
A Comparison of Simulation Techniques and Algebraic

Techniques for Verifying Concurrent Systems�

Nancy Lynch and Roberto Segala

MIT- Laboratory for Computer Science

Abstract

Simulation-based assertional techniques and process algebraic techniques are two of the
major methods that have been proposed for the veri�cation of concurrent and distributed
systems. It is shown how each of these techniques can be applied to the task of verifying
systems described as input/output automata; both safety and liveness properties are con-
sidered. A small but typical circuit is veri�ed in both of these ways, �rst using forward
simulations, an execution correspondence lemma, and a simple fairness argument, and sec-
ond using deductions within the process algebra DIOA for I/O automata. An extended
evaluation and comparison of the two methods is given.

1 Introduction

Simulation-based assertional techniques and process algebraic techniques are two of the major
methods that have been proposed for the veri�cation of concurrent and distributed systems.
Although the two methods are used for the same task, the proofs that are carried out in the
two styles seem to be quite di�erent. Indeed, the two methods have been developed by largely
disjoint research communities, using di�erent semantic models. The literature contains many
examples of proofs using the two methods: some typical examples of simulation proofs appear
in [LT87, SLL93a, SLL93b], while examples of algebraic proofs appear in [Bae90, Jos92, OP92].

In this paper, we unify, evaluate and compare the simulation-based and process algebraic
veri�cation techniques in terms of the Input/Output automaton (I/O automaton) model of
Lynch and Tuttle [LT87]. This framework has been used extensively for the veri�cation of
complex algorithms and pieces of distributed systems [WLL88, LS92, LP92, SLL93b], and
has already been given a process algebraic characterization [Vaa91, Seg92, DS92]. We show
how each of these techniques can be applied to the common task of verifying both safety
and liveness properties of systems described as I/O automata. We then use each technique

�Supported by NSF grant CCR-89-15206, by DARPA contracts N00014-89-J-1988 and N00014-92-J-4033,
and by ONR contract N00014-91-J-1046.

1

to verify a small but typical delay insensitive circuit taken from [Jos92]: a Muller C element
[MB59] implemented in terms of a majority element and a wire. Both the implementation and
the speci�cation are described as I/O automata, and the veri�cation consists of showing that
the fair preorder relation (i.e., fair trace inclusion) holds between the implementation and the
speci�cation automata.

The two proofs proceed very di�erently. First, the simulation proof uses a forward simula-
tion [LV91] from the implementation to the speci�cation, then invokes an execution correspon-
dence lemma [GSSL93] to obtain a correspondence between executions of the implementation
and the speci�cation. Then a simple argument about fairness is made, based on the corre-
spondence between executions; this fairness argument uses the convenient notion of a forcing
condition for an I/O automaton fairness class. The fairness argument could easily be formal-
ized using a temporal logic of states and actions [Sta84, SLL93b], although we do not do this
in this paper.

The algebraic proof uses deductions within the process algebra DIOA [Seg92] for I/O au-
tomata. This process algebra contains a collection of axioms (i.e., sound proof rules) asserting
that the quiescent preorder relation holds for a pair of I/O automata. The quiescent preorder
is de�ned in [Vaa91] and consists of trace inclusion and quiescent trace inclusion. It is an
approximation, based on �nite traces only, of the fair preorder. The reason for the use of the
quiescent preorder rather than the fair preorder is that quiescence �ts nicely into a process
algebraic theory containing recursion whereas fairness does not. We state conditions (proved
in [Seg93]) giving some circumstances under which the quiescent preorder is equivalent to the
fair preorder. Since these circumstances hold in our example, the DIOA deductions that prove
quiescent trace inclusion are also su�cient to prove the needed fair trace inclusion.

We emphasize that our two proofs are constructed to prove exactly the same theorem. To
make this clear we �rst give a \neutral" description of the veri�cation problem in terms of I/O
automata. Then we describe and verify the same problem in terms of an assertional repre-
sentation of I/O automata and in terms of DIOA expressions, using simulation and algebraic
techniques, respectively. We show formally that the two proofs are both solving the problem
given in the \neutral" description. This last step is essential in order to ensure sure that,
although we are using di�erent formalisms, we are actually solving the same problem.

We then give an extended comparison of the two veri�cation methods, based on our ex-
periences in carrying out this research and on our other experiences with related examples.
Our comparisons consider the power of the two methods, their ability to model fairness, the
style of their representation of system components, their suitability for mechanization, and the
byproducts yielded by the proofs.

The rest of the paper is organized as follows. Section 2 contains a brief description of the
I/O automaton model. Section 3 contains a formal statement of the circuit problem to be
solved, i.e., showing that the fair preorder relation holds between a particular implementation
and a Muller C element speci�cation. Section 4 contains the veri�cation using the simulation
method. Section 5 contains the veri�cation using process algebra. Section 6 contains an
extended comparison between the two methods; Section 7 contains some additional conclusions.

2

2 The Input/Output Automaton Model

We begin with a brief review of the I/O automaton model, which will be used as the basis of
the rest of the work in this paper. For a complete account, we refer the reader to [LT87].

De�nition 2.1 (Notation for sequences) Given an alphabet A, let A� be the set of �nite
length sequences made of elements of A and let A! be the set of in�nite length sequences made
of elements of A. Finally, let A� [A! be denoted by A1.

De�nition 2.2 (I/O automata) An I/O automaton A consists of �ve components:

� a set states(A) of states.

� a nonempty set start(A) � states(A) of start states.

� an action signature sig(A) = (in(A); out(A); int(A)) where in(A); out(A) and int(A) are
disjoint sets of input, output and internal actions, respectively. We denote with ext(A)
the set in(A) [out(A) of external actions, and by local(A) the set out(A) [int(A) of
locally controlled actions. We denote by acts(A) the set ext(A) [int(A) of actions. We
call (in(A); out(A); ;) the external action signature of A.

� a transition relation steps(A) � states(A)� acts(A)� states(A) with the property that
for each state q and each input action a there is a step from q with action a. We say
that A is input enabled.

� A partition part(A) of local(A).

A transition (q; a; q0) 2 steps(A) is also denoted with q
a
�! q0. We extend the notion of

transition to �nite sequences of symbols by saying that

q
a1���an�! q0 i� 9q0; : : : ; qn with q0 = q and qn = q0 such that q0

a1�! q1
a2�! � � �

an�! qn.

Similarly, for in�nite sequences, we write

q
a1a2����! if 9(qi)i2N such that q

a1�! q1
a2�! q2

a3�! � � �

Two derived transition relations, abstracting from internal computations, are

q
a

=) q0 i� 9s1;s22int�(A)q
s1as2�! q0;

q
a

=)� q0 i� 9s12int�(A) q
s1a�! q0:

The last two transition relations can be extended to �nite and in�nite sequences of actions in
the same way as for steps(A).

3

De�nition 2.3 (Executions and traces) An execution fragment of an I/O automaton A is
a (�nite or in�nite) sequence of alternate states and actions starting with a state and, if the
execution fragment is �nite, ending in a state

� = q0a1q1a2q2 � � �

where each (qi; ai+1; qi+1) 2 steps(A). We denote by frag�(A); frag!(A) and frag(A) the sets
of �nite, in�nite and all execution fragments of A, respectively. An execution is an execution
fragment whose �rst state is a start state. We denote by exec�(A); exec!(A) and exec(A) the
sets of �nite, in�nite and all execution of A, respectively.

The trace of an execution fragment � of an I/O automaton A, written traceA(�), or just
trace(�) when A is clear, is the list obtained by projecting � onto the set of external actions of
A, i.e., trace(�) = �dext(A).1 We say that � is a trace of an I/O automaton A if there exists
an execution � of A with trace(�) = �. We denote by traces�(A); traces!(A) and traces(A)
the sets of �nite, in�nite and all traces of A, respectively.

A key feature of the I/O automaton model is that the behavior of I/O automata is observed
through their fair executions, i.e., those executions in which each \subcomponent" which is
continuously willing to perform some of its locally controlled actions will eventually do so.

De�nition 2.4 (Fair executions) A fair execution fragment of an I/O automaton A is an
execution fragment � 2 execs(A) such that for all X 2 part(A)

� If � is �nite then no action of X is enabled from the �nal state of �.

� If � is in�nite then either actions from X appear in�nitely often in � or states from
which no action of X is enabled appear in�nitely often in �.

A fair execution is a fair execution fragment whose �rst state is a start state. A fair trace
is the trace of a fair execution. We denote the set of fair traces of an I/O automaton A by
ftraces(A).

Now we can de�ne the usual preorder relation for I/O automata.

De�nition 2.5 (Fair preorder) Given two I/O automata A and B with the same external
action signature, the fair preorder is de�ned as

A vF B i� ftraces(A) � ftraces(B):

1Our de�nition of trace coincides with the usual de�nition of behavior for I/O automata. We have changed
the terminology in the interests of consistency with the usual notation of process algebra.

4

The fair preorder is the relation that is used to model implementation in the I/O automa-
ton model. Since input enabling ensures that any implementation must accept any external
stimulus at any time, this preorder ensures that the implementation must contain a \rich"
set of traces { enough to describe responses to any possible input pattern. Fairness ensures
that the correctness of a solution is judged only on the basis of those behaviors in which the
system is actually given the chance to make progress. Note that this preorder ensures that the
implementation must provide output whenever the speci�cation must do so.

Three main operators are de�ned on I/O automata: hiding, renaming and parallel compo-
sition.

De�nition 2.6 (Hiding) Given an I/O automaton A = (Q;Q0; S; t; P) and a set of actions
I : I\ in(A) = ;, we de�ne HideI(A) to be the I/O automaton (Q;Q0; S

0; t; P) where S0 di�ers
from S in that

� out(HideI(A)) = out(A)nI , and

� int(HideI(A)) = int(A) [(acts(A) \ I).

The hiding operator transforms external actions into internal ones, i.e., it hides some locally
controlled actions from the external environment. The only di�erence between the original
and the resulting I/O automaton is in the signature. The executions stay the same, but the
traces change.

De�nition 2.7 (Renaming) An injective mapping f is applicable to an I/O automaton A if
acts(A) � dom(f). Given an I/O automaton A = (Q;Q0; S; t; P) and a mapping f applicable
to it, we de�ne f(A) to be (Q;Q0; S

0; t0; P 0) where S0; t0 and P 0 are de�ned as follows

� in(S) = f(in(A)), out(S) = f(out(A)), int(S) = f(int(A)),

� t = f(q; f(a); q0) : (q; a; q0) 2 steps(A)g, and

� P = f(f(a); f(a0)) : (a; a0) 2 part(A)g.

