
Software-Extended Coherent Shared Memory:
Performance and Cost

David Chaiken and Anant Agarwal

Laboratory for Computer Science, NE43–633
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

This paper evaluates the tradeoffs involved in the design of the
software-extended memory system of Alewife, a multiprocessor ar-
chitecture that implements coherentsharedmemory through a com-
bination of hardware and software mechanisms. For each block of
memory, Alewife implements between zero and five coherence di-
rectory pointers in hardware and allows software to handle requests
when the pointers are exhausted. The software includes a flexible
coherence interface that facilitates protocol software implementa-
tion. This interface is indispensable for conducting experiments
and has proven important for implementing enhancements to the
basic system.

Simulations of a number of applications running on a complete
system (with up to 256 processors) demonstrate that the hybrid
architecture with five pointers achieves between 71% and 100%
of full-map directory performance at a constant cost per process-
ing element. Our experience in designing the software protocol
interfaces and experiments with a variety of system configurations
lead to a detailed understanding of the interaction of the hardware
and software components of the system. The results show that a
small amount of shared memory hardware provides adequate per-
formance: One-pointer systems reach between 42% and 100% of
full-map performance on our parallel benchmarks. A software-
only directory architecture with no hardware pointers has lower
performance but minimal cost.

1 Introduction

Implementing shared memory for a large-scale multiprocessor re-
quires balancing the performance of the system as a whole with
the complexity and cost of its hardware and software components.
Shared memory itself helps control the complexity of the appli-
cation software written for a machine, but it requires an efficient
design to achieve this goal. The Alewife architecture[3] uses a
combination of hardware and software to provide shared memory
at a constant cost per processing node, without sacrificing perfor-
mance. Following the integrated systems approach, the architecture
uses hardware to implement common memory accesses and uses
software to extend the hardware by handling potentially complex
scenarios.

The primary contribution of this paper is the demonstration of
a complete software-extended shared memory system that allows
measurement of the performance of its software components. This
system proves that the software extension approach is a viable

alternative for implementing a shared memory system, in terms
of both cost and performance. Rather than advocating a specific
machine configuration, the paper seeks to examine the performance
versus cost tradeoffs inherent in implementing software-extended
shared memory.

At the heart of a shared memory design lies the problem of pro-
viding fast average access time while ensuring a coherent memory
model. Directory-based cache coherence protocols provide an effi-
cient implementation of coherent shared memory for large systems.
These protocols allow each processing node to take advantage of
typical memory access patterns by caching frequently used data,
even when the data may be shared by other nodes. A directory
is a structure that helps enforce the coherence of cached data by
maintaining pointers to the locations of cachedcopies of each mem-
ory block. When one node modifies a block of data, the memory
system uses the information stored in the directory to enforce a
coherent view of the data. Typically, directories are not monolithic
structures but are distributed to the processing nodes along with a
system’s shared memory.

A promising design strategy, central to the Alewife architecture,
uses a combination of hardware and software to implement a cost-
efficient directory[9]. Since most data blocks in a shared memory
system are shared by a small number of processing nodes[2, 32, 8],
the hardware can implement a small set of pointers, and provide
mechanisms to allow the system’s software to extend the directory
when the set of pointers is insufficient for enforcing coherence.
This software-extension technique catalyzes the balance between a
system’s performance and cost.

LimitLESS directories, a scheme proposed in [9], is a software-
extended coherence protocol that permits a tradeoff between the
cost and the performance of a shared memory system. LimitLESS,
which stands for a Limited directory, Locally Extended through
Software Support, implements a small number of pointers in a hard-
ware directory (zero through five in Alewife), so that the hardware
can track a few copies of any memory block. When these point-
ers are exhausted, the memory system hardware interrupts a local
processor, thereby requesting it to maintain correct shared memory
behavior by extending the hardware directory with software.

Another set of software-extended protocols (termed Dir1SW)
were proposed in [14] and [34]. These protocols use only one
hardware pointer, rely on software to broadcast invalidates, and
use hardware to accumulate the acknowledgments. In addition,
they allow the programmer or compiler to insert Check-In/Check-
Out (CICO) directives into programs to minimize the number of
software traps.

All software-extended memory systems require a battery of ar-
chitectural mechanisms to permit a designer to make the cost versus
performance tradeoff. First, the shared memory hardware must be
able to invoke extension software on the processor, and the pro-
cessor must have complete access to the memory and network
hardware[9, 19, 34]. Second, the hardware must guarantee for-
ward progress in the face of protocol thrashing scenarios and high-
availability interrupts[20].

Each processing node must also provide support for location-
independent addressing, which is a fundamental requirement of
shared memory. Hardware support for location-independent ad-
dressing permits the software to issue an address that refers to an
object without knowledge of where it is resident. This hardware
support includes an associative matching mechanism to detect if
the object is cached, a mechanism to translate the object address
and identify its home location if it is not cached, and a mechanism
to issue a message to fetch the object from a remote location if it is
not in local memory.

Since these mechanisms comprise the bulk of the complexity
of a software-extended system, it is important to note that the
benefits of these mechanismsextend far beyond the implementation
of shared memory[17]. Alternative approaches to implementing
shared memory proposed in [26, 30, 21] use hardware mechanisms
that allocate directory pointers dynamically. These schemes do not
require the mechanisms listed above, but they lack the flexibility of
protocol and application software design.

A number of systems rely primarily on software to implement
the mechanisms required to support shared memory [10, 23, 11,
6, 5, 4]. These systems implement coherent shared memory at
low cost; however, providing location-independent addressing in
software forces the granularity of data sharing to be much larger
than in software-extended systems. In contrast, this paper proposes
a software-only directory architecture, which implements location-
independentaddressing in hardware but relies on software to handle
all inter-node memory accesses. This software-extended scheme is
a low-cost alternative that allows threads to share small blocks of
data.

Unlike previous studies of software-extended schemes, this pa-
per analyzes a complete system, whose hardware is in the final
stages of fabrication, and whose software is fully functional. De-
tailed simulations of the system lead to several conclusions about
the implementation of software-extended shared memory: The
minimum amount of shared memory hardware that is required to
provide adequate performance is a single directory pointer (that also
serves as an acknowledgment counter) per memory block. Beyond
this level of hardware support, the cost and mapping of a system’s
DRAM become more important factors than performance. In ad-
dition, processor caches should include more associativity than a
simple direct-mapped cache. Alewife uses a victim cache[16, 20]
to provide the required extra associativity.

