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Abstract

Recently researchers have been interested in trying to expand the domain of learn-
ability to subsets of �rst-order logic, in particular Prolog programs. This new research
area has been named Inductive Logic Programming (ILP).

In a nutshell we can describe a generic ILP problem as following: given a set E of
(positive and negative) examples of a target predicate, and some background knowledge
B about the world (usually a logic program including facts and auxiliary predicates),
the task is to �nd a logic program H (our hypothesis) such that all positive examples
can be deduced from B and H, while no negative example can.

In this paper we review some of the results achieved in this area and discuss the
techniques used. Moreover we prove the following new results:

� Predicates described by non-recursive, local clauses of at most k literals are PAC-
learnable under any distribution. This generalizes a previous result that was valid
only for constrained clauses.

� Predicates that are described by k non-recursive local clauses are PAC-learnable
under any distribution. This generalizes a previous result that was non construc-
tive and valid only under some class of distributions.

Finally we introduce what we believe is the �rst theoretical framework for learning
Prolog clauses in the presence of errors. To this purpose we introduce a new noise
model, that we call the �xed attribute noise model, for learning propositional concepts
over the Boolean domain. This new noise model can be of its own interest.

Keywords: Inductive Logic Programming, PAC-learning, noise models.
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1 Introduction

Machine learning theory has been very successful in the past years in the �eld of proposi-
tional logic. Despite these results (both positive and negative) propositional learning has
the drawback of the limited expressiveness of the hypothesis language. Recently, researchers
have been interested in trying to expand the domain of learnability to subsets of �rst-order
logic. Prior work has established a strong negative result: Haussler in [9] shows that (even
highly restricted) conjunctions in �rst-order logic cannot be learned in the Valiant (PAC)
model [28]. These negative results prompted people to look at other more speci�c subsets
of �rst-order logic. In particular a natural choice was to look at Prolog programs. This new
research area has been named Inductive Logic Programming (ILP).

In a nutshell we can describe a generic ILP problem as following: given a set E of
(positive and negative) examples of a target predicate, and some background knowledge
B about the world (usually a logic program including facts and auxiliary predicates), the
task is to �nd a logic program H (our hypothesis) such that all positive examples can be
deduced from B and H, while no negative example can.

The interest in this area has been paying o� especially in terms of practical applications:
systems that infer restricted class of Prolog programs have been successfully applied to real-
world problems like structure-activity prediction for drug design [14], protein secondary
structure prediction [20] or �nite element mesh design [5].

Born as a branch of logic programming, ILP has been attracting more attention from
the Computational Learning Theory community in an e�ort to provide this new area with
solid theoretical grounds. In this paper we will try to describe and continue this e�ort.

1.1 Previous and new results

Probably the father of ILP can be considered Plotkin. His thesis [23] is not limited just to
Horn clause logic (Prolog was not around yet). He gave an algorithm that returns the least
general clause covering all the positive examples and no negative example. Muggleton and
Feng in [19] show that, if restricted to the class of determinate logic programs 1, Plotkin's
method works e�ciently.

Numerous papers have appeared recently on the subject of PAC-learning logic programs.
In particular the following results have been achieved:

1. in [7] the authors prove that predicates de�ned by non-recursive, constrained clauses
of at most k literals are PAC-learnable under any distribution.

2. in [6] the authors prove PAC-learnability of predicates that are described by k deter-
minate non-recursive clauses under a broad class of distributions.

3. Cohen [4] improves on (2) by proving that predicates de�ned by k non-recursive local
clauses is PAC-learnable under the same broad class of distributions. Moreover he
proves that further relaxations of the constraints on the hypothesis leads to hardness
in learning.

1The de�nitions of constrained, determinate and local clauses is postponed to later in the paper. For
now it's just interesting to notice that constrained clauses are a subclass of determinate clauses that are a
subclass of local clauses.

2



Unfortunately results (2) and (3) are not constructive (we shall see why later). In this paper
we will survey these results and improve on them by proving the following facts:

a. Predicates described by non-recursive, local clauses of at most k literals are PAC-
learnable under any distribution.

b. Predicates that are described by k non-recursive local clauses are PAC-learnable under
any distribution.

