
Virtual Wires: Overcoming Pin Limitations in
FPGA-based Logic Emulators

Jonathan Babb, Russell Tessier, and Anant Agarwal
MIT Laboratory for Computer Science

Cambridge, MA 02139

Abstract

Existing FPGA-based logic emulators suffer from limited
inter-chip communication bandwidth, resulting in low gate
utilization (10 to 20 percent). This resource imbalance in-
creases the number of chips needed to emulate a particular
logic design and thereby decreases emulation speed, since
signals must cross more chip boundaries. Current emulators
only use a fraction of potential communication bandwidth
because they dedicate each FPGA pin (physical wire) to a
single emulated signal (logical wire). These logical wires are
not active simultaneouslyand are only switched at emulation
clock speeds.

Virtual wires overcome pin limitations by intelligently
multiplexing each physical wire among multiple logical
wires and pipelining these connections at the maximum
clocking frequency of the FPGA. A virtual wire represents
a connection from a logical output on one FPGA to a logi-
cal input on another FPGA. Virtual wires not only increase
usable bandwidth, but also relax the absolute limits imposed
on gate utilization. The resulting improvement in band-
width reduces the need for global interconnect, allowing
effective use of low dimension inter-chip connections (such
as nearest-neighbor). Nearest-neighbor topologies, coupled
with the ability of virtual wires to overlap communication
with computation, can even improve emulation speeds. We
present the concept of virtual wires and describe our first
implementation, a “softwire” compiler which utilizes static
routing and relies on minimal hardware support. Results
from compiling netlists for the 18K gate Sparcle micropro-
cessor and the 86K gate Alewife Communications and Cache
Controller indicate that virtual wires can increase FPGA gate
utilizationbeyond 80 percent without a significant slowdown
in emulation speed.
Keywords: FPGA, logic emulation, prototyping, reconfig-
urable architectures, static routing, virtual wires.

1 Introduction

1.1 FPGA-based Logic Emulation

Field Programmable Gate Array (FPGA) based logic emula-
tors are capable of emulating complex logic designs at clock
speeds four to six orders of magnitude faster than even an ac-
celerated software simulator. This performance is achieved
by partitioning a logic design, described by a netlist, across
an interconnected array of FPGAs (Figure 1). This array is
connected to a host workstation which is capable of down-
loading design configurations, and is directly wired into the
target system for the logic design. The netlist partition on
each FPGA (termed FPGA partition throughout this paper),
configured directly into logic circuitry, can then be executed
at hardware speeds.

Once configured, an FPGA-based emulator is a hetero-
geneous network of special purpose processors, each FPGA
processor specifically designed to cooperatively execute its
embedded circuit partition. As parallel processors, these em-
ulators are characterized by their interconnection topology
(network), target FPGA (processor), and supporting soft-
ware (compiler). The interconnection topology describes
the arrangement of FPGA devices and routing resources
(i.e. full crossbar, two dimension mesh, etc.). Important
target FPGA properties include gate count (computational
resources), pin count (communication resources), and map-
ping efficiency. Supporting software is extensive, combin-
ing netlist translators, logic optimizers, technology mappers,
global and FPGA-specific partitioners, placers, and routers.

This paper presents a compilation technique to overcome
device pin limitations using virtual wires. This method can
be applied to any topology and FPGA device, although some
benefit substantially more than others.

1.2 Pin Limitations

In existing architectures, both the logic configuration and
the network connectivity remain fixed for the duration of
the emulation. Each emulated gate is mapped to one FPGA
equivalent gate and each emulated signal is allocated to one

Page 1

Target System

FPGA

Host Workstation Emulation System

Figure 1: Typical Logic Emulation System

FPGA pin. Thus for a partition to be feasible, the partition
gate and pin requirements must be no greater that the avail-
able FPGA resources. This constraint yields the following
possible scenarios for each FPGA partition:

1. Gate limited: no unused gates, but some unused pins.

2. Pin limited: no unused pins, but some unused gates.

3. Not limited: unused FPGA pins and gates.

4. Balanced: no unused pins or gates.

For mapping typical circuits onto available FPGA devices,
partitions are predominately pin limited; all available gates
can not be utilized due to lack of pin resources to support
them. For example Figure 9 in Section 4 shows that for equal
gate counts in the FPGA partitions and FPGA devices, the
required pin counts for FPGA partition sizes of our sample
designs are much greater than the available FPGA device
pin counts. Low utilization of gate resources increases both
the number of FPGAs needed for emulation and the time
required to emulate a particular design. Pin limits set a
hard upper boundary on the maximum usable gate count any
FPGA gate size can provide. This discrepancy will only get
worse as technology scales; trends (and geometry) indicate
that available gate counts are increasing faster than available
pin counts.