The paper extends previous work in the performance analysis
of software-extended coherence protocols [9, 34] to a much wider
spectrum, ranging from zero hardware pointers (the software-only
directory architecture) to a full-map protocol, through the use of
controlled experiments using a synthetic benchmark and a set of
application programs. By studying the behavior of real software
protocol handlers, this paper confirms results presented in [9] on the
similarity in performance of LimitLESS1 (one hardware pointer),
LimitLESS2, LimitLESS4, and full-map protocols. We also con-

firm the findings in [34] that the performance of suitably tuned
one-pointer protocols is competitive with that of multiple-pointer
protocols.

In order to study the software side of hybrid shared memory
systems, this paper investigates two different software systems that
use the same hardware to achieve different goals. One system,
written in C, incorporates a flexible coherence interface that fa-
cilitates protocol software implementation. This interface proved
indispensable for conducting experiments over the whole spectrum
of software-extended protocols. Our continuing research relies on
the flexibility of this interface for implementing enhancements to
the basic system. The other system, which is written in assembly-
language, is a highly optimized and specialized implementation.
While the specialized system supports only a narrow range of func-
tionality, it shows the potential benefits of well-tuned software.

This paper presents case studies that examine how application
performance varies over the spectrum of software-extended pro-
tocols. Before reaching these case studies, Section 2 gives an
overview of the cost versus performance tradeoff that a software-
extended memory system exploits and describes a notation for such
systems. The paper’s experimental methodology is then described
in Section 3. Section 4 analyzes how the implementation of a
software-extended protocol affects application performance; Sec-
tion 5 examines the converse: how application characteristics deter-
mine protocol performance. Section 6 presents the case studies of
application performance, and Section 7 suggests enhancements to
improve programmability and performance. Finally, Section 8 dis-
cusses the impact of this study on the design of software-extended
coherent memory systems.

2 A spectrum of protocols

The number of directory pointers that are implemented in hardware
is an important design decision involved in building a software-
extended shared memory system. More hardware pointers mean
fewer situations in which a system must rely on software to enforce
coherence, thereby increasing performance. Having fewer hard-
ware pointers means a lower implementation cost, at the expense
of reduced performance. This tradeoff suggests a whole spectrum
of protocols, ranging from 0 pointers to n pointers, where n is the
number of nodes in the system.

2.1 The n pointer protocol

The full-map protocol[7], which is implemented in the DASH
multiprocessor[21], uses n pointers for every block of memory
in the system and requires no software extension. Although this
protocol permits an efficient implementation that uses only one bit
for each pointer, the sheer number of pointers makes it extremely
expensive for systems with large numbers of nodes. Despite the
cost of the full-map protocol, it serves as a good performance goal
for the software-extended schemes.

2.2 2$ (n� 1) pointer protocols

There is a range of protocols that use a software-extended coherence
scheme to implement shared memory. It is this range of protocols

2

that allows the designer to trade hardware cost and system perfor-
mance. From the point of view of implementation complexity, the
protocols that implement between 2 and n�1 pointers in hardware
are homogeneous. Of course, the n� 1 pointer protocol would be
even more expensive to implement than the full-map protocol, but it
still requires exactly the same hardware and software mechanisms
as the protocols at the other end of the spectrum.

The protocol extension software needs to service only two kinds
of messages: read and write requests. It handles read requests by
allocating an extended directory entry (if necessary), emptying all
of the hardware pointers into the software structure, and recording a
pointer to the node that caused the directory overflow. Subsequent
requests may be handled by the hardware until the next overflow
occurs. For all of these protocols, the hardware returns the appro-
priate data to requesting nodes; the software only needs to record
requests that overflow the hardware directory.

To handle write requests after an overflow, the software transmits
invalidation messages to every node with a pointer in the hardware
directory or in the software directory extension. The software
then returns the hardware directory to a mode that collects one
acknowledgment message for each transmitted invalidation.

2.3 Zero-pointer protocols

Since the software-only directory[28] has no directory memory, it
requires substantially different software than the 2 $ (n�1) range
of protocols. This software must implement all coherence protocol
state transitions for inter-node accesses.

While other implementations are possible, our version of the
zero-pointer protocol uses one extra bit per memory block to opti-
mize the performance of purely intra-node accesses: the bit indi-
cates whether the associated memory block has been accessed at
any time by a remote node. When the bit is clear (the default value),
all memory accesses from the local processor are serviced without
software traps, just as in a uniprocessor. When an inter-node re-
quest arrives, the bit is set and the extension software flushes the
block from the local cache. Once the bit is set, all subsequent ac-
cesses — including intra-node requests — are handled by software
extension.

2.4 One-pointer protocols

The one-pointer protocols are a hybrid of the protocols discussed
above. This paper studies three variations of this class of protocols.
All three use the same software routine to transmit data invalidations
sequentially,but they differ in the way that they collect the messages
that acknowledge receipt of the invalidations. The first variation
handles the acknowledgments completely in software, requiring a
trap from the hardware upon the receipt of each message. During
the invalidation/acknowledgment process, the hardware pointer is
unused.

The second protocol handles all but the last of a sequence of
acknowledgments in hardware. If a node transmits 64 invalida-
tions, then the hardware will process the first 63 invalidations. This
variation uses the hardware pointer to store a count of the number
of acknowledgments that are still outstanding. During this pro-
cess, the hardware will also transmit busy messages to requesting
nodes, eliminating the livelock problem. Upon receiving the 64th

acknowledgment, the hardware invokes the software, which takes
care of transmitting data to the requesting node.

The third protocol handles all acknowledgment messages in
hardware. This protocol actually requires storage for two hard-
ware pointers: one pointer to store the requesting node’s identifier
and another to countacknowledgments. Although a designerwould
always choose to implement a two-pointer protocol over this vari-
ation of the one-pointer protocol, it still provides a useful baseline
for measuring the performance of the other two variations.

2.5 A notation for the spectrum

We now introduce a notation that allows us to articulate clearly
the differences between various implementations and facilitates a
precise cost comparison.

Our notation is derived from a nomenclature for directory-based
coherence protocols introduced in [2]. In the previous notation, a
protocol was represented as DiriX, where i represented the num-
ber of explicit copies tracked, and X was B or NB depending
on whether or not the protocol issued broadcasts. Notice that this
nomenclature does not distinguish between the functionality imple-
mented in the software and in the hardware. Our notation attempts
to capture the spectrum of features of software-extended proto-
cols that have evolved over the past several years, and previously
termed LimitLESS1, LimitLESS4, and others in [9], and Dir1SW,
Dir1SW+, and others in [14, 34].