Thus, the renaming operator simply renames actions of its operand. For the parallel compo-
sition we need a notion of compatibility for action signatures.

De�nition 2.8 (Strong compatibility of I/O automata)

1. A set of action signatures fSi : i 2 Ig are strongly compatible i� for all i; j 2 I

(a) out(Si) \ out(Sj) = ;, and

(b) int(Si) \ acts(Sj) = ;.

5

2. A set of I/O automata fAi : i 2 Ig are strongly compatible i� their action signatures are
strongly compatible.

De�nition 2.9 (Composition of I/O automata) The composition A =
Q

i2I Ai of strongly
compatible I/O automata fAi : i 2 Ig is de�ned to be the I/O automaton with

1. states(A) =
Q

i2I states(Ai),

2. start(A) =
Y
i2I

start(Ai),

3. sig(A) =
Q

i2I sig(ai),
where composition S =

Q
i2I Si of strongly compatible action signatures fSi : i 2 Ig is

de�ned by

(a) in(S) =
S
i2I in(Si)�

S
i2I out(Si),

(b) out(S) =
S
i2I out(Si),

(c) int(S) =
S
i2I int(Si),

4. part(A) =
S
i2I part(Ai),

5. steps(A) = f ((qi)i2I ; a; (q0i)i2I) : 8i 2 I

a 2 acts(Ai) implies (qi; a; q
0
i) 2 steps(Ai); a 62 acts(Ai) implies qi = q0ig

3 The Problem

In this section, we de�ne the problem that we are going to solve using both the simulation
and algebraic methods. This problem is that of verifying the correctness of a particular circuit
implementation. We begin with an informal description, then present the formal version in
several pieces.

3.1 Informal Description

The example consists of a simple delay insensitive circuit, taken from [Jos92], called the Muller
C element [MB59]. Its interface is shown in Figure 1. A Muller C element has two input ports
a; b and one output port c. Once it is in its initial state with all input and output voltage
levels low, a Muller C element waits for both its inputs to reach the high voltage level for then
raising its output voltage level. It then waits for both its inputs to reach the low voltage level
for then reaching again its initial state. In our speci�cation no changes on the input ports are
allowed whenever the voltage level of an output port has to change. Real implementations may
exhibit unexpected behaviors (such as the glitch phenomenon) in such cases. For the above

6

a b

c

C

Figure 1: The Muller C element

b a

c

m

M

W

a b c

Figure 2: A majority element and a wire implementing a Muller C element

reason we do not specify the behavior of any element whenever an output voltage level has to
change and an input occurs.

A Muller C element can be implemented by a majority element and a wire as shown in
Figure 2. A majority element is a device with three input ports and one output port. The
voltage level of its output port is that of the majority of its input ports. For the majority
element we allow the change of level of an input port even if the output port has to change
level. The required condition is that the new input does not a�ect the ports that have to
change voltage level.

A wire is simply a device with one input and one output. It waits for a change of level on
its input port for then changing the voltage level of its output port.

Our problem is to verify that a Muller C element can really be implemented by a majority
element and a wire.

7

3.2 Formal Description

3.2.1 Actions as Voltage Level Transitions

In our formalization we use actions to model changes of voltage level (either from low to high or
from high to low) at a port. The observation of an action does not give any information whether
the voltage transition is from high to low or vice versa. Our use of actions is a consequence of
the fact that the elements of the problem we are analyzing can be simply described in terms
of voltage level transitions.

3.2.2 Speci�cations of the Elements

The speci�cation S of an element is a tuple (Q;Q0; S; T; P) consisting of a set of states Q, a set
of start states Q0, an interface S consisting of three disjoint sets of input, output and internal
actions respectively, a transition table T , and a partition of the locally controlled actions P .
The transition table gives, for each state and action, the future state, or not speci�ed (NS),
or not enabled (NE). The entry not speci�ed is reserved for input actions and stands for \the
environment is not supposed to provide input at this point"; the entry not enabled is reserved
for local actions and stands for \this action cannot occur at this point".

The speci�cation style outlined above does not de�ne I/O automata directly, however it
allows speci�cations that are very close to the informal speci�cations of Section 3. Later in
this section we will formally de�ne how to interpret the speci�cations below as I/O automata.
The Muller C element, the wire and the majority element speci�cations are denoted by CN ,
WN and MN , respectively. Here, N stands for \neutral" in the sense these speci�cations are
not biased toward either of the representation methods or veri�cation techniques we introduce
later. We start with the formal speci�cation of a Muller C element.

Speci�cation 3.1 (Muller C element) A Muller C element CN is de�ned as follows.

S = (fa; bg; fcg; ;)
Q = f;; fag; fbg; fa; bgg
Q0 = f;g
P = ffcgg

The transition relation is de�ned by the following table:

a b c

; fag fbg NE
fag ; fa; bg NE
fbg fa; bg ; NE

fa; bg NS NS ;

8

It is easy to check that the above speci�cation corresponds to the informal one given in Sec-
tion 3. Starting from a state ; where the voltage level of each port is the same (say low), the
occurrence of an input action would cause the system to move to a new state in which the new
voltage level of the given input port is considered. When the voltage level of both the input
ports is di�erent from the voltage level of the output port (state fa; bg) the output action c is
enabled and no input is allowed to occur.

Speci�cation 3.2 (Wire) A wire WN is de�ned as follows.

S = (fmg; fcg; ;)
Q = f�;mg
Q0 = f�g
P = ffcgg

The transition relation is de�ned by the following table:

m c

� m NE
m NS �

Speci�cation 3.3 (Majority element) A majority element MN is de�ned as follows.

S = (fa; b; cg; fmg; ;)
Q = 2fa;b;cg

Q0 = f;g
P = ffmgg

The transition relation is de�ned by the following table:

a b c m

; fag fbg fcg NE
fag ; fa; bg fa; cg NE
fbg fa; bg ; fb; cg NE
fcg fa; cg fb; cg ; NE

fa; bg NS NS fa; b; cg fcg
fa; cg NS fa; b; cg NS fbg
fb; cg fa; b; cg NS NS fag

fa; b; cg fb; cg fa; cg fa; bg ;

9

3.2.3 From Speci�cations to I/O Automata

The formal speci�cations of Section 3.2.2 are not I/O automata since their transition relations
are not input enabled. In particular it is necessary to de�ne carefully the meaning of the two
special symbols NE and NS. The meaning of NE is trivial since T (q; a) = NE for a state q and
an output action a means that no transition with action o occurs from state q. If T (q; a) = NS
for a state q and an input action a, then, since an I/O automaton is input enabled, a transition
from q with action a must be de�ned. Intuitively we do not wish to constrain the behavior
of any implementation in the presence of an unspeci�ed input. In other words we want any
implementation to be correct independently of the behaviors it exhibits in the presence of
some input that is not speci�ed in the speci�cation. Since the implementation relation of I/O
automata is the fair preorder, the above intuition is captured by introducing a new special state

, and, whenever T (q; a) = NS, by introducing a transition q

a
�!
. The transition relation

on
 has to be de�ned in such a way that, given any sequence of actions �, it is possible to
�nd a fair execution fragment � whose �rst state is
 and such that trace(�) = �.

De�nition 3.4 (Automaton associated with a speci�cation) Given a speci�cation S =
(Q;Q0; (in; out; int); T; P) the I/O automaton A = A(S) is de�ned as

� states(A) = Q [f
g.

� start(A) = Q0.

� sig(A) = (in; out; int [f�p j p 2 Pg).

� (q; a; q0) 2 steps(A) i�

{ T (q; a) = q0 or

{ T (q; a) = NS and q0 =
 or

{ q = q0 =
.

� part(A) = fp [f�pg j p 2 Pg.

The following proposition shows that everything is possible whenever
 is reached, i.e., any
choice of implementation is correct whenever the speci�cation reaches state
.

Proposition 3.5 Given a speci�cation S and given any (possibly in�nite) sequence � of ex-
ternal actions of S there exists a fair execution fragment � of A(S) whose �rst state is
 such
that trace(�) = �.

Proof. The execution fragment � interleaves the actions of � with one internal action from
each class of part(A(S)). If � is �nite then � fairly loops forever on the internal actions from
each class of part(A(S)) after � is completed. By construction we know that each class has at
least one internal action. Moreover
 has a self loop with each action.

Now we can state the problem formally: verify that

Hidefmg(A(MN) k A(WN)) vF A(CN):

10

4 A Veri�cation using Simulation

In this section we carry out the veri�cation required in Section 3.2 using simulation-based
assertional techniques. We begin by presenting the relevant theory, then give variants of the
speci�cations of Section 3.2 that are better suited for carrying out a simulation proof, and
�nally carry out the steps of the proof.

4.1 The Theory

In order to prove that an I/O automaton A implements another I/O automaton B, it is
necessary to prove that each fair trace of A is also a fair trace of B. Our strategy for doing this
is to �rst obtain a strong correspondence between each execution of A and some execution of
B; one way of obtaining such a correspondence is by using a forward simulation. The proof of
fair trace inclusion can then be carried out in terms of the correspondence between executions.

In the fairness proof, it is notationally advantageous to use a generalization of I/O automata
known as forcing I/O automata; this generalization does not increase the expressive power of
the model, but does allow more concise representations.

Below, we de�ne forward simulations, state the Execution Correspondence Lemma, and
give the needed de�nitions are results for forcing I/O automata.

4.1.1 Forward Simulations and the Execution Correspondence Lemma

The notion of forward simulation that we use is taken from the comprehensive paper by Lynch
and Vaandrager [LV91].

De�nition 4.1 (Forward simulation) A forward simulation from an I/O automaton A to
an I/O automaton B is a relation f over states(A) and states(B) that satis�es:

1. If q 2 start(A) then f [q]\ start(B) 6= ;.

2. If q
a
�! q0 and p 2 f [q], then there exists a state p0 2 f [q0] such that p

adext(B)
=) p0.

The usual conclusion that is drawn from the existence of a forward simulation is trace inclusion:

Lemma 4.2 Given two I/O automata A;B, if there is a forward simulation from A to B,
then traces(A) � traces(B).

However, since we would like to base our proof of fair trace inclusion on our proof of trace
inclusion, it is useful to have a stronger consequence of the existence of a forward simulation.
This lemma is proved in [GSSL93].2

2In [GSSL93], it is also shown that a similar lemma holds for other types of simulation relations such as
backward simulations.