Both results are constructive and use the fact that we can express our output as a predicate
belonging to a larger class. For applications in the real world it is necessary to analyze
robustness of ILP systems. However there has been little work done on the e�ect of noise or
errors in the training of ILP system, mostly empirical comparisons of the heuristics used by
various implementations when dealing with noise (see for example [15]). In this paper we
will present what we believe is the �rst theoretical treatment of the problem of the e�ects
of noise and errors in ILP.

1.2 Outline of the paper

The paper continues as following. In the next section we will give a brief overview of logic
programming. We will introduce some de�nitions and notations for the rest of the paper.

In Section 3 we will give an example of an ILP problem. To gain also some motivation
we decided to describe a real world application. We will talk about prediction of protein
structures.

Section 4 will describe GOLEM, the system implemented by Muggleton and Feng based
on the ideas of Plotkin.

Section 5 will describe the PAC-learnability results.
Section 6 will contain a discussion on the e�ect of noise and errors on PAC-learning

logic programs and we will propose a theoretical framework for ILP with imperfect data.
Section 7 will conclude the paper with some �nal remarks and open questions.

2 Preliminaries

In this section we will review the basics of logic programming. Our presentation is somewhat
simpli�ed according to the scope of this paper. For a complete description of the �eld the
reader is referred to Lloyd's classic text [17].

Logic programs are written over an alphabet consisting of:

� constants that we will denote with lower case letters b; c; : : :

� predicates which we will represent with letters like p; q; r; : : :

� variables always represented with upper case letters X; Y; Z; : : :

A literal A is an application of a predicate to variables and/or facts: A = p(X1; : : : ; Xa).
a is the arity of the literal. A fact f is an application of a predicate to constants: f =
p(c1; : : : ; ca). Facts are also called ground literals
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A substitution is a partial function mapping variables to other variables or constants.
We will denote them with greek letters like � or �. If A is a literal we will denote with A�
the result of applying substitution � to the variables appearing in A. A fact f is an instance
of a literal A if f = A� for some substitution �.

A de�nite clause is a clause of the form: A  B1 ^ : : : ^ Bl where A;B1; : : : ; Bl are
literals. A is called the head and B1; : : : ; Bl the body of the clause. Variables in the head of
the clause are implicitly universally quanti�ed, while variables in the body not appearing
in the head are implicitly existentially quanti�ed. In the following we will omit the word
\de�nite".

A logic program P is a collection of clauses (facts can be considered clauses with an
empty body). The extension of a logic program is the set of facts that can be proven by
the program: E[ P ] = ff : P ` fg

Example 1 Suppose that our logic program consists of the following clauses

P = mother(ann; bob)
mother(ann; charlie)
father(bob; julie)
father(john; chris)
siblings(X; Y ) mother(V;X)^mother(V; Y )
siblings(X; Y ) father(U;X)^ father(U; Y )

so the extension of P contains the facts in P plus the extra fact siblings(bob; charlie)

2.1 The learning problem

The formal logical setting for an ILP problems is as follows. The learner is provided with
some background knowledge B, that is just a logic program containing facts and de�nitions
of predicates. He or she is then given a set E+ of positive examples and a set E� of negative
examples, i.e. facts that are true or false, possibly involving predicates not de�ned in B.
The learner's task is to �nd another logic program H such that

B ^H ` E+

B ^ H ^ E� 6` 2

where 2 is the empty clause that stands for contradiction.

Example 2 In the previous example we could set the database as a collection of facts like

B = mother(ann; bob)
mother(ann; charlie)
father(bob; julie)
father(john; chris)
: : :

and then have E+ = grandmother(ann; julie); : : : and E� = grandmother(ann; chris); : : :
and then try to infer that

H = grandmother(X; Y ) mother(X;Z) ^ father(Z; Y )
grandmother(X; Y ) mother(X;U)^mother(U; Y )
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This formalization does not guarantee a good performance of the hypothesis on unseen
examples. For that, we should try to formalize the problems in terms of the PAC model
as de�ned by Valiant in [28]. Let's just recall it for sake of completeness. Let X be a set
called the domain. A concept c over X is just a subset of X . A concept class C is a family
of concepts. An example of c is a pair (e; l) where e 2 X and l = 1 if e 2 c, l = 0 otherwise.
If D is a probability distribution over X , a sample SD is a collection of examples drawn
according to D. With wD(c) we de�ne the \weight" of the subset c � X according to D.