For both hardware and software, our notation divides the mech-
anisms into two classes: those that dictate directory actions upon
receipt of processor requests, and those that dictate directory ac-
tions for acknowledgments.

Accordingly, our notation specifies a protocol as: DiriHXSY;A,
where i is the number of explicit pointers recorded by the system –
in hardware or in software – for a given block of data.

The parameter X is the number of pointers recorded in a hard-
ware directory when a software extension exists. X is NB if the
number of hardware pointers is i and no more than i shared copies
are allowed, and is B if the number of hardware pointers is i and
broadcasts are used when more than i shared copies exist. Thus the
full-map protocol in DASH [21] is termed DirnHNBS

�

.

The parameter Y is NB if the hardware-software combination
records i explicit pointers and allows no more than i copies. Y is
B if the software resorts to a broadcast when more than i copies
exist.

The A parameter is ACK if a software trap is invoked on every
acknowledgment. A missing A field implies that the hardware
keeps an updated count of acknowledgments received. Finally, the
A parameter is LACK if a software trap is invoked only on the last
acknowledgment.

According to this notation, the LimitLESS1 protocol defined
in [9] is termed DirnH1SNB, denoting that it records n pointers, of
which only one is in hardware. The hardware handles all acknowl-
edgments and the software issues invalidations to shared copies
when a write request occurs after an overflow. This paper deals
with three variants of the one-pointer protocols defined above. In
our notation, the three one-pointer protocols are DirnH1SNB,ACK,
DirnH1SNB,LACK, and DirnH1SNB, respectively.

The set of software-extended protocols introduced in [14]

3

and [34] can also be expressed in terms of our notation. The
Dir1SW protocol maintains one pointer in hardware, resorts to
software broadcasts when more than one copy exists, and counts
acknowledgments in hardware. In addition, their protocol traps
into software on the last acknowledgment[33]. In our notation,
this protocol is represented as Dir1H1SB,LACK. This protocol is
different from the DirnH1SNB,LACK protocol in that Dir1H1SB,LACK
maintains only one explicit pointer, while DirnH1SNB,LACK main-
tains one pointer in hardware and extends the directory to n point-
ers in software. An important consequence of this difference is
that the DirnH1SNB,LACK potentially traps on read requests, while
Dir1H1SB,LACK does not. Unlike DirnH1SNB,LACK , Dir1H1SB,LACK
must issue broadcasts on write requests to memory blocks that are
cached by multiple nodes.

3 Methodology

This section first describes the MIT Alewife machine, which pro-
vides a proof of concept for software-extended memory systems
and a platform for experimenting with many aspects of multipro-
cessor design and programming. While the machine supports an
interesting range of protocols, it does not implement the full spec-
trum of software-extended schemes that this paper evaluates. Only
a simulation system can provide the range of protocols, the de-
terministic behavior, and the non-intrusive observation functions
that are required for analyzing the spectrum of software-extended
protocols. The second half of this section describes the simulation
system used to do the experiments discussed in the remainder of
the paper.

3.1 The Alewife Machine

Alewife is a large-scale multiprocessor with distributed shared
memory. Figure 1 shows an enlarged view of a node in the Alewife
machine. Each node consists of a 33 MHz Sparcle processor[1],
64K bytes of direct-mapped cache, 4 Mbytes of globally-shared
main memory, and a floating-point coprocessor. The nodes commu-
nicate via messages through a network[29] with a mesh topology. A
single-chip communications and memory management (CMMU)
on each node holds the cache tags and implements the memory
coherence protocol by synthesizing messages to other nodes. All
of the node components, with the exception of the CMMU, have
been fabricated and tested. The CMMU is in fabrication.

In order to provide a platform for shared memory research,
Alewife supports dynamic reconfiguration of coherence protocols
on a block-by-block basis. The machine supports DirnH0SNB,ACK ,
DirnH2SNB , DirnH3SNB, DirnH4SNB , DirnH5SNB, Dir5H5SB and a
variety of other protocols. The node diagram in Figure 1 illustrates
a memory block with two hardware pointers and an associated
software-extended directory structure (DirnH2SNB). The current
default boot sequence configures every block of shared memory
with a DirnH5SNB protocol, which uses all of the available hardware
pointers.

In addition to the standard hardware pointers, Alewife imple-
ments a special one-bit pointer for the node that is local to the
directory. Several simulations show that this extra pointer im-
proves performance by only about 2%. Its main benefit lies in
reducing the complexity of the protocol hardware and software by

Cache

DataX:

Distributed Shared Memory

FPU

X: C

Distributed Directory

Network
Router DataX:

X:

Alewife node

Alewife machine

CMMU

Sparcle

Figure 1: Alewife node, with a DirnH2SNB memory block.

eliminating the possibility that a node will cause its local hardware
directory to overflow. For the results presented in this paper, all
of the protocols (except DirnH0SNB,ACK) use the one-bit pointer in
addition to the normal hardware pointers.

3.2 NWO: the Alewife simulator

NWO is a multi-purpose simulator that provides a deterministic
debugging and test environment for the Alewife machine. The
simulator performs a cycle-by-cycle simulation of all of the com-
ponents in Alewife. NWO is binary compatible with Alewife’s
hardware: programs that run on the simulator will be able to run
on the actual machine without recompilation. The CMMU pro-
tocol state-transition tables are automatically compiled from the
hardware specification into a simulator executable format, so that
NWO incorporates the hardware protocol directly. NWO models
the Alewife data paths accurately enough that it is used to drive the
transistor-level simulations of the CMMU. Although Alewife does
not support one-pointer protocols or protocols with more than five
hardware pointers, NWO has been extended to support a complete
spectrum of software-extended protocols, from DirnH0SNB,ACK to
DirnHNBS

�

.

There are two inaccuracies in the simulation. First, NWO does
not model the Sparcle or FPU pipelines, even though it does model
many of the pipelined data paths within the CMMU. Second,
NWO models communication contention at the CMMU network
transmit and receive queues, but does not model contention within
the network switches.

The initial implementation of NWO targeted SPARC and MIPS-
based workstations; we have also developed a version of the sim-
ulator that runs on Thinking Machines’ CM-5 multiprocessors. In
the latter implementation, each CM-5 node simulates the processor,
memory, and network hardware of one or more Alewife nodes. The
CM-5 port of our simulator has proved invaluable, especially for
running simulations of 64 and 256 node Alewife systems.

