a conflict that leads to
cache misses and performance degradation.

An n-way set-associative cache is most conveniently thought of as n direct-mapped caches
operating in parallel. Experience indicates that the performance of a cache of size m with
associativity n will be roughly comparable in performance to a direct-mapped cache of size
m x n [3]. The set-associative cache, however, is likely to have a longer access time [14, 20].
Throughout this paper we will deal explicitly only with direct-mapped caches. However, our
results can be easily translated to deal with n-way set associative caches.

Accessing data in a local cache is many times faster than accessing the shared memory.
Therefore, the cycles per instruction (CPI) achieved is governed largely by the number of
times a processor is forced to wait while data is fetched from the common memory and by
the ratio processor speed/memory speed. Since processor speeds are increasing faster than
memory speeds, the cost of a cache miss is growing.



1.1 Data Blocks versus Cache Lines

This paper deals with the problem of reducing cache misses by avoiding cache collisions
between blocks of data or code accessed by the processor. In considering cache conflicts, we
will deal with conflicts between blocks or chunks of data as opposed to conflicts between
individual cache lines. Since most programs exhibit considerable spatial locality, compilers
attempt to organize memory so that locations that are often accessed together (e.g., a row
of a matrix) lie in a contiguous chunk of memory.! Because contiguous lines in memory do
not conflict with each other, a large fraction of the conflicts between cache lines will fall into
equivalence classes of conflicts between corresponding data segments. Dealing with conflicts
between chunks instead of individual cache-line conflicts simplifies greatly the combinatorial
complexity of finding conflict-free assignments.

Accordingly, we will specify cache size in terms of the maximum number of data blocks a
cache can hold. Let [ be the size of each data block measured in lines, and let us assume for
simplicity that all data blocks are of the same size. Let k be the number of sets in each cache,
that is, the maximum number of data blocks that can be stored in it. We emphasize that
k, the number of cache sets, is measured in terms of the number of data blocks a cache can
store rather than in terms of the number of cache lines. For example, suppose that the cache
size is 64K words. If data blocks are 2K words, then our analysis will use k = 64/2 = 32.

1.2 The Memory Assignment Problem

When two or more data blocks in a processor’s working set map to the same location in the
processor’s direct-mapped cache, processor performance degrades due to the resulting conflict
misses. The extent of this degradation grows in severity with the number of processors for
two reasons.

First, the probability of a conflict increases with the number of processors. In fact it is
easy to show (see Appendix A) that if the assignment of data blocks to memory is oblivious
to cache conflicts, the probability that the entire machine suffers no conflicts diminishes
exponentially with the number of processors. We further show in Appendix A that, for
reasonable parameters, at least one conflict will almost certainly occur in large machines.

Second, the relative performance impact of such collisions is more serious as the number
of processors increases. For many parallel algorithms, if one processor is running slowly, the
whole computation is disrupted—leading to long latency. This phenomenon is illustrated by
the graph of Figure 1. This graph gives the activity profile of a matrix multiply program
obtained on a simulator of the Alewife machine [2]. After a start-up transient (not shown
in the graph), the number of operations going on in parallel becomes high. Subsequently,
however, at around 1.1 Mcycles this number decreases drastically and remains at low levels for
most of the rest of the computation. When we first observed this behavior we were mystified
as to its cause. Subsequent investigation revealed that the cause was persistent collisions in
the cache of one of the processors (see Figure 2). Since the other processors had to wait for
the slow processor to complete, the whole computation was stalled.

The frequency of collisions in multiprocessor caches is governed largely by the way pro-
cessing and data is partitioned among the processors. There are two fundamentally different

!These chunks are sometimes called data blocks, data segments, or data tiles.
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Figure 1: Activity profile for a parallel matrix multiply.
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approaches to performing this partitioning. It can be made the responsibility of either the
application programmer or of the compiler and run time system. In either case, there are two
goals to strive for, an equitable distribution of work among the processors and maximization
of locality of reference, so that cache misses and invalidations are minimized.