11

Lemma 4.3 (Execution correspondence) Let f be a forward simulation from an I/O au-
tomaton A to an I/O automaton B. Then, for each execution � = q0a1q1a2q2 � � � of A
there is an execution �0 = q00b1q

0
1b2q

0
2 � � � of B and a total monotone nondecreasing mapping

c : f0; : : : ; j�jg ! f0; : : : ; j�0jg such that

1. c(0) = 0,

2. q0c(i) 2 f(qi) for all 0 � i � j�j,

3. bc(i)+1 � � � bc(i+1)dext(B) = ai+1dext(A) for all 0 � i � j�j, and

4. for all q0j there exists an i such that c(i) � j.

If the forward simulation is well chosen, Proposition 4.3 can be used as the basis of a proof
of fair trace inclusion, as follows. For each fair execution � of A, �rst produce a corresponding
execution �0 of B. Then show that the fairness of � implies the fairness of any corresponding
execution of B. This is the general strategy we will follow in our proof.

4.1.2 Forcing I/O Automata

In carrying out the proof of fairness, it turns out to be notationally convenient to use a slight
generalization of I/O automata that we call forcing I/O automata [SLL93b]. The generalization
consists of associating a set of states called a forcing set with each class of part(A). Forcing
I/O automata are no more expressive than ordinary I/O automata, in terms of the sets of
fair traces they can represent; they are useful, however, because they sometimes admit more
concise representations.

De�nition 4.4 (Forcing I/O automata) A forcing I/O automaton A is an I/O automaton
with the following additional structure:

� a function force(A) associating a set of states with each partition of part(A) such that,
for each partition p 2 part(A) and each state q 2 force(A)(p), there exists an action of p
which is enabled from q. The set force(A)(p) is called the forcing set of p. It is a subset
of the states enabling some action of p. The set of states enabling some action from p is
denoted by enabling(p).

The notion of fair execution for forcing I/O automata di�er from that of ordinary I/O automata
is that fairness is now expressed only with respect to states in the forcing set of each class p of
local actions.

De�nition 4.5 (Fair executions) A fair execution fragment of a forcing I/O automaton A
is an execution fragment � 2 execs(A) such that for all X 2 part(A)

12

� If � is �nite then the �nal state of � is not in the forcing set of X .

� If � is in�nite then either actions from X appear in�nitely often in � or states not in the
forcing set of X appear in�nitely often in �.

A fair execution is a fair execution fragment whose �rst state is a start state.

The following proposition says that forcing I/O automata do not add any new expressive power
to the I/O automaton model; moreover, it gives a particular transformation from forcing I/O
automata to I/O automata.

Proposition 4.6 Given a forcing I/O automaton A, consider an I/O automaton F(A) where

� states(F(A)) = states(A)

� start(F(A)) = start(A)

� sig(F(A)) = (in(A); out(A); int(A)[f�p j p 2 part(A)g)

� steps(F(A)) = steps(A)[f(q; �p; q) j p 2 part(A); q 2 (enabling(p)n force(p))g

� part(F(A)) = fp [f�pg j p 2 part(A)g

Then ftraces(A) = ftraces(F(A)).

Proof. Let � be a fair trace of A and let � be a fair execution of A such that trace(�) = �.
Build an execution �0 of F(A) from � in the following way: at each state of � add a self loop
with all the �p actions that are enabled; if � is �nite, loop forever on the �nal state of � by
performing all the enabled �p actions in a Round-Robin way. Note that trace(�0) = �, so it is
enough to show that �0 is a fair execution of F(A). Suppose that �0 is not fair for F(A). If �0

is �nite then there exists a class p of A with an enabled action from the last state of �0 and
such that �p is not enabled from the last state of �0. Also, � is �nite and its last state enables
an action from p. By de�nition of F the last state of � is in the forcing set of p, therefore
� is not a fair execution of A; a contradiction. Suppose that �0 is in�nite and that there is
a class p of A and a su�x �00 of �0 such that actions from p [f�pg are continuously enabled
but never performed in �00. By de�nition of �0, �p is never enabled in �00, hence actions from
p are always enabled and never performed in �00. By de�nition of F , all the states of �00 are in
the forcing set of p, hence there exists a su�x of � where actions from p are always enabled
and never performed and whose states are all in the forcing set of p, i.e., � is not fair; again a
contradiction.

Conversely, let � be a fair trace of F(A) and let � be a fair execution of F(A) such that
trace(�) = �. Build an execution �0 of A by removing from � all the transitions with actions
of the form �p. Note that trace(�0) = �, so it is enough to show that �0 is a fair execution of A.

13

If � is �nite, then the last state of � does not enable any action from any class p, hence also
the last state of �0 does not enable any action from any class p, and �0 is fair. If � is in�nite
and �0 is �nite, then, by de�nition of �0 and F , the last state of �0 is not in the forcing set
of any class p, hence �0 is fair. If � is in�nite and �0 is in�nite, then, for each class p, there
are three possible cases. If states not enabling actions from p [f�pg appear in�nitely often
in �, then states not enabling actions from p appear in�nitely often in �0; if actions from p
appear in�nitely often in �, then actions from p appear in�nitely often in �0; if actions from
p [f�pg appear in�nitely often in � but actions from p appear �nitely many times in �, then,
by de�nition of F , states not in the forcing set of p appear in�nitely often in �0. In all of the
above cases the conditions for �0 to be fair are satis�ed, therefore �0 is a fair execution of A.

The standard operators of I/O automata can be easily extended to forcing I/O automata. The
only nontrivial extension is that of the parallel operator, where the forcing set of each class has
to be modi�ed to take into account the states of the other forcing I/O automata. Consider for
example a forcing I/O automaton A composed in parallel with a forcing I/O automaton B and
let q be in the forcing set of some class p of A. Whenever A reaches state q in the composition
A k B, we want the global state of A k B to be in the forcing set of p. Therefore all states of
fqg � states(B) have to be in the new forcing set of p.

De�nition 4.7 (Composition of forcing I/O automata) The composition A =
Q

i2I Ai

of strongly compatible forcing I/O automata fAi : i 2 Ig is the composition of their ordinary
part augmented with new forcing sets as follows: for each class p 2 part(pj), force(A)(p) =
force(Aj)(p)�

Q
i2Inj Ai.

Proposition 4.8 Given two forcing I/O automata A;B,

1. F(HideI(A)) and HideI(F(A)) are the same I/O automaton;

2. F(A k B) and F(A) k F(B) are the same I/O automaton.

Proof. The �rst statement is trivial since the hiding operator changes only the signature of
an I/O automaton and the result of F does not depend on which actions of an I/O automaton
are internal and which ones are external. For the second statement we verify that the two
involved I/O automata are the same one by verifying each component separately.

states(F(A k B)) = states(A k B)
= states(A)� states(B)
= states(F(A))� states(F(B))
= states(F(A) k F(B))

start(F(A k B)) = start(A k B)
= start(A)� start(B)
= start(F(A))� start(F(B))
= start(F(A) k F(B))

14

out(F(A k B)) = out(A k B) = out(A) [out(B)
= out(F(A))[out(F(B))
= out(F(A) k F(B))

in(F(A k B)) = in(A k B)
= (in(A) [in(B))nout(A k B)
= (in(F(A))[in(F(B)))nout(F(A) k F(B))
= in(F(A) k F(B))

int(F(A k B)) = int(A k B) [f�p j p 2 part(A k B)g
= int(A) [int(B) [f�p j p 2 part(A) [part(B)g
= (int(A) [f�p j p 2 part(A)g)[(int(B) [f�p j p 2 part(B)g)
= int(F(A))[int(F(B))
= int(F(A) k F(B))

part(F(A k B)) = fp [f�pg j p 2 part(A k B)g
= fp [f�pg j p 2 part(A) [part(B)g
= fp [f�pg j p 2 part(A)g [fp[f�pg j p 2 part(B)g
= part(F(A))[part(F(B))
= part(F(A) k F(B))

The argument for steps is more complicated. Let ((qA; qB); a; (q
0
A; q

0
B)) 2 steps(F(A k B)).

If a is not an action of the form �p, then ((qA; qB); a; (q0A; q
0
B)) 2 steps(A k B). From the

de�nition of the parallel composition operator and from the fact that steps(C) � steps(F(C))
for each forcing I/O automaton C, it is immediate do derive that ((qA; qB); a; (q

0
A; q

0
B)) 2

steps(F(A) k F(B)). If a is of the form �p, then suppose without loss of generality that
p 2 part(A). Then (qA; qB) 2 enabling(p)n force(p) in A k B, and, by de�nition of paral-
lel composition for forcing I/O automata, qa 2 enabling(p)n force(p) in A. By de�nition of
F , (qA; a; q

0
A) 2 steps(F(A)). By de�nition of parallel composition, ((qA; qB); a; (q

0
A; q

0
B)) 2

steps(F(A) k F(B)).

Conversely, let ((qA; qB); a; (q
0
A; q

0
B)) 2 steps(F(A) k F(B)). If a is not an action of the

form �p, then a direct analysis of the de�nition of the parallel composition operator shows that
((qA; qB); a; (q

0
A; q

0
B)) 2 steps(F(A k B)). If a is of the form �p, then suppose without loss of

generality that p 2 part(A). By de�nition of F , qa 2 enabling(p)n force(p) in A. By de�nition
of parallel composition for forcing I/O automata, (qA; qB) 2 enabling(p)n force(p) in A k B.
By de�nition of F , ((qA; qB); a; (q

0
A; q

0
B)) 2 steps(F(A k B)).

15

4.2 Speci�cation of the Components

In Section 3.2 we described the system components using a \neutral" formalism that is not
biased toward either veri�cation method. Each of the two methods, however, has its own
characteristic language for describing system components. In this section, we represent each
element of Section 3.2 using a variant of the precondition-e�ect language of [LT87] that is
suitable for describing forcing I/O automata. We also relate the new speci�cations to the
neutral ones.

In our precondition-e�ect language a forcing I/O automaton is described by means of its
action signature, its states, its initial states, its transition relation, and its classes with forcing
sets. The transition relation is speci�ed by means of the preconditions for the execution of
each action and the e�ect each action produces on the state. The precondition of an action
gives the set of states from which it is enabled or from which it is expected; the e�ect gives the
next state. If an input action occurs when its precondition is not satis�ed, then the system
moves to a special state
. The state
 implicitly has a transition to itself for each action and
it does not appear in the forcing set of any class of local actions.

Note that this representation can be more concise than the neutral representation, because
states need not all be listed explicitly. Rather, they are described in terms of values of a
collection of state variables.