4

4 Software interfaces

Two different versions of the protocol extension software have been
written for the Alewife machine. One version incorporates a flexi-
ble coherence interface that allows rapid protocol implementation
in the C programming language. The other version is a set of pro-
tocol handlers that are implemented in assembly language and are
carefully tuned to take full advantage of the features of the Alewife
architecture.

4.1 Protocol software implementations

The C version of the Alewife protocol extension software imple-
ments the whole range of software-extended protocols within a
flexible framework. A single set of C routines implements all of
the protocols from DirnH2SNB to DirnHNBS

�

. Other modules
linked into the same kernel support DirnH0SNB,ACK, DirnH1SNB ,
DirnH1SNB,LACK , and DirnH1SNB,ACK.

The flexible interface facilitates the construction of all of these
protocols by providing C macros for hardware directory manipu-
lation, protocol message transmission, a free-listing memory man-
ager, and hash table administration. The interface eliminates the
need for the protocol designer to understand many of the details
of the Alewife hardware implementation. For example, the proto-
col interface sets up an environment that lets the protocol designer
treat every protocol event as if it were generated by an asynchronous
inter-node request.

In addition, the framework hides other implementation details
such as atomic protocol transitions and livelock situations. The
framework ensures the atomicity of protocol transitions by guaran-
teeing that asynchronous messages in a CMMU internal queue are
processed before handling synchronousevents. Livelock situations
can occur when protocol software-extension requests occur so fre-
quently that user code cannot make forward progress. The frame-
work solves this problem by using a timer interrupt to implement
a watchdog that detects possible livelock, temporarily shuts off
asynchronous events, and allows the user code to run unmolested.
In practice, such conditions happen only for DirnH0SNB,ACK and
DirnH1SNB,ACK, when they handle acknowledgments in software.
The framework provides a very simple interface that allows these
protocols to invoke the watchdog directly.

During the course of the study reported in this paper, the flexible
coherence interface proved itself to be an indispensable tool for
rapidly prototyping a complete set of protocols. The framework
is currently being used to implement some of the enhancements to
the basic protocols that are described in Section 7.

Unfortunately, flexibility comes at the cost of performance. All
of the mechanisms that protect the protocol designer from the de-
tails of the Alewife hardware implementation increase the time that
it takes to handle protocol requests in software. An assembly-
language version of the Alewife protocol extension handlers helps
investigate the performance versus flexibility tradeoff by optimiz-
ing the performance of the software. Since this approach re-
quires a large programming effort, this version only implements
DirnH5SNB .

The code for this optimized version is hand-tuned to keep in-
struction counts to a minimum. To reduce memory management
time, it uses a special free-list of extended directory structures that

are initialized when the kernel boots the machine. The assembly-
language version also takes advantage of a feature of Alewife’s
directory that eliminates the need for a hash table lookup.

4.2 Comparing the implementations

The primary difference between the performance of the two imple-
mentations of the protocol extension software is the amount of time
that it takes to process a protocol request. Table 1 gives the average
number of cycles required to process DirnH5SNB read and write
requests for both of the implementations. These software handling
latencies were measured by running the WORKER benchmark (de-
scribed in the next section) on a 16 node system. The latencies are
relatively independent of the number of nodes that read each mem-
ory block. In most cases, the hand-tuned version of the software
reduces the latency of protocol request handlers by about a factor
of two.

Readers C Assembly C Assembly
Per Read Read Write Write

Block Request Request Request Request
8 436 162 726 375

12 397 141 714 393
16 386 138 797 420

Table 1: Average software extension latencies for C and for as-
sembly language, in execution cycles.

These latencies may be understood better by analyzing the num-
ber of cycles spent on each activity required to extend a protocol in
software. Table 2 accounts for all of the cycles spent in a read and
a write request from both versions of the protocol software. These
counts come from cycle-by-cycle traces of read and write requests
with eight readers and one writer per memory block. In order to
select a representative individual from each sample, we choose a
median request of each type (as opposed to the average, which we
use above to summarize aggregate behavior).

The dispatch and trap return activities are standard sequences
of code that invoke hardware exception and interrupt handlers and
allow them to return to user code, respectively. (The dispatch
activity does not include the three cycles that Sparcle takes to flush
its pipeline and to load the first trap instruction.) In the assembly-
language version, these sequences are streamlined to invoke the
protocol software as quickly as possible. The C implementation of
the software requires an extra protocol-specific dispatch in order
to set up the C environment and hide the details of the Alewife
hardware. For the types of protocol requests that occur when
running the WORKER benchmark, this extra overhead does not
significantly impact performance. The extra code in the C version
that supports the non-Alewife protocols implemented only in the
simulator also impacted performance minimally.

The difference between the performance of the C and assembly-
language protocol handlers lies in the flexibility of the C interface.
The assembly-language version avoided most of the expense of
memory management and hash table administration by implement-
ing a special-purpose solution to the directory structure allocation
and lookup problem. This solution relies heavily on the format

5

C Assembly C Assembly
Activity Read Read Write Write

Request Request Request Request
trap dispatch 11 11 9 11
system message dispatch 14 15 14 15
protocol-specific dispatch 10 N/A 10 N/A
decode and modify hardware directory 22 17 52 40
save state for function calls 24 N/A 17 N/A
memory management 60 65 28 11
hash table administration 80 N/A 74 N/A
store pointers into extended directory 235 74 99 45
invalidation lookup and transmit N/A N/A 419 251
support for non-Alewife protocols 10 N/A 6 N/A
trap return 14 11 9 11
total (median latency) 480 193 737 384

Table 2: Breakdown of execution cycles measured from median-latency read and write requests. Each memory block has 8 readers and 1
writer. N/A stands for not applicable.

of Alewife’s coherence directory and is not robust in the context
of a system that runs a large number of different applications over
a long period of time. However, it does place a minimum bound
on the time required to perform these tasks. As the Alewife sys-
tem evolves, critical pieces of the protocol extension software that
are implemented under the flexible interface will be hand-tuned to
realize the best of both worlds.

5 Worker sets and performance

A worker set is defined to be the set of nodes that simultaneously
access a unit of data. The software-extension approach is predicated
on the observation that, for a large class of applications, most
worker sets are relatively small. Small worker sets are handled in
hardware by a limited directory structure. Memory blocks with
large worker sets must be handled in software, at the expense of
longer memory access latency and processor cycles that are spent
on protocol handlers rather than on user code.