Leaving this partitioning to the application programmer flies in the face of the main
rationale for building shared-memory systems, namely, the relatively simple programming
model that they present. As soon as programmers are forced to think about exactly how
the computation and data are to be distributed, they lose the advantage of the shared-
memory abstraction. On the other hand, leaving it to the compiler and runtime system poses
significant technical difficulties.

An intermediate approach is to have the programmer or compiler partition the computa-
tion, and let the data “fall where it may” as the program runs. For some applications this
works quite well. Techniques to achieve communication-efficient partitioning [22, 25, 1, 26, 21]
typically focus on tiling the program to maximize reuse of data blocks. Block-structured al-
gorithms which result in optimal tiles are also becoming commonplace. Tiled programs,
whether written by a programmer or produced automatically by a compiler, result in clus-
tered accesses into arrays and other data structures.

For some applications, like the matrix multiplication program discussed above, ignoring
the initial placement of data can lead to extremely poor performance. This paper discusses
the problem of partitioning data for such applications. The specific problem we address is:
given compile-time information about the patterns of access to main memory, how does a
compiler find an assignment of the data in the main memory such that there are no conflicts
in the (direct-mapped) caches? We call this the memory assignment problem.

For sequential machines, the memory assignment problem is not difficult. Provided the
uniprocessor cache is large enough to hold the working set of data blocks accessed by the
processor, allocating these data blocks contiguously in memory will avoid conflicts in the
cache.? For parallel machines, the difficulty lies in finding an assignment that avoids collisions
in each cache simultaneously. This problem is illustrated by Figures 3 and 4. Figure 3 shows
a conflict-free assignment of the shared code segment z and the data chunks a,b,e, and
d, under the assumption that the size of each cache is three (k = 3), and that processor
one accesses a and b, processor two accesses b and ¢, and processor three accesses ¢ and d.
Suppose, however, that processor three accesses ¢ and a. In that case there is no conflict-free
assignment possible, as depicted in Figure 4.

1.3 Overview of the Paper

The remainder of this paper is structured as follows. Section 2 begins by showing that given
perfect information about which processors will access which chunks of memory, finding a
memory assignment that avoids collisions is AP-complete. This is done by reduction to the
graph coloring problem. Section 3 then discusses important special cases for which there are
polynomial-time algorithms.

In Section 4, we discuss approaches to dealing with the general memory assignment prob-
lem which attempt to minimize the ezpected running time for finding a conflict-free assign-
ment. These are similar to algorithms currently used for register allocation. We close the sec-

%See [17] for further work in compile-time optimization of single-processor caches.
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tion by presenting techniques that can be used when conflict-free assignment is not possible,
or when finding a conflict-free assignment is computationally infeasible. Uniform decaching
is a method that forces a data block to be noncachable. Placing the uncached data block
in a memory module physically close to the processors accessing it reduces the performance
degradation. Data replication can be used at the software level for read-only data. The basic
idea is to put copies of the conflicting data at several memory locations, so that it can be
mapped to different locations in the cache. Finally, rehashing is a method implemented in
hardware, in which a block that conflicts with another block already in the cache is mapped
to another location in the cache by means of a separate hash function.

Section 5 proposes an approach, grey coloring, to reducing the impact of the cache misses
caused by collisions. Misses are expensive not only because they slow down the processor
taking the miss, but also because other processors may be idled while waiting for the straggling
processor. If misses are concentrated in one processor, that processor becomes a bottleneck
that can greatly increase latency. Grey coloring is a memory assignment technique that
spreads the misses among processors by partially overlapping data chunks in caches, and
attempts to minimize the maximum number of misses in any single processor.

Section 6 of this extended abstract summarizes the earlier sections and describes future
work. In the final paper, we expect to include experimental data derived from implementa-
tions of the various memory assignment techniques.

2 The Memory Assignment Problem is N"P-Complete

In this section we prove that the memory assignment problem is A"P-complete by showing
that it is as difficult as graph k-colorability.

First, we briefly describe the graph k-colorability problem. In this problem we are given
a graph G and k colors, and we are asked whether it is possible to color the vertics of the
graph in such a way that no adjacent vertices have the same color. More formally, the graph
k-colorability problem is defined as follows [11].