1.3 Virtual Wires

To overcome pin limitations in FPGA-based logic
emulators,1 we propose the use of virtual wires. A virtual
wire represents a simple connection between a logical output
on one FPGA and a logical input on another FPGA. Estab-
lished via a pipelined, statically routed [12] communication
network, these virtual wires increase available off-chip com-
munication bandwidth by multiplexing the use of FPGA pin
resources (physical wires) among multiple emulation signals
(logical wires).

1Although this paper focuses on logic emulators, virtual-wire technol-
ogy can be employed in any system comprising multiple interconnected
FPGAs.

Virtual wires effectively relax pin limitations. While low
pin counts may decrease emulation speed, there is no longer
a hard pin constraint which must be enforced. Emulation
speed can potentially be increased if there is a large enough
reduction in system size. We demonstrate that the gate over-
head of using virtual wires is low, comprising gates which
could not have been utilized anyway in the purely hardwired
implementation. Furthermore, the flexibility of virtual wires
allows the emulation architecture to be balanced for each
logic design application.

Our results from compiling two complex designs, the 18K
gate Sparcle microprocessor [2] and the 86K gate Alewife
Communications and Cache Controller [11] (A-1000) show
that the use of virtual wires can decrease FPGA chip count
by a factor of 3 for Sparcle and 10 for the A-1000, assuming a
crossbar interconnect. With virtual wires, a two dimensional
torus interconnect can be used for only a small increase in
chip count (17 percent for the A-1000 and 0 percent for
Sparcle). Without virtual wires, the cost of a replacing the
full crossbar with a torus interconnect is over 300 percent
for Sparcle, and practically impossible for the A-1000. Em-
ulation speeds are comparable with the no virtual wires case,
ranging from 2 to 8 MHZ for Sparcle and 1 to 3 MHZ for the
A-1000. Neither design was bandwidth limited, but rather
constrained by its critical path. With virtual wires, use of a
lower dimension network reduces emulation speed propor-
tional to the network diameter; a factor of 2 for Sparcle and
6 for the A-1000 on a two dimensional torus.

1.4 Background

FPGA-based logic emulation systems have been developed
for design complexity ranging from several thousand to sev-
eral million gates. Typically, the software for these systems
is considered the most complex component and comprises
a major portion of system costs. Quickturn Inc. [14] [13]
has developed emulation systems which interconnect FPGAs
in a two-dimensional mesh and, more recently, in a partial
crossbar topology. The Quickturn Enterprise system uses a
hierarchical approach to interconnection. The Virtual ASIC
system by InCA [9] uses a combination of nearest neigh-

Page 2

Logical InputsLogical Outputs

Physical Wire

FPGA #1 FPGA #2

Figure 2: Hard Wire Interconnect

bor and crossbar interconnect. Like Quickturn’s systems,
Virtual ASIC logic partitions are hardwired to FPGAs fol-
lowing partition placement. AnyBoard, developed at North
Carolina State University, [6] is targetted for logic designs
of a few thousand gates.

Statically routed networks can be used whenever com-
munication can be predetermined. Static refers to the fact
that all data movement can be determined and optimized at
compile-time. This mechanism has been used in scheduling
real-time communication in a multiprocessor environment
[12]. Other related uses of static routing include FPGA-
based systolic arrays, such as Splash [7], and in the very
large simulation subsystem (VLSS) [15], a massively paral-
lel simulation engine which uses time-division multiplexing
to stagger logic evaluation.

Virtual wires are similar to virtual channels [5], which de-
couple resource allocation in dynamically-routed networks,
and to virtual circuits [3] found in a connection-oriented
network.

1.5 Overview

The rest of this paper is organized as follows: Section 2
describes the basic ideas behind virtual wires. Section 3
outlines the key components of our initial system, includ-
ing softwire compiler and hardware support. In Sections 4
we analyze experimental results for compiling two current
designs to various interconnect topologies and FPGA de-
vice sizes. Finally, Section 5 summarizes our research and
outlines directions for future research.

2 Virtual Wires

One to one allocation of emulation signals (logical wires)
to FPGA pins (physical wires) does not exploit available off
chip bandwidth because:

Logical Outputs

Logical Inputs

Logical Inputs
Logical Outputs

Physical Wire

FPGA #1 FPGA #2

Mux

Shift Loops

Figure 3: Virtual Wire Interconnect

� emulation clock frequencies are one or two orders of
magnitude lower than the potential clocking frequency
of the FPGA technology.

