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Abstract

Through analysis and experiments, this paper investigates two-phase waiting algorithms to
minimize the cost of waiting for synchronization in large-scale multiprocessors. In a two-phase
algorithm, a thread �rst waits by polling a synchronization variable. If the cost of polling reaches
a limit Lpoll and further waiting is necessary, the thread is blocked, incurring an additional �xed
cost, B. The choice of Lpoll is a critical determinant of the performance of two-phase algorithms.
We focus on methods for statically determining Lpoll because the run-time overhead of dynam-
ically determining Lpoll can be comparable to the cost of blocking in large-scale multiprocessor
systems with lightweight threads.

Our experiments show that always-block (Lpoll = 0) is a good waiting algorithm with perfor-
mance that is usually close to the best of the algorithms compared. We show that even better
performance can be achieved with a static choice of Lpoll based on knowledge of likely wait-
time distributions. Motivated by the observation that di�erent synchronization types exhibit
di�erent wait-time distributions, we prove that a static choice of Lpoll can yield close to optimal
on-line performance against an adversary that is restricted to choosing wait times from a �xed
family of probability distributions. This result allows us to make an optimal static choice of
Lpoll based on synchronization type. For exponentially distributed wait times, we prove that
setting Lpoll = ln(e� 1)B results in a waiting cost that is no more than e=(e� 1) times the cost
of an optimal o�-line algorithm. For uniformly distributed wait times, we prove that setting
Lpoll =

1

2
(
p
5� 1)B results in a waiting cost that is no more than (

p
5+ 1)=2 (the golden ratio)

times the cost of an optimal o�-line algorithm. Experimental measurements of several parallel
applications on the Alewife multiprocessor simulator corroborate our theoretical �ndings.

1 Introduction

Threads executing on a multiprocessor synchronize to ensure program correctness. As multipro-
cessors scale in size, the grain size of threads will decrease to satisfy higher parallelism require-
ments [10], causing a corresponding increase in synchronization rates and in the frequency of waits
due to synchronization. Waiting threads waste processor cycles and incur a cost that is related not
only to the wait times encountered but also to the e�ciency of the waiting algorithm.

This paper studies two-phase waiting algorithms for synchronization in large-scale multiproces-
sors, and compares them with traditional always-block and always-poll algorithms. We use expected
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waiting cost as a metric for comparing the algorithms. Waiting cost measures the e�ciency of a
waiting algorithm and refers to the processor cycles wasted by a thread while waiting. This cost
depends on several factors including the wait-time distribution and the waiting mechanisms used.
It however does not include the run-time overhead of the waiting algorithm itself.

Wait time is the interval from the instant a thread begins waiting on a synchronization condition
to the instant that synchronization condition is satis�ed. (The second instant is the earliest time
at which the waiting thread is allowed to proceed.) Wait times depend on the program and also on
the grain size of the threads and the size of the machine. In general, wait times are hard to predict
statically, justifying the need for on-line waiting algorithms.

A waiting mechanism is an action taken by a thread while waiting on a synchronization condi-
tion. Two fundamental types of waiting mechanisms are polling and signalling. With polling, the
waiting thread repeatedly probes a synchronization variable and proceeds when the variable attains
a desired value. With signalling, the waiting thread suspends execution and relinquishes control of
the processor until the synchronization condition is satis�ed. Traditionally, multiprocessors provide
spinning and blocking as mechanisms for polling and signalling respectively. Multithreaded multi-
processors, such as Alewife [3], additionally provide more e�cient polling and signalling mechanisms
called switch-spinning and switch-blocking, which will be described in Section 2.

A waiting algorithm chooses among available waiting mechanisms during synchronization faults.
A common waiting algorithm used in shared-memory multiprocessors is to always-spin. If the syn-
chronization condition is satis�ed in a short time, a spinning thread can proceed quickly. However,
retaining control of the processor while spinning creates a potential for deadlock. Another common
waiting algorithm is to always-block, which forces the waiting thread to surrender the processor {
usually an expensive operation { to another thread.

1.1 Spinning versus Blocking

Existing multiprocessors provide spinning and blocking as the only waiting mechanisms and rely
on the programmer to make the correct choice. This choice is critical to performance due to
potentially signi�cant di�erences between the waiting costs of spinning and blocking. The waiting
cost of spinning is equal to the wait time, t, measured in processor cycles. The waiting cost of
blocking, B, is the number of processor cycles wasted in unloading and suspending the waiting
thread, and then rescheduling and reloading it at a later time. Unloading a thread involves storing
its processor-resident state into memory and reloading a thread involves restoring the saved state
onto the processor.

Although it is apparent that spinning is appropriate when wait times are small relative to the
cost of blocking, it is hard to make a correct choice in the face of uncertain program behavior. Long
wait times hurt the performance of spinning. Furthermore, the programmer has to be responsible
for avoiding deadlocks. On the other hand, blocking can incur a signi�cant �xed cost for each
synchronization fault because of the need to save and restore processor state.1

Without a priori knowledge of wait times, a more sophisticated algorithm is needed to select
appropriate waiting mechanisms at run-time. An algorithm that combines the advantages of polling
and signalling is the two-phase waiting algorithm, �rst suggested by Ousterhout [25]. In a two-

1As anecdotal evidence, blocking was tried as a performance enhancer for a system routine in the DYNIX operating
system for the Sequent multiprocessor, unexpectedly causing bad performance under certain conditions. This fact
was subsequently used in an advertising campaign by a competitor. See [32].
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phase waiting algorithm, a waiting thread �rst polls a synchronization variable until the cost of
polling reaches a limit Lpoll. If further waiting is necessary at the end of the polling phase, the
thread resorts to a signalling mechanism for waiting, incurring a �xed cost B. Thus, for short wait
times, the waiting thread can proceed without incurring the overhead of a signalling mechanism.

The choice of Lpoll is key to the performance of two-phase waiting algorithms. In a sense,
two-phase waiting is a generalization of the always-spin and always-block algorithms: it introduces
a continuum of choices between always-block (Lpoll = 0) and always-spin (Lpoll = 1). Thus, the
problem of deciding the value of Lpoll in a two-phase algorithm replaces the the problem of deciding
whether to poll or to signal.

The choice of Lpoll can be made statically at compile time, or dynamically at run-time. In
this paper, we focus on static methods for determining Lpoll to minimize run-time overhead. (This
run-time overhead is not to be confused with waiting cost.) Minimizing the run-time overhead of
the waiting algorithm is crucial in large-scale multiprocessors that necessarily support lightweight
threads. In such systems, the run-time overhead of dynamic methods can be comparable to blocking
overheads. Noteworthy static choices for Lpoll explored in this paper are 0, 0:54B, 0:62B, B, and
1. Section 4 will analyze the relative performance of these di�erent static choices and show that
we can use readily available knowledge of synchronization types and their expected wait times to
guide our choice.

1.2 Contributions of this Work

While two-phase waiting itself is not a new idea, and has been previously studied both analytically
and empirically, this work provides new results by considering practical aspects of a large-scale
parallel machine environment. It extends earlier work in signi�cant ways by combining analysis
and experimentation.

Previous empirical work [18] focused on waiting for spin-locks on small-scale bus-based machines.
The empirical work here considers multiple types of synchronization in the context of a large-scale
distributed-memory machine with the following characteristics:

� Longer communication latencies in large multiprocessor systems, which impact the e�ective-
ness of polling as a waiting mechanism.

� Run-time systems that are optimized for lightweight thread management resulting in low
blocking overheads. This makes blocking an e�ective waiting mechanism. When blocking
overhead is low, two-phase algorithms are useful only if their run-time overhead is negligible.

� Processor architectures providing e�cient support for synchronization in the form of stream-
lined trap interfaces for detecting synchronization faults, and multiple hardware contexts to
support switch-spinning as an alternative to spinning.

� Use of a variety of scalable synchronization types typically found in large-scale multipro-
cessor application codes, including distributed barriers, �ne-grain producer-consumer data-
structures, and distributed locks. These allow the expression and e�cient execution of �ne-
grain parallelism and lead to more frequent synchronization operations and shorter wait times
compared to programs on small-scale machines that use less scalable synchronization methods.

In previous analytical work, Karlin et al. [19] present an e�cient randomized waiting algorithm
that achieves an optimal on-line competitive factor of e=(e � 1) against a weak adversary. (See
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Section 4 for a de�nition of competitive factors, adversaries and optimality.) We prove in this paper
that if we restrict the adversary by �xing the wait time distribution and allowing it to control only
the parameters of the distribution { a reasonable practical assumption { a static choice of Lpoll can
also approach optimal on-line competitive factors against this restricted adversary.

Based on analysis and practical considerations, we explore the idea of predicting wait time dis-
tributions based on synchronization type and then linking the choice of Lpoll to the synchronization
type, a decision that can be easily made by a compiler. In other words, we expect each synchro-
nization type to have a characteristic wait-time distribution, knowledge of which allows informed
static choices for Lpoll.

Under the assumption of Poisson arrivals of synchronizing threads, we show that the exponential
and uniform distributions are reasonable models of wait times for producer-consumer and barrier
synchronization respectively. These distributions are also applicable to wait times for mutual
exclusion locks under low contention. Empirical measurements of wait times for several parallel
applications using these synchronization types corroborate the models.

We prove that for exponentially distributed wait times, statically setting Lpoll to ln(e� 1)B �
0:54B yields an optimal on-line algorithm against a restricted adversary, and that no dynamic al-
gorithm can achieve better performance against this restricted adversary. Empirically, we observed
that setting Lpoll to 0:5B resulted in better performance for producer-consumer synchronization
than when Lpoll = B. We also prove that for uniformly distributed wait times, setting Lpoll to
1
2(
p
5 � 1)B � 0:62B yields an algorithm that is close to optimal. It is important to note that

because the optimality of these settings of Lpoll are independent of the actual parameters of the
distributions, they can be chosen statically.

When the wait-time distributions are not known a priori, this paper demonstrates through
experimental measurements of parallel applications that two-phase waiting with Lpoll set to B is a
robust algorithm under most circumstances. That is, the performance of two-phase waiting is either
the best, or close to the best, waiting algorithm compared to always-poll or always-block. These
measurements support our theoretically derived result that two-phase waiting (under exponentially-
distributed wait times) is never worse than both spinning or blocking used exclusively.

Empirical results con�rm the intuition that always-poll is an unacceptable waiting algorithm
when there are more threads than hardware contexts due to the potential for deadlock and the use
of non-preemptive scheduling in the experiments. On the other hand, always-block is found to be
generally e�cient, except in one case where wait times were mostly shorter than B.