GRAPH k-COLORABILITY: Given an undirected graph G = (V, E) and an integer k, find an
assignment f : V' — {1,...,k} such that f(u) # f(v), for every edge (u,v) € E, or infer that
no such assignment f exists.

Graph k-colorability is among the most difficult intractable problems. It has been proven that,
unless P = NP, there exists no polynomial approximation scheme for graph k-colorability
with a performance guarantee smaller than 2, that is, a scheme that guarantees to color any
k-colorable graph with no more than 2k colors [11]. In recent years, several approximation
schemes have been proposed [24, 4, 5, 6], but none of them gives a performance guarantee
that is bound by a constant.

In the memory assignment problem we are given a set of memory-resident data blocks
and a set of caches. In each cache (of size k) we must store a given subset of the data blocks.
A given data block may be stored in multiple caches. The caches are assumed to be direct-
mapped, that is, a data block is always stored in the same location in any one of the caches.
This location is determined unambiguously by the low order bits of the data block’s address
in the main memory. The memory assignment problem asks for an assignment of the data
blocks to the main memory such that no conflicts occur in the caches, and more formally, it



is defined as follows.

MEMORY ASSIGNMENT: Let D be a set of data blocks, let P be a set of direct-mapped
caches in a multiprocessor, and let g : P — 2P be an assignment of data blocks to caches 3,
where |g(p;)| < k, for every cache p; € P. Find an assignment f : D — {1,...,k} of storage
locations for the data blocks in D, such that f(d;) # f(d;) for all data blocks d;,d; in the

same cache, or infer that no such assignment f exists.
Theorem 1 MEMORY ASSIGNMENT is N P-complete.

Proof: We prove that graph k-colorability is polynomial-time reducible to memory assign-
ment. Given a graph G = (V, E) and % colors, we construct an instance of the memory
assignment problem with |V| data blocks and |E| caches. Each vertex v € V corresponds to
a data block d, € D and each edge (u,v) € E corresponds to a cache p,, € P. Each cache
Puy has size k and is required to store the two data blocks d,, d,. Since no two data blocks in
a cache can be stored in the same location, an assignment of locations in the range {1,...,%k}
to the data blocks in D yields a coloring of the vertices in V' with k colors. Conversely, a
coloring of the vertices in V' with & colors yields an assignment of locations to the data blocks
in D. a

This theorem, in conjunction with the fact that graph colorability is among the most difficult
intractable problems [11], implies that it is very unlikely to find a provably good algorithm
for the memory assignment problem.

3 Efficient Solutions to the Memory Assignment Problem

Despite the difficulty of the general memory assignment problem, several important classes
of computations permit efficient computation of a conflict-free assignment by relying on the
special structure of their memory access patterns. This section describes some of these
computations as well as the corresponding algorithms for memory assignment. Specifically,
we give a simple linear-time algorithm that yields an optimal conflict-free assignment for
programs with special structure such as matrix-vector multiply and matrix-matrix multiply.
We also show that for other classes of computations, such as tree computations and grid
computations, we can efficiently compute a conflict-free memory assignment. Finally, we
argue that the complexity of memory assignment can be reduced for single-program multiple-
data computations.

The basic construct behind the algorithms in this section is an encoding of the dependen-
cies among the data blocks in the form of a conflict graph G = (V, E). Each vertex u € V
represents a data block d,, and each edge (u,v) € E signifies that the data blocks d, and d,
must share at least one of the caches. Note that the degree of each vertex u € V equals the
number of data blocks with which d, shares a cache. This number may not equal the number
of data blocks that must be stored in some particular cache together with d,,, or the number
of caches in which d, must be stored. The conflict graph G can be computed in linear time,
with respect to the number of conflicts among the data blocks. Our algorithms search for a
particular structure in G that allows us to color its vertices efficiently. Because the colors and

®We denote by 27 the set of all subsets of D, the powerset of D.
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Figure 5: Multiplication of a matrix A by a matrix B for M = 3, N = 4, and |P| = 36. The
conflict graph G is bipartite and each one of the 36 processors is responsible for an edge in G.

the cache locations correspond one-to-one, the coloring yields automatically an assignment
of memory locations to the data blocks.