In order to simplify the notation we introduce an operator � on sets corresponding to the
symmetric di�erence operator. Note that the transition relations of the forcing I/O automata
we introduce below di�er from those of Section 3.2 only in the de�nition of state
. As a
consequence, the speci�cations of this section and those of Section 3.2 denote I/O automata
with the same set of fair traces. In fact, the connection between the I/O automata is much
closer than this; we give a formal statement of the connection after the speci�cations.

Speci�cation 4.9 (Muller C element) A Muller C element CF is de�ned as follows.

S = (fa; bg; fcg; ;)
Q = f;; fag; fbg; fa; bg;
g
Q0 = f;g
P = ffcgg where fcg has forcing set ffa; bgg

Transitions:

Action a

Precondition: q 6= fa; bg
E�ect: q0 := q � fag

Action b

Precondition: q 6= fa; bg

16

E�ect: q0 := q � fbg

Action c

Precondition: q = fa; bg
E�ect: q0 := ;

Speci�cation 4.10 (Majority element) A majority element MF is de�ned as follows.

S = (fa; b; cg; fmg; ;)
Q = 2fa;b;cg [f
g
Q0 = f;g
P = ffmgg where fmg has forcing set ffa; bg; fa; cg; fb; cg; fa; b; cgg

Transitions:

Action a

Precondition: q 62 ffa; bg; fa; cgg
E�ect: q0 := q � fag

Action b
Precondition: q 62 ffa; bg; fb; cgg
E�ect: q0 := q � fbg

Action c
Precondition: q 62 ffa; cg; fb; cgg
E�ect: q0 := q � fcg

Action m
Precondition: jqj � 2
E�ect: q0 := fa; b; cgnq

Speci�cation 4.11 (Wire) A wire WF is de�ned as follows.

S = (fmg; fcg; ;)
Q = f�;m;
g
Q0 = f�g
P = ffcgg where fcg has forcing set ffmgg

Transitions:

Action m

Precondition: q = �

17

E�ect: q0 := m

Action c

Precondition: q = m
E�ect: q0 := �

Proposition 4.12

1. A(CN) and F(CF) denote the same I/O automaton.

2. A(MN) and F(MF) denote the same I/O automaton.

3. A(WN) and F(WF) denote the same I/O automaton.

Proof. The proof is a simple analysis of the de�nitions. We argue a bit more about the �rst
statement and leave the other two to the reader. The states of A(CN) and F(CF) are the
same since the states of CF are those of CN plus
 and A adds a new state
 to the states
of CN . Similarly, the start states are the same in A(CN) and F(CF). The partitions of the
locally-controlled actions are the same since both CN and CF have a unique class and both
A and F add a new internal action �p to each class p. Similarly, the action signatures of the
two I/O automata are the same. The transition relations of the two I/O automata are the
same since the preconditions of the actions of CF identify those cells of the transition table of
CN that do not contain NS or NE, the e�ects of each action coincide in CN and CF , all the
states of CF but
 are in the forcing set of the unique partition of part(CF), and A deals with
unspeci�ed inputs by moving to
.

4.3 The Veri�cation

We �nally prove that a Muller C element is implemented by a majority element and a wire.
We �rst prove a proposition expressing this claim for forcing I/O automata. At the end of this
subsection, we show how to derive the precise claim of Section 3.2.

Proposition 4.13 Hidefmg(MF k WF) vF CF , i.e., a Muller C element can be implemented
by a majority element and a wire.

Proof. We de�ne a mapping from the implementation to the speci�cation and show that
it is a forward simulation. We then use the Execution Correspondence Lemma to obtain
corresponding executions and use this correspondence to prove fair trace inclusion.

More precisely, the mapping f to use is the following:

18

(;; �) 7! f;g
(fag; �) 7! ffag;
g
(fbg; �) 7! ffbg;
g
(fa; bg; �) 7! ffa; bg;
g
(fcg; m) 7! ffa; bg;
g
all other pairs 7! f!g

We �rst prove that the above relation is a forward simulation. The condition on the initial
states is immediate to verify since the initial state (;; �) is mapped to the initial state ;. For
the transition relation we proceed by cases analysis on action names.

Action a: We distinguish the following cases:

� If a occurs from (x; �) where x 2 f;; fag; fbgg then (x; �)
a
�! (x � fag; �) and

x
a
�! x� fag.

� If a occurs from (fa; bg; �) then (fa; bg; �)
a
�! (
; �). Moreover fa; bg

a
�!
 and

a
�!
.

� If a occurs from (fcg; m) then (fcg; m)
a
�! (
; m). Moreover fa; bg

a
�!
 and

a
�!
.

� If a occurs from any state (x; �) where x =2 f;; fag; fbg; fa; bgg then (x; �)
a
�! (x0; �)

and x0 =2 f;; fag; fbg; fa; bgg. Moreover

a
�!
.

� If a occurs from any state (x;m) where x 6= fcg then (x;m)
a
�! (x0; m) and

a
�!
.

Note that, since for x = fa; cg we have x0 = fcg, we need
 in the mapping for
(fcg; m).

Action b: This case is the same as the case for action a.

Action c: This action is enabled only from states of the form (x;m) and yields a new
state (x0; �). If x = fcg then x0 = ; and fa; bg

c
�! ;. In all other cases x0 can be anything

but ;. This is the case for which we need to map (fag; �), (fbg; �) and (fa; bg; �) to
.

Action m: This action is enabled from each state (x; �) and (x;m) with jxj � 2. If the
starting state is (x;m) then the �nal state is (x0;
). Moreover both starting and �nal
states are mapped to
. If the starting state is (x; �) with x 6= fa; bg then the �nal state
is (x0; m) and both starting and �nal states are mapped to
. If the starting state is
(fa; bg; �) then (fa; bg; �)

m
�! (fcg; m) and both starting and �nal states are mapped to

fa; bg and
.

The existence of the above forward simulation allows us to conclude that each trace of
Hidefmg(MF k WF) is a trace of CF . We now use the same simulation to argue that each
fair trace of Hidefmg(MF k WF) is a fair trace of CF . Consider a generic fair execution � of

19

Hidefmg(MF kWF). By the Execution Correspondence Lemma, there is an execution �0 of CF

corresponding to � through the mapping f . It is su�cient to argue that �0 is fair to conclude.

Suppose that �0 is not a fair execution of CF . The only way the fairness for CF can be
violated is for the states in �0 to be fa; bg for some point on without c ever occurring. (In fact
fa; bg is the only state in the forcing set for fcg.) Then in �, the correspondence says that the
states are all either (ab; �) or (c;m) from that point on. If there is any occurrence of a (c;m)
state, then the fairness condition for WF says that eventually c occurs in �, so also in �0, a
contradiction. So the state must be (ab; �) forever. But then the fairness condition for MF

says that eventually m occurs, changing the state to (c;m), again a contradiction.

Note that the fairness part of the proof above is done somewhat less formally than the sim-
ulation part; the fairness part can be formalized using a temporal logic of states and actions
[Sta84, SLL93b].

Now we can give the main result:

Theorem 4.14 Hidefmg(A(MN) k A(WN)) vF A(CN).

Proof. From Propositions 4.13 and 4.6 we derive F(Hidefmg(MF k WF)) vF F(CF). From
Proposition 4.8 we derive Hidefmg(F(MF) k F(WF)) vF F(CF). From Proposition 4.12 we
obtain Hidefmg(A(MN) k A(WN)) vF A(CN).

5 A Veri�cation using Process Algebras

In this section we carry out the veri�cation required in Section 3.2 using process algebra.
Again, we begin by presenting the relevant theory, then give new speci�cations, and �nally
carry out the steps of the proof.

5.1 The Theory

As before, our job is to prove a fair trace inclusion relationship between two I/O automata. In
general, process algebra is not well suited for proving results about fairness, because fairness
does not �t nicely into the theory of a process algebra containing recursion. However, process
algebra can be used to reason about an approximation to fairness known as quiescence, and
under certain circumstances, this may be enough.

Below, we de�ne quiescence and relate it to fairness. We then de�ne DIOA (\Demonic I/O
Automata"), a process algebra for proving quiescent trace inclusion relationships between I/O
automata. 3

3The adjective \demonic" is used suggestively in [Seg92] to emphasize the fact that demonic I/O automata
behave catastrophically in the presence of unexpected inputs. It is in contrast with the approach of [Vaa91]
which is called \angelic" in [Seg92].

20

5.1.1 From the Quiescent Preorder to the Fair Preorder

De�nition 5.1 (Quiescent executions and traces) A quiescent execution of an I/O au-
tomatonA is a �nite fair execution of A. A quiescent trace is the trace of a quiescent execution.
We denote the set of quiescent traces of an I/O automaton A by qtraces(A).

De�nition 5.2 (Quiescent preorder) Given two I/O automata A and B with the same
external action signature, the quiescent preorder is de�ned as

A vQ B i� traces�(A) � traces�(B) and qtraces(A) � qtraces(B):

The quiescent preorder was �rst introduced in [Vaa91] and is an attempt at approximating
the fair preorder by only looking at the �nite executions of an I/O automaton. As pointed
out through some examples in [Seg92], the quiescent preorder is not an intuitively reasonable
notion of implementation in general, however [Seg93] gives some su�cient conditions for the
quiescent preorder to coincide with the fair preorder. Below we present some of the results of
[Seg93]. We start with some de�nitions.

De�nition 5.3 (Quiescent detectability) An I/O automaton A is quiescent detectable if
each �nite fair trace of A is also a quiescent trace of A.

Quiescence detectability requires each divergence to be detected through a quiescent trace.
The fair preorder, in fact, does not distinguish between divergence and quiescence, while the
quiescent preorder does.

De�nition 5.4 (Quiescent continuity) An I/O automaton A is quiescent continuous if the
limit of any chain of quiescent traces of A is a fair trace of A.

The quiescent preorder deals only with �nite executions, while the fair preorder also considers
in�nite ones. A condition for the two preorders to coincide is that the information about
in�nite executions be captured by the information on the �nite ones. To guarantee the above
fact we also need �nite internal nondeterminism.

De�nition 5.5 (Finite internal nondeterminism) An I/O automaton A has �nite inter-

nal nondeterminism (FIN) if 8h2acts�(A)fq j 9q02start(A)q0
h
=)� qg is �nite.

The above de�nition of FIN is weaker than the de�nition given in [LV91]. The de�nition
of [LV91] requires, for every trace h, the set of reachable states with h to be �nite. In our
de�nition we only require a smaller set to be �nite, i.e., the set of states reachable through h
with its last external transition.