This observation is contrary to results recently reported in [18], and is due to several factors. The
study in [18] is focused on waiting for mutual-exclusion locks on a small bus-based multiprocessor.
On such a machine, communication latencies are shorter than in network-based multiprocessors.
Moreover, the blocking overhead on their system is higher than on Alewife, and wait times for
mutual-exclusion locks are typically shorter than those for other synchronization types.

The rest of this paper is organized as follows. Sections 2 and 3 provide an in-depth discussion
of waiting mechanisms and algorithms. Section 4 presents a theoretical framework for making an
informed choice of Lpoll for two-phase waiting algorithms. Section 5 describes experiments carried
out to measure the performance of two-phase algorithms and to corroborate the theoretical results.
Section 6 presents and discusses the experimental results. Section 7 discusses related work and
Section 8 concludes the paper.
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2 Waiting Mechanisms

We describe in this section the implementation and the waiting costs of the following waiting
mechanisms: spinning, blocking, switch-spinning, and switch-blocking. The �rst two mechanisms
are commonly found in traditional multiprocessors, while the last two are additional mechanisms
provided by multithreaded multiprocessors. To provide �rmer grounding, we describe these mech-
anisms in the context of the MIT Alewife multiprocessor [3], a distributed-memory multiprocessor
supporting the shared-memory programming model. We begin with a brief overview of multithread-
ing.

Multithreading is commonly prescribed as a method for tolerating latencies and increasing pro-
cessor utilization in a large-scale multiprocessor. It accomplishes this by rapidly switching control
of the processor to a di�erent thread whenever a high latency operation is encountered. While
previous multithreaded designs switch contexts at every cycle [27, 12], Alewife's multithreaded pro-
cessor [2] switches contexts only on synchronization faults and remote cache misses. This style is
called block multithreading [20] and has the advantage of high single thread performance.

Since multithreading introduces novel methods for manipulating threads, we de�ne the following
terms to avoid ambiguity.

Hardware context { A set of registers that implements the processor-resident state of a thread.
A multithreaded processor has multiple hardware contexts to hold multiple threads at once.

Loading/Unloading { Loading a thread refers to the action of installing the state of a thread
into a hardware context on a processor, and unloading a thread refers to the complementary
action of saving the processor-resident state of a thread into memory.

Context switch { A transfer of processor control from a processor-resident thread to another
processor-resident thread in a multithreaded processor. This should not be confused with
traditional context switching, where the threads are unloaded and reloaded.

We now describe the waiting mechanisms and their associated waiting costs as a function of t,
the wait time.

Spinning A thread spin-waits by continuously reading the value of a memory location. In cache-
coherent multiprocessors such as Alewife, the spin location is cached locally to avoid network tra�c
while spinning. A change to the state of the memory location due to a write is communicated to
the waiting threads through the ensuing cache invalidations. Because cycles spent spinning are
wasted, the waiting cost of spinning for t cycles is equal to t.

Blocking Blocking a thread involves unloading it, and at a later time, reenabling and reloading it.
Thus, a blocked thread allows other threads to use the processor. On Alewife, the blocked thread is
placed on a software queue associated with the failed synchronization. When signalled to proceed,
the thread is reenabled and eventually rescheduled and reloaded. The waiting cost of blocking,
B, is the number of cycles needed to unload, reenable and reload a thread. The blocking routines
used in this study were empirically observed to cost approximately 500 cycles. See Section 6 for a
detailed breakdown of this cost and suggestions on how it can be further reduced. The experiments
assume B � 500 cycles.

Switch-Spinning On a multithreaded processor, a waiting thread can switch rapidly to another
processor-resident thread in a round-robin fashion, allowing the wait to be overlapped with useful
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Figure 1: Switch-Spinning { time line of three active contexts sharing a processor. A switch-
spinning thread occupies context 1 and its wait time is interleaved with executions of threads in
context 2 and context 3.

computation by other threads. Control eventually returns to the waiting thread and the synchro-
nization variable is re-polled. Switch-spinning is therefore a polling mechanism. Since other threads
are allowed to utilize the processor, this is a more e�cient polling mechanism than spinning.

We model the cost of switch-spinning for t cycles as t=�, where � is de�ned as the relative
e�ciency of switch-spinning over spinning. In other words, a switch-spinning thread that waits
for t cycles wastes only t=� processor cycles. The following analysis models the value of � in a
block-multithreaded processor.

Figure 1 illustrates a switch-spinning scenario with three hardware contexts. � depends on the
number of hardware contexts, N , the context switch overhead, C, and the run length. Let �x be
the mean run length. Run length is the time between the instant a thread starts executing on
the processor to the instant it encounters a context switch. Let R be the round-trip time, de�ned
as the time between successive context switches to the same switch-spinning thread. R can be
approximated by N(�x+ C). On Alewife, N = 4 and C = 12.

Suppose that a thread has to wait for t cycles. Control will return to the waiting thread d tRe
times before it can proceed. To simplify the analysis, assume that a switch-spinning thread also
has a mean run-length of �x so that the cost of waiting is increased by �x+C cycles each time control
returns to the waiting thread. (This overestimates the cost since polling the variable should require
fewer than �x cycles. However, we use this approximation for simplicity.) Therefore, the waiting
cost of switch-spinning for t cycles is approximately d tRe(�x+ C) cycles.

We can now approximate �. If t is shorter than R, then � = t=C. Hence, in this case, switch-
spinning is more e�cient than spinning if t > C. If t is long compared to the R, we can ignore the
ceiling operator and obtain � = N . This is commonly the case in our simulations. Thus switch-
spinning amortizes the cost of polling among the N contexts, an intuitively appealing result. Note
that if � = 1, the waiting costs of switch-spinning and spinning are identical.

Switch-Blocking Switch-blocking is a mechanism in which a waiting thread disables the hardware
context in which it is resident, in addition to switching to another processor-resident thread. As in
blocking, it then places itself on a queue associated with the failed synchronization. Further context
switches skip over the disabled context until the context is reenabled. Since there is no need to
load and unload threads, switch-blocking is a signalling mechanism with a very low �xed cost. In
Alewife, the cost of switch-blocking should be less than 100 cycles. The performance implications
of switch-blocking as a signalling mechanism is not studied in this paper.
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3 Waiting Algorithms

Waiting algorithms have at their disposal the waiting mechanisms provided by the multiprocessor.
It is the responsibility of the waiting algorithm to reduce the cost of waiting by judiciously selecting
among these waiting mechanisms. In this study, we will consider spinning, switch-spinning, and
blocking as available waiting mechanisms.

A choice of waiting mechanisms has to be made only if there are runnable threads to replace
a blocked thread. To facilitate discussion, let us say that a program is matched if the number of
concurrently runnable threads assigned to any processor never exceeds the number of hardware
contexts on that processor; otherwise the program is unmatched. Thus, an always-poll algorithm
should be used for matched programs since there are no other runnable threads to replace a blocked
thread. For multithreaded processors, switch-spinning should be used as the polling mechanism
since it has a lower cost than spinning.

However, parallel programs are commonly unmatched or consist of matched and unmatched
phases so that a choice between polling and signalling has to be made by the waiting algorithm.
This occurs in programs that spawn threads in a data dependent fashion, or when the run-time
system dynamically partitions the program, or when the machine is multiprogrammed.

3.1 Single-Phase Algorithms

The simplest algorithms use any one of the waiting mechanisms in isolation, leading to the following
algorithms: always-spin, always-switch-spin and always-block.

These single-phase algorithms rely on the correct choice to be made at program creation time.
As mentioned in Section 1, this choice depends on the waiting times that will be encountered.
Short wait times call for an always-poll algorithm and long wait times call for an always-block
algorithm. Deadlock is another factor that a�ects always-poll algorithms. If the program is un-
matched, polling admits the possibility of deadlock if non-preemptive scheduling is used. Although
timeouts and preemptive scheduling can be used to avoid deadlock, polling could still su�er from
poor performance.

What techniques might be used for making the right choice of single-phase algorithms? The
analytical results in Section 4 and the measurements in Section 6 suggest that program wait-time
pro�les and knowledge about the behavior of di�erent synchronization types are possible candidates.
Wait-time pro�les are useful if they are good indicators of wait times of future executions even with
possibly di�erent run-time conditions. Di�erent synchronization types have di�erent expected wait
times, e.g., barrier wait times are usually longer than mutual-exclusion lock wait times. Lastly,
compiler analysis could be used to estimate waiting times, e.g., in software combining tree barriers,
waits near or at the root of the tree are likely to be shorter.

3.2 Two-Phase Algorithms

The problem with single-phase algorithms is that an improper choice of these algorithms can lead
to poor performance and even to deadlock. In a study on the e�ect of data dependence and
multiprogramming on expected wait times, Zahorjan et al. [32] showed that wait times can be
highly dependent on run-time factors. They concluded that both sources of run-time uncertainty
can lead to sharply increased wait times in the case of barrier synchronization. Because uncertainty
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is even more prevalent in large-scale machines, it is imperative that a waiting algorithm perform
well in the face of uncertain wait times.

When the choice between polling and signalling cannot be made reliably at program creation
time or compile time, a two-phase waiting algorithm can be used to make a run-time choice by
splitting the wait between a polling phase and a subsequent signalling phase. A waiting thread
polls until the cost of polling exceeds Lpoll, after which a signalling mechanism is invoked. This
limit, de�ned as the polling cost limit, is most naturally expressed as some multiple, �, of the cost
of blocking, B. In other words, we represent

Lpoll = �B

If switch-spinning is used as the polling mechanism, the maximum length (in processor cycles)
of the polling phase is �Lpoll = ��B. The additional factor of � cycles that a switch-spinning
thread can a�ord to spend polling, given Lpoll, is due to the higher e�ciency of switch-spinning
over spinning.

Lpoll is an adjustable parameter of the two-phase algorithm and is an important determinant
of its performance. There are several methods for choosing it. Static two-phase waiting algorithms
�x Lpoll at program creation time. Randomized two-phase waiting algorithms randomly pick Lpoll
from a predetermined probability distribution for each wait at run-time. Adaptive two-phase waiting
algorithms dynamically maintain histories of wait times to help decide Lpoll.