Our first algorithm relies on the fact that when the conflict graph G is bipartite, i.e., of
the form G = (V, U V;, E), and for every (u,v) € E we have u € V; and v € V;, we can
always find a 2-coloring in O(|Vi| + |V2|) time: we simply assign color ¢ to all vertices in
Vi, for ¢ = 1,2. We can verify efficiently whether G is bipartite by an O(|E|)-time breadth-
first search. Therefore, given any computation with bipartite conflict graph G we can find a
conflict-free memory assignment in O(|E| + |V3| + |V5|) steps.

An example of a computation with a bipartite conflict graph G is multiplication of an
m X n matrix A by an n X m matrix B. A blocked decomposition of this computation
on |P| processors partitions A into M x N square submatrices A;; and B into N x M
square submatrices B;;, where M?N = |P| (see Figure 5)*. Each processor is responsible for
computing a temporary submatrix Tj;; = A;; X Bjg, for i,k =1,...,M and j =1,...,N.
This part of the computation exhibits locality and extensive sharing of data by the processors.
The conflict graph G has N disconnected components, each one being a bipartite graph
with 2M vertices and M? edges. The temporaries T};; are not shown in the conflict graph
because we wish to keep the figure simple, and because computing the resulting submatrices
Cix = Ef;l T;;r does not involve extensive reuse of the data words within these blocks.

Consider another interesting class of computations in which every data block competes for
a cache location with at most 3 other data blocks. Tree computations, for example, exhibit
this structure. The degree of the resulting conflict graph is 3 or less, thereby admitting a

*It is straightforward to verify that this can be achieved for M = (m|P|/n)'/® and N = (n?|P|/m?)'/3,



polynomial time algorithm which can color G with the minimum number of colors [11].

In the previous two algorithms, the resulting memory assignments use the minimum
possible number of sets in the caches. Several computations, however, have conflict graphs of
degree no greater than the number of cache sets k, in which case any conflict-free assignment
that fits in the available cache space will suffice. Highly localized access patterns, such as in
grid computations, should be expected to posess such a property for sufficiently large caches,
since they access only a limited number of data blocks for each point in the grid. Since any
connected, non-complete graph G with degree at least 3 but no greater than &k can be colored
with & colors in polynomial time [12, 7], we can compute efficiently a feasible assignment for
such G. If G is complete, a fact that can be detected in O(|E|) time, then the problem is
infeasible.

Finally, we can reduce the size of the initial coloring problem for some computations. In
SPMD (Simple-Program Multiple-Data) computations [10], for example, we can remove the
code block from the conflict graph, since this block exists in every cache and it is guaranteed
to utilize one color, thereby reducing the original k-coloring problem into a (k — 1)-coloring
problem.

4 Heuristics for the Memory Assignment Problem

This section presents heuristics for the memory assignment problem. Our basic algorithm
colors the conflict graph by recursively removing all vertices of degree less than k. Usually, this
operation is chained, and, eventually, the entire graph is eliminated and a coloring is obtained.
Sometimes, however, the algorithm cannot eliminate the entire graph, either because the
original assignment problem is infeasible, or because of the order in which previous vertices
were removed. In these cases, we apply one of two heuristics called uniform decaching and data
replication to allow further coloring of the conflict graph. We also discuss a hardware-level
solution for the problem, when no conflict-free assignment is possible, based on rehashing.
Finally, and most importantly, Section 5 presents a novel memory assignment method called
grey coloring, which attempts to spread the misses among processors by partially overlapping
data chunks in caches so that the number of misses in any single processor is minimized.