This section uses a synthetic benchmark to investigate the rela-
tionship between an application’s worker sets and the performance
of software-extended coherence protocols. The benchmark, called
WORKER, uses a data structure that creates memory blocks with
an exact worker set size. WORKER consists of an initialization
phase that builds the worker set data structure and a number of
iterations that perform repeated memory accesses to the structure.

The nodes begin each iteration by reading the appropriate slots in
the worker set structure. After the reads, they execute a barrier and
then perform the writes to the structure. Finally, the nodes execute
a barrier and continue with the next iteration. Every read request
causes a cache miss and every write request causes a directory
protocol to send exactly one invalidation message to each reader.
This completely deterministic memory access pattern provides a
controlled experiment for comparing the performance of different
protocols.

In order to analyze the relationship between worker set sizes and
the performance of software-extended shared memory, we perform

�

�

�

�

�

	

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 Worker Set Size

 P
er

fo
rm

an
ce

 c
o

m
p

ar
ed

 t
o

 f
u

ll-
m

ap

 DirnHNBS-
 DirnH8SNB
 DirnH5SNB
 DirnH2SNB
 DirnH1SNB
 DirnH1SNB,LACK
 DirnH1SNB,ACK
 DirnH0SNB,ACK

� � � � � � � � �

� � �

� �

� � � �

� �

�

�

� �
� � �

�

�

�

�
�

�
� � �

�

� �
� � � � � �

	
	 	

	 	 	 	 	 	

Figure 2: Protocol performance and worker set size.

simulations of WORKER running on a range of protocols. The
simulations are restricted to a relatively small system because the
benchmark is both regular and completely distributed, so the results
would not be qualitatively different for a larger number of nodes.

Figure 2 presents the results of a series of 16 node simulations.
The horizontal axis gives the size of the worker sets generated by the
benchmark. The vertical axis measures the ratio of the run-time of
each protocol and the run-time of a full-map protocol (DirnHNBS

�

)
running the same benchmark configuration.

The solid curves in Figure 2 indicate the performance of some
of the protocols that are implemented in the actual Alewife ma-
chine. As expected, the more hardware pointers, the better the
performance of the software-extended system. The performance
of DirnH5SNB is particularly easy to interpret: its performance is

6

exactly the same as the full-map protocol up to a worker set size
of 4, because the worker sets fit entirely within the hardware direc-
tory. For small worker set sizes, software is never invoked. The
performance of DirnH5SNB drops as the worker set size grows, due
to the expense of handling memory requests in software.

At the other end of the performance scale, the DirnH0SNB,ACK
protocol performs significantly worse than the other protocols, for
all worker set sizes. Since WORKER is a shared memory stress
test and exaggerates the differences between the protocols, Figure 2
shows the worst possible performance of the software-only direc-
tory. The measurements in the next section, which experiment with
more realistic applications, yield a more optimistic outlook for the
zero and one-pointer protocols.

The dashed curves correspond to one-pointer protocols that run
only in the simulation environment. These three protocols dif-
fer only in the way that they handle acknowledgment messages
(see Section 2.4). For all non-trivial worker set sizes, the proto-
col that traps on every acknowledgmentmessage (DirnH1SNB,ACK)
performs significantly worse than the protocols that can count ac-
knowledgments in hardware. DirnH1SNB , which never traps on
acknowledgment messages, has very similar performance to the
DirnH2SNB protocol, except when running with size 1 worker sets.
Since this version of DirnH1SNB requires the same amount of di-
rectory storage as DirnH2SNB, the similarity in performance is not
surprising.

Of the three different one-pointer protocols, the protocol that
traps only on the last acknowledgment message in a sequence
(DirnH1SNB,LACK) makes the most cost-efficient use of the hard-
ware pointers. This efficiency comes at a slight performance cost.
For the WORKER benchmark, this protocol performs between 0%
and 50% worse than DirnH1SNB. When the worker set size is
4 nodes, DirnH1SNB,LACK actually performs slightly better than
DirnH1SNB . This anomaly is due to a memory-usage optimization
that attempts to reduce the size of the software-extended directory
when handling small worker sets. The optimization, implemented
in the DirnH1SNB,LACK , DirnH1SNB,ACK and DirnH0SNB,ACK pro-
tocols, improves the run-time performance of all three protocols
for worker set sizes of 4 or less.

6 Application case studies

This section presents more practical case-studies of several pro-
grams and investigates how the performance of applications de-
pends on memory access patterns, the coherence protocol, and
other machine parameters.

The names and characteristics of the applications we analyze
are given by Table 3. They are written in C, Mul-T[18] (a parallel
dialect of LISP), and Semi-C[15] (a language akin to C with sup-
port for fine-grain parallelism). Each application (except MP3D) is
studied with a problem size that realizes more than 50% processor
utilization on a simulated 64 node machine with a full-map direc-
tory. All performance results use protocols implemented with the
flexible coherence interface described in Section 4.

Figure 4 presents the basic performance data for the applications
running on 64 nodes. The horizontal axis shows the number of di-
rectory pointers implemented in hardware, thereby measuring the
cost of the system. The vertical axis shows the speedup of the mul-

Name Language Size Sequential
TSP Mul-T 10 city tour 1.1 sec
AQ Semi-C see text 0.9 sec

SMGRID Mul-T 129� 129 3.0 sec
EVOLVE Mul-T 12 dimensions 1.3 sec

MP3D C 10,000 particles 0.6 sec
WATER C 64 molecules 2.6 sec

Table 3: Characteristics of applications. Sequential time assumes
a clock speed of 33MHz.

 normal ifetch, no victim caching
 normal ifetch, victim caching
 perfect ifetch, no victim caching

||0

|8

|16

|24

|32

|40

|48

|56

|64

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 64

Figure 3: TSP: detailed 64 node performance analysis.

tiprocessor execution over a sequential run without multiprocessor
overhead. The software-only directory is always on the left and the
full-map directory on the right. All of the figures in this section
show DirnH1SNB,ACK performance for the one-pointer protocol.

The most important observation is that the performance of
DirnH5SNB is always between 71% and 100% of the performance
of DirnHNBS

�

. Thus, the data in Figure 4 provides strong evi-
dence that the software extension approach is a viable alternative
for implementing a shared memory system. The rest of this section
seeks to provide a more detailed understanding of the performance
of software-extended systems.

Traveling Salesman Problem TSP solves the traveling sales-
man problem using a branch-and-boundgraph search. The applica-
tion is written in Mul-T and uses the future construct to specify
parallelism. In order to ensure that the amount of work performed
by the application is deterministic, we seed the best path value
with the optimal path. Given the characteristics of the application’s
memory accesspattern, one would expect TSP to perform well with
a software-extended protocol: the application has very few large
worker sets. In fact, most – but not all – of the worker sets are small
sets of nodes that concurrently access partial tours.