21

De�nition 5.6 (Input quiescent detectability) An I/O automaton A is input quiescent
detectable if each in�nite fair trace of A with �nitely many output actions has in�nitely many
pre�xes that are quiescent for A.

An in�nite fair trace made of input actions only can be obtained from an execution containing
in�nitely many internal transitions. The quiescent preorder, on the other hand, can detect
only quiescent states.

Theorem 5.7 (Relationship between the quiescent and fair preorder) Given two I/O
automata A1; A2 with the same external action signature such that part(A1) = flocal(A1)g and
part(A2) = flocal(A2)g, if A1 is quiescent detectable and input quiescent detectable, and A2 is
fair continuous and has FIN, then

A1 vQ A2 implies A1 vF A2:

If A2 is quiescent detectable then

A1 vF A2 implies A1 vQ T2:

Quiescent detectability and FIN are generally met by practical systems. Note, in fact, that
systems without any in�nite internal computation are quiescent detectable. Also quiescent
continuity is generally true. In [Seg93] it is shown that, if an I/O automaton has FIN and
is input deterministic (for each state q and each input action a there exists a unique state q0

such that q
a

=)� q0), then it is quiescent continuous. It is not clear yet to us how general input
quiescent detectability is.

Theorem 5.7 shows how the quiescent preorder can capture the fair preorder of some I/O
automata with a single class of locally controlled actions. This is not the case for general I/O
automata. However, there are cases in which the quiescent preorder is su�cient for concluding
fair trace inclusion in the presence of multiple classes. When an I/O automaton has more than
one class of locally controlled actions, the quiescent preorder is not of great help in deriving
the fair preorder. The following proposition is of help whenever the speci�cation automaton
has a single class and the implementation automaton has multiple classes.

Proposition 5.8 Let A be an I/O automaton. If for each transition q
a
�! q0 of steps(A)

where a is an input action and each class x of part(A), an action of x is enabled from q0 if
and action of x is enabled from q (i.e., input actions do not disable any class of part(A)), then
ftraces(A) � ftraces(A0) where A0 di�ers from A only in that part(A0) = flocal(A)g.

If an I/O automaton A with multiple classes implements an I/O automaton B with a single
class, and if the involved automata satisfy the conditions of Theorem 5.7, then the proposition
above gives a su�cient condition for deriving the full fair preorder from the quiescent preorder.

22

In fact, from A0 vQ B, where A0 is the I/O automatonA with a single class, we derive A0 vF B,
and, from Proposition 5.8, we derive A vF B. Examples of systems satisfying the condition of
Proposition 5.8 are the monotone I/O automata of [Sta90], which can model a large class of
dataow networks, and the semi-modular, speed-independent circuits of [MB59]. Our problem
is based on delay insensitive circuits.

5.1.2 The Calculus of Demonic I/O Automata

The calculus of Demonic I/O Automata (DIOA) is a process algebra for I/O automata [Seg92].
Each I/O automaton is an expression which is obtained by applying operators to basic au-
tomata. Each expression is sorted and each sort represents an external action signature. Each
DIOA expression has a unique internal action � . Multiple internal actions, in fact, are used
within I/O automata for expressing fairness with respect to di�erent internal tasks; however,
DIOA does not deal with fairness. In this paper we present a slightly modi�ed version of DIOA
in which we consider multiple internal actions. Each sort represents a full action signature with
multiple internal actions. Our modi�cation does not change the algebraic properties of DIOA
(the axioms do not change), but it makes it easier to relate DIOA proofs to simulation proofs.
We assume that the sort of each DIOA expression contains at least one internal action and we
use � to denote a generic internal action. This assumption is necessary to model some of the
operators.

Table 1 contains all the operators of DIOA and Table 2 contains their operational semantics
in terms of transition systems. The operators of DIOA recall the standard operators of CCS
[Mil89]; however they are di�erent in the sense that they also guarantee input enabling by
moving an automaton to the state
 whenever some unexpected input is provided. The
expression nil models a quiescent automaton that moves to
 for any input. The pre�xing
operator allows the speci�cation of an automaton which �rst perform a speci�c action a.
The internal choice operator models nondeterministic choice independently of the external
environment. Particularly unfamiliar to the process algebraic community is the external choice
operator, which is parameterized by two sets of input actions. The two parameters describe
which arguments of the operator deal with di�erent input actions. Consider the expression
exp = a : e fag+fbg b : f . The subexpression a : e is describing the behavior of exp in the presence
of input action a while the subexpression b : f is describing the behavior of exp in the presence
of input action b. The parameters are necessary since a : e also reacts to input b although that
reaction is not desired. The meaning of an expression like a : e + b : f , however, is intuitively
clear. Although this intuition is not expressible for general DIOA expressions, Table 3 de�nes a
function si(e) (Speci�ed Inputs) which is capturing our intuitive idea for DIOA expressions of
the kind a1 : e1+ � � �an : en. Function si allows us to de�ne an unparameterized choice operator
by writing e+f for e si(e)+si(f) f , where function si is de�ned in Table 3. The interested reader
is referred to [Seg92] for a more detailed description of si and its generalization to all DIOA
expressions.

Given a DIOA expression, there is a natural way of associating an I/O automaton with it.

23

Name Op. Domain Range Restrictions

quiescent nilS � S

omega
S � S

pre�xing a:S S S a 2 ext(S)

ichoice �S S; S S

echoice I+
S
J S; S S I; J � in(S)

parallel S1kS2 S1; S2 S3 int(S1) \ acts(S2) = acts(S1)\ int(S2) = ;
out(S1) \ out(S2) = ;
out(S3) = out(S1) [out(S2)
in(S3) = (in(S1)[in(S2))nout(S3)
int(S3) = int(S1) [int(S2)

hiding �SI S S 0 I � out(S); S0 = (in(S); out(S)nI; int(S)[I)

renaming �S S S 0 for each injective � : acts(S) �! acts(S0)
S0 = (�(in(S)); �(out(S)); �(int(S)))

process XS � S XS 2 XS

Table 1: The signature of DIOA

We arbitrarily choose not to partition its locally controlled actions. In this way Theorem 5.7
directly applies.

De�nition 5.9 Given a DIOA expression e, the associated I/O automaton D(e) is de�ned as

� states(D(e)) = fe0 j 9t 2 acts(e)�; e
t
�! e0g

� start(D(e)) = feg

� sig(D(e)) = (in(e); out(e); int(e))

� steps(D(e)) = f(e0; a; e00) j e0 2 states(D(e)); e0
a
�! e00g

� part(D(e)) = flocal(e)g

Proposition 5.10 Given two DIOA expressions e; f ,

1. D(�I(e)) and HideI(D(e)) are isomorphic I/O automata under the isomorphism h :
states(D(�I(e)))! states(HideI(D(e))) such that h(�I(e0)) = e0;

24

nil nilS
a
�!
S 8a 2 in(S)

ome1
S
a
�!
S a 2 ext(S) ome2
S

�
�! nilS

pre1 a :S e
a
�! e pre2 a :S e

b
�!
S 8b 2 in(S)nfag

ich1 e1 �S e2
�
�! e1 ich2 e1 �S e2

�
�! e2

ich3

e1
a
�! e01

e1 �S e2
a
�! e01

8a 2 in(S) ich4

e2
a
�! e02

e1 �S e2
a
�! e02

8a 2 in(S)

ech1

e1
a
�! e01

e1 I+
S
J e2

a
�! e01

8a 2 I [out(S)

ech2

e2
a
�! e02

e1 I+S
J e2

a
�! e02

8a 2 J [out(S)

ech3 e1 I+S
J e2

a
�!
S 8a 2 in(S)n(I [J)

ech4

e1
�
�! e01

e1 I+
S
J e2

�
�! e01 I+

S
J e2

ech5

e2
�
�! e02

e1 I+
S
J e2

�
�! e01 I+

S
J e

0
2

tau1

e
a
�! e0

�SI (e)
a
�! �SI (e

0)
rho

e
a
�! e0

�S(e)
�(a)
�! �S(e0)

par1
e1

a
�! e01 e2

a
�! e02

e1 S1kS2 e2
a
�! e01 S1kS2 e

0
2

par2
e1

a
�! e01

e1 S1kS2 e2
a
�! e01 S1kS2 e2

a 2 acts(S1)next(S2)

par3
e2

a
�! e02

e1 S1kS2 e2
a
�! e1 S1kS2 e

0
2

a 2 acts(S2)next(S1)

rec
e

a
�! e0

X
a
�! e0

if X
def
= e

Table 2: The transition rules for DIOA. � is any internal action.

25

si(nil) = ; so(nil) = ;

si(
) = ; so(
) = out(
)

si(a : e) = fag \ in(e) so(a : e) = fag \ out(e)

si(e1 � e2) = si(e1) \ si(e2) so(e1 � e2) = so(e1) [so(e2)

si(e1 I+J e2) = (I \ si(e1))[(J \ si(e2)) so(e1 I+J e2) = so(e1) [so(e2)

si(X) = si(E(X)) so(X) = so(E(X))

Table 3: De�nition of si and so for DIOA.

2. D(e k f) and D(e) k D(f) are almost isomorphic I/O automata uder the isomorphism
h : states(D(e k f)) ! states(D(e) k D(f)) such that h(e0 k f 0) = (e0; f 0). The only
di�erence is in that part(D(e k f)) = flocal(e) [local(f)g and part(D(e) k D(f)) =
flocal(e); local(f)g.