Our basic algorithm for k-coloring the conflict graph G = (V, E) is the same as the general
graph-coloring scheme in [8, 9] that is used in the context of register allocation for sequential
processors. If we wish to find a k-coloring of G having a vertex u of degree less than k, then
G is k-colorable if and only if the graph G’ with V' =V — {u} and E' = E — {(u,v) € E}
is k-colorable. If a k-coloring can be found for the graph G’, then we can reinsert vertex u
and assign it a color that is not used by the vertices with which it shares an edge. Qur basic
algorithm reduces the size of the conflict graph by progressively removing from it all vertices
of degree less than k. Our approach differs from the previous ones in the way vertices are
selected for removal, both when vertices with degree less than % exist, and when they don’t.
At each iteration, our algorithm removes a vertex u with degree less that k, which has the
most vertices of degree k in its adjacency list. A more computationally intensive approach
is to perform a breadth-first search of depth d, in order to identify a vertex u with the most
vertices of degree less than k + d — 1 in its vicinity.

Most of the time, if caches are much larger than the total size of the data blocks accessed
by any individual processor, our basic algorithm will eventually eliminate the entire graph.



Vertices are then put back in the reverse order that they were removed. As each vertex is
reinserted, an appropriate color is picked for it, and at the end a coloring is obtained.

Sometimes, however, we are left with a graph in which every vertex has degree at least k,
so no vertex can be removed. At this point we apply one of several schemes to allow the
algorithm to continue. An important common element of these schemes is that one or more
data blocks are chosen to be treated in a special way. Two such schemes, data replication
and rehashing, are discussed in Appendix B.

‘We focus here on a third scheme, uniform decaching, because this scheme, in conjunction
with the novel memory asignment scheme that we describe in the next section, can provably
decrease the latency of non-bandwidth-limited computations. In uniform decaching, one or
more vertices are removed from the graph until a vertex of degree less than %k is found.
The corresponding data blocks, called decached blocks, are placed in the main memory at a
location in a memory module physically close to all processors that need them, and in the
case of a single processor accessing a block, in its local memory module. Uniform decaching
strives to select data blocks so that the total number of misses is spread uniformly across
the processors. This is done in a greedy fachion, by keeping track of the number of misses
in each cache due to decaching at previous stages, and selecting to decache blocks so that
the maximum number of misses over all processors is kept minimal. Other ways for selecting
blocks to decache are the subject of current research. In future work we will address this
issue by comparing various implementations.

5 Grey Coloring

The previous section described an algorithm that recursively removed all vertices of degree
less than k from the graph. When a vertex with degree less than k could no longer be
found, a vertex with degree greater than k was selected for removal, so the algorithm could
proceed. While the vertices with degree less than k are easily reinserted in the graph during
the coloring phase, we need to find a way of inserting the vertices that have degree greater
than k. This section proposes a method called grey coloring that inserts these vertices by
allowing partial overlap of the data chunks in the caches, thereby relaxing the constraints of
the memory assignment problem. The name “grey coloring” refers to the mixed color in lines
that overlap.

Specifically, we investigate the following problem: given a conflict-free assignment that
leaves some of the data chunks uncached (either because the original assignment problem
was infeasible, or because our heuristic algorithm did not find a solution), find a partially
overlapping assignment of the data chunks that reduces the impact of the cache misses caused
by collisions. Grey coloring, our technique for solving this problem, is motivated by the fact
that some data blocks may be left uncached in a conflict-free assignment, even though free
cache slots exist. Grey coloring exploits this free space to spread the misses across the
caches and minimize the maximum number of misses in any single cache. By minimizing the
maximum number of misses in any single cache, we expect to reduce the overall latency of
non-bandwidth-limited computations.
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Figure 6: A memory assignment of 20 data blocks accessed by seven caches according to some
given access pattern. Data block 20 is not cached and the cost of cache misses is proportional
to the number of lines [ in the data block.