� all logical wires are not active simultaneously.

By pipelining and multiplexing physical wires, we can cre-
ate virtual wires to increase usable bandwidth. By clock-
ing physical wires at the maximum frequency of the FPGA
technology, several logical connections can share the same
physical resource. Figure 2 shows an example of six log-
ical wires allocated to six physical wires. Figure 3 shows
the same example with the six logical wires sharing a single
physical wire. The physical wire is multiplexed between
two pipelined shift loops (see section 3.3.1).

Systems based on virtual wires exploit several properties
of digital circuits to boost bandwidth using available pins.
In a logic design, evaluation flows from system inputs to
system outputs. In a synchronous design with no combi-
natorial loops, this flow can be represented as a directed
acyclic graph. Thus, through intelligent dependency anal-
ysis of the underlying logic circuit, logical values between
FPGA partitions only need to be transmitted once (see sec-
tion 3.2.3). Furthermore, since circuit communication is
inherently static, communication patterns will repeat in a
predictable fashion. By exploiting this predictability, com-
munications can be scheduled to increase the utilization of
pin bandwidth.

In our first implementation,we support virtual wires with a
“softwire” compiler. This compiler analyzes logic signal de-
pendencies and statically schedules and routes FPGA com-
munication. These results are then used to construct (in the
FPGA technology) a statically routed network. This hard-
ware consists of a sequencer and shift loops. The sequencer
is a distributed finite state machine. It establishes virtual
connections between FPGAs by strobing logical wires into
special shift registers, the shift loops. Shift loops are then
alternately connected to physical wires according to a pre-
determined schedule.

Page 3

While this paper focuses on logic emulation, we believe
that the technique of virtual wires is also applicable to other
areas of reconfigurable logic.

2.1 Limitations and Assumptions

The use of virtual wires is limited to synchronous logic.
Any asynchronous signals must still be “hardwired” to dedi-
cated FPGA pins. This limitation is imposed by the inability
to statically determine dependencies in asynchronous loops.
Furthermore, we assume that each combinational loop (such
as a flip-flop) in a synchronous design is completely con-
tained in a single FPGA partition. For simplicity, this paper
assumes that the emulated logic uses a single global clock.

3 System Overview

This section describes an implementation of virtual wires in
the context of a complete emulation software system, inde-
pendent of target FPGA device and interconnect topology.
While this paper focuses primarily on software, the ultimate
goal of this research is a low-cost, reconfigurable emulation
system.

3.1 The Emulation Clocking Framework

The various clocks used in the virtual-wire system define a
framework for system-level design with virtual wires. Let us
first describe this framework based on multiple clocks (see
Figure 4).

The emulation clock period is the clock period of the logic
design being emulated. We break this clock into evaluation
phases. We use multiple phases to evaluate the multiple
FPGA partitions across which the combinational logic be-
tween flip-flops in the emulated design may be split. In other
words, evaluation within each FPGA partition, followed by
the communication of results to other FPGA partitions is
accomplished within a phase.

A phase is divided into two parts: an evaluation portion
and a communication portion. Evaluation takes place at the
beginning of a phase, and logical outputs of each FPGA
partition are determined by the logical inputs in the input
shift loops. At the end of the phase, outputs are then sent
to other FPGA partitions with the pipelined shift loops and
intermediate hop stages (see section 3.3). These pipelines
are clocked with a pipeline clock (Figure 4) at the maximum
frequency of the FPGA. After all phases within an emulation
clock period are complete, the emulation clock is ticked.

In contrast, hardwired systems dedicate a physical pin
to a distinct wire in the circuit and let the evaluation “flow”
through multiple partitions within the emulation clock period
until the entire system settles. Phases in virtual wire systems

allow a physical pin that is unused during some portion of
the emulation clock period to be gainfullyemployed by other
signals.

3.2 Softwire Compiler

The input to the softwire compiler consists of a netlist of
the logic design to be emulated, target FPGA device char-
acteristics, and FPGA interconnect topology. The compiler
then produces a configuration bitstream which can be down-
loaded onto the emulator. Figure 5 outlines the compilation
steps involved. Briefly, these steps include translation and
mapping of the netlist to the target FPGA technology, parti-
tioning the netlist, placing the partitions into an interconnect
topology, routing the inter-node communication paths, and
finally FPGA-specific automated placement and routing.