Proof. We give the proof for the hiding operator. The proof for the parallel composition
operator is similar and is left to the reader.

states(HideI(D(e))) = states(D(e))

= fe0 j 9t 2 acts(e)�; e
t
�! e0g

= fh(�I(e0)) j 9t 2 acts(�I(e)); �I(e)
t
�! �I(e0)

= fh(�I(e
0)) j �I(e

0) 2 states(D(�I(e)))g
= h(states(D(�I(e))))

start(HideI(D(e))) = start(D(e))
= feg
= h(f�I(e)g)
= h(start(D(�I(e))))

sig(HideI(D(e))) = (in(D(e)); out(D(e))nI; int(D(e))[I)
= (in(e); out(e)nI; int(e)[I)
= (in(�I(e)); out(�I(e)); int(�I(e)))
= (in(D(�I(e))); out(D(�I(e))); int(D(�I(e))))

26

Ec7
Quiet(f)

e I+J f vQ e
if si(e) � I and si(e) \ J = ;

I3 �I(a : e) �Q a : �I(e) if a 62 I

I4 �I(e H+K f) �Q �I(e) H+K �I(f) if so(e)\ I = so(f) \ I = ;

I11 �I(i : e) �Q �I(e) if si(e) = ;

Table 4: Some axioms for the quiescent preorder of DIOA.

steps(HideI(D(e))) = steps(D(e))

= f(e0; a; e00) j e0 2 states(D(e)); e0
a
�! e00g

= f(h(�I(e0)); a; h(�I(e00))) j �I(e0) 2 states(�I(e)); �I(e0)
a
�! �I(e00)g

= f(h(�I(e
0)); a; h(�I(e

00))) j (�I(e
0); a; �I(e

00)) 2 steps(D(�I(e)))g

part(HideI(D(e))) = part(D(e))
= flocal(e)g
= flocal(�I(e))g
= part(D(�I(e)))

The implementation relation for DIOA is the quiescent preorder, which is a weak congruence
for all the operators but the unparameterized +. A weak congruence is a relation that is
preserved under legal contexts, i.e., xR y implies C[x]RC[y] if C[�] is a legal context for both
x and y. Table 4 contains some axioms for the quiescent preorder over DIOA. The axioms we
present are just a some of those of [Seg92], however they are su�cient for our examples. They
are sound in the sense that they state true properties of the I/O automata associated with
the expressions. Axiom Ec7 uses a function Quiet(f) which is true only if f is a quiescent
expression, i.e., D(f) enables only input actions in its start state. Ec7 models the idea that,
whenever a speci�cation e does not say anything about some input actions, any choice of
implementation f in the presence of those actions is correct. Axiom I3 allows us to move
external actions out of the hiding operator. Axiom I4 uses a function so in its side condition.
Function so (Speci�ed Outputs) is de�ned in Table 3 and gives those output actions of its
argument that can be performed up to internal transitions. The side condition for Axiom I4 is
necessary since an external choice context is not resolved with internal actions (see transition
rules ech4;5). Axiom I11 allows us to eliminate initial internal computation from I/O automata
whenever no input is expected (si(e) = ;). Two other important axioms deal with the parallel
operator and with recursion. The expansion axiom allows to unfold a parallel expression into
a nondeterministic sequential one; the recursive substitutivity rule states conditions for which
a set of equations have unique �xpoint, and gives a method for proving that a process is
implementing the �xpoint of a set of equations. In Section 5 the recursive substitutivity rule

27

plays a fundamental role.

Proposition 5.11 (Expansion axiom) The following axiom is sound for the quiescent pre-
order.

E2 Let e � e1 k e2 k � � � k en where each ei is of the form
P

j ai j : ei j. For each action
a 2 ext(e) let

Ei
a =

(
fei j j ai j = ag if a 2 acts(ei)
feig otherwise

Let out(a) be the index j such that a is an output action of j (0 otherwise) and let

Ea =

(
; if out(a) 6= 0 and Eout(a)

a = ;
ff1 k � � � k fn : fi 2 Ei

a _ (Ei
a = ; ^ fi �
)g otherwise

Then e �Q

P
a2ext(e)(

P
f2Ea

a:f).

Theorem 5.12 (Recursive substitutivity) Let ~X
def
= ~E(~X) be a set of equations fEi

def
=P

j(aj : Xij)g, and let ~P be a set of DIOA expressions. If ~P vQ
~E[~P= ~X] then ~P vQ

~X.

5.2 Speci�cation of the Components

In this section we specify the components of Section 3.2 using DIOA expressions. In this way
we can use the DIOA axioms for the actual veri�cation. The new speci�cations will explicitly
consider only speci�ed input actions at each state. The demonic approach guarantees the
existence of a transition to
 for each non-speci�ed input action. The I/O automata of this
section di�er from those of Section 3.2 in the de�nition of
. Since DIOA deals with �nite
and quiescent traces only, we need any fair trace of D(
) to be a quiescent trace of D(
),
i.e., we need D(
) to be quiescent detectable. Quiescent detectability is obtained through
the transition

�
�! nil. Note that each sequence of external actions is a fair trace of D(
);

moreover the I/O automata we specify in this section and those of Section 3.2 di�er only in
the transitions for state
. As a consequence the speci�cations of this section and those of
Section 3.2 denote the same objects in the sense that the corresponding I/O automata exhibit
the same fair traces. A formal equivalence statement will be given after the speci�cations.

Speci�cation 5.13 (Muller C element) A Muller C element is speci�ed as follows:

C
def
= a : Ca + b : Cb

Ca
def
= a : C + b : Cab

Cb
def
= a : Cab + b : C

Cab
def
= c : C

where a; b are input actions and c is an output action.

28

The DIOA speci�cation of a Muller C element is represented by the process variable C. In
order to be consistent with the speci�cations of the previous sections the process variable
name should be CD, however, we decided to drop the parameter D to avoid confusion with the
parameters of the other process variables. The subscripts in the process variables represent
the input ports that have changed voltage level. When both the inputs have changed (state
Cab) the output voltage level is changed. Note that in state Cab no inputs are accepted. The
underspeci�cation of the Muller C element in such cases is implicit in the structure of DIOA.
Note that D(C) has FIN and is input deterministic.

Speci�cation 5.14 (Majority element) A majority element is speci�ed by the following
equations

M
def
= a :Ma + b :Mb + c : Mc

Ma
def
= a :M + b : Mab + c : Mac

Mab
def
= m :Mc + c : Mabc

Mabc
def
= m :M + a : Mbc + b : Mac + c : Mab

where a; b; c are input actions and m is an output action. The equations for Mb;Mc;Mac and
Mbc are similar to the equations above and can be easily derived.

The process variable M represents the majority element where the voltage levels of its input
ports are the same as the voltage level of its output port. The process variables containing
subscripts represent the majority element where only the voltage levels of the input ports not
appearing as subscripts are the same as the voltage level of the output port. Note that the
equation for Mab speci�es that no inputs causing a variation in the output voltage level can
occur when the output voltage level already has to change. If such inputs occur then the
system implicitly moves to
.

Speci�cation 5.15 (Wire) A wire is speci�ed by the following equation:

W
def
= m : c : W

where m is an input action and c is an output action.

Proposition 5.16 A(CN) �F D(C). A(MN) �F D(M). A(WN) �F D(W).

Proof. We prove a stronger equivalence statement, namely that the involved I/O automata
are isomorphic if we do not consider states
 and nil. By observing that Proposition 3.5
holds also for I/O automata associated with DIOA expressions (move to nil whenever it is
possible) we complete the proof. We give the isomorphism for the Muller C element; the
isomorphisms for the other elements are given in a similar way and are left to the reader.
The isomorphism that we use for the Muller C element is h : states(A(CN)) ! D(C) such
that h(;) = C, h(fag) = Ca, h(fbg) = Cb, and h(fa; bg) = Cab. It is easy to check that h
preserves the transitions of A(CN) and D(C) if we do not consider transitions leaving from

and transitions from/to nil.

29

5.3 The Veri�cation

We now formally prove that a Muller C element can be implemented using a majority element
and a wire. The implementation relation that we use is the quiescent preorder; however it
is easy to verify that all the speci�ed elements satisfy the hypothesis of Theorem 5.7 and
Proposition 5.8, therefore we can conclude fair trace inclusion from quiescent trace inclusion.
We �rst prove the statement concerning the quiescent preorder, the DIOA veri�cation; then
we show how the formal statement of Section 3.2 is derived.

Proposition 5.17 �fmg(M kW) vQ C, i.e., a Muller C element C can be implemented using
a majority element and a wire.

Proof. We show that �fmg(M k W) vQ C. For doing that we consider a family of processes

I; Ia; Ib; Iab where I
def
= �fmg(M k W) and show that they satisfy the equations of C with vQ.

It is then enough to use the recursive substitutivity axiom to conclude.

By applying the expansion axiom and the hiding axioms we obtain

I �Q �fmg(MkW) by expanding MkW
�Q �fmg((a :Ma + b :Mb + c :Mc)k(m : c : W)) by Axiom E2

�Q �fmg(a : (Mak(m : c : W)) + b : (Mbk(m : c : W))) by substituting W for E(W)
�Q �fmg(a : (MakW) + b : (MbkW)) by Axiom I4
�Q �fmg(a : (MakW)) + �fmg(b : (MbkW)) by Axiom I3
�Q a : �fmg(MakW) + b : �fmg(MbkW) by de�nition of Ia and Ib
�Q a : Ia + b : Ib

where we de�ne
Ia

def
= �fmg(MakW)

Ib
def
= �fmg(MbkW)

With the same method we have

Ia �Q �fmg(MakW) �Q a : �fmg(MkW) + b : �fmg(MabkW) �Q a : I + b : Iab

and
Ib �Q �fmg(MbkW) �Q a : �fmg(MabkW) + b : �fmg(MkW) �Q a : Iab + b : I

where we de�ne
Iab

def
= �fmg(MabkW)

We now proceed with the analysis of Iab. Step by step comments are below.

Iab �Q �fmg(MabkW)
�Q �fmg(a : (
kW) + b : (
kW) +m : (Mckc : W))
vQ �fmg(m : (Mckc : W))

30

�Q �fmg(m : (a : (Mackc : W) + b : (Mbckc : W) + c : (MkW)))
vQ �fmg(m : c : (MkW))
�Q c : �fmg(MkW)
�Q c : I

The �rst step follows the lines of the previous derivations by expanding process variables,
applying the expansion theorem, and reconverting untouched expanded expressions to their
corresponding process variable; the second step is an application of Axiom Ec7 where inputs
a and b are eliminated. According to the speci�cation of Ca;b, in fact, no input should occur
before output c occurs. The expression on the second line speci�es an implementation choice
in the presence of inputs a and b while the expression on the third line does not specify any
implementation choice. The third step is similar to the �rst one while the fourth step consists
of successive applications of the hiding axioms. Action m is eliminated through Axiom I11 and
action c is brought outside the scope of the hiding operator through Axiom I3. The last step
is a direct consequence of the de�nition of I .

We can now apply the recursive substitutivity axiom and conclude �fmg(M k W) vQ C.
The fair trace inclusion follows from Theorem 5.7 and Proposition 5.8. All the involved I/O
automata, in fact, are quiescent detectable, quiescent continuous, input quiescent detectable
and have FIN. Moreover no input action disables any output action.

Theorem 5.18 Hidefmg(A(MN) k A(WN)) vF A(CN).