An Example

Let us demonstrate grey coloring by means of an example. Figure 6 shows a memory assign-
ment of 20 blocks accessed by a set of seven caches according to some given pattern. Each
cache can hold up to six data blocks (k¥ = 6). Data blocks 1 through 19 are cached. Data
block 20 is left uncached, however, because both C2 and C4 do not have any free slots with
the same index. If the block is placed in the free slot of C4, then the cost of cache misses due
to conflicts in C2 is proportional to the time required to fetch [ lines from the main memory,
where [ is the number of lines in each data block. Figure 7 illustrates the conflicts created
by attempting to slide data block 20 in the first slot of the caches. This slot is empty in C2,
but it is occupied by data block 1 in C4. The arrows in this figure denote the set of data
blocks whose motions must be orchestrated, in order to fit data block 20 in the caches. We
refer to this network of dependencies as the marionette of data block 20, with respect to the
given memory assignment and the first slot in C2 and C4 (see Figure 8). The motivation
behind this name is that when block 20 is inserted in the caches, the blocks in its network of
dependencies rooted at the conflicting data block move in a manner resembling a marionette
— blocks closer to the root block move greater distances.

The final arrangement of the data chunks in the caches is illustrated in Figure 9. Any
two overlapping blocks share a fraction § = 1/8 of their / lines. Observe that 1/8 = 8 is the
number of layers d in the marionette, and that each node i at layer d; has been shifted by
(d — d;)1/8 words. As a result of this shift some data blocks may wrap around the caches.
Note that the cost of the cache misses has decreased by more than 60%: it is proportional to
the time required to fetch only (3/8)! lines from the main memory, since there are at most
3 overlapping regions of size [/8 lines in any one of the caches.

1l
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Figure 7: Dependencies among data blocks when sliding data block 20 into the first slot of
the caches C2 and C4. For simplicity, data blocks that have no dependencies are shaded by
diagonal lines and their numbers are omitted. Data blocks are drawn shorter than their real
size, in order to indicate the possibility of overlap.

Figure 8: The marionette of data block 20, with respect to the given memory assignment
and the first slot in caches C2 and C4.
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Figure 9: An assignment after grey coloring. Note that the cost of cache misses is proportional

to (3/8)1.

Construction of a Marionette

The basic construct required for grey coloring is the marionette of the data block w that is
inserted in the caches. The marionette of w, with respect to

e a memory assignment f, and
e the cache slot s into which we try to insert w

is a layered graph G,, = (Vin, E,»). The vertices V,, of the graph are data blocks. An edge
(u,v) in E,, signifies that data blocks u and v are adjacent in a cache, and that they will
overlap when w is inserted. Each layer of G,, corresponds to a set (with a common index)
in the caches. The total number of layers in G,, is its depth.

A marionette can be constructed recursively as described by the pseudocode in Figure 10,
where for clarity the slot s into which we try to insert w is taken to be 0. All manipulations
of the indices are assumed modulo k. Therefore, the starting cache slot ¢ = 0 can be chosen
at will, and each conflicting data block admits up to k& marionettes. Let C;[¢] denote the
copy of a data block in slot ¢ of cache C;. Cj[g] is NIL if slot ¢ in cache C; is empty. Initially,
for each cache C; in the cache set P we introduce an edge between a copy of w and the block
C;[0] in the first slot of C;, if C;[0] conflicts with w. Then, we recursively traverse the k slots

in the caches, introducing an edge (z, y) between blocks ¢ = C;[¢] and y = C;[¢g+ 1] whenever
the following three requirements are met:

1. There exists an edge (u,v) between u and v in the slots ¢ — 1 and ¢ of some cache C;,
2. z,v are copies of the same data block in memory, and

3. vy is not yet in the marionette.

The running time of the algorithm is O(k|P|), where |P| is the number of caches in the
system.
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CONSTRUCT-MARIONETTE(w, f, P)

Vin — {w}
E.,—0
for each C; € C
do if C;[0] #NiL and C;[0] conflicts with w
then V,, — V,, U {C;[0]}
Eop — Ep U{(w,Ci0])}
for g=0to k|P| -1
dofori=0to|P|-1
do if C;[q] = C;[q] and Cj[q] € V,, for some j € {0,...,|P|— 1}
then V,,, — V,, U {Ci[q]}
if Ci[g + 1] #NiL and Ci[g+ 1] ¢ V.
then V,, — V,, U{Ci[g + 1]}
Em . Em U {(Ct[Q]7 Cz[q + 1])}

Figure 10: A recursive procedure for constructing the marionette of w, where f is a given
memory assignment and P is the set of caches.