Figure 3 presents detailed performance data for TSP running
on a 64 node machine. Contrary to our expectations, TSP suffers
severe performance degradation when running with the software-
extended protocols. The gray bars in the figure show that the
five-pointer protocol performs more that 3 times worse than the full-
map protocol. This performance decrease is due to instruction/data
thrashing in Alewife’s combined, direct-map caches: When we
profiled the address reference pattern of the application, we found

7

||0

|8

|16

|24

|32

|40

|48

|56

|64

 (a) Traveling Salesman Problem (TSP)

0 1 2 5 64
||0

|8

|16

|24

|32

|40

|48

|56

|64

 (b) Adaptive Quadrature (AQ)

0 1 2 5 64
||0

|8

|16

|24

|32

|40

|48

|56

|64

 (c) Static Multigrid (SMGRID)

0 1 2 5 64

||0

|8

|16

|24

|32

|40

|48

|56

|64

 (d) Genome Evolution (EVOLVE)

0 1 2 5 64
||0

|8

|16

|24

|32

|40

|48

|56

|64

 (e) MP3D

0 1 2 5 64
||0

|8

|16

|24

|32

|40

|48

|56

|64

 (f) Water

0 1 2 5 64

Figure 4: Application speedups over sequential, running on 64 nodes. Horizontal axis shows number of hardware pointers. Vertical axis
shows speedup over sequential execution.

that two memory blocks that were shared by every node in the
system were constantly replaced in the cache by commonly run
instructions.

In order to confirm this observation, we invoked a simulator op-
tion that allows one-cycle access to every instruction without using
the cache. This option, called perfect ifetch, eliminates the effects
of instructions on the memory system. The hashed bars in Figure 3
confirm that instruction/data thrashing was a serious problem in the
initial runs. Absent the effects of instructions, all of the protocols
except the software-only directory realize performance equivalent
(within experimental error) to a full-map protocol.

While perfect instruction fetching is not possible in real systems,
there are various methods for relieving instruction/data thrashing
by increasing the associativity of the cache system. Alewife’s
approach to the problem is to implement a version of victim
caching[16], which uses the transaction store[20] to provide a small
number of buffers for storing blocks that are evicted from the cache.
The black bars in Figures 4(a) and 3 show the performance for TSP
on a system with victim caching enabled. The few extra buffers
improve the performance of the full-map protocol by 16%, and
allow all of the protocols with hardware pointers to perform about
as well as full-map. For this reason, the studies of all of the other
applications in this section enable victim-caching by default.

It is interesting to note that DirnH0SNB,ACK with victim caching
achieves almost 70% of the performance of DirnHNBS

�

. This low-
cost alternative seems viable for applications with limited amounts
of sharing.

Thus far, we have compared the performance of the protocols
under an environment where the full-map protocol achieves close
to maximum speedup. On an application that requires only 1
second to run, the system with victim caching achieves a speedup
of about 55 for the 5 pointer protocol. In order to investigate the
effects of running an application with suboptimal speedups, we
ran the same problem size on a 256 node machine with victim
caching enabled. Figure 5 shows the results, which indicate a
speedup of 142 for full-map and 134 for five-pointers. We consider
these speedups remarkable for this problem size and note that the
software-extended system performs only 6% worse than full-map in
this configuration. The difference in performance is due primarily
to the increased contribution of the transient effects over distributing
data to 256 nodes at the beginning of the run.

Adaptive Quadrature AQ performs numerical integration of
bivariate functions using adaptive quadrature. The core of the
algorithm is a function that integrates the range under a curve by
recursively calling itself to integrate sub-ranges of that range. The
function used for this study is x4y4, which is integrated over the
square ((0;0); (2; 2)) with an error tolerance of 0.005.

Since all of the communication in the application is producer-
consumer, we expect this application to perform equally well for all
protocols that implement at least one directory pointer in hardware.
Figure 4(b) confirms this expectation by showing the performance
of the application running on 64 nodes. Again, DirnH0SNB,ACK
performs respectably due to the favorable memory access patterns

8

||0

|20

|40

|60

|80

|100

|120

|140

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 256

Figure 5: TSP running on 256 nodes.

in the application.

Static Multigrid SMGRID uses the multigrid method to solve
elliptical partial differential equations[13]. The algorithm consists
of performing a series of Jacobi-style iterations on multiple grids
of varying granularities. The speedup over sequential is limited
by the fact that only a subset of nodes work during the relaxation
on the upper levels of the pyramid of grids. Furthermore, data is
more widely shared in this application than in either TSP or AQ.
The consequences of these two factors appear in Figure 4(c): the
absolute speedups are lower than either of the previous applications,
even though the sequential time is three times longer.

The larger worker set sizes of multigrid cause the performance
of the different protocols to separate. DirnH0SNB,ACK performs
more than three times worse than the full-map protocol. The others
range from 25% worse in the case of DirnH1SNB,ACK to 6% worse
in the case of DirnH5SNB.

Genome Evolution EVOLVE is a graph traversal algorithm for
simulating the evolution of genomes, which is reduced to the prob-
lem of traversing a hypercube and finding local and global maxima.
The application searches for a path from the initial conditions to a
local fitness maximum.

Of all of the applications in Figure 4, EVOLVE causes
DirnH5SNB to exhibit the worst performance degradation compared
to DirnHNBS

�

: the worker sets of EVOLVE seriously challenge a
software-extended system. Figure 6 shows the number of worker
sets of each size at the end of a 64 node run. Note that the vertical
axis is logarithmically scaled: there are almost 10,000 one-node
worker sets, while there are 25 worker sets of size 64. The sig-
nificant number of nontrivial worker sets implies that there should
be a sharp difference between protocols with different numbers of
pointers. The large worker sets sizes impact the 0 and 1 pointer
protocols most severely. Thus, EVOLVE provides a good example
of a program that can benefit from a system’s hardware directory
pointers.

MP3D The MP3D application is part of the SPLASH parallel
benchmark suite [31]. For our simulations, we use a problem size of
10,000 particles, turn the locking option off, and augment the stan-
dard p4 macros with Alewife’s parallel C library[25]. Since this
application is notorious for exhibiting low speedups [22], the results
in Figure 4(e) are encouraging: DirnHNBS

�

achieves a speedup of

|

0
|

8
|

16
|

24
|

32
|

40
|

48
|

56
|

64

|1

|10

|100

|1000

|10000

 Worker Set Size

 N
um

be
r

of
 M

em
or

y
B

lo
ck

s

Figure 6: Histogram of worker set sizes for EVOLVE, running on
64 nodes.

