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Abstract

We show that it is impossible, in N'C, to approximate the value of the minimum-
cost maximum flow unless P = NC.
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1 Introduction

Once a problem is proved to be P-complete, it is generally believed that there exists no NC
or RNC algorithm to solve it exactly!. Therefore, the next important question becomes how
well can it be approzimated in NC or RA'C? In this note we establish an interesting contrast
between the parallel complexity of two related P-Complete problems, the maximum-flow
problem and the minimum-cost maximum flow problem. We show that despite the fact that
one can approximate the value of a maximum flow arbitrarily closely in RAC, approximating
the value of the minimum-cost maximum flow within a factor of C, the maximum cost in
the network, is P-Complete. Our proof also shows that this is true for networks with C
polynomial in the size of the network, when the costs of the network are expressed in unary.

2 Background and Definitions

In the mazimum-flow problem we are given a flow network G = (V, E), which is a directed
graph with two distinguished vertices, s and ¢, where s is called the source and ¢ the sink.
With every edge (¢, j) of a flow network is associated a capacity u(7,5) > 0. A flowis a real
valued function f: E — R* U {0} that satisfies the following two constraints:
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!Despite the fact that P-Completeness is usually defined in terms of decision problems, in this paper we
will often refer to the optimization versions as well. This has no effect on our results.




(1) For all (4,5) € E, we require f(i,7) < u(i,5).
(2) Foreach v € V, v & {s, 1},

> fGv)= 30 f(v,3)

(i,v)EE (v,j)EE

The value of a flow is defined as

3 et

(it)eE

a mazimum flow is simply a flow of maximum value.

Given a flow network G = (V,E) and a flow f, we define the residual flow network
Gy = (V, E;), where E; consists of

e All (¢,7) € E such that f(¢,7) < u(i, §) (forward edges),
e All (4,7) such that (j,7) € E and f(j,¢) > 0 (backwards edges).

The minimum-cost mazimum flow problem is the weighted generalization of the maximum-
flow problem. We assign a cost function ¢ : E — R to the edges of G; the cost of a flow f

is defined as the sum
> ) eli, 5)-
(i,j)EE
The object is to find the maximum flow of minimum cost.

Our theoretical model of parallel computation will be the CRCW PRAM [3]. The
complexity classes that correspond to our notion of easy to parallelize are NC and RNC.
NC is the class of decision problems for which there exist algorithms that run in time
O(log* n) on a CRCW PRAM with n° processors, where ¢ and k are constants and n is the
size of the input. RNC is the corresponding class of decision problems with randomized
algorithms that run in time O(log" n) on a CRCW PRAM with n° processors and produce
the correct answer with probability at least 2. At each step in the algorithm, each processor
is allowed to generate an O(logn)-bit random number.

The complexity class that corresponds to our notion of difficult to parallelize is the class
of P-Complete decision problems [3]. Analogous to the A"P-Complete problems in their role
as the “hardest” problems in the class P, no N'C algorithm for any P-Complete problem
exists unless P is equal to A'C. Similarly, no RAC algorithm exists for any P-Complete
problem unless P C RAC.

There has been some previous work on AC-approximation algorithms for P-Complete
problems. For example, Anderson and Mayr [1] considered the high degree subgraph problem:
Given a graph G and an integer £, find the maximum induced subgraph of G in which every
node has degree at least k in the subgraph. They prove that this problem is P-Complete,
and further that it is P-Complete to approximate within any factor better than % In
other words, it is P-Complete to produce a subgraph that is of size greater than l of the
maximum induced subgraph with the appropriate connectivity constraints. In contrast to
this result they give an NC algorithm that can approximate the solution within a factor
arbitrarily close to 3. A similar result was obtained by Kirousis, Serna and Spirakis (4],
who investigated the High Edge-Connectivity Subgraph Problem, and showed it could be

approximated in N'C within any factor < %, but producing a better approximation was
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Type (1) Cost 0 edges:

e For each input ¢; include an edge (s, ) of capacity 0 if o; is false, or of capacity 2
if o; is true. Also include an edge (i, s) of capacity 2°.

e For every OR gate o; = OR(j,k) include an edge (j,1) of capacity 27, (k,i) of
capacity 2%, and (i, s) of capacity 2/ + 2% — d;2".

e For every AND gate o; = AND(j, k), include an edge (j, ) with capacity 27, an edge
(k,i) with capacity 2F, and an edge (i,t) with capacity 2/ + 2¥ — d;2".

Type (2) An edge (0,t) with capacity 1 and cost p, where p is polynomial in =.
Type (3) An edge (s,t) with capacity 1 and cost 1.

Let G 4 be the network composed of edges of Type (1) and (2). Goldschlager, Shaw and
Staples showed that in the flow network G4/, the maximum flow value is odd if and only if
the circuit A outputs true. For our result we will need the following lemma.

Lemma 3.6 If the value of the mazimum flow in G4 is odd, then in any mazimum flow
there is ezactly one unit of flow on the edge (0,1).

Proof: Goldschlager, Shaw and Staples exhibited a flow f in G4/, which they called the
simulating flow pattern, and then proved that it is a maximum flow.
In simulating flow pattern f, for 0 < i < n,

o If o; is an input of circuit A, f(s,¢) = u(s,?). If ¢; is not an input to any other gate,
f(3, ) = u(t, s); otherwise it is zero.

o For 0 < j <, f(i,7) = 2* = u(4,7) if gate o; outputs true, otherwise f(7,7) = 0.

e If a; = AND(j,k) then f(i,t) = u(i,t) if both o; and @) output true. Otherwise
f(i,t) = f(4,%) + f(k,7). The basic intuition about why this yields a maximum flow
and why it models an AND gate is as follows. Since node i is connected directly to
the sink ¢, there is always a maximum flow in which as much flow as possible goes
though edge (¢,t). Only if the two inputs to node ¢ are true and node 7 receives 27
and 2* as inputs will there be d;2° units of flow to send out of 7 on edges other than
(#,t), making the output of the gate i true.

o If o; = OR(j4, k) then f(i,s) = f(4,1) + f(k,i) — d;2" if either o; or a; outputs true.
The intuition here is that in a maximum flow, flow will go anywhere before going back
to s, so if any flow is input from j or % it will become the output of ¢ before returning
to s. If both f(j,¢) and f(k,?) are 0, then f(i,s) = 0.

e f(0,t) = 1if ay computes true; otherwise f(0,t) = 0.

The parity of the value of the simulating flow pattern f is odd if and only if the circuit
A outputs true. This is because f assigns an even amount of flow to every edge except
perhaps (0,t), which is 1 if and only if A outputs true.

The proof of 2] shows that simulating flow pattern f is maximum, odd, and has exactly
one unit of flow on edge (0,). It follows that any other maximum flow must be odd too. We
will proceed to show that any other maximum flow must have one unit of flow on edge (0, t).
We will make use of the following fact, immediate from the definition of the simulating flow
pattern f.
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4 Open Questions

In sequential computation, the minimum-cost maximum flow problem is considered to be
equivalent to a number of other problems, including the minimum-cost flow problem, the
minimum-cost circulation problem, and the minimum-cost circulation problem with lower
and upper bounds on the capacities. Here equivalence is generally taken to mean that there
is a linear-time algorithm to convert an instance of any one of these problems to another.
All the standard conversion techniques are log-space computable, so one might conjecture
that the parallel complexity of all bthese problems is the same. Yet, we do not know how
to show that any of the other problems are hard (or easy) to approximate in parallel. It
would be interesting to resolve whether there actually is some difference in their parallel
approximability.
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