Once the marionette G,, has been constructed, we can grey color the graph straightfor-
wardly. First, we compute the depth d of G,, and we set § = 1/d. Then, starting from the
root of G,, we shift each data block u at depth d, in G,, by (d —d,)!6 words. This algorithm
terminates in O(k|P|) steps.

As mentioned previously, in a non-bandwidth-limited system, the latency of computation
is related to the maximum number of misses in any single cache. The following lemma, whose
proof will be included in the final version of the paper, states that the maximum number of
conflicting lines in any cache is never more than I. Note that / conflicts would result if the
block is placed without allowing partial overlap.

Lemma 1 Letl be the number of lines in any data block, and let § be the fraction of | that
any two overlapping blocks share after grey coloring. Moreover, let I, be the mazimum number
of conflicting cache lines in any cache after grey coloring. Then

zgzosifgﬁ;?_l > 18

u,veC;
(u,v)EER
and
I o

In other words, the number of misses introduced in any cache is proportional to the number
of edges in the marionette G,, that connect blocks in that cache. Since each cache is accessed
independently, the maximum among these numbers determines by how much the computa-
tion degrades due to these misses. Intuitively, the cost of the misses is spread through the
marionette over the entire set of caches. The contribution of each cache to the final cost is
dictated by how many of the original misses are spread on that particular cache. We should
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note that as a result of grey coloring, the traffic in the communication network may increase
but it is spread over all caches in the marionette.

An important property of grey coloring is that it guarantees to decrease the maximum
number of misses in any cache, if there exists some marionette of sufficiently large depth d.

Corollary 1 Let G,, be the marionette of depth d of a conflicting data block w, and let I,
be the mazimum number of conflicting cache lines in any cache after grey coloring. If d > k,
then I, < 1. O

Intuitively, the deeper the marionette, the better we can spread the cache misses among the
caches. In practice, by setting § = min{1/k,1/d}, we expect to almost always decrease the
maximum number of cache misses in any single cache.

The same basic grey coloring procedure is repeated for every decached block, that was
removed from the conflict graph according to the uniform decaching heuristic in Section 4,
and that we want to insert into the caches. As more decached blocks are reinserted the
free spaces in the caches become smaller, but this does not change the way marionettes are
constructed for each block, or the way blocks move. Overlapping blocks are treated as one
solid block. When all blocks have been inserted and there is still free space in the caches, it is
possible to further reduce the number of cache misses in a single cache by trying to minimize
the number of overlapping blocks in each one of them.

6 Conclusion

We investigated techniques for reducing cache misses in multiprocessors with direct-mapped
caches by avoiding cache collisions. Collisions are avoided by judiciously assigning data blocks
to main memory locations such that there are no conflicts in the caches. We proved that the
resulting memory assignment problem is A"P-complete when no overlap is allowed between
the blocks in the caches. We showed, however, that several interesting classes of computations,
such as matrix multiply, admit an efficient solution to this problem. We proposed heuristic
approaches based on graph coloring for assigning memory in the general case. When a
conflict-free memory assignment is infeasible, or when it is computationally expensive to
derive a conflict-free memory assignment, we suggest two software-level heuristics, decaching
and data replication, and a hardware-level heuristic based on rehashing. Finally, we proposed
a technique called grey coloring for spreading the cache misses over the entire set of processors.
Grey coloring minimizes the maximum number of misses in any single cache, thus decreasing
the overall latency of computation in non-bandwidth-limited situations.

We are currently implementing and evaluating these memory assignment techniques. In
the final paper we expect to report experimental data derived from these implementations.
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A Probabilistic Analysis

This section presents a simple probabilistic analysis of the memory assignment problem. As-
suming that data blocks are stored in the main memory in a uniformly random manner,
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the analysis indicates that at least one cache conflict is a virtual certainty as the number
of processors increases. Specifically, the probability of conflict-free assignment in all caches
with random initial placement drops exponentially with the number of processors. As, dis-
cussed earlier, even one straggler suffering from cache conflicts out of the |P| processors can
dramatically reduce overall performance.