3.2.1 Static Two-Phase Algorithms

This paper focuses on static two-phase algorithms because they have the lowest run-time overheads,
and because our theoretical results demonstrate that they can approach optimal on-line performance
with an informed static choice of Lpoll. Randomized and adaptive algorithms also approach optimal
on-line performance, but incur higher run-time overheads. Adaptive algorithms incur substantial
run-time overheads in large-scale machines with �ne-grained synchronization because they need
to maintain histories of wait times at each of the many synchronization locations. Furthermore,
they are not suitable for single-assignment synchronization types like I-structures [5] because of the
absence of wait time histories for the synchronization locations.

In using static two-phase algorithms, we have transformed the problem of choosing between
spinning and blocking to the problem of deciding the appropriate value for Lpoll. The advantage
gained in using two-phase algorithms, however, is that the choice of Lpoll is not as critical to
performance as the choice between always-spin and always-block: the worst-case performance of
two-phase algorithms can be bounded by a constant.

The same techniques described in Section 3.1 for choosing the correct single-phase algorithm can
also be used for deciding Lpoll in two-phase algorithms. If wait-time pro�les of previous program
runs are indicative of future wait times, then the pro�les can be used o�-line to determine the best
setting for Lpoll for future program runs.

The method explored in this paper is to choose Lpoll based on the knowledge of likely wait-time
distributions for di�erent synchronization types. In practice, we expect each synchronization type
to follow a characteristic wait-time distribution. Wait-time distributions for various synchonization
types are derived in Appendix A. Brie
y, if we assume Poisson arrivals of synchronizing threads,
then wait times for producer-consumer synchronization are exponentially distributed. Also, model-
ing a mutual-exclusion lock (mutex) as an M=M=1==M queue, wait times for mutexes can also be
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approximated by an exponential distribution when contention for the locks is low. In contrast, the
wait-time distribution for barrier synchronization approaches a uniform distribution under Poisson
arrivals of barrier participants. Because synchronization types are known at compile-time, we can
easily implement this method in a compiler to guide its static choice of Lpoll.

Section 4 will analyze the behavior of two-phase algorithms under exponentially distributed and
uniformly distributed wait times and prescribe static values for Lpoll that allow the algorithm to
approach optimal performance.

3.3 A Nomenclature for Two-Phase Algorithms

We propose the following nomenclature for two-phase waiting algorithms. Each name consists of
three components: <phase1>/<phase2>/<phase1 cost limit>, where

<phase1> is the waiting mechanism used during the �rst phase, and is either Ss for switch-spinning
or s for spinning.

<phase2> is the waiting mechanism used during the second phase, and is b for blocking.

<phase1 cost limit> speci�es the cost limit of the �rst phase as a multiple � of the waiting cost
of the second phase. In other words, if this component is �, and blocking is used for the
second phase, then Lpoll is �B. For the optimal o�-line algorithm, Opt is used instead.

When the value of a component is irrelevant to the algorithm, it is omitted. Under this nomen-
clature, the following abbreviations name the waiting algorithms considered in this paper.

s==1 { always-spin.
Ss==1 { always-switch-spin.
=b=0 { always-block.
s=b=� { two-phase spin/block with Lpoll = �B.
Ss=b=� { two-phase switch-spin/block with Lpoll = �B.
Ss=b=Opt { optimal o�-line using switch-spinning and blocking.

4 Analysis of Static Two-Phase Waiting Algorithms

In this section, we will model wait times and compare the waiting costs of various waiting algorithms
under those models. After brie
y reviewing competitive analysis, we derive waiting costs as a
function of wait-time distributions and the cost of the constituent waiting mechanisms. We then
analyze the expected performance of the waiting algorithms and derive optimal values for Lpoll
under exponential and uniform wait-time distributions. We show that two-phase waiting performs
robustly under exponentially distributed wait times. That is, its performance is never worse than
either always-block or always-spin used exclusively. Our analysis assumes that we can always �nd
a runnable thread to replace a blocked thread.

4.1 Competitive Analysis

We use competitive analysis to characterize the performance of the algorithms. A c-competitive
algorithm has a cost that is at most c times the cost of an optimal o�-line algorithm plus a �xed
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constant term, given a �xed input sequence. c is termed the competitive factor. An optimal o�-line
algorithm has complete a priori knowledge of wait times and is thus able to choose the correct
waiting mechanism at all times. An on-line algorithm is strongly competitive, and thus optimal, if
it possesses the smallest possible competitive factor.

The cost of a waiting algorithm depends on the sequence of wait times presented to it by an
adversary. Using terminology in [19], a strong adversary is one that chooses wait times in response
to previous choices of Lpoll by the waiting algorithm. A weak adversary is one that chooses wait
times without considering previous choices of Lpoll by the waiting algorithm.

We can easily achieve a 2-competitive waiting algorithm against a strong adversary by setting
Lpoll = B. When Lpoll = B, the worst possible scenario is to block after polling, incurring a cost
of 2B, when the optimal o�-line algorithm would have blocked immediately, incurring a cost B.
If we weaken the adversary and consider expected costs we can achieve lower competitive factors.
In [19], Karlin et al. present a dynamic, randomized two-phase waiting algorithm with an expected
competitive factor of e=(e � 1) � 1:58 and prove this factor to be optimal for on-line algorithms
against a weak adversary.

We show in this section that if we further weaken the adversary by �xing the wait time distri-
bution and allowing it to control only the parameters of the distribution, static two-phase waiting
can attain or approach Karlin et al.'s optimal competitive factor of e=(e � 1). Let us call such an
adversary a restricted adversary. We show that with exponentially or uniformly distributed wait
times, a static choice of Lpoll yields an e�cient algorithm against a restricted adversary. We further
show that with exponentially distributed wait times, the static algorithm with Lpoll = ln(e � 1)
performs as well as any dynamic algorithm against a restricted adversary.

4.2 Expected Waiting Costs

In the following analyses, we let f(t) be the probability density function (PDF) of wait times. f(t)
is nonzero only for t � 0. As previously de�ned, Lpoll is expressed as a multiple � of the cost of
blocking B. The cost of algorithm a is denoted Ca, and its expected cost is denoted E[Ca].

The following equation is the expected waiting cost for static two-phase waiting algorithms,
where switch-spinning is used for the �rst phase and blocking for the second. For spinning, simply
set � = 1.

E[CSs=b=�] =
Z ��B

0

t

�
f(t)dt+

Z
1

��B
(1 + �)Bf(t)dt (1)

The �rst integral is the contribution to the expected waiting cost due to the probability that
wait times are less than ��B cycles. In this case, the waiting cost is simply the cost of switch-
spinning, t=�. The second integral corresponds to the probability that the wait time is more than
��B cycles, where the waiting cost is Lpoll plus B. E[Cs=b=�] is easily derived by setting � to 1 in
equation 1. E[CSs==1] is derived by setting � to 1, and E[C=b=0] is derived by setting � to 0.

The following equation is the expected cost of an optimal o�-line algorithm that uses switch-
spinning and blocking, and is derived by observing that the optimal algorithm polls if t � �B, and
blocks otherwise.

E[CSs=b=Opt] =

Z �B

0

t

�
f(t)dt+

Z
1

�B
Bf(t)dt (2)
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4.3 Wait Time Distributions

The expected cost of a two-phase algorithm depends on the wait-time distribution, f(t), as described
in Equation 1. We will analyze the cost of static two-phase waiting, using the exponential and
uniform distributions as simple models of wait time distributions. Appendix A presents empirical
measurements of wait-time distributions that show that exponential and uniform distributions are
reasonable models. As future work, other wait-time distributions can be proposed and waiting
costs analyzed using the same framework.

Under common patterns of usage, we expect each synchronization type to have its own char-
acteristic wait-time distribution. We consider three types of synchronization: producer-consumer,
barrier, and mutual exclusion.

Producer-consumer synchronization is performed between one producer and one or more con-
sumers of the data produced.2 Examples of this type of synchronization include futures [13]
and I-structures [5].

Barrier synchronization ensures that all threads participating in a barrier have reached a point
in a program before proceeding.

Mutual-exclusion synchronization is used to provide exclusive access to data structures and
critical sections of code.

As motivation for the use of exponential and uniform wait-time distributions for these syn-
chronization types, we model the arrival of threads at synchronization points as generated by a
Poisson process and derive wait time models that are approximately exponential and uniform. The
Poisson assumption has been a useful approximation of the behavior of many complex systems,
and is usually necessary to make analysis tractable.

If we assume Poisson arrivals of producer threads, it follows that wait times for producer-
consumer synchronization are exponentially distributed. Appendix A derives wait-time models for
barrier and mutual-exclusion synchronization. The models indicate that wait times for barrier
synchronization can be approximated by a uniform distribution. Wait times at mutexes can be
modeled by either an exponential or uniform distribution, depending on the distribution of lock-
holding times.

4.4 Theoretical Analysis of Waiting Costs

We now have the equations necessary to compute the expected waiting costs of static two-phase
waiting algorithms. We will consider each synchronization type separately. For exponentially
distributed wait times, we will prove that

1. The performance of two-phase waiting always lies in between those of always-block and always-
spin.

2This is di�erent from another common form of producer-consumer synchronization where multiple producers and
consumers insert and remove items from a bu�er, and each producer produces an item for a single consumer. The
model for mutual-exclusion synchronization can be used to model waiting times for this form of producer-consumer
synchronization.
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2. When a restricted adversary chooses � (the arrival rate), the competitive factor of static two-
phase waiting has a lower bound of e=(e� 1). Furthermore, no dynamic algorithm can attain
a lower competitive factor. Recall that this competitive factor is also optimal for on-line
algorithms against weak adversaries.

3. A static value of ln(e� 1)B for Lpoll results in an algorithm that attains this lower bound of
e=(e� 1) against a restricted adversary.

We also state here and prove in Appendix B that for uniformly distributed wait times,

1. When a restricted adversary gets chooses the parameter of the uniform distribution, the
competitive factor of static two-phase waiting has a lower bound of (

p
5 + 1)=2 against this

adversary.

2. A static value of 1
2(
p
5�1)B for Lpoll results in an algorithm that attains this lower bound of

(
p
5+1)=2 against a restricted adversary. Furthermore, no other static choice of Lpoll attains

this competitive factor.

4.4.1 Producer-Consumer Synchronization

We model producer-consumer wait times distributions as exponential, i.e.,

f(t) = �e��t (3)

where � is the arrival rate of the producer.

From Equations 1{3, we derive the following expressions for the expected costs of always-switch-
spin (Ss==1), always-block (=b=0), static two-phase (Ss=b=�), and optimal o�-line (Ss=b=Opt). If
spinning is used instead of switch-spinning, simply set � = 1.