De�nition 1 A concept class C is PAC-learnable if there exists an algorithm L such that
for any c 2 C, any distribution D, any values 0 < � < 1, 0 < � < 1, when given as input
a sample SD,�, � outputs an hypothesis concept h such that with probability at least 1 � �,
wD(h5 c) < �.2

We usually require the algorithm L to be e�cient i.e. to run in time polynomial in ��1,
��1 and the size of an encoding of the concept class. In particular this means that the sample
size (often referred as sample complexity) must be polynomial in the same quantities. We
can relax the condition h 2 C and allow the algorithm to output h 2 C0 where C0 is a larger
concept class.

This is the standard PAC-learning formalization. In the ILP case however we have
to take in account the fact that the learner is not provided just with examples but with
a database of background knowledge B. Cohen in [4] addresses this issue and proposes
the following approach: if C is a family of logic programs, each database B will de�ne a
particular concept class C[B] = f< P ;B > for P 2 Cg. Each pair < P ;B > represents the
extension of the logic program P ^ B. Then if DB is a collection of databases the C[DB]
is the set of all concept classes C[B] for B 2 DB

De�nition 2 The concept class family C[DB] is (uniformly) PAC-learnable if there is an
algorithm L that, given as input a database B 2 DB, PAC-learns the concept class C[B].

2.2 Restricting the hypothesis space

The way the problem is stated, it looks hopelessly hard to �nd a general method to solve
it. We will then try to put some restrictions on the family of logic programs and databases
that we will take into consideration. Hopefully these restrictions will not be too severe to
compromise the expressiveness of the language, but at the same time will allow us to achieve
positive learnability results.

Bounded arity predicates: We will assume that there is a constant a that bounds
the arity of all the predicates in the background knowledge of our problem.

Ground background knowledge: Some of the implemented ILP systems (like
GOLEM) require the background knowledge to be composed only by facts. If this is not the
case, before starting the learning process the system transforms the background knowledge
B into a set of facts by building the h-easy ground model of B i.e. the set of facts that can

2
h5 c denotes the symmetric di�erence of h and c i.e. the set of elements that belong to one among h

and c but not to the other
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be proven from B with at most h binary resolutions starting from the constants symbols in
the examples. h is usually a user-de�ned parameter

E�cient background knowledge: Other algorithms (notably all the PAC-learning
algorithms we will see) simply query the background knowledge by calling a Prolog inter-
preter on it to prove a particular fact. In this case we require that all atomic queries can
be answered in time polynomial in the arity of query predicate.

Single predicate program: We will assume that we are trying to infer a logic
program consisting of de�nitions of a single predicate and that the examples are all positive
or negative instantiations of this unknown predicate. We may make the assumption that
the predicate is de�ned by k clauses. Or that each clause that de�nes the predicate has at
most k body literals. The de�nition of this predicate may be non-recursive.

Constrained clauses: A clause is constrained when all the variables in the body
of the clause appear also in the head of the clause. A constrained logic program is one
composed just by constrained clauses.

Determinate clauses of constant depth: This restriction was �rst introduced by
Muggleton and Feng in [19]. It's a generalization of the constrained condition. Consider
the clause A  B1 ^ : : : ^ Bl. We de�ne the input variables of literal Bi those variables
that also appear in the clause A  B1 ^ : : : ^ Bi�1, output variables all the others. A
literal Bi is determinate (with respect to the background knowledge B) if for every possible
substitution � such that A� = f for some fact f and B ` B1�; : : : ; Bi�1� then there is
at most one possible substitution � such that B ` Bi��. I.e. given B and the binding
of the input variables there is at most one possible binding for the output variables of a
determinate literal. A clause is determinate if all of its literals are determinate. Informally
a determinate logic program can be evaluated by a Prolog program without backtracking.
Notice how the order of the literals in the clause is important.