24 and DirnH5SNB realizes a speedupof 20. These speedupsare for
a relatively small problem size, and we expect absolute speedups
to increase with problem size.

The software-only directory exhibits the worst performance
(only 11% of the speedup of full-map) on MP3D. Thus, MP3D
provides another example of an application that can benefit from at
least a small number of hardware directory pointers.

Water The Water application, also from the SPLASH applica-
tion suite, is run with 64 molecules. In addition to the p4 macros,
this version of Water uses Alewife’s parallel C library for barriers
and reductions. Figure 4(f) shows that all of the software-extended
protocols provide good speedups for this tiny problem size. Once
again, the software-only directory offers almost 70% of the perfor-
mance of the full-map directory.

7 Enhancement opportunities

This paper uses a basic definition of software-extended coherent
shared memory in order to analyze the viability of the approach.
The DiriHXSY,A notation itself implies a straightforward software
directory extension. While this definition allows for a relatively
simple analysis technique, the true power of the software-extension
approach lies in deviating from the basic implementation. The
generality of the flexible coherence interface described in Section 4
provides a platform for experimenting with schemes that enhance
the performance and the functionality of the base protocols.

[9] suggests several extensions to the basic software such as a
FIFO lock data type. To date, the protocol extension software has
been used to implement a FIFO lock data type, stack overflow ex-
ceptions, and a fast barrier implementation. These enhancements
are aimed at providing efficient functions that improve the pro-
grammability of the machine. [9] also indicates that LimitLESS
software could be enhanced to improve the performance of nor-
mal shared memory variables, such as variables with large worker
sets. The following types of extensions give examples of current
research:

Program and compiler annotations Program annotations
allow a programmer to give the system information about the way
that an application interacts with shared memory. [14] and [34]
propose and evaluate this method for improving the performance

9

of software-extended shared memory. The studies show that given
appropriate annotations, a large class of applications can perform
well on Dir1H1SB,LACK. [24] demonstrates a compiler annotation
scheme for optimizing the performance of protocols that dynami-
cally allocate directory pointers.

Dynamic detection [12] and [27] propose a hardware mecha-
nism that dynamically adapts to migratory data. Protocol extension
software could perform similar optimizations. In addition, there
are some classes of data that create severe performance bottlenecks.
These classes tend to be the result of a simplistic programming style
or a performance bug. Examples of these widely-shared data struc-
tures include synchronization objects,work queues, and frequently-
written global objects. Preliminary results from our experiments
show that protocol extension software may improve performance
for this type of data by dynamically selecting sequential or parallel
invalidation procedures.

Profile, detect, and optimize Some types of data do not create
serious performance bottlenecks,but can benefit from optimization.
An example of this class of data is widely-shared, read-only data.
During the developmentphase of an application, enhancedprotocol
software could be used in a profiling mode to detect the existence of
read-only data. The system could use the information to optimize
the production version of the application.

Data specific Some types of data might be hard to optimize
automatically, either dynamically or statically. In this case, a user
could select special coherence types from a library, or even write
an application-specific protocol under the flexible coherence inter-
face.

8 Conclusions

The software extension approach offers a cost-efficient method
for implementing scalable, coherent, high-performance shared-
memory. Experience with the design of such a system shows
that a minimum of one directory pointer and an acknowledgment
counter should be implemented in hardware. Since all of the proto-
cols that implement small numbers of hardware directory pointers
have similar performance, factors such as the cost and mapping
of each node’s DRAM will dominate performance considerations
when building a software-extended system.

The hardware components of a software-extended system must
be tuned carefully to achieve high performance. Since the software-
extended approach increases the penalty of cache misses, thrashing
situations cause particular concern. Adding extra associativity to
the processor side of the memory system, by implementing vic-
tim caches or by building set-associative caches, can dramatically
decrease the effects of thrashing on the system as a whole.

Experiments with the implementation of protocol software indi-
cate that such systems should include a flexible coherence interface
that facilitates the implementation of specialized protocols. Such
protocols could enhance the basic protocol software to improve both
the programmability of machines and the performance of shared
memory.

Acknowledgments

The research reported in this paper would not have happened with-
out the support of the members of the Alewife group at MIT. John
Kubiatowicz designed and implemented Alewife’s CMMU, which
is the heart of the LimitLESS system. David Kranz and Beng-Hong
Lim wrote much of Alewife’s run-time system, parts of NWO,
and helped debug the protocol extension software. John Piscitello
wrote an early version of the DirNH0SNB,ACK protocol. Beng-Hong
Lim’s efforts made the benchmarks (written by Kirk Johnson, Dan
Nussbaum, and Anshu Aggarwal) available for this paper.

Kirk Johnson wrote and stabilized NWOP, the CM-5 version
of NWO. We would like to thank Alan Mainwaring, Dave Dou-
glas, and Thinking Machines Corporation for their generosity and
assistance in porting our simulation system to the CM-5. Addi-
tional thanks to Thinking Machines Corporation (especially the
folks who maintain the in-house machines) for allowing us to use
many late-night CM-5 cycles during the results-generation phase
of this research.

Dana Henry, Kirk Johnson, Steve Keckler, Michael Noakes,
and the anonymous referees gave helpful comments during the
production of this paper.

This research has been supported by NSF grant # MIP-9012773,
ARPA grant #N00014-91-J-1698, and a NSF Presidential Young
Investigator Award.

References

[1] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong
Lim, Donald Yeung, Godfrey D’Souza, and Mike Parkin.
Sparcle: An Evolutionary Processor Design for Multiproces-
sors. IEEE Micro, 13(3):48–61, June 1993.

[2] Anant Agarwal, Richard Simoni, John Hennessy, and Mark
Horowitz. An Evaluation of Directory Schemes for Cache
Coherence. In Proceedings of the 15th International Sympo-
sium on Computer Architecture, pages 280–289, New York,
June 1988. IEEE.

[3] A. Agarwal et al. The MIT Alewife Machine: A Large-
Scale Distributed-Memory Multiprocessor. In Proceedings
of Workshop on Scalable Shared Memory Multiprocessors.
Kluwer Academic Publishers, 1991.