E[CSs==1] =
Z
1

0

t

�
�e��tdt =

1

��
(4)

E[C=b=0] = B (5)

E[CSs=b=�] =

Z ��B

0

t

�
�e��tdt+

Z
1

��B
(1 + �)B�e��tdt

=
1

��
(1� e����B) +Be����B (6)

E[CSs=b=Opt] =

Z �B

0

t

�
�e��tdt+

Z
1

�B
B�e��tdt

=
1

��
(1� e���B) (7)

Comparing the expected performance of Ss==1, =b=0 and Ss=b=� yields an interesting result.
We expect that when arrival rates are high, Ss==1 will perform better than =b=0, conversely, when
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arrival rates are low, =b=0 will perform better than Ss==1. The equations show that regardless of
the arrival rate and Lpoll the expected performance of static two-phase algorithms always falls in
between the performance of Ss==1 and =b=0. More formally,

Theorem 1 Under exponentially distributed wait times, the expected costs of the algorithms
Ss==1, =b=0, and Ss=b=� are ordered as

E[C=b=0] � E[CSs=b=�] � E[CSs==1] if ��B � 1

E[C=b=0] � E[CSs=b=�] � E[CSs==1] if ��B � 1

Proof: By inspection, E[C=b=0] � E[CSs==1] when ��B � 1 and E[C=b=0] � E[CSs==1] when
��B � 1. Comparing E[C=b=0] with E[CSs=b=�] yields

E[CSs=b=�] � E[C=b=0] , 1

��
(1� e����B) + Be����B � B

, ��B � 1:

Comparing E[CSs==1] with E[CSs=b=�] yields

E[CSs=b=�] � E[CSs==1] , 1

��
(1� e����B) + Be����B � 1

��

, ��B � 1

2

Empirical measurements (see Section 6) further indicate that two-phase algorithms are remark-
ably robust, and their performance is usually close to the better of Ss==1 and =b=0.

Next we observe that when ��B = 1, the costs of all three algorithms are equal to B. That
is, at this breakeven point where the arrival rate � = 1=�B, the choice of Lpoll does not a�ect the
expected cost of the two-phase algorithm. More formally,

Theorem 2 Under exponentially distributed wait times with ��B = 1, the competitive factor of
E[CSs=b=�] is e=(e� 1), regardless of the value of �.

Proof: When ��B = 1, we know from Theorem 1 that

E[C=b=0] = E[CSs=b=�] = E[CSs==1] = B

Therefore
E[CSs=b=�]

E[CSs=b=Opt]
=

��B

(1� e���B)
=

e

(e� 1)

2

This leads to the following corollary:

Corollary 1 There exists a lower bound of e=(e� 1) on the competitive factor of any two-phase
algorithm against strong, weak and restricted adversaries.
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Figure 2: Expected competitive factors under exponentially distributed wait times.

Proof: When the adversary picks exponentially distributed wait times with � = 1=(�B), regardless
of the choice of � and regardless of whether the choice is made statically or dynamically, Theorem
2 implies the waiting cost will be e=(e � 1) times that of an optimal o�-line algorithm. It follows
that one cannot construct a two-phase algorithm with a competitive factor lower than e=(e � 1).
This competitive factor matches the lower bound obtained in [19] against a weak adversary. 2

In light of this lower bound, the natural question to ask is whether a single static value for � can
attain this lower bound under exponentially distributed wait times. Surprisingly, the answer is yes,
and the following theorem prescribes a value of � that yields optimal performance for exponentially
distributed wait times.

Theorem 3 Under exponentially distributed wait times with � = ln(e� 1), the competitive factor
of two-phase waiting, E[CSs=b=�]=E[CSs=b=Opt], is at most e=(e� 1), regardless of the arrival rate,
�, of the distribution.

Proof: Set � = ln(e� 1) in the equation for E[CSs=b=�]=E[CSs=b=Opt]. This yields an equation for
the competitive factor for two-phase waiting as a function of �. Di�erentiate this equation with
respect to � to �nd the maximum. The resulting maximum competitive factor is e=(e � 1) at an
arrival rate of � = 1=�B. 2

These theorems are best illustrated by Figure 2. The �gure plots the competitive factor of static
two-phase waiting over an entire range of � and �. We see that the curves for �nite non-zero values
of � lie in between those of always switch-spin (� = 1) and always-block (� = 0), as indicated
by Theorem 1. We can also see that all the curves intersect at a competitive factor of e=(e � 1)
when � = 1=�B as indicated by Theorem 2. Lastly, we can see that the competitive factor is at
most e=(e � 1) when � = ln(e � 1), as indicated by Theorem 3. Since actual values of � are not
relied upon, this limit holds in the face of run-time uncertainty and feedback e�ects of the waiting
algorithm on the wait time as long as the wait-time distributions remain exponential.
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Figure 3: Expected competitive factors under wait times uniformly distributed between 0 and U .

These theorems imply that when wait times are exponential, we should choose our waiting
algorithm depending on knowledge of �. If we know that � < 1=�B, we should choose =b=0,
otherwise we should choose Ss==1. However, if we cannot reliably predict �, we should choose
Ss=b=0:54 to obtain the best competitive factor of 1.58.

4.4.2 Barrier Synchronization

A thread arriving at a barrier has to wait for the rest of the participants to arrive. To simplify the
analysis, we assume that barrier wait times are uniformly distributed between 0 and U . In Appendix
A, we argue that this is a reasonable model for barrier wait times. Repeating the analysis leading
to Theorems 1{3 for the case of uniform wait times, the following theorem is proved in Appendix
B and illustrated in Figure 3.

Theorem 4 Under uniformly distributed wait times from t = 0 to U , with � = (
p
5�1)=2 � 0:618,

the competitive factor of two-phase waiting, E[CSs=b=�]=E[CSs=b=Opt], is at most (
p
5+1)=2 � 1:618,

regardless of the parameter, U , of the distribution. Furthermore, if � 6= (
p
5 � 1)=2, then the

competitive factor under uniformly distributed wait times is larger than (
p
5 + 1)=2.

The results show that we should choose our waiting algorithm using our knowledge of U . If
we know that U > 2�B, we should choose =b=0, otherwise we should choose Ss==1. Therefore,
with accurate information about U the competitive factor is at most 4=3 as shown in Figure 3.
However, as observed by Zahorjan et al. [32], barrier wait times are highly dependent on run-time
factors making it hard to predict U . If we cannot reliably predict U , we should choose Ss=b=0:62
to obtain the best competitive factor of 1.62 (the golden ratio), as prescribed by Theorem 4, and as
illustrated in Figure 3. This is very close to the optimal on-line competitive factor of 1.58 against
weak adversaries.
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4.4.3 Mutual-Exclusion Locks

The wait time of a lock requester depends on the distribution of lock-holding times, and on whether
the mutex enforces some queueing discipline. We �rst consider the case where there is no queueing
discipline and waiters contend for the lock as soon as it is released. If lock-holding times are
exponential, then the wait time for a lock is also exponential and the analysis for exponential wait
times would apply.

If lock-holding times are �xed and deterministic, we have to di�erentiate between new waiters
and repeat waiters. New waiters are requesters that are fresh arrivals, and repeat waiters are
requesters that have recontended unsucessfully for the lock. Assuming reasonable lock contention,
in a large-scale system with a large number of potential lock requesters, we can assume that the
arrival of new waiters is Poisson. Thus the wait time for new waiters will be uniformly distributed
between 0 and the �xed lock-holding time, and the previous analysis for uniformly distributed wait
times would apply. The wait time for repeat waiters is simply the �xed lock-holding time and it
should be straightforward to decide whether to block repeat waiters.

Next, we consider the case where the mutex enforces some queueing discipline. In addition to
the lock holder, a waiter also has to wait for other waiters ahead of it in the queue. In Appendix A,
we propose a wait-time model based on M=M=1==M queues to predict the steady-state queue
lengths and derive the wait-time distributions. Unfortunately the model is su�ciently complex
that it does not lend itself to straightforward analysis, and we have not succeeded in arriving at a
simple approximation of the wait-time model as we did for barriers. We therefore leave a rigorous
analysis of this model for future research.

With some programmer/compiler e�ort, we could also use wait-time pro�les to determine the
optimal choice of Lpoll. Zahorjan et al. show that lock wait times are not signi�cantly a�ected by
run-time factors if lock holders are never descheduled. This allows wait-time pro�les to be accurate
predictors of future wait times. In [18], Karlin et al. found that a static two-phase algorithm, with
Lpoll based on wait-time pro�les of mutual-exclusion synchronization, had the best performance
among the algorithms they considered.

5 Experimental Framework

To show that static two-phase waiting algorithms work well in practice and to corroborate the
analysis of the previous section, we pro�led the executions of several benchmark programs using
various synchronization types on a simulator of the Alewife machine. This section overviews relevant
features of the Alewife system and gives a brief description of the programs.

Alewife is a distributed-memory multiprocessor that supports the shared-memory programming
abstraction. An Alewife node consists of a processor, a cache, a portion of distributed, globally-
shared memory, a memory controller, a 
oating-point coprocessor, and a network router. Nodes
are connected via a two-dimensional mesh network. The memory controller synthesizes a globally-
shared address space and maintains cache coherence using the LimitLESS directory protocol [9].

A description of Alewife's processor, Sparcle, can be found in [2]. Sparcle is designed to meet
several requirements signi�cant to multiprocessing: it tolerates latencies through block multithread-
ing, and it handles traps e�ciently through a rapid-trap-dispatch mechanism.

Sparcle has four hardware contexts so that multiple threads co-reside on a single processor.
Consequently, switching processor control among the processor-resident threads is accomplished
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rapidly. The experiments assume that context switches can be achieved in 12 cycles. With a
dedicated synchronization trap line, the trap mechanism can pass control to the appropriate trap
handler in 5 cycles. By default, context switching occurs in a round-robin fashion so that control
eventually returns to each resident thread.

5.1 Hardware Support for Synchronization

Alewife's primitive hardware mechanisms for synchronization are full/empty bits and e�cient
traps. As in the HEP[27], a full/empty bit is associated with each memory word and atomic
read/modify/write operations can be performed on the full/empty bit. read-and-empty atomi-
cally reads a memory word and simultaneously resets the associated full/empty bit. A full/empty
trap is generated by the memory controller and communicated to Sparcle if the word was previ-
ously reset. Conversely, write-and-fill atomically writes a memory word and sets the associated
full/empty bit. A full/empty trap is also generated if the word was already set.

A synchronization attempt succeeds if it does not generate a trap, and fails otherwise.
Full/empty bits allow e�cient implementation of many high level and �ne-grain synchronization
constructs. Because failures are signalled via traps, successful synchronizations are overhead-free.