3.2.1 Translation and Mapping

The input netlist to be emulated is usually generated with
a hardware description language or schematic capture pro-
gram. This netlist must be translated and mapped to a library
of FPGA macros. It is important to perform this operation
before partitioning so that partition gate counts accurately
reflect the characteristics of the target FPGAs. We can also
use logic optimization tools at this point to optimize the
netlist for the target architecture (considering the system as
one large FPGA).

3.2.2 Partitioning

After mapping the netlist to the target architecture, it must
be partitioned into logic blocks which can fit into the target
FPGA. With only hardwires, each partition must have both
fewer gates and fewer pins than the target device. With vir-
tual wires, the total gate count (logic gates and virtual wiring
overhead) must be no greater than the target FPGA gate
count. In our current implementation we use the Concept
Silicon partitioner by InCA [9]. This partitioner performs
K-way partitioning with min-cut and clustering techniques
to minimize partition pin counts.

3.2.3 Dependency Analysis

Since a combinatorial signal may pass through several FPGA
partitions during an emulated clock cycle, all signals will
not be ready to schedule at the same time. In our current
implementation, we solve this problem by only scheduling
a partition output once all the inputs it depends upon are
scheduled. An output depends on an input if a change in that
input can change the output. To determine input to output
dependencies, we analyze the logic netlist, backtracing from
partition outputs to determine which partition inputs they
depend upon. In backtracing, we assume all outputs depend

Page 4

Emulation Clock

Phase 1 Phase 2 Phase 3

Pipeline Clock
Eval Eval Eval

Figure 4: Emulation Phase Clocking Scheme

Logic Netlist Partitioner
Global
Placer

FPGA Configuration Data Route
Embedder

FPGA−Specific
 APR

 Netlist
Translation

Dependency
 Analyzer

Global router
& phase assign.

Figure 5: Softwire Tool Flowchart

on all inputs for gate library parts, and no outputs depend on
any inputs for latch (or register) library parts. If there are no
combinatorial loops which cross partition boundaries, this
analysis produces a directed acyclic graph, the signal flow
graph (SFG), to be used by the global router.

3.2.4 Global Placement

Following logic partitioning, individual FPGA partitions
must be placed into specific FPGAs. An ideal placement
minimizes system communication, thus requiring fewer vir-
tual wire cycles to transfer information. We first make a
random placement followed by cost-reducing swaps, and
then further optimize with simulated annealing [10].

3.2.5 Global Routing and Phase Assignment

The input to the global routing and phase assignment module
is a set of FPGA partitions that have been assigned to FPGA
devices, and a graph describing the dependency relationships
between inputs and outputs. Phase assignment and global
routing schedules each logical wire to a phase and assigns a
pipeline time slot on a physical pin. Thus, the assignment
corresponds to one cycle of the pipeline clock (i.e., a specific
register) in a specific phase (i.e., a specific shift register loop)
on a physical wire between a pair of FPGAs. For simplicity,
all wires in a given shift loop are assigned to a single phase.

Phase assignment uses the following methodology. Be-
fore the assignment, the criticality of each logical wire is
determined based on the signal flow graph produced by de-
pendency analysis. In each phase, the router first determines
the schedulable wires. A wire is schedulable if all wires it
depends upon have been scheduled in previous phases. The
router then uses shortest path analysis with a cost function

based on pin utilization to route as many schedulable sig-
nals as possible, routing the most critical signals first. Any
schedulable signals which can not be routed are delayed to
the next phase.

3.2.6 Embedding and Vendor Specific APR

Once routing is completed, appropriately-sized shift loops
and associated logic are added to each partition to com-
plete the internal FPGA hardware description. At this point
there is one netlist for each FPGA. These netlists are then
processed with a vendor-specific FPGA place and route soft-
ware to produce configuration bitstreams.

3.3 Hardware Support

Technically, there is no required hardware support for imple-
mentation of virtual wires (unless one considers re-designing
an FPGA optimized for virtual wiring). The necessary “hard-
ware” is compiled directly into the configuration for the
FPGA device. Thus, any existing FPGA-based logic emula-
tion system can take advantage of virtual wiring. There are
many possible ways to implement hardware support for vir-
tual wires. This section describes a simple and efficient im-
plementation. The additional logic to support virtual wires
can be composed entirely of shift loops and a small amount
of phase control logic.

3.3.1 Shift Loops

A shift loop (Figure 6) is a circular, loadable shift register
with enabled shift in and shift out ports. Each shift register
is capable of performing one or more of the operations of
load, store, shift, drive, or rotate, (Figure 7). In our current

Page 5

� Load — Strobes logical outputs into shift loop.

� Store — Drives logical inputs from shift loop.

� Shift — Shifts data from a physical input into shift
loop.