[4] Henri E. Bal and M. Frans Kaashoek. Object Distribution
in Orca using Compile-Time and Run-Time Techniques. In
Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’93).,
September 1993.

[5] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Saw-
don. The Midway Distributed Shared Memory System. In
Proceedingsof the 38th IEEE Computer Society International
Conference (COMPCON’93), pages 528–537. IEEE, Febru-
ary 1993.

[6] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Im-
plementation and Performance of MUNIN. In Proceedings of
the 13th ACM Symposium on Operating Systems Principles,
pages 152–164, October 1991.

10

[7] Lucien M. Censier and Paul Feautrier. A New Solution to Co-
herence Problems in Multicache Systems. IEEE Transactions
on Computers, C-27(12):1112–1118, December 1978.

[8] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant
Agarwal. Directory-Based Cache-Coherence in Large-Scale
Multiprocessors. IEEE Computer, 23(6):41–58, June 1990.

[9] David Chaiken, John Kubiatowicz, and Anant Agarwal. Lim-
itLESS Directories: A Scalable Cache Coherence Scheme.
In Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS IV), pages 224–234. ACM, April 1991.

[10] David R. Cheriton, Gert A. Slavenberg, and Patrick D. Boyle.
Software-Controlled Caches in the VMP Multiprocessor. In
Proceedings of the 13th Annual Symposium on Computer
Architecture, pages 367–374, New York, June 1986. IEEE.

[11] A. Cox and R. Fowler. The Implementation of a Coherent
Memory Abstraction on a NUMA Multiprocessor: Experi-
ences with PLATINUM. In Proceedings of the 12th ACM
Symposium on Operating Systems Principles, pages 32–44,
December 1989. Also as a Univ. Rochester TR-263, May
1989.

[12] Alan L. Cox and Robert J. Fowler. Adaptive Cache Coher-
ence for Detecting Migratory Shared Data. In Proceedings of
the 20th Annual Symposium on Computer Architecture 1993,
New York, May 1993. ACM.

[13] W. Hackbusch, editor. Multigrid Methods and Applications.
Springer-Verlag, Berlin, 1985.

[14] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and
David A. Wood. Cooperative Shared Memory: Software and
Hardware for Scalable Multiprocessors. In Fifth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS V), pages 262–273,
Boston, October 1992. ACM.

[15] Kirk Johnson. Semi-C Reference Manual. ALEWIFE Memo
No. 20, Laboratory for Computer Science, Massachusetts In-
stitute of Technology, August 1991.

[16] N.P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers. In Proceedings, International Symposium
on Computer Architecture ’90, pages 364–373, June 1990.

[17] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatow-
icz, and Beng-Hong Lim. Integrating Message-Passing and
Shared-Memory; Early Experience. In Practice and Princi-
ples of Parallel Programming (PPoPP) 1993, pages 54–63,
San Diego, CA, May 1993. ACM. Also as MIT/LCS TM-478,
January 1993.

[18] David A. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-
Performance Parallel Lisp. In Proceedings of SIGPLAN ’89,
Symposium on Programming Languages Design and Imple-
mentation, June 1989.

[19] John Kubiatowicz and Anant Agarwal.Anatomy of a Message
in the Alewife Multiprocessor. In Proceedings of the Interna-
tional SupercomputingConference(ISC) 1993, Tokyo, Japan,
July 1993. IEEE. Also as MIT/LCS TM, December 1992.

[20] John Kubiatowicz, David Chaiken, and Anant Agarwal. Clos-
ing the Window of Vulnerability in Multiphase Memory

Transactions. In Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS V), pages 274–284, Boston, October 1992.
ACM.

[21] D. Lenoski, J. Laudon,K. Gharachorloo,W. Weber, A. Gupta,
J. Hennessy, M. Horowitz, and M. Lam. The Stanford Dash
Multiprocessor. IEEE Computer, 25(3):63–79, March 1992.

[22] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens,
A. Gupta, and J. Hennessy. The DASH Prototype: Logic
Overhead and Performance. IEEE Transactions on Parallel
and Distributed Systems, 4(1):41–60, January 1993.

[23] Kai Li. IVY: A Shared Virtual Memory System for Parallel
Computing. In International Conference on Parallel Com-
puting, pages 94–101, 1988.

[24] David J. Lilja and Pen-Chung Yew. Improving Memory Uti-
lization in Cache Coherence Directories. IEEE Transactions
on Parallel and Distributed Systems, 4(10):1130–1146, Oc-
tober 1993.

[25] Beng-Hong Lim. Functions for Parallel C on the Alewife
System. ALEWIFE Memo No. 37, Laboratory for Computer
Science, Massachusetts Institute of Technology, November
1993.

[26] Brian W. O’Krafka and A. Richard Newton. An Empirical
Evaluation of Two Memory-Efficient Directory Methods. In
Proceedings 17th Annual International Symposium on Com-
puter Architecture, pages 138–147, New York, June 1990.
IEEE.

[27] Per Stenström, Mats Brorsson, and Lars Sandberg. An Adap-
tive Cache Coherence Protocol Optimized for Migratory Shar-
ing. In Proceedings of the 20th Annual Symposium on Com-
puter Architecture 1993, New York, May 1993. ACM.

[28] John D. Piscitello. A Software Cache Coherence Protocol
for Alewife. Master’s thesis, MIT, Department of Electrical
Engineering and Computer Science, May 1993.

[29] Charles L. Seitz. Concurrent VLSI Architectures. IEEE
Transactions on Computers,C-33(12):1247–1265,December
1984.

[30] Richard Simoni and Mark Horowitz. Dynamic Pointer Al-
location for Scalable Cache Coherence Directories. In Pro-
ceedings International Symposium on Shared Memory Multi-
processing, Japan, April 1991. IPS Press.

[31] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Technical Report
CSL-TR-92-526, Stanford University, June 1992.

[32] Wolf-Dietrich Weber and Anoop Gupta. Analysis of Cache
Invalidation Patterns in Multiprocessors. In Third Interna-
tional Conferenceon Architectural Support for Programming
Languagesand Operating Systems (ASPLOS III), April 1989.

[33] David A. Wood. Private Communication, October 1993.

[34] David A. Wood, Satish Chandra, Babak Falsafi, Mark D.
Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis,
Shubhendu S. Mukherjee,Subbarao Palacharla,and Steven K.
Reinhardt. Mechanisms for Cooperative Shared Memory. In
In Proceedings of the 20th Annual International Symposium
on Computer Architecture 1993, pages 156–167, San Diego,
CA, May 1993. ACM.

11