Failed synchronizations rely on a trap handler to implement the waiting algorithm. The
full/empty trap handler must determine the synchronization type that caused the trap in order
to take appropriate action. In Alewife, the compiler communicates compile-time information about
the synchronization operation to the trap handler by using otherwise unused bits in the machine
instruction. The trap handler in Alewife examines these bits in the trapping instruction and thus
implements e�cient multiplexing of multiple traps on a single hardware trap signal.

5.2 Software Synchronization Constructs

The following synchronization constructs used in our benchmarks are supported by Alewife's soft-
ware system and rely on hardware full/empty bits and traps for e�ciency.

J-structures (Reusable I-structures) A J-structure is a data structure for producer-consumer-
style synchronization on vector elements which enables e�cient �ne-grain data-parallel computa-
tion. It is implemented as a vector with full/empty bits associated with each vector slot. A slot is
considered full if its full/empty bit is 1 and empty otherwise. A reader of a J-structure slot waits
until the slot is full before returning the value. A writer of a J-structure slot writes a value to the
slot, sets it to full, and releases all waiters for the slot. An empty vector slot doubles as the queue
pointer for waiting readers. An error is signalled if a write is attempted on a full slot. J-structures
can be used to implement I-structure [5] semantics.

We allow a J-structure slots to be reset. A reset empties the slot, permitting multiple assign-
ments. Reusing J-structure slots in this way allows e�cient cache performance. However, depending
on the application, the programmer is responsible for proper synchronization between readers and
resetters of a slot.

L-structures (Lock-able structures) Like J-structures, an L-structure is implemented as a
vector with full/empty bits associated with each vector slot. L-structures support 3 operations: a
locking read, an unlocking write, and a non-locking read. A locking read waits until a slot is full
before emptying the slot and returning the value. An unlocking write writes a value to an empty
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slot, and sets it to full, releasing any waiters. It is an error to perform an unlocking write to a full
slot. A non-locking read returns the value found in a slot if full; otherwise it returns an invalid
value.

An L-structure therefore allows mutually exclusive access to each of its slots. The locking and
unlocking L-structure reads and writes are su�cient to implement M-structures [7]. L-structures
are di�erent from M-structures in that they allow multiple non-locking readers.

Semaphores A semaphore is implemented as a one-element L-structure. semaphore-p and
semaphore-v are easily implemented using L-structure reads and writes. Semaphores are used to
implement mutual-exclusion.

Futures Futures specify parallelism in Multilisp [13] and synchronization on the return values
of the threads. It is a form of producer-consumer synchronization. The future object is simply a
memory word that initially holds the queue of waiting consumers and eventually holds the value of
the future when resolved.

Barriers Barriers ensure that all participating threads have reached a point in a program before
proceeding. To avoid excessive tra�c to a single location, and to distribute the enqueuing and
release operations, we use software combining trees [31] to implement barriers.

5.3 Simulation Environment

While the implementation of the Alewife machine is in progress, a cycle-by-cycle simulator called
ASIM is being used for software and applications development. ASIM faithfully simulates the
complete machine. A compiler and run-time system are also operational and allow us to execute
and pro�le parallel programs. Table 1 lists the default parameters used in the simulations.

Since we are simulating a 64-processor machine on a uniprocessor, we are naturally constrained
on the length of simulations we can support. However, to ensure that we are not measuring transient
e�ects, we simulate the programs for su�ciently long periods of time so that a signi�cant fraction
of this time is spent in steady state execution.

We collected several statistics from the simulations. Wait-time pro�les are a record of wait
times encountered for each failed synchronization. For mutex waiters, the wait time measured from
the �rst failed request to the time the mutex is successfully acquired.3

We measured the total number of cycles consumed by the blocking routines. For an always-block
waiting algorithm these cycles constitute the waiting cost incurred in the program run. We provide
this statistic as wait overhead for =b=0 in the results section. This �gure is useful in estimating
the potential e�ect of a waiting algorithm on the running time of a benchmark, and allows us to
speculate on the performance of waiting algorithms on larger machines where wait overheads are
expected to be more signi�cant.

We also keep count of the total number of threads blocked during the execution of the program.
We expect a two-phase algorithm to reduce the number of blocked threads, giving us some insight
on how well the two-phase algorithm is performing relative to an always-block algorithm. Program
execution time measurements are also compared because it is the ultimate performance metric.

3This is a di�erent measure from that used in [18], where mutex wait time was measured from the �rst failed
request to the time the mutex is released by the holder.
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Parameter Default setting

Number of Processors 64
Cache Coherence Protocol LimitLESS1

Cache Size 64KB (4096 blocks)
Cache Block Size 16 bytes
Network Topology 2-D Mesh
Network Channel Width 1 byte
1using 4 hardware pointers

Table 1: Simulation Parameters.

5.4 Benchmarks

Our simulations used the following benchmarks representative of producer-consumer, barrier, and
mutual-exclusion synchronization. A more detailed description of these benchmarks can be found
in [21].

Producer-Consumer

MGrid applies the multigrid algorithm to solving Poisson's equation on a 2-D grid. Communication
is nearest-neighbor except during shrink and expand phases. The 2-D grid is partitioned into
subgrids, and a thread is assigned to each subgrid. Borders of each subgrid are implemented as
J-structures to allow �ne grain synchronization with neighbors. The J-structures are reset between
iterations.

Jacobi performs Jacobi relaxation for solving Poisson's equation on a 2-D grid. Each thread is
responsible for one grid point, and neighboring grid points are mapped onto neighboring processors.
The grid is allocated uniformly so that only nearest-neighbor communication is necessary. J-
structures are used to synchronize neighboring threads. The grain size of each thread is purposely
made very small so that we can see the e�ects of synchronization as they become signi�cant.

Factor Given a range of integers, Factor computes the largest prime factors of each integer and
accumulates them. The synchronization structure of the program can be most easily viewed as a
recursive function call tree with synchronizations occurring at each node of the tree. The program
was dynamically partitioned with lazy task creation [24].

Queens solves the n-queens problem: given an n�n chess board, place n queens such that no two
queens are on the same row, column, or diagonal. A search of all possible solutions is made and
this particular benchmark was run with n = 9 and with lazy task creation. Queens has similar
synchronization characteristics to Factor.

Barrier

CGrad is the conjugate gradient numerical algorithm for solving systems of linear equations. In
this benchmark, the algorithm is used to solve Poisson's equation on a 2-D grid. Each iteration
of CGrad involves global accumulates and broadcasts which are implemented using a software
combining tree. These accumulates and broadcasts also serve as barriers between phases.
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Jacobi-Bar solves exactly the same problem as Jacobi, but with a global barrier synchronization
between iterations. Like in Jacobi, only nearest neighbor communication is necessary within an
iteration.

Mutual Exclusion

CountNet tests an implementation of a counting network [6]. Threads repeatedly try to increment
the value of a counter through a bitonic counting network so as to reduce contention and allow
parallelism. Threads acquire and release mutexes at each network node as they traverse the network.

FibHeap tests an implementation of a scalable priority queue based on a Fibonacci heap [15].
Mutexes are used to ensure atomic updates to the heap and scalability is achieved by distributing
mutexes throughout the data structure to avoid points of high lock contention and allow parallelism.
The test involves repeatedly executing insert and extract-min operations on the priority queue.

Mutex is a synthetic benchmark to monitor the performance of mutexes under varying loads.
Worker threads are distributed evenly throughout the machine and each thread runs a loop that
with some �xed probability acquires a mutex, executes a critical section, then releases the mutex.

6 Results and Analysis

Let us begin by summarizing some of our major theoretical results and premises that will be
validated in this section. The theoretical analysis of Section 4 predicts that di�erent synchronization
types should have di�erent wait-time characteristics. It also predicts that the performance of two-
phase waiting should be robust since its cost can be bounded. Moreover, for exponential wait
time distributions, a static setting of Lpoll = 0:54B is optimal, while for uniform distributions, a
static setting of Lpoll = 0:62B is optimal. Finally, our motivation for advocating static two-phase
algorithms is based on the premise that the cost of blocking can be reduced to a point comparable
to the overhead of making dynamic choices for Lpoll.

To see if these results bear out in practice, we turn to empirical measurements of programs exe-
cuting on ASIM. The wait-time pro�les in Appendix A show that each of the three synchronization
types considered have di�erent distributions, suggesting di�erent waiting strategies for each. The
program execution statistics presented in this section show that two-phase waiting is extremely
robust and performs close to the best across all the benchmarks and never results in pathologically
bad performance.

While we would like to empirically con�rm that the prescribed settings for Lpoll of 0:54B for
exponentially distributed wait times and 0:62B for uniformly distributed times lead to optimal
competitive factors, doing so would require an infeasible amount of simulation. We would have
to run a large set of benchmarks exhibiting a wide range of values of the wait-time distribution
parameters because the optimality results apply to expected performance over the entire parameter
range of a probability distribution. However, we attempt to lend some credence to the theoretical
results by taking some point measurements for several benchmarks with Lpoll = 0:5B.

We start by comparing the performance of two-phase waiting with Lpoll = B (Ss=b=1), always-
switch-spin (Ss==1), and always-block (=b=0). (For Ss==1, Lpoll is actually limited to 50000 cycles
to implement a timeout mechanism for deadlock avoidance.) Tables 2{4 present the performance
statistics of Ss=b=1, Ss==1 and =b=0. In the tables, normalized runtime is the running time
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normalized to the running time of =b=0. Section 6.4 explores the e�ect of changing Lpoll and
Section 6.5 investigates ways of reducing the cost of blocking.

From the tables, we see that the choice of waiting algorithm can make a substantial di�erence
in the running times of the benchmarks. Because of the need to implement timeouts for deadlock
avoidance, using Ss==1 can make the program run arbitrarily slowly, depending on the deadlock
timeout interval. Even ignoring the cases with deadlock, the choice of waiting algorithm can result
in nearly 240% di�erence between the best and worst running times.

Despite the wide variance in running times, Ss=b=1 never results in running times more than
53% over the best algorithm. If we ignore the matched program runs, where blocking is not
bene�cial, the worst running time under Ss=b=1 is actually a mere 6.6% over the best algorithm.
This is strong evidence of the robustness of two-phase waiting as predicted by theoretical analysis.

Let us now consider the results for each of the synchronization types separately.