� Drive — Drives a physical output with last bit of shift
loop.

� Rotate —Rotate bits in shift loop.

Figure 7: Shift Loop Operations

design, for simplicity, all outputs loaded into a shift loop
must have the same final destination FPGA. As described
in section 3.2.3, a logical output can be strobed once all its
corresponding depend inputs have been stored. The purpose
of rotation is to preserve inputs which have reached their
final destination and to eliminate the need for empty gaps
in the pipeline when shift loop lengths do not exactly match
phase cycle counts. Note that in this implementation store
can not be disabled.

Shift loops can be re-scheduled to perform multiple out-
put operations. However, since the internal latches being
emulated will depend on the logical inputs, inputs will need
to be stored until the tick of the emulation clock.

3.3.2 Intermediate Hop Pipelining

D Q
PI

Pipeclock

Drive

PO

Figure 8: Intermediate Hop Pipeline Stage

For networks where multiple hops are required (i.e. a mesh),
one bit shift loops which always shift and sometimes drive
are used for intermediate stages (figure 8). These stages
are chained together, one per FPGA hop to build a pipeline
connecting the output shift loop on the source FPGA with
the input shift loop on the destination FPGA.

3.3.3 Phase Control Logic

The phase control logic is the basic run-time kernel in our
simple implementation. This kernel is a sequencer which
controls the phase enable (denoted drive in Figure 6) and
strobe lines (denoted load in Figure 6), the pipeline clock,

and the emulation clock. The phase enable lines are used to
enable shift loop to FPGA pin connections. Recall that mul-
tiple shift loops (including single-bit shift stages for inter-
mediate hop pipelining) can connect to a single physical pin
through tri-state drivers as depicted in Figure 3. The phase
strobe lines strobe the shift loops on the correct phases. This
logic is generated with a state machine specifically optimized
for a given phase specification.

4 Experimental Results

We implemented the system compiler described by develop-
ing a dependency analyzer, global placer and global router
and using the InCA [9] partitioner. Except for the parti-
tioner, which can take hours to optimize a complex design,
running times on a SPARC 2 workstation were usually 1 to
15 minutes for each stage.

In order to evaluate the costs and benefits of virtual wires,
we compiled two complex designs, Sparcle and the A-1000.
Sparcle is an 18K gate SPARC microprocessor enhanced
with multiprocessing features. The Alewife controller and
memory management unit (A-1000) [11] is an 86K gate
cache controller for the Alewife Multiprocessor [1], a dis-
tributed shared memory machine being designed at MIT. For
target FPGAs we consider the Xilinx 3000 and 4000 series
(including the new 4000H series) [16] [17] and the Concur-
rent Logic Cli6000 series [4]. This analysis does not include
the final FPGA-specific APR stage; we assume a 50 percent
APR mapping efficiency for both architectures.

4.1 Virtual Wire Gate Overhead

In the followinganalysis, we estimate the FPGA gate costs of
virtual wires based on the Concurrent Logic CLI6000 series
FPGA. We assume the phase control logic is 300 gates (after
mapping). Virtual wire overhead can be measured in terms
of the number of gates required to implement a single shift
register bit, Cs. In the Cli6000, a single-bit shift register
takes 1 of 3136 cells in the 5K gate part, which implies
that Cs � 3 mapped gates. For simplicity, we will also
assume that each tri-statedriver, which forms the multiplexer
component, costs Cs.

The cost of virtual wires for an FPGA partition is the sum
of three components: (1) the shift register bits required for
the inputs (see section 3.3.1), (2) the shift register bits re-
quired for the intermediate hops, and (3) the tri-state drivers
required to multiplex a given number of shift loops on a sin-
gle physical pin. The above costs assume that the storage
of logical outputs is not counted since they can be over-
lapped with logical inputs. When routing in a mesh or torus,
intermediate hops cost one shift register bit per hop. The
degree of multiplexing of a physical wire (or the number of
shift loops connected to that physical wire) is the number of

Page 6

ld

si so

ld

si so

ld

si so

ld

si so

Drive

Load
Shift/Rotate

Physical
 Input

Logical Inputs

Logical Outputs

Physical
Output

ld

si so

Pipeclock

D

Q QQ

DD D

Q

Figure 6: Shift Loop Architecture

FPGA Technology Sparcle A-1000
0.50 0.6 0.44

Table 1: Rent’s Rule Parameter (slope of log-log curve)

tri-state drivers needed.