Now we de�ne the depth of a variable in a clause A  B1 ^ : : : ^ Bi�1. Variables
appearing in the head of the clause will have depth zero. Then let V be a variable and Bi

be the �rst literal containing it. Then variable V has depth d+ 1 where d is the maximal
depth of the input variables of Bi. The depth of a clause is the maximum depth of any
variable in it. We will assume that the target predicate is de�ned by clauses whose depth
is bounded by a constant.

Example 3 To illustrate the above de�nitions consider the de�nition of the predicate
grandmother given above. The clauses are not constrained (the variables Z and U are
free). They are not determinate either. In fact given a binding for X , the variable Z can
be bound to any of the possible children of X (for example if X = ann then Z could be
bound to bob or charlie). Notice however that if we rewrite the de�nition in the following
way:

H = grandmother(X; Y ) father(Z; Y ) ^mother(X;Z)
grandmother(X; Y ) mother(U; Y ) ^mother(X;U)

then the clause becomes determinate (since �xed Y there is only one possible father/mother
for him/her). Notice also that the arity is bounded by 2, and the depth of any variable is 1.
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Local clauses: Consider the clause A  B1 ^ : : : ^ Bl. Let X and Y be two free
(i.e. not appearing in the head) variables. We say that X touches Y if they appear in the
same literal. We say that X in
uences Y if X touches Y or touches a free variable Z that
in
uences Y . Using this de�nition we can partition the literals of a clause in locales. Two
free variables are in the same locale if they in
uence each other. The locality of a clause is
the size of its biggest locale. Local clauses are clauses of constant locality.

Example 4 Consider the following clause:

sameagecousins(X; Y ) father(V;X)^ father(Z; Y ) (�)
siblings(V; Z)^ (�)
age(X;A)^ age(Y;A) (��)

This clause has locality 3. Indeed there is one locale of size 3: the conjunction father(V;X)^
father(Z; Y ) ^ siblings(V;Z), since V touches Z. And there is a locale of size 2: the con-
junction age(X;A)^ age(Y;A) since A does not touch any other free variable.

All of these restrictions are not very limiting, except for the ones dealing with the
structure of the clause (constrained, determinate, local). Unfortunately as we will see in
the following, Cohen [4], proves some negative results on the PAC-learnability of more
expressive classes.

3 A case study: predicting protein structure

The family tree example of the previous section was adequate to exemplify the de�nitions,
but not to give a real 
avor of what kind of problems ILP can be applied to. In this
section we will show how a very important biological question can be posed in terms of
inductive logic programming. This section is intended to give a relevant example and some
motivation. It may be skipped since it does not prejudicate the comprehension of the rest
of the paper. The work synthesized in this section is reported in [20]. Interested readers
are referred to that paper for more details.

A very active research area in molecular biology is the prediction of secondary structure
of proteins from their primary structure. Just to make things understandable we can think
of proteins as long sequences of aminoacids or residues. There are only a few aminoacids
in nature, but they can assemble in many di�erent ways to create di�erent proteins. The
list itself of residues is the primary structure of the protein. These long chains of residues
can structure themselves in helices (so called �=� type) or in strands (so called �=�) or in
alternate helices and strands (so called �=�). This is the secondary structure.

Some proteins have been already classi�ed according to this scheme. The Brookhaven
database contains all the information about proteins of which we know the secondary struc-
ture. This gives us a great opportunity of using this database as our set of examples.

Suppose we want to understand the rule that governs the formation of �-helices in a
protein. Then we would have to infer a logical clause of the form alpha(Prot; Pos) that is
true when the residue in position Pos of protein Prot is part of an �-helix.

The background knowledge given to the learner contains information about protein
structure and chemical properties of the various residues. First of all contains the primary
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structure of the proteins: the fact 1structure(Prot; Pos; Res) is true when the residue in
position Pos of protein Prot is exactly Res. Then some information on the geometric
structure of �-helices. And �nally a database of facts about the chemical properties of
aminoacids, for example the fact aromatic(Res) is true when the residue Res is aromatic.

An example of clause that could be inferred by the program could be (we are in the
realm of science �ction here, for a list of the real clauses inferred by GOLEM please refer
to [20])

alpha(Prot; Pos) 1structure(Prot; Pos; Res) ^

aromatic(Res) ^
Pos3 = Pos + 3 ^
1structure(Prot; Pos3; Res1) ^
hydrophobic(Res1)

This clause expresses the theory that a residue is in an �-helix when it's aromatic and the
residue at distance 3 from it is hydrophobic. As an aside notice that the clause above is
determinate.