6.1 Producer-Consumer Synchronization

The simulation results for producer-consumer synchronization are summarized in Table 2. Since
wait-time pro�les for producer-consumer synchronization approximate an exponential distribution
(see Appendix A), we expect the performance of Ss=b=1 to lie in between =b=0 and Ss==1 (see
Theorem 1). This is indeed the case4, but more importantly, the measured performance of Ss=b=1
is not far from the best algorithm in each case. Ss=b=1 has the best overall performance among
the three waiting algorithms.

Ss==1 encounters deadlock and times out in unmatchedMGrid and Jacobi and thus performs
poorly. This problem with deadlock is not present for unmatched Queens and Factor because
they are dynamically partitioned with lazy task creation [24]. =b=0 performs reasonably well except
for matched Jacobi which has very short wait times.

6.2 Barrier Synchronization

Because of their nature, wait times at barriers are likely to be long: a waiting thread is likely
to be held up for a large number of other threads, especially in large-scale machines. For our
benchmarks, the wait-time pro�les in Appendix A indicate that most of the wait times were longer
than the blocking overhead. We see the e�ect of this in the performance �gures in Table 3, where
=b=0 performs best in the unmatched programs. The number of blocked tasks also con�rm that
most of the wait times are longer than B. This suggests that we should use =b=0 at barriers unless
we know that the program is matched. Ss==1 runs into deadlock for the unmatched programs.

Nevertheless, Ss=b=1 performs quite well and is not more than 6.6% o� from =b=0. We can
do even better if we have some indication of the number of arrivals at the barrier. We can't rely
on the availability of a global count of arrivals in large-scale machines because that would limit
the scalability of the barrier algorithm. However, for tournament-style tree barriers, we know that
waits near the root of the tree should be shorter than waits near the leaves. Accordingly, we should
use an always-block algorithm for the lower sections of the tree and a two-phase algorithm for the
upper sections.

4Ss=b=1 performs best in Queens because of an interaction with the scheduler and lazy task creation which
resulted in a better partitioning of the program.
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Benchmark Con- Waiting Runtime Normalized Wait Blocked
texts Algorithm (Kcycles) Runtime Ovh.1 Threads

MGrid 4 =b=0 2,251 1.0 5% 6,365
matched 4 Ss=b=1 1,918 0.85 1,769

4 Ss==1 1,731 0.77 4

MGrid 2 =b=0 1,865 1.0 7% 6,953
unmatched 2 Ss=b=1 1,885 1.01 5,150

2 Ss==1 7,273 3.90 4,613

Jacobi 4 =b=0 930 1.0 21% 12,818
matched 4 Ss=b=1 524 0.56 1,144

4 Ss==1 390 0.42 440

Jacobi 4 =b=0 719 1.0 21% 9,931
unmatched 4 Ss=b=1 757 1.05 7,756

4 Ss==1 6,075 8.45 4,399

Queens 4 =b=0 458 1.0 3% 655
unmatched 4 Ss=b=1 434 0.95 300

4 Ss==1 467 1.02 0

Factor 4 =b=0 769 1.0 5% 1,561
unmatched 4 Ss=b=1 790 1.03 913

4 Ss==1 841 1.09 19
1as percentage of runtime

Table 2: Performance �gures for producer-consumer synchronization.

Benchmark Con- Waiting Runtime Normalized Wait Blocked
texts Algorithm (Kcycles) Runtime Ovh.1 Threads

CGrad 4 =b=0 1,052 1.0 11% 7,478
matched 4 Ss=b=1 999 0.95 7,161

4 Ss==1 654 0.62 2

CGrad 2 =b=0 1,048 1.0 11% 7,625
unmatched 2 Ss=b=1 1,118 1.07 7,309

2 Ss==1 3,905 3.73 3,714

Jacobi-Bar 4 =b=0 1,592 1.0 23% 26,880
unmatched 4 Ss=b=1 1,617 1.02 25,820

4 Ss==1 3,497 2.20 14,395
1as percentage of runtime

Table 3: Performance �gures for barrier synchronization.
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Benchmark Con- Waiting Runtime Normalized Wait Blocked
texts Algorithm (Kcycles) Runtime Ovh.1 Threads

CountNet 4 =b=0 1,378 1.0 9% 10,502
matched 4 Ss=b=1 1,293 0.94 1,913

4 Ss==1 1,242 0.90 276

CountNet 2 =b=0 1,298 1.0 8% 7,646
unmatched 2 Ss=b=1 1,241 0.95 1,202

2 Ss==1 1,224 0.94 43

FibHeap 4 =b=0 2,430 1.0 23% 7,882
matched 4 Ss=b=1 2,117 0.87 7,332

4 Ss==1 2,617 1.08 581

Mutex 4 =b=0 612 1.0 19% 4.429
unmatched 4 Ss=b=1 583 0.95 1,652

4 Ss==1 678 1.11 0
1as percentage of runtime

Table 4: Performance �gures for mutual-exclusion synchronization.

Although our theoretical analysis suggests that barrier wait times are uniformly distributed,
the wait-time pro�les in Appendix A do not support this hypothesis. This deviation was due to
the signi�cant overhead of the software combining tree barrier implementation in Alewife. An
experiment to �lter out the combining tree overhead was performed and the resulting pro�le does
indeed suggest uniformly distributed wait times. This pro�le is presented in Figure 8 in Appendix
A.

6.3 Mutual Exclusion

In the mutual-exclusion benchmarks, deadlock is not an issue, even in unmatched conditions,
because lock holders are never descheduled. Ss=b=1 performs well in both matched and unmatched
CountNet and performs best in FibHeap andMutex. This again demonstrates the robustness of
two-phase waiting. Ss==1 unexpectedly performs worst even in matched conditions in FibHeap.
We will explain these observations here.

Lock contention was low in CountNet, and we know that a large number of waits were short
from looking at the pro�les in Appendix A and by comparing the number of blocked threads for
=b=0 and Ss=b=1. Under such conditions, Ss==1 performs best and =b=0 worst, with Ss=b=1 close
to Ss==1. However, since the wait times are not exponential nor uniform, we cannot match these
performance results with our theoretical analysis.

Lock contention was high in FibHeap and Mutex. The bad performance of Ss==1 in these
benchmarks is due to the poor behavior of polling under conditions of high lock contention. Because
lock waiters were not queued in the benchmarks, simultaneous release of all polling waiters when a
highly contended lock is released causes detrimental hot-spot contention. All the released waiters
try to acquire the lock at once, exacerbating the wait times at that lock. Recently published
techniques for more e�cient spin-waiting on locks can be used to improve the performance of
polling for highly contended locks [23]. These include exponential backo� and software queueing of
spin waiters.
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Benchmark Con- Waiting Runtime Normalized Wait Blocked
texts Algorithm (Kcycles) Runtime Ovh.1 Threads

MGrid 2 =b=0 1,865 1.0 7% 6,953
unmatched 2 Ss=b=0:5 1,817 0.97 5,488

2 Ss=b=1 1,885 1.01 5,150
2 Ss==1 7,273 3.90 4,613

Jacobi 4 =b=0 719 1.0 21% 9,931
unmatched 4 Ss=b=0:5 699 0.97 8,437

4 Ss=b=1 757 1.05 7,756
4 Ss==1 6,075 8.45 4,399

1as percentage of runtime

Table 5: Performance �gures for Lpoll = 0:5B

Because blocked waiters take longer to be reactivated, =b=0 avoids the detrimental e�ect of
bursty lock requests. This allows =b=0 to actually perform better than Ss==1, even in matched
FibHeap. Ss=b=1 works best because it naturally polls on lightly contended locks and blocks
on highly contended locks, combining the best of both worlds, an advantage not predicted by the
theoretical models.

6.4 Changing Lpoll

In the results presented above, Lpoll was set to be equal to the cost of blocking. Theorem 3 indicates
that setting Lpoll to 0:54B will yield a more robust algorithm when waiting times are exponential.

We experimented with two of the producer-consumer benchmarks (MGrid and Jacobi) under
unmatched conditions. Table 5 reproduces the results presented earlier, and includes results for
Ss=b=0:5. We observe that a shorter polling phase results in better performance than Ss=b=1 in
MGrid and Jacobi because producer arrival rates were low. Under such conditions, i.e., when
� < 1=�B, our theoretical analysis predicts that Ss=b=0:5 will perform better than Ss=b=1. In [18],
Karlin et al. also observed by analyzing measured wait-time pro�les that setting Lpoll to 0:5B can
result in lower waiting costs.

Surprisingly, Ss=b=0:5 also performed better than =b=0. We think that this e�ect is due to
the possibility that sometimes there are no runnable threads to execute after a thread is blocked,
which violates the assumption made in the theoretical analysis. This would cause =b=0 to unneces-
sarily block more threads compared to two-phase waiting. Another possibility is that the waiting
algorithm itself a�ects the wait times.

We did not consider it useful to measure the e�ects of changing Lpoll for the barrier benchmarks
because the wait times were dominated by the overhead of the software combining tree such that
=b=0 would predictably be the best algorithm.
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Action Instructions Base Cycles

Unloading Unload registers 21 stores 63
Enqueue thread 2 stores

2 loads
7 other 17

Book-keeping 6 stores
1 load
6 other 26

Reenabling Lock queue 2 loads
of blocked threads 1 store

6 other 13
Queue on processor 6 loads
ready queue 5 stores

12 other 39

Reloading Reload registers 21 loads 42
Restore misc. 1 load
state 6 other 8
Book-keeping 1 store

8 other 11
Total 114 219

Table 6: Breakdown of the cost of blocking in Alewife.

6.5 Reducing the Cost of Blocking

Our focus on static two-phase algorithms is based on the premise that in large-scale multiprocessors
with support for �ne-grained threads, the cost of blocking will be very small and comparable to
the overhead of dynamic two-phase algorithms. In this section, we will analyze blocking costs in
Alewife and suggest ways of optimizing it to less than 100 cycles.

Reducing the cost of blocking is also motivated by another factor. We observed that =b=0
performs quite well in the benchmarks. Therefore, further reducing the cost of blocking would
make =b=0 signi�cantly more attractive. The shorter the cost of blocking, the shorter the polling
phase of a two-phase algorithm should be. The performance of the =b=0 and two-phase algorithms
will therefore become more similar.

Table 6 gives a breakdown of the costs of unloading, reenabling, and reloading a thread in terms
of instructions and base-cycle times in Alewife (base cycles assume cache hits). In terms of base
cycles, the cost of blocking is 219 cycles. However, the measured cost of blocking is experimentally
observed to be about 500 cycles because of cache misses. Of the measured cycles, about 300 cycles
are spent unloading the task, 100 cycles reenabling it and 65 cycles reloading it. Loads and stores
are observed to take 3 times longer than the base-cycle time when unloading a thread due to cache
misses. However, since an unloaded thread resides in the cache, reloading a thread takes close to
the base-cycle time.