Proof. From Proposition 5.17, the soundness of the DIOA proof system, and Theorem 5.7,
we derive D(�fmg(MkW)) vF D(C). From Proposition 5.10 we derive Hidefmg(D(MkW)) vF

D(C). From Proposition 5.10 and Proposition 5.8 we have D(M)kD(W) vF D(MkW), there-
fore we derive Hidefmg(D(M)kD(W)) vF D(C). Finally, from Proposition 5.16 we derive
Hidefmg(A(MN)kA(WN)) vF A(CN).

6 Comparison of the Algebraic and the Simulation Techniques

In this section, we compare the simulation and algebraic proof techniques for their usefulness
in carrying out veri�cations of the sort outlined in this paper. The �rst thing to note is that
both of the outlined proofs were fairly easy to carry out, once the machinery described in the
\theory" sections had been developed. Naturally, people more familiar with one style of proof
or the other will �nd it somewhat easier to use, but we did not �nd any appreciable di�erence
for this example. The interesting question is whether both methods will scale equally well to
a wide range of more complex examples. Here we think there are important di�erences and
similarities, which we have tried to identify below.

31

6.1 Power of the Proof Method

There is a strong similarity between our reasoning in the simulation proof and in the algebraic
proof. It seems that the recursive substitutivity rule is used in this example somewhat as
an algebraic version of the notion of forward simulation. That is, we consider the process
variables of the set of equations comprising the speci�cation as representing states of the
speci�cation. Then we consider the processes that we substitute for the process variables as
representing states of the implementation that are related to the process variables for which
they are substituted.

This leads to the question of whether the simulation and algebraic methods we have used
might not be equivalent in general; however, it turns out that they are incomparable.

Let a; b; c be output actions and consider the processes

X
def
= a : b : X + a : c : X

Y
def
= a : (b : Y + c : Y):

It is easy to prove that Y vQ a : b : Y +a : c : Y by using the axioms of [Seg92] and the recursive
substitutivity rule; however there is no forward simulation from the transition system associated
with Y and that associated with X . State Y , in fact, would be mapped toX . State b :Y +c :Y ,
instead, should be mapped to either b : X or c : X or both since Y can move with a only to
those states. Unfortunately each of the choices above gives problems on the next transition.

The di�erence between the systems X and Y arises when the decision about whether to
perform b or c is made: X decides before Y . A forward simulation between two processes A
and B exists only if B does not decide before A. Y can be proved to implement X by using a
di�erent simulation technique based on a notion of backward simulation [LV91]. However, there
are also examples that can be proved using DIOA deductions but not by backward simulations.
One example is

X
def
= a : c : X + b : Z Z

def
= c : X

Y
def
= a : Z0 + b : Z0 Z0 def= c : Y

where a; b and c are output actions. It is easy to algebraically show that Y and Z0 satisfy the
equations for X and Z, however there is no backward simulation from Y to X .

There are also cases in which there is a forward simulation between two processes but
quiescent trace inclusion cannot be proved using DIOA, because the recursive substitutivity
rule cannot be applied. Consider, for example, the processes

X
def
= a : X and Xi

def
= a : Xi+1

for an in�nite set of process variables Xi : i 2 N . The mapping that maps each Xi into X is
trivially a forward simulation from X0 to X ; however, since none of the given equations relates
some Xi to Xj with j � i, we cannot prove that X0 � a : X0, so the recursive substitutivity

32

rule does not apply. The above mapping is also a backward simulation from X0 toX , therefore
also backward simulation is incomparable with DIOA deduction.

All the examples above also work for the simple trace preorder. The reader is referred to
[DS92] for its axiomatization.

6.2 Treatment of Fairness

In the given example, a separate argument about fairness is made in the simulation proof,
whereas no such argument is needed in the algebraic proof. In the given algebraic proof, fair
trace inclusion is a consequence of quiescent trace inclusion, and the deductions within DIOA
are strong enough to prove quiescent trace inclusion. However, the algebraic framework, as it
stands, does not provide a fully general model for proving fair trace inclusion: the connection
between the quiescent and fair preorders holds only under some special conditions. We argued
in Section 5.1.1 that the properties of quiescent detectability, �nite internal nondeterminism
and quiescent continuity seem to be su�ciently general for representing physical systems;
on the other hand we do not have a clear idea yet about the generality of input quiescent
detectability. An example of a non-input quiescent detectable device is an in�nite bu�er which
performs some internal update after receiving some input. An in�nite fair execution leading
to an in�nite trace with input actions only can be obtained by interleaving each input with
the internal update, however, if the bu�er enables some output whenever it is not empty, no
�nite sequence of input actions is a quiescent trace.

For systems in which these properties fail, it is unclear how to use the algebraic approach to
reason about fair trace inclusion. It is worth remarking that all the DIOA axioms presented in
[Seg92] except for the recursive substitutivity rule are sound for the fair preorder as well as the
quiescent preorder. (The recursive substitutivity rule is sound for all I/O automata satisfying
the conditions of Theorem 5.7.) So if we deal with non-recursive de�nitions, the axioms for
DIOA provide a method for directly proving fair trace inclusion. However, this is of limited
use since almost any nontrivial I/O automaton contains loops that have to be speci�ed using
recursion. Even our small example cannot be speci�ed without using recursion.

It is also unlikely that a result similar to the Execution Correspondence Lemma could
be used together with an algebraic proof. Even by axiomatizing a di�erent preorder relation
such as \existence of a forward simulation", an algebraic proof would prove the existence of a
simulation without exhibiting it. The fairness part of our simulation proof, on the other hand,
is strongly based on the actual forward simulation from the implementation to the speci�cation.
The simple knowledge that a forward simulation exists is not su�cient. It is possible that new
techniques, perhaps based on the structure of an algebraic proof, could be developed, but this
remains to be done.

The generality of our approach to fairness in the simulation proof also remains to be
considered; however, in this case there is already good evidence that this approach works well
in practice [LS92, SLL93b]. The approach based on the Execution Correspondence Lemma

33

provides a convenient way to base a fairness proof on a simulation proof; it may be that there
are some fairness proofs that are inherently unable to be split in this way, but we do not know
of any such examples. The use of forcing conditions provides a useful generalization of the
usual I/O automaton fairness notion, but it seems likely to us that further generalizations will
be required in order to describe some realistic liveness requirements. What those extensions
might be, and whether they will work well in conjunction with the Execution Correspondence
Lemma, remain to be seen.

Note that the arguments of this subsection only hold for fairness sensitive semantics such
as the semantics of I/O automata. If the semantics is not based on a fairness sensitive relation,
then the problems of this subsection disappear. Examples of non fairness sensitive relations
are bisimulation [Mil89] and testing [DH84, Hen88].

6.3 Representation of Automata

The two di�erent proof methods typically use very di�erent ways of representing automata,
each best suited for carrying out the corresponding type of proof. In order to give a fair
comparison between the two methods, we began with a neutral representation, which is basi-
cally just a state-transition table that enumerates the results of all transitions performed in all
states. We then gave two other representation methods, and asserted their equivalence with
the neutral method.

The precondition-e�ect language represents an automaton in an action-based way. That is,
the information associated with each action is given in one place; this information consists of
the set of enabling states and the allowed transitions for that action. In terms of the neutral
representation, we can think of this language as presenting the automaton by columns.

On the other hand, DIOA represents an automaton in a state-based way. That is, the
information associated with each state is given in one expression; this information consists of
a list of the enabled transitions from that state. We can think of this language as presenting
the automaton by rows of the neutral automaton.

In our small example, the state-based method gives a more elegant and concise represen-
tation of the circuits than the action-based method, but this will not be true in general. The
choice of which representation is better will vary among di�erent automata, depending upon
whether the automaton table is most easily described by columns or by rows. Our experi-
ence shows that, for complex systems, the action-based description is usually the better one
[SLL93b].

There is one main reason for this. The states of a complex automaton can usually be
described in terms of a small number of state variables or data objects, which permits a
description to be parameterized by the values of those objects. A typical complex automaton
exhibits locality of activity: each action typically involves only a small portion of the state, i.e.,
its occurrence depends on the values of a small number of data objects, and its results a�ect
only a small number of objects. This locality leads to concise descriptions for each action,

34

but it is unclear how a state-based description might take advantage of it. Note that parallel
decomposition cannot be used in general to describe this kind of locality.

Although the action-based representation method generally works better than the state-
based one, there is complete freedom in the choice of the representation style for an I/O
automaton whenever a simulation proof technique is used, i.e., it is always possible to use a
description language like the state-based one in conjunction with assertional reasoning. On the
other hand the description language for DIOA is strictly determined by the algebra itself, so
there is apparently no way to use an action-based representation method in process algebras.
Moreover, the pure DIOA calculus does not provide tools to deal with structured states.

A standard technique to deal with structured states within process algebras makes use
of parameterized process variables [Hoa85, Mil89, Bae90]. For example, a counter can be
represented by a process variable X parameterized over a natural number n in the following
way:

X0
def
= up : X1

Xn
def
= down : Xn�1 + up : Xn+1 if n > 0:

Such a technique is generally used when the size of a system is large [Bae90, OP92] since a
speci�cation would become unreadable otherwise. Our example, although small, makes use of
parameters. It is also possible to add standard programming languages constructs and de�ne
a new equation of the form

Xn
def
= up : Xn+1 + (if n > 0 then down : Xn�1):

By means of the above ideas it is possible to directly encode an action-based represented
automaton A into DIOA. The encoding consists of one process variable X parameterized over
states(A). The equation for X is then of the form

if precondition(a1) then e�ect(a1) else
if precondition(a2) then e�ect(a2) else � � �

Unfortunately, the more structure we add to the algebraic notation, the more complicated
it is to apply the DIOA axioms to carry out a proof. Also, the recursive substitutivity rule
requires one to �nd a set of processes that satisfy a given set of inequations. When states
are parameterized, �nding those processes is often tantamount to �nding a simulation relation
between states of the implementation and states of the speci�cation, which is consistent with
the initial observation of Section 6.1. In this case, the task of applying the axioms becomes the
equivalent of proving that a given simulation is a forward simulation. For example, consider
the counter we speci�ed before and consider an implementation as follows:

Y10
def
= up : X11

Xn
def
= down : Xn�1 + up : Xn+1 if n > 10:

The recursive substitutivity rule requires us to show that each Yi satis�es the equation for
Xi�10. The association h : Yi 7! Xi�10 is a sort of simulation, and the algebraic proof shows
its correctness.