GOLEM has been used to perform this task with quite some success. It achieved a
prediction accuracy on unseen examples of 81%. The best previously reported result for
this type of prediction was 76% obtained using neural network. This approach has the
advantage over neural networks of producing results that are more understandable.

As in any real-world application, the problem of noise has to be addressed. The
Brookhaven database is not immune from errors, so some of our training examples may
be misclassi�ed. More seriously the background knowledge may be incomplete or inappro-
priate (for example we may not know some of the chemical properties for some aminoacid).
GOLEM deals with this problem by allowing the inferred rule to cover some of the negative
examples. We will come back to the issue of noise (intended either as misclassi�cation of
examples or as incompleteness of the background knowledge) later in the paper.

4 GOLEM: the logic-based approach

In [19] Muggleton and Feng describe GOLEM, a system that infers e�ciently determinate
constant-depth clauses. It uses Plotkin's results on Relative Least General Generalization
(RLGG) of clauses. In this section we will present their approach.

4.1 Relative Least General Generalization

Informally we can consider Plotkin's notion of RLGG as the inverse of the concept of
most general uni�er of Robinson [24]. As uni�cation (substitution of variables with terms)
proves helpful in deduction, so generalization (substituting terms with variables) is useful
for induction. We will discuss the aspects of Plotkin's work that are relevant to the ILP
framework.

According to Plotkin we say that a clause C is more general than a clause D (or C � D
) if there is a substitution � such that C� � D. This relationship de�nes a lattice among
the set of clauses: given two clauses D1; D2 we can de�ne their least general generalization
( lgg ) as their greatest common lower bound in the relationship �, i.e. D = lgg(D1; D2) i�
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� D � D1 and D � D2

� for all D0 � D1; D2 then D0 � D

Now suppose we have some background knowledge B consisting only of facts B =
Vb

i=1Bi.
And suppose we have two positive examples of the unknown predicate E1; E2 2 E

+. The
least general generalization of E1 and E2 relative to B is the least general clause C such
that B ^C ` E1 ^ E2. We will write C = RLGG(E1; E2). Now

B ^ C ` E1

implies that
C ` B ! E1

or in other words

C � (
b̂

i=1

Bi)! E1

Similarly for E2. Let Ci = (
Vb

i=1Bi) ! Ei (for i = 1; 2) so by de�nition C = lgg(C1; C2).
So for the case of ground knowledge we reduced the problem of computing RLGG to the
one of computing lgg. The requirement of ground background knowledge is necessary since
Plotkin proves that in the general case the RLGG clause needs not to be �nite.

Plotkin gives the following algorithm to compute lgg. The lgg of two terms f(t1; : : : ; tn),
g(s1; : : : ; sm) with f 6= g is a new variable X that will represent this pair of terms from now
on. The lgg of two terms f(t1; : : : ; tn), f(s1; : : : ; sn) is the term f(lgg(t1; s1); : : : ; lgg(tn; sn)).
Same for two literals p(t1; : : : ; tn), p(s1; : : : ; sn). If the two literals have di�erent sign or
predicate symbol then the lgg is unde�ned. The lgg of two clauses C1; C2 is the clause
C = f l = lgg(l1; l2) for l1 2 C1 , l2 2 C2 g. 3

Example 5 Let's go back to the family tree. Suppose our background knowledge is:

B = mother(ann; bob)
mother(ann; charlie)
mother(nancy; jesse)
father(bob; julie)
father(jesse; lucas)

and that we have the positive examples

E1 = grandmother(ann; julie)

E2 = grandmother(nancy; lucas)

applying the above method we would get that RLGG(E1; E2) is :

grandmother(X; Y ) mother(ann; V1) ^
mother(X; V2) ^ (�)
mother(X; V3) ^
father(V2; Y ) ^ (�)

The literals marked with a star are the correct ones, the others are logically redundant.