We have not yet fully optimized the cost of blocking in Alewife, but we believe it can be reduced
signi�cantly without additional hardware support. Cache misses can be largely avoided by reusing
old thread frames for storage of unloaded threads. The number of instructions can also be reduced
through careful handcrafting of the relevant portions of the scheduler.
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Most of the cycles spent in blocking are due to saving and restoring registers. Since Sparcle
loads take two cycles and stores three [28], the cost of blocking is higher than it would be on a
processor with single-cycle loads and stores. With single-cycle load/stores, the cost of blocking can
be reduced to 114 base cycles. Alternatively, we could pipeline the loads and stores of the registers.
It is also possible to avoid saving most of the registers if a thread is unloaded at a procedure call
boundary, where the caller has already saved live registers into the stack. We recently implemented
this special case in Alewife, reducing the cost of blocking for this special case to 144 base cycles.
With single-cycle load/stores, this reduces to 83 base cycles.

Processors with a smaller amount of resident thread state would allow faster blocking but
will have worse single-thread performance. We believe stealing unused processor-to-cache cycles
to unload blocked threads is a promising direction for future work. Special register paths to the
cache or memory can also speed up register unloads, but specialized use of valuable processor-cache
bandwidth may not be the right tradeo� when overall performance is considered.

In summary, the cost of blocking can be reduced to less than 100 cycles with hardware support
for single-cycle load/stores, making a strong case for minimizing the run-time overhead of choosing
Lpoll.

7 Related Work

Two-phase waiting was �rst proposed by Ousterhout [25] who observed that blocking should be
avoided if wait times are short, and suggested \pausing" a waiting process for some �xed time before
blocking. His Medusa system implemented two-phase waiting with a user-settable Lpoll. In a later
study of multiprocessor scheduling algorithms, Lo and Gligor [22] found that use of two-phase
waiting (with Lpoll in between B and 2B) improved the performance of group scheduling.

In a theoretical study of competitive algorithms, Karlin et al. presented a dynamic, randomized
algorithm that achieves a competitive factor of e=(e� 1). They also proved that an algorithm that
uses wait-time statistics to select an optimal static value of Lpoll has a competitive factor of at most
e=(e � 1). Indeed, we con�rmed that this bound holds for exponential and uniform distributions:
given the value of � for an exponential distribution, we can choose Lpoll such that the competitive
factor is at most e=(e � 1). Given the value of U for a uniform distribution, we can choose Lpoll
such that the competitive factor is at most 4=3. (See Figures 2 { 3.) However, it is di�cult to
achieve this bound in practice because it requires precise knowledge of the distributions, knowledge
that is dependent on run-time factors.

In recent work, Karlin et al. [18] empirically studied the performance of two-phase waiting
algorithms for mutual-exclusion locks on a small bus-based machine. They investigated both static
and dynamic methods for choosing Lpoll. The static algorithms explored were s=b=0:5, s=b=1,
and one in which wait-time pro�les were used to compute an optimal value for Lpoll. The dynamic
methods used wait-time histories to dynamically adjust Lpoll. They made two kinds of performance
measurements: 1) a direct measurement of elapsed times under the di�erent algorithms, and 2)
an indirect measurement of waiting costs from post-processing the wait-time pro�les of program
executions. In the indirect measurements, the dynamic algorithms outperformed s=b=0:5 or s=b=1.
However, in the elapsed-time measurements, which include the run-time overhead of the waiting
algorithm, the static methods performed as well as the adaptive methods in one measurement while
the adaptive methods performed better in the other.

Their study found always-block to perform poorly compared to two-phase waiting. This is
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contrary to our conclusions, which �nd always-block to be an acceptable waiting algorithm. As
pointed out in Section 1, this is because we investigate producer-consumer and barrier synchroniza-
tion in addition to mutual-exclusion synchronization, and because of the di�erence in the machine
architectures and blocking costs.

Other studies [1, 4, 11, 23] have focused on reducing bus (or network) interference caused when
spinning is used as a waiting mechanism. These studies explored methods to reduce the overhead
of memory contention while spin waiting for locks and barriers. In cases of high lock contention,
simple test&test&set [26] leads to contention at the memory module during lock releases due to
sudden bursts of waiting threads vying for the lock. Exponential backo� and software queueing
were shown to be e�ective methods for reducing the contention at locks and barriers.

These studies are concerned with making the e�ect of polling less intrusive on the rest of
the machine by reducing contention for hardware resources. Unlike two-phase algorithms, these
contention reducing mechanisms do not attempt to directly reduce the waiting cost and do not
consider blocking as an option. However, these methods can be useful in the polling phase of
two-phase algorithms to reduce the detrimental e�ects of contention.

Several researchers have recently been advocating the use of lock-free methods for synchro-
nization [8, 14, 30], using load-linked/store-conditional [17] or compare-and-swap [16] as
primitives. In the context of this paper, lock-free synchronization is a form of optimistic polling,
and the results in this paper apply.

A typical lock-free synchronization protocol consists of a loop that executes a set of temporary
updates and then attempts to commit those updates in an atomic operation at the end of the
loop. The thread remains in the loop until the commit is successful. Thus, the thread is actually
polling until a successful commit is executed, and the di�erence from lock-based synchronization
is that potentially useful operations are executed while polling. Instead of interminably executing
the loop in the hope of a successful commit, one could extend the lock-free protocol to a two-phase
algorithm where the thread blocks after some number of unsuccessful commit attempts.

8 Conclusions

As the higher parallelism requirements of large-scale multiprocessors cause corresponding increases
in synchronization rates, the overhead of waiting for synchronization becomes a signi�cant determi-
nant of multiprocessor performance. A poor choice of waiting algorithms can signi�cantly increase
the overhead and degrade performance. In our experiments, we observed a di�erence of a factor
of 8.45 between the best and worst running times. This large factor was due to the potential for
deadlock in always-poll algorithms. Ignoring the cases where deadlock was experienced, we still
observed a signi�cant di�erence of a factor of 2.38 between the best and worst running times (cf.
matched Jacobi).

This paper analyzed static two-phase waiting algorithms and compared them with traditional
methods of waiting in multiprocessors. Two-phase waiting combines the advantages of polling and
signalling. When there are a su�cient number of short waits, two-phase waiting avoids the cost
of blocking. Increased arrival rates resulting from �ne-grained threads in highly parallel machines
favor two-phase waiting algorithms that are geared to take advantage of short wait times, but
without catastrophic behavior on long wait times.

Static two-phase algorithms are attractive because they are simple and su�er very little run-time
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overhead. This is especially important for �ne-grained synchronization on large-scale machines with
low blocking overheads comparable to the overheads of dynamic methods. For example in Alewife,
we can reduce the blocking overhead to less than 100 cycles with a processor with single-cycle
load-stores. This restricts the amount of run-time overhead a two-phase waiting algorithm can
incur before it loses its advantage over an always-block algorithm, thus reducing the e�ectiveness
of dynamic methods.

We suggest using knowledge about likely wait-time characteristics of di�erent synchronization
types to guide our choice of Lpoll for static two-phase waiting algorithms. The wait-time pro�les
gathered show that each of the synchronization types considered have di�erent wait-time distribu-
tions. We considered two simple but important models for wait times, and derived static settings for
Lpoll that attain or approach optimal performance. We proved that setting Lpoll to 0:54B achieves
a competitive factor of e=(e� 1) against a restricted adversary with exponentially distributed wait
times, and that setting Lpoll to

1
2(
p
5�1)B achieves a competitive factor of (

p
5+1)=2 for uniformly

distributed wait times.

The experiments show that static two-phase waiting algorithms that rely on e�cient waiting
mechanisms provided in Alewife are robust under most operating circumstances. These measure-
ments support our theoretical �ndings that under exponential wait times two-phase algorithms are
never worse than both spinning and blocking used exclusively. The robustness of static two-phase
waiting will relieve the programmer from worrying about the critical choice between polling and
signalling. Furthermore, our theory shows that with some readily available knowledge on synchro-
nization types a static setting of Lpoll will achieve close to optimal competitive factors.

Short wait times bene�t polling algorithms, such as s==1 or Ss==1, but their performance is
highly sensitive to the presence of long wait times. Even a few extremely long waits can signi�cantly
hurt the performance of polling. Long wait times often result when the program is unmatched.
Thus Ss==1 is an appropriate choice only when the program is guaranteed to be matched.

Always-block performs well in most of the benchmarks. In our simulations, =b=0 and Ss=b=1
generally perform similarly, except when the program is matched and wait times short. We believe
that the cost of blocking can be further reduced, making always-block an even more attractive
alternative. This conclusion di�ers from previously reported performance observations of always-
block for mutual exclusion waits on bus-based multiprocessors. The acceptable performance of
=b=0 as demonstrated by our measurements results from longer wait times encountered in our
benchmarks, and an e�cient blocking mechanism in Alewife. In fact, as multiprocessors scale,
longer communication and synchronization latencies would tend to favor =b=0 even more.

Two-phase waiting and always-block algorithms will be even more attractive if the cost of
blocking can be reduced further. We described several methods for reducing the cost of blocking.
Switch-blocking is another attractive area for further research. Like blocking, it is a signalling
mechanism. However its cost is much smaller, as it avoids unloading a thread unless all the other
hardware contexts also contain switch-blocked threads.
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A Wait-Time Models and Distributions

This section proposes wait-time models for producer-consumer, barrier and mutual-exclusion syn-
chronization under the assumption of Poisson arrivals of synchronizing threads. These models are
used to help guide our choice of Lpoll based on synchronization type.

We also present wait-time pro�les gathered from the simulations and compare them with the
proposed models. These pro�les also help explain the performance results presented in Section 6.
A number of the wait-time pro�les approximate an exponential distribution. Whenever this is so,
a semi-log plot is used so the exponential distribution is more easily recognizable as a linear set
of points. Linear regressions on the log values of the wait time frequencies are also plotted, and
correspond to �tting exponential curves through the original set of points. Outliers with frequencies
less than 10 were pruned in the regressions.

A.1 Producer-Consumer

As mentioned in Section 4, producer-consumer synchronization experiences exponentially dis-
tributed wait times under Poisson arrivals of synchronizing threads. This simple model of wait
times led to useful theorems about the performance of two-phase waiting algorithms, as presented
in Section 4.