The gate overhead is then Cs times the total number of
shift register bits. Let Vi denote the number of logical inputs
for partition i, Mp denote the number of times a physical
wire p is multiplexed, andLh the number of bit shift registers
used for intermediate hops in an FPGA. Gate overhead for
partition i is then:

Gatevw = Cs �

Vi + Lh +

X
p

Mp

!

4.2 Effect of Pin Limitations

Before compiling the two test designs, we first compared
their communication requirements to the available FPGA
technologies. For this comparison, we partitioned each de-
sign for various gate counts and measured the pin require-
ments. Figure 9 shows the resulting curves, plotted on a
log-log scale (note that partition gate count is scaled to rep-
resent a mapping inefficiency of 50%).

Both design curves and the technology curves fit Rent’s
Rule, a rule of thumb used for estimating communication
requirement in random logic. Rent’s Rule can be stated as:

pins2=pins1 = (gates2=gate1)b,

where pins2, gates2 refer to a partition, and pins1, gates1

refer to a sub-partition, and b is a constant between 0:4 and
0:7. Table 1 shows the resulting constants. For the technol-
ogy curve, a constant of 0.5 roughly corresponds to the area
versus perimeter for the FPGA die. The lower the constant,
the more locality there is within the circuit. Thus, the A-
1000 has more locality than Sparcle, although it has more
total communication requirement.

� � Available Xilinx 3000 & 4000 FPGAs
� � Available Xilinx 4000H FPGAs
� � Future Xilinx 4000 FPGAs

 Available Concurrent Logic FPGAs
� � SPARCLE partitions
� � Alewife Cache Controller partitions

|
100

| | | | | | | | |
1000

| | | | | | | | |
10000

| | | | | | | | |
100000

|50

|60

|70

|80

|90

|100

|200

|300

|400

|500

|600

|700
|800

|900
|1000

 FPGA Partition Gate Count

 F
P

G
A

 P
ar

ti
to

n
 P

in
 C

o
u

n
t

�

�

�

�

�
�
�

�

�

�

� �

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

Figure 9: Pin Count as a Function of FPGA Partition Size

As Figure 9 shows, both Sparcle and the A-1000 will
be pin-limited for any choice of FPGA size. In hardwired
designs with pin-limited partition sizes, usable gate count is
determined solely by available pin resources. For example, a
5000 gate FPGA with 100 pins can only utilize 1000 Sparcle
gates or 250 A-1000 gates.

Next, we compiled both designs for a two dimensional
torus and a full crossbar interconnect of 5000 gate, 100 pin
FPGAs, 50 percent mapping efficiency. Table 2 shows the
results for both hard wires and virtual wires. Compiling the
A-1000 to a torus, hardwires only, was not practical with our
partitioning software. The gate utilizations obtained for the
hardwired cases agree with reports in the literature [9] [14]
on designs of similar complexity.

In order to understand the tradeoffs involved, we plotted
both the hard wires pin/gate constraint and the virtual wires
pin/gate constraint curve against the partition curves for the
two designs (Figure 10). The region enclosed by the axes
and the constraint curves represents feasible regions in the
design space. The intersection of the partition curves and
the wire curves gives the optimal partition and sizes. This
graph shows how virtual wires add the flexibility of trading

Page 7

Design Hardwires Only Virtual Wires Only
2-D Torus Full Crossbar 2-D Torus Full Crossbar

Sparcle >100 31 9 9
(18K gates) (<7%) (23%) (80%) (80%)

A-1000 Not Practical >400 49 42
(86K gates) (<10%) (71%) (83%)

Number of FPGAs (Average Usable Gate Utilization)

Table 2: Number of 5K Gates, 100 Pin FPGAs Required for Logic Emulation

 Hard Wires Constraints
� � Virtual Wires Tradeoff
� � SPARCLE partitions
� � A-1000 partitions

|
0

|
1000

|
2000

|
3000

|
4000

|
5000

|
6000

|0

|100

|200

|300

|400

|500

 FPGA Partition Gate Count

 F
P

G
A

 P
ar

ti
ti

o
n

 P
in

 C
o

u
n

t

�

�

�

�

�

�

�
�

�

�

�

�

�

�

Figure 10: Determination of optimal partition size

gate resources for pin resources.

4.3 Emulation Speed Comparison

Emulation clock cycle time TE is determined by:

� Communication delay per hop, tc, which is the time
required to transmit a single bit on a wire between a
pair of FPGAs.

� Length of longest path in dependency graph,L, in terms
of number of FPGA partitions (and hence phases) in an
emulation clock cycle.

� Total FPGA gate delay along longest path TL, which
is the sum of the FPGA partition delays in the longest
path (not counting communication time).