3Intuitively this is because a new variable is introduced when we �nd two di�erent terms in the same
place in two compatible literals (i.e literals with the same predicate and same sign). Incompatible literals
cannot be generalized. The recursive de�nition makes sure we �nd the least general generalization
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The example above shows us that RLGGs usually contain more literals that we re-
ally need to. In particular if b is the size of the background knowledge we have that
RLGG(E1; E2) will have O(b2) literals and it appears evident that if we construct the
RLGG of m examples the size of the resulting clause will be exponential in m. Plotkin was
aware of that and he suggested the use at each step of theorem proving to eliminate the
redundant literals in the clause. This approach is of course semi-decidable (or in any case
highly ine�cient). Moreover even after reduction the inferred clause may still have a large
number of literals.

Muggleton and Feng in [19] show that if we assume that the hidden predicate is de�ned
by a determinate clause of depth i over a background knowledge of arity a, then the size of
the RLGG of m examples does not depend on m (it is however O(bi

a

)). Notice moreover
that RLGGs use only positive examples and may at the end cover some of the negative
examples as well.

4.2 The implementation

To solve this problem GOLEM follows a \greedy" covering strategy. First of all it checks the
background knowledge B and if B is not ground reduce it to its h-easy model. Then given
the sets E+ and E� of positive and negative examples, it samples random pairs from E+,
constructs the RLGGs of those random pairs and chooses the one that covers the maximum
number of positive examples but no negative example. It adds this clause (possibly reducing
it somewhat) to the hypothesis and then starts again, iterating this process until no positive
examples are left.

GOLEM has a very rudimentary noise-handling mechanism. It works by �xing a fraction
of the negative examples that the hypothesis is allowed to cover. Other ILP systems like
LINUS and FOIL have more sophisticated noise-handling mechanisms (see [15])

5 PAC-learnability results

As we said in the introduction, recently there has been some attempt to provide ILP with
solid theoretical grounds. In particular some work has been done trying to formalize ILP
in terms of the Valiant PAC model [28]. In this section we will describe these results and
our improvements to them. Section 2.2 contains all the de�nitions about the subclasses we
are going to consider.

In the following we will assume k to be a constant, b the size of the background knowledge
and m the number of examples drawn. We will assume also that we are trying to infer a
single predicate q(X1; X2; : : : ; Xn) de�ned by non-recursive function-free local clauses over
a ground or e�cient background knowledge B of constant arity a. Let p1; : : : ; pl be the
predicates de�ned in B.

5.1 Reducing the problem to a propositional one

We can think of q to be de�ned as following:

q(X1; : : : ; Xn) �(X1; : : : ; Xn; V1; : : : ; Vs)
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(where Vj are the free variables) and � is a DNF �rst order formula built from literals using
p1; : : : ; pl. Each term of the DNF is the body of one of the clauses de�ning q. Notice that
to be able to output a logic program we have to learn � in a DNF form, otherwise we will
not be able to reconstruct the clauses de�ning q.

Using a technique due to Cohen [4] we show how to reduce the problem of learning such
a predicate to the one of learning a propositional concept over f0; 1gpoly(n).

Since there are n variables in the head of the clause and each literal in the body can
introduce at most a new variables, a locale of size i can contain at most n + ai distinct
variables. So the number of di�erent locales is at most (l(n + ai)a)i. We build a list F
of variables xj such that each variable corresponds to every possible locale. We transform
each example q(c1; : : : ; cn) in a propositional one by querying the background knowledge
to see if each locale is true or not once we �x Xj = cj. At this point we have to learn a
propositional DNF formula. To go back to � we just substitute to each variable in the DNF
its correspondent locale.

David McAllester pointed out to us that this technique allows the learner to reconstruct
only de�nitions that do not contain constants as arguments but only variables.

Since learning DNF is an open problem, we will consider two subclasses: predicates
de�ned by local clauses with a most k literals and predicates de�ned by at most k local
clauses.

5.2 Local Clauses with at most k literals

Now suppose that the predicate we are trying to learn is de�ned by local clauses with at
most k body literals. This is equivalent to say that � is a k-DNF �rst order formula. In
particular there will be at most k locales for each term of the DNF. So the transformed
propositional problem will be learning a k-DNF formula. After we do this using the standard
algorithm, when go back to the �rst-order case we may end up with clauses containing more
of k literals. So we are not learning this class by itself but by a larger class.