35

6.4 Mechanization

The process of carrying out either a simulation proof or an algebraic proof can be long and
tedious, and therefore error-prone, when the involved automata are large. A simulation proof
typically involves a cases analysis based on actions; each case involves logical deduction based
on descriptions of the state transitions in both the implementation and speci�cation automata
and on a description of the forward (or other kind of) simulation relation. An algebraic proof
involves a series of deductions using the algebraic axioms. In both cases, it should be possible
to check the correctness of the deduction steps using an automatic prover. However, we would
also like some help from an automatic prover in actually carrying out these tedious steps.

An automatic prover can help in the production of a simulation proof, but we do not expect
that the proof process will be completely automatic since the problem is undecidable in general.
In addition to descriptions of the two automata, the writer of such a proof will have to provide
a description of the simulation relation and possibly some invariances. Once this information
is provided, an automatic prover can be used to help in �lling in enough details to verify that
the simulation is correct. As described in [SGG+93], the Larch prover has been successfully
used for this purpose. Also the theorem prover Isabelle was used for the same purpose in
[Nip89]. The work on mechanical simulation-based veri�cations is still under development,
and [Nip89, SGG+93] are just the �rst attempts at solving the problem.

It seems unlikely that an automatic prover will be of much help in de�ning the simulation
relation in a simulation proof. In small cases, essentially when there are �nitely many states
as in our example, a model-checking approach might be helpful. The task of de�ning the
simulation relation by hand will often not be easy; its di�culty is comparable to that of de�ning
an invariant assertion. However, usually the designer of a system has enough intuitions about
the design to be able to de�ne a relation that is almost correct, and this can be used as a
starting point for constructing the correct relation.

In the process algebraic proof given in this paper the axioms that have to be applied during
each step are partially determined by the equations de�ning the speci�cation automaton. Our
proof steps were essentially repeated applications of the expansion axiom followed by some
simpli�cations based on the given speci�cation. This heuristic is generally applicable when
dealing with (�nite state) circuit descriptions. It is also applied in [Jos92, Seg92, OP92] and
in several of the examples of [Bae90]. In these cases, algebraic manipulators like those of
[MV91, Lin91] can be used. However, when the problem becomes large or is described by
an in�nite state machine, the remarks at the end of Section 6.3 show that some form of
simulation has to be de�ned even for an algebraic proof, therefore the di�culties involved in
the mechanization of simulation and algebraic proofs are comparable.

6.5 Additional Bene�ts Obtained from the Proof

Experience with large simulation-based veri�cations [WLL88, LP92, SLL93b] has shown that
the formal description of the simulation relation in a simulation proof constitutes an important

36

piece of documentation of the key ideas of the implementation, in much the same way that an
invariant assertion does; invariants and simulations typically express the key intuitions that
make the implementation work. Similarly, due to the remarks at the end of Section 6.3, an
algebraic proof can embed some form of mapping which can be used as a documentation.

Because of the Execution Correspondence Lemma, a simulation-based proof provides a cor-
respondence between executions rather than just trace inclusion. This correspondence enables
us, for example, to base proofs of fairness on proofs of ordinary trace inclusion. A process al-
gebraic proof, on the other hand, proves only the properties for which the axioms are certi�ed
to be sound. In our example we were able to prove liveness because the quiescent preorder
coincides with the fair preorder under some particular conditions; however, if those conditions
are not met, or if we need to prove other properties (e.g., based on forcing sets) the algebraic
proof provides no help.

In our experience simulation proofs are exible in the sense that a given proof can usually
be modi�ed fairly easily in order to verify new properties of an implementation. A typical
veri�cation task, for example the one in [SLL93b], involves the de�nition of speci�cation and
implementation automata and the proof that the implementation meets the speci�cation. Dur-
ing the proof some errors might be discovered and the involved automata might need to be
modi�ed. Also, after the proof is completed, the speci�cation and/or implementation automata
might be slightly modi�ed in order to make them cleaner and more general. The simulation
relation and the correctness proof might then have to be correspondingly modi�ed. In general
the structure of the simulation proof seems to provide us with a lot of guidance in carrying
out such modi�cations, since its general structure is usually preserved. To the extent that
an algebraic proof embeds a simulation proof, the same advantages for modi�ability would
accure.

7 Conclusion

Using a simple example based on delay insensitive circuits, we have compared two widely used
veri�cation techniques for concurrent and distributed systems. The assertional methods based
on I/O automata have been successfully used for the veri�cation of very complex systems
[LT87, WLL88, LP92, SLL93b] while the algebraic techniques of process algebras [Mil89] have
generally been used for relatively small examples [Bae90, Jos92].

We have veri�ed the correctness of the implementation of a Muller C element taken from
[Jos92] both in the assertional framework and in the process algebraic framework. The algebraic
proof is based on DIOA [Seg92], a process algebra for I/O automata.

The example we have used is one of the typical examples of the process algebraic community;
therefore, it should not be surprising that the process algebraic analysis looks shorter than the
simulation-based one. Starting from the presented example, however, our discussion has shown
that scaling algebraic proofs to more complex systems leads to the use of simulation-based
veri�cation techniques.

37

Although we have emphasized veri�cation in this paper, it is important to remember that
veri�cation is not the only purpose, nor even the main purpose, of process algebra. Rather,
process algebra is intended to provide compositional semantics for programs. Of course, one
important use for such a semantics is to provide a basis for carrying out formal correctness
proofs for systems. Since one of the most practical veri�cation methods is simulation, it is
important that an algebraic semantics be designed with a view toward compatibility with
simulation proofs. Given a program that is supposed to implement a given speci�cation,
a process algebraic characterization of the semantic model can be used to compositionally
compute the semantics of the given program, then a simulation-based technique can be used
to prove the correctness of the implementation. Perhaps, we could also add an intermediate
step in which the meaning of a program is algebraically simpli�ed before starting with the
assertional part of the correctness proof.

References

[Bae90] J.C.M. Baeten. Applications of Process Algebra. Cambridge Tracts in Theoretical Computer
Science 18, Cambridge University Press, 1990.

[DH84] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer

Science, 34:83{133, 1984.

[DS92] R. De Nicola and R. Segala. A process algebraic view of I/O automata. Technical Re-
port SI-92/05, Dipartimento di Scienze dell'Informazione, Universit�a degli studi di Roma La
Sapienza, September 1992.

[GSSL93] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N. Lynch. Liveness in timed and un-
timed systems. Technical Report MIT/LCS/TR-587, Laboratory for Computer Science,
MIT, Cambridge, MA, November 1993.

[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Massachusetts, 1988.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cli�s, 1985.

[Jos92] M.B. Josephs. Receptive process theory. Acta Informatica, 29:17{31, 1992.

[Lin91] H. Lin. PAM: A Process Algebra Manipulator. In Larsen and Skou [LS91], pages 136{146.

[LP92] N. Lynch and B. Patt-Shamir. Distributed Algorithms. Fall 1992 Lecture Notes for 6.852.
MIT/LCS/RSS 16, Laboratory for Computer Science, MIT, Cambridge, MA, 1992.

[LS91] K.G. Larsen and A. Skou, editors. Proceedings of the third international workshop on Com-

puter Aided Veri�cation, volume 575 of Lecture Notes in Computer Science. Springer-Verlag,
1991.

[LS92] N. Lynch and I. Saias. Distributed Algorithms. Fall 1990 Lecture Notes for 6.852.
MIT/LCS/RSS 16, Laboratory for Computer Science, MIT, Cambridge, MA, February 1992.

[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing,
pages 137{151, Vancouver, Canada, August 1987. A full version is available as MIT Technical
Report MIT/LCS/TR-387.

38

[LV91] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-based
systems. In J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Pro-
ceedings of the REX Workshop \Real-Time: Theory in Practice", volume 600 of Lecture
Notes in Computer Science, pages 397{446. Springer-Verlag, 1991.

[MB59] D.E. Muller and W.S. Bartky. A theory of asynchronous circuits. Annals of the Computation
Laboratory of Harvard University. Volume XXIX: Proceedings of an International Symposium

on the Theory of Switching, Part I, pages 204{243, 1959.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cli�s,
1989.

[MV91] S. Mauw and G.J. Veltink. A proof assistant for PSF. In Larsen and Skou [LS91], pages
158{168.

[Nip89] T. Nipkow. Formal veri�cation of data type re�nement - theory and practice. In J.W.
de Bakker, , W.P. de Roever, and G. Rozenberg, editors, Proceedings of the REX Workshop

\Stepwise Re�nement of Distributed Systems", volume 430 of Lecture Notes in Computer

Science, pages 561{591. Springer-Verlag, 1989.

[OP92] F. Orava and J. Parrow. An algebraic veri�cation of a mobile network. Formal Aspects of

Computing, 4:497{593, 1992.

[Seg92] R. Segala. A process algebraic view of I/O automata. Technical Memo MIT/LCS/TR-557,
Laboratory for Computer Science, MIT, Cambridge, MA 02139, October 1992.

[Seg93] R. Segala. Quiescence, fairness, testing and the notion of implementation. In E. Best, editor,
Proceedings CONCUR 93, Hildesheim, Germany, volume 715 of Lecture Notes in Computer

Science. Springer-Verlag, 1993.

[SGG+93] J.F. S�gaard-Andersen, S.J. Garland, J.V. Guttag, N.A. Lynch, and A. Pogosyants.
Computer-assisted simulation proofs. In Proceedings of the Conference on Computer-Aided

Veri�cation, Heraklion, Crete, Greece, June 1993.

[SLL93a] J.F. S�gaard-Andersen, B. Lampson, and N.A. Lynch. Correctness of at-most-once message
delivery protocols. In FORTE '93 - Sixth International Conference on Formal Description

Techniques, 1993.

[SLL93b] J.F. S�gaard-Andersen, N.A. Lynch, and B.W. Lampson. Correctness of communication
protocols. a case study. Technical Report MIT/LCS/TR-589, Laboratory for Computer
Science, Massachusetts Institute of Technology, November 1993.

[Sta84] E.W. Stark. Foundations of a theory of speci�cation for Distributed Systems. PhD the-
sis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, August 1984. Available as Technical Report MIT/LCS/TR-342.

[Sta90] E.W. Stark. On the relations computable by a class of concurrent automata. In Proceedings

of the 1990 SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 1990.

[Vaa91] F.W. Vaandrager. On the relationship between process algebra and Input/Output automata.
In Proceedings of the Sixth Annual Symposium on Logic in Computer Science, 1991.

[WLL88] J.L. Welch, L. Lamport, and N. Lynch. A lattice-structured proof technique applied to a
minimum spanning tree algorithm. Technical Report MIT/LCS/TM-361, Laboratory for
Computer Science, MIT, June 1988.

39