� Sum of pipeline cycles across all phases, N

� Network diameter, D (D = 1 for a crossbar)

� Average network distance, d (d = 1 for a crossbar)

Delays in a system are related to the number of phases in
an emulation clock, and the sum of the number of pipeline

clocks within each of the phases. The total number of phases
L in an emulation clock is the largest number of partitions
through which a combinatorial path passes. The number of
pipeline cycles in each phase is directly related to physical
wire contention.

If the emulation is latency dominated, then the optimal
number of phases is L, and the pipeline cycles per phase
should no greater than D, giving:

N = L �D

The upper bound of D is imposed by the worst case number
of intermediate hops.

On the other hand, if the emulation is bandwidth domi-
nated, then the total pipeline cycles (summed over all phases)
will be at least:

N =MAXi

�
Vi
Pi

�

where Vi and Pi are the number of virtual and physical wires
for FPGA partition i. If there are hot spots in the network
(not possible with a crossbar), the bandwidth dominated
delay will be higher. Emulation speeds for Sparcle and the
A-1000 were both latency dominated.

Although we have integrated FPGA specific placing and
routing tools into our software system, we can not yet deter-
mine the exact computation time per partition. Instead we
consider a computation only delay component, and a com-
munication only delay component. This dichotomy is used
to give a lower and upper bound on emulation speed.

Computation only delay: TEP = TL + tc � N , where
N = 0 for the hardwired case. The computation-onlybound
assumes that communication time between chips is negligi-
ble. Even though communication is assumed to be infinitely
fast, we add in a component equal to tc to reflect the extra
cost of multiplexing for virtual wires.

Communication only delay : TEC = tc �N .

Based on CLi6000 specifications, we assumed that TL =
250ns and tc = 20ns (based on a 50 MHZ clock). Ta-
ble 3 shows the resulting emulation speeds for virtual and

Page 8

� � 2d Torus
� � Full Crossbar

|
0

|
20

|
40

|
60

|
80

|
100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

 FPGA Partition Pin Count

 E
m

ul
at

io
n

S
pe

ed
 (M

H
Z)

�

�

�
�

� � � �

�
�

�

�

�

�

�

�

�

�� � �

Figure 11: A-1000 Emulation Speed (Communication only
Component)

hardwires for the crossbar topology. The emulation clock
range given is based on the sum and minimum of the two
components (lower and upper bounds). For example, the
computation-only delay in Sparcle for hardwires is exactly
TL yielding TEP = 250ns. The computation-only delay in
Sparcle for virtual wires is 250 + 6 � 20 = 370ns. Note
that we have made the conservative assumption in the com-
putation dominated case that TL for virtual wires remains
the same as that for hardwires, even though virtual wires
yields fewer partitions. When the use of virtual wires allows
a design to be partitioned across less FPGAs, L is decreased,
decreasing TEC . However, the pipeline stages will increase
TEP by tc per pipeline cycle.

In Table 3, the virtual wire emulation clock was deter-
mined solely by the length of the longest path; the commu-
nication was limited by latency, not bandwidth. In order
to determine what happens when the design becomes band-
width limited, we varied the pin count and recorded the
resulting emulation clock (based on TEC) for both a cross-
bar and torus topology. Figure 11 shows the results for the
A-1000. The knee of the curve is where the latency switches
from bandwidth dominated to latency dominated. The torus
is slower because it has a larger diameter, D. However, the
torus moves out of the latency dominated region sooner be-
cause it exploits locality; several short wires can be routed
during the time of a single long wire. Note that this analysis
assumes that the crossbar can be clocked as fast as the torus;
the increase in emulation speed obtained with the crossbar
is lower if tc is adjusted accordingly.

4.4 Combination of Virtual Wires with Hard-
wiring

With virtual wires,neither design was bandwidth limited, but
rather limited by its respective critical paths. As shown in
Figure 11, the A-1000 only needs about 20 pins per FPGA to
run at the maximum emulation frequency. While this allows
the use of lower pin count (and thus cheaper) FPGAs,another
option is to trade this surplus bandwidth for speed. This
tradeoff is accomplished by hardwiring logical wires at both
ends of the critical paths. Critical wires can be hardwired
until there is no more surplus bandwidth, thus fully utilizing
both gate and pin resources. For our designs on the 100 pin
FPGAs, hardwiring reduced the longest critical path from 6
to 3 for Sparcle and from 17 to 15 for the A-1000.