Figures 4 and 5 present semi-log plots of wait-time pro�les obtained from benchmarks with
producer-consumer synchronization. These pro�les lend some support to our exponential wait time
assumption that formed the basis of our mathematical analysis, and also help in obtaining insights
into the di�erences in the performance of waiting algorithms.

We can see from the plots that the wait times are indeed largely exponentially distributed.
However, there is some deviation for short wait times in unmatched versions ofMGrid and Jacobi.
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Figure 4: Measured wait times for J-structure readers.

We believe this is due to the e�ect of blocking on wait times. (Recall that an unmatched program
requires blocking to avoid deadlock.) Blocked threads experience some delay before resuming
execution. Since a blocked thread might itself be a producer, whose output is awaited by some
other threads, this delay can cause a fraction of wait times to be skewed upward.

Although it would be premature to conclude from these few sample benchmarks that producer-
consumer wait times are always exponentially distributed, the measurements show the existence
of parallel programs that approximate such wait times, and the theoretical analysis of Section 4
applies.

A.2 Barrier Synchronization

The uniform distribution is a reasonable model for barrier wait times. Such wait times would
arise if inter-barrier thread execution lengths are uniformly distributed within some time interval.
Moreover, the following analysis shows that if arrivals at a barrier is Poisson, then the uniform
distribution is a useful approximation to the resulting PDF of barrier wait times.

The wait time encountered at a barrier depends on two factors: 1) the number of threads that
have yet to arrive at the barrier, and 2) the arrival rate of the threads. Let M be the number of
participants in a barrier and r be the number of threads yet to arrive at a given point in time.
Clearly r = (M � i) for the ith arrival.

Assuming Poisson arrivals of participating threads, the wait time for the ith arrival is the
maximum of r exponentially distributed random variables. This PDF is the hypoexponential
distribution with parameters �; 2�; ::; r� ([29] p. 166), where � is the arrival rate of each of the
threads. To make the analysis tractable, we make a further simplifying assumption that the arrival
rate of participants at a barrier is independent of the remaining number of arrivals. Consequently,
the wait-time distribution for r arrivals becomes the rth order Erlang PDF, or,
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Figure 5: Measured wait times for futures.

fr(t) =
�(�t)r�1e��t

(r� 1)!
(8)

For a �xed �, the Erlang shifts the probability from shorter to longer wait-times over the hypoex-
ponential distribution.

We can now derive the PDF for barrier wait-times as follows. Since a scalable implementation
of a barrier must use distributed data structures, a waiting thread cannot easily determine the
remaining number of threads. Let N = M � 1. Since each arriving thread that is forced to wait
has an equal probability of 1=N of being the ith arrival, where 1 � i � N , the PDF for barrier wait
times is the sum of the PDFs of the �rst N Erlang PDFs scaled by 1=N . Thus,

f(t) =
1

N

NX
r=1

fr(t) (9)

We can simplify this sum using LaPlace transforms.

L(f(t)) =
1

N

NX
r=1

fTr (s) =
1

N

NX
r=1

(
�

s + �
)r

=
�

N

�1
s
� 1

s
(

�

s + �
)N
�

Therefore, taking the inverse LaPlace transform, we obtain f(t) for barrier wait times as

f(t) =
�

N
(1�

Z t

0
fN(�)d�) =

�

N

Z
1

t
fN (�)d� (10)

where fN (�) is obtained from Equation 8.
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Figure 6: Modeled PDF for barrier wait times. M = 64 participants, varying �.

What does f(t) look like? The N th Erlang distribution approaches the normal distribution with
mean N=� and variance N=�2. For scalable performance, both N and � must increase at the about
same rate. Under these conditions, f(t) approaches a uniform distribution with a value of �=N
from t = 0 to N=�. Figure 6 plots the PDF for M = 64 while varying �. The expected wait time
is (N + 1)=2�. Note that for a �xed arrival rate, the expected wait time increases linearly with the
number of participants.

Figure 7 presents the wait-time pro�les for CGrad and Jacobi-Bar. These distributions do
not look uniform due to the software overhead of the combining tree implementation of barriers
which introduce additional delays when arriving at and leaving from the barrier.

To �lter out this software overhead, we ran a version of Jacobi-Bar with a simple counter
implementation of barriers. We executed this benchmark on a simulation of a perfect memory sys-
tem to eliminate the e�ect of hardware contention on this simple barrier implementation. Figure 8
presents the resulting wait-time pro�le which is close to uniform except at the tails. Most of the
overhead of the software combining tree has been eliminated; what remains is software contention
for the barrier counter.

A.3 Mutual Exclusion

As mentioned in Section 4, the wait time for mutual-exclusion locks without queues can be modeled
as either exponential or uniform. Here, we derive a model of wait times for locks that enforce a
FCFS queueing order.

The wait time for a lock requester is the time between requesting a lock and actually acquiring
it. Assuming Poisson arrivals of lock requesters, exponential service times for lock holders, and a
�nite number of lock requesters, M , a mutex can be modeled as an M=M=1==M queue. Let pq
represent the probability that an arriving thread �nds the queue length to be q. The probability
mass function of the queue length encountered by an arriving thread for such a queueing system is
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Figure 7: Measured barrier wait times for CGrad and Jacobi-Bar.
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Figure 8: Measured barrier wait times for Jacobi-Bar on an ideal system.
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Figure 9: Modeled PDF for mutex wait times. M = 16, � = 0:1, varying �.

pq =

(
p0(

�
�)

q M !
(M�q)! 0 � q �M

0 q > M
(11)

where p0 =

� MX
q=0

(
�

�
)q

M !

(M � q)!

��1

� is the arrival rate of each lock requester and � is the departure rate of lock holders.

If waiting threads are served in a �rst-come �rst-served (FCFS) fashion, a thread requesting
a mutex with a queue length of q has to wait for q threads to depart. The conditional PDF of
the waiting time for a lock requester given q threads ahead of it is the qth order Erlang PDF with
arrival rate �.

fq(t) =
�(�t)q�1e��t

(q � 1)!
(12)

Therefore, the PDF of wait times at a mutex is

f(t) =
1

(1� p0 � pM )

M�1X
q=1

pqfq(t) (13)

Figure 9 plots this PDF for M = 16, � = 0:1, and various values of �. The PDF ranges from
an exponential when �=� is very small to an (M � 1)th-order Erlang when �=� is very large. This
�ts our intuition that expected wait times get longer as lock utilization increases. It also implies
that the analysis for exponential wait times applies when lock contention is low enough.

Figures 10 and 11 present the measured wait times for the mutual-exclusion benchmarks. These
pro�les help us explain the experimental results for mutual exclusion presented in Section 6. The
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Figure 10: Semi-log plot of measured mutex wait times in FibHeap and Mutex.

model proposed above does not apply to the measured pro�les for the following reasons. First,
mutex waiters were not served in FCFS order in those benchmarks, and second, contention for
hardware resources due to high lock utilization had a signi�cant e�ect on wait times. The e�ect of
contention in the experiments was discussed in Section 6.3. For FibHeap and Mutex, the wait
times appear to be exponential due to randomness introduced by contention. Note the long wait
times in FibHeap and Mutex as compared to CountNet.

B Deriving Optimal Lpoll for Uniform Distributions

In this section, we prove that under uniformly distributed wait times, a static two-phase algorithm
with � = (

p
5�1)=2 has a competitive factor no larger than (

p
5+1)=2, and that no other value of �

yields a lower competitive factor over the entire range of the parameter of the uniform distribution.
Refer to Figure 3 for an illustration of these results.

Theorem 4 Under uniformly distributed wait times from t = 0 to U , with � = (
p
5�1)=2 � 0:618,

the competitive factor of two-phase waiting, E[CSs=b=�]=E[CSs=b=Opt], is at most (
p
5+1)=2 � 1:618,

regardless of the parameter, U , of the distribution. Furthermore, if � 6= (
p
5 � 1)=2, then the

competitive factor under uniformly distributed wait times is larger than (
p
5 + 1)=2.

Proof: Let wait time be uniformly distributed from t = 0 to t = U . From Equations 1{2, we can
derive the following expressions for the expected costs of static two-phase waiting algorithms and
the optimal o�-line algorithm.

E[CSs=b=�] =

8>><
>>:

R U
0

t
�

1
U dt =

U
2� if U � ��B

R ��B
0

t
�

1
U dt+

R U
��B(1 + �)BU dt = 1

U

h
(1 + �)BU � (1 + �

2 )��B
2
i

otherwise
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Figure 11: Measured mutex wait times in CountNet.

E[CSs=b=Opt] =

8>><
>>:

R U
0

t
�

1
U dt =

U
2� if U � �B

R �B
0

t
�

1
U dt+

R U
�B

B
U dt = 1

U

h
BU � 1

2�B
2
i

otherwise

Let us consider the case when � � 1. Substituting x = U=�B, we get the following expressions
for the expected competitive factor, c = E[CSs=b=�]=E[CSs=b=Opt].

c =

8>>>>><
>>>>>:

1 if x � �

[2(1 + �)x� �(�+ 2)] =x2 if � � x � 1

[2(1 + �)x� �(�+ 2)] =(2x� 1) if x � 1

Also,

@c

@x
=

8>>>>><
>>>>>:

0 if x � �

2 [�(2 + �)� (1 + �)x] =x3 if � � x � 1

�
2(�2 + �� 1)

�
=(2x� 1)2 if x � 1

In the range x � 1, @c
@x = 0 when either x = 1 or (�2 + � � 1) = 0. This implies that when

� = (
p
5� 1)=2, the value of c is (

p
5 + 1)=2 over the entire range x � 1.

In the range � � x � 1, @c
@x = 0 when either x = 1 or x = �(2 + �)=(1 + �). Also, @2c

@x2 is

negative. These imply that when � = (
p
5� 1)=2, c has a maximum value of (

p
5 + 1)=2 at x = 1.

Therefore, c � (
p
5 + 1)=2 when � = (

p
5� 1)=2.
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We now have to show that no other setting of � yields a competitive factor of less than 1:618
over the entire range of U , so that � is the optimal setting for uniformly distributed wait times.

As x!1, c approaches 1+�. Therefore the competitive factor is larger than (
p
5+1)=2 when

� > (
p
5� 1)=2.

Now consider the case when � < (
p
5�1)=2. In the range x � 1, @c

@x < 0 so that cmonotonically
decreases with x. Therefore the maximum value of c in this range is (2� �2) when x = 1. Since
� < (

p
5� 1)=2, (2� �2) > (

p
5 + 1)=2, the theorem also holds for all � < (

p
5� 1)=2. 2
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