Real systems, however, rarely assign random memory locations to data blocks. Rather,
they commonly assign blocks to contiguous memory locations. Contiguous assignment of
blocks in main memory obviates conflicts between neighboring blocks, but does not preclude
conflicts between blocks displaced by distances greater than the cache size. Because conflicts
are related to the relative placement of blocks in the cache, which in turn are related to
the access patterns of processors, random placement of blocks in the cache is a reasonable
assumption. Furthermore, for our purposes, random placement of data blocks in the cache is
tantamount to random placement in memory.

Let us assume that a multiprocessor has |P| processors, and that each processor has its
own cache. As stated before, let £ be the number of sets in a cache, that is, the maximum
number of data blocks that can be stored in it. We assume for simplicity that each processor
accesses the same number of data blocks, n < k.

If every data block is stored in the main memory randomly, each one of the k sets of a
cache is equally likely to be the target of a data block. Therefore, the probability there are
no conflicts in cache %, denoted P(nc;), is simply the probability of having no more than one
data block assigned to the same set in the cache. Thus

17 (k- 4)
kn ’

The numerator of this expression is the total number of ways of selecting n sets from the cache
without selecting any one of them more than once. The denominator is the total number of
ways of selecting n sets from the cache. We can rewrite P(nc;) as follows.

P(ne;) = ﬁ (1 — %)

3=0

n—1
< I
3=0

< e—n(n— 1)/2k

P(ne;) =

since 1 —z < e,
If the mapping of data blocks to cache sets for a given processor is independent of their

mapping in other processors, the probability P(nc) of having no conflicts in any of the |P|
caches is given by

P(nc) = P(ng)?
< e—n(n—1)|P|/2k'

However, as demonstrated by the example in the introduction, we know that when multi-
ple processors access the same data block, finding a conflict-free memory assignment may be
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impossible. Thus, the lack of independence in mappings in real systems makes the probability
of conflict even greater than indicated by this analysis.

Thus we see that the probability of having no conflict in any of the multiprocessor’s
caches drops exponentially with the number of processors |P|. To get a sense of the numbers
involved, let us compute the probability of conflict-free assignment in a system with |P| = 100
processors and caches of size 64K words. Let the size of each data block be 2K words, implying
that the size of a cache in terms of the number of data blocks it can hold is £k = 64K /2K = 32.
Let the number of blocks n accessed by each processor be 8, corresponding to a cache loading
of 25%. Thus, for ¥ = 32 and n = 8, the probability of having no conflicts in the system is
smaller than 10~4C.

B Data Replication and Rehashing

In this part of the appendix, we discuss software-level and hardware-level approaches that
allow us to color the conflict graph G of a computation when our basic heuristic cannot
remove any more vertices from G.

The first scheme is called data-replication and can be used at the software level for read-
only data. In this scheme we split one or more vertices of degree at least k& into vertices
of smaller degree. The sum of the degrees of the replicated vertices equals the degree of
the original vertex. This operation is tantamount to replicating in the main memory the
data chunks corresponding to the split vertices. The total number of additional copies of
a particular data chunk equals the total number of splits of the original vertex during the
execution of the algorithm.

A hardware solution for the memory assignment problem when a conflict-free assignment
is not possible is rehashing [3]. With rehashing, a processor first accesses the cache in the
normal way with the low order bits of the location. On a miss, instead of directly going to
main memory, the processor accesses the cache with a different hash function. Because each
memory location can effectively reside in two cache (or more) locations, the probability of
conflicts is reduced, although it cannot be completely eliminated.

One other hardware solution is to use a victim cache [15]. A victim cache is a small
associative cache used in conjunction with the primary direct-mapped cache. Unfortunately,
victim caches require data area proportional to the size of the conflicting chunks, which in
general can be as large as the primary cache itself. However, if most of the conflicts can be

resolved at compile time, the victim cache may be able to store a small number of conflicting
chunks of data.
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