5 Conclusions and Future Research

This paper describes the software portion of a project at
MIT to produce a scalable, low cost FPGA-based emulation
system which maximizes FPGA resource utilization. While
this paper has focused on software techniques for improving
performance in FPGA-based logic emulation systems, it is
also applicable to other types of FPGA-based systems.

Our results show that virtual wires allow maximum uti-
lization of FPGA gate resources at emulation speeds com-
petitive with existing hardwired techniques. This technique
is independent of topology. It allows the use of less complex
topologies, such as a torus instead of a crossbar, in cases
where such a topology was not practical otherwise.

This project has uncovered several possible areas for fu-
ture research. Using timing and/or locality sensitive parti-
tioning with virtual wires has potential for reducing the re-
quired number of routing sub-cycles. Communication band-
width can be further increased with pipeline compaction, a
technique for overlapping the start and end of long virtual
paths with shorter paths traveling in the same direction. A
more robust implementation of virtual wires replaces the
global barrier imposed by routing phases with a finer gran-
ularity of communication scheduling, possibly overlapping
computation and communication as well.

Using the information gained from dependency analysis,
we can now predict which portions of the design are active
duringwhich parts of the emulation clock cycle. If the FPGA
device supports fast partial reconfiguration, this information
can be used to implement virtual logic via invocation of
hardware subroutines [8]. An even more ambitious direction
which we are exploring is event-driven emulation - only
transmit signals that change, only activate (configure) logic
when it is needed.

Page 9

Hardwire Only Virtual Wire Only
Sparcle Longest Path 9 hops 6 hops

Computation only delay 250 ns 370 ns
Communication Only delay 180 ns 120 ns

Emulation Clock Range 2.3–5.6 MHz 2.0–8.3 MHz
A-1000 Longest Path 27 hops 17 hops

Computation only delay 250 ns 590 ns
Communication Only delay 540 ns 340 ns

Emulation Clock Range 1.3–4.0 MHz 1.1–2.9 MHz

Table 3: Emulation Clock Speed Comparison

References

[1] A. Agarwal et al. The MIT Alewife machine: A large-scale
distributed memory multiprocessor. In Scalable SharedMem-
ory Multiprocessors. Kluwer Academic Press, 1991.

[2] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung,
G. D’Souza, and M. Parkin. Sparcle: An Evolutionary Pro-
cessor Design for Multiprocessors. To appear in IEEE Micro,
June 1993.

[3] D. Bertsekas and R. Gallagher, editors. Data Networks. Pren-
tice Hall, Englewood Cliffs, N.J., 1992.

[4] Concurrent Logic, Inc. CLi6000 Series Field-Programmable
Gate Arrays, May 1992. Revision 1c.

[5] W. J. Dally. Virtual-channel flow control. IEEE Transactions
on Parallel and Distributed Systems, 3(2), Mar. 1992.

[6] D. V. den Bout, J. Morris, D. Thomae, S. Labrozzi, S. Wingo,
and D. Hallman. Anyboard: An FPGA-based, reconfigurable
system. IEEE Design and Test of Computers, Sept. 1992.

[7] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich,
D. Sweeney, and D. Lopresti. Building and using a highly
parallel programmable logic array. Computer, 24(1), Jan.
1991.

[8] N. Hastie and R. Cliff. The implementation of hardware sub-
routines on field programmable gate arrays. In IEEE Custom
Integrated Circuits Conference, May 1990.

[9] InCA Inc. Concept Silicon Reference Manual, Nov. 1992.
Version 1.1.

[10] S. Kirkpatrick, C. D. Gellatt, and M. P. Vecchi. Simulated
annealing. Science, 220, 1983.

[11] J. Kubiatowicz. User’s Manual for the A-1000 Communica-
tions and Memory Management Unit. ALEWIFE Memo No.
19, Laboratory for Computer Science,Massachusetts Institute
of Technology, January 1991.

[12] H. T. Kung. Systolic communication. In Proceedings of
the International Conference on Systolic Arrays, San Diego,
California, May 1988.

[13] L. Maliniak. Multiplexing enhances hardware emulation.
Electronic Design, Nov. 1992.

[14] S. Walters. Computer-aided prototyping for ASIC-Based sys-
tems. IEEE Design and Test of Computers, June 1992.

[15] Y.-C. Wei, C.-K. Cheng, and Z. Wurman. Multiple-level
partitioning: An application the very large-scale hardware
simulator. IEEE Journal of Solid-State Circuits, 26(5), May
1991.

[16] Xilinx, Inc. The Programmable Gate Array Data Book, Aug.
1992.

[17] Xilinx, Inc. The XC4000 Data Book, Aug. 1992.

Page 10