Theorem 3 The class of predicates de�ned by non-recursive clauses of constant locality i
containing at most k literals is PAC-learnable under any distribution by the larger class of
predicates de�ned by clauses of constant locality i.

This improves on [7] where a similar result was obtained for constrained clauses. They
learn the class of predicates de�ned by constrained clauses containing at most k literals by
itself. We improve on that by allowing a larger output class.

5.3 Predicates de�ned by k local clauses

The situation becomes more complicated when we approach the problem of learning pred-
icates de�ned by k local clauses. Now the corresponding propositional problem becomes
the one of learning a k-term DNF formula. Unfortunately for k � 2, k-term DNF are not
PAC-learnable by k-term DNF (under the assumption NP 6=RP [21]). As we said above it
does not help to be able to learn k-term DNF by k-CNF since we will not then be able to
reconstruct and output a logic program as an answer. Li and Vitanyi [16] prove that under
the class of simple distributions (it includes all the computable ones) we can learn k-term
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DNF by k-term DNF. Cohen [4] uses this result to prove that the class of predicates de�ned
by k local clauses is learnable under simple distribution. The result in [16] however is not
constructive, in fact it requires sampling according to a universal distribution that is not
computable (or in some restricted case exponential time computable).

We follow a di�erent approach. We use the algorithm by Blum and Singh [3] to learn
k-term DNF by the larger class of general DNF formulae. They show that k-term DNF over
f0; 1gn are learnable by DNF formulae containing O(nk�1) terms under any distribution. If
we apply this result to our problem we will end up with a logic program for q containing
more than k clauses, so again we need the assumption of being able to output a logic
program from a larger class than the original one. So we can state the following:

Theorem 4 The class of predicates de�ned by k non-recursive clauses of constant locality
i is PAC-learnable under any distribution by the larger class of predicates de�ned by clauses
of constant locality i.

This result improves on [4] in two ways: it is constructive and works under any distri-
bution.

Of course by the result of Cohen, both theorems hold for determinate clauses of con-
stant depth as well. However in that case it could be more e�cient to use directly the
transformation in [6] instead of rewriting a determinate clause as a local one.

5.4 Dealing with recursion

In [6] the authors point out that the general technique we have been using for non-recursive
clauses works as well in the recursive case provided we allow the learner to ask questions
about the target predicate (and we bound the arity of the target predicate by a as well).
In the language of Angluin [1] we would say that the results hold if the learner is allowed
membership and disjointness queries about the target predicate. In the logic programming
community disjointness queries are known as existential queries. We will use this term since
in this context is more intuitive.

A membership query is a question of the kind \Is q(c1; : : : ; ca) true or false?" An
existential query is a question like \Which instantiations of the unknown variables make
q(c1; : : : ; ci; Xi+1; : : : ; Xa) true?" (actually the query can be more general than this with
any combination of constant and variables as argument of the predicate).

The line of reasoning is as follows: when building the list of features F we will use
the target predicate as any of the background predicates. However when we query the
background knowledge to know about the truth status of q(d1; : : : ; da) we may not �nd this
value among the examples provided to us so we have to ask a membership query. For the
local clauses case we need existential queries as well since the variables are not determinate.

This observation applies of course to our stronger results in Section 5.4 as well. So
Theorems 3 and 4 hold for the recursive case as well if we allow membership and existential
queries (and assume n � a).

5.5 Limits on PAC-learning logic programs

An entire section of Cohen's paper [4] is devoted to prove negative results for restricted
classes of logic programs. He proves that relaxing in various ways the assumptions we made
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Figure 1: How to reduce a circuit to a determinate clause

above, results in unlearnabilty. These results are obtained using the framework of prediction
preserving reducibility devised by Pitt and Warmuth in [22]. Typically the reduction is
conducted over a particular background knowledge B.

Log-depth clauses: The �rst class that he considers is the one of determinate clauses
with depth bounded by log n. The proof of unpredictability comes from a reduction of
Boolean circuits of depth i to determinate clauses of depth i. Using a result by Kearns and
Valiant[12] (they prove log-depth circuits are hard to predict under suitable cryptographic
assumptions), we know that log-depth clauses are hard to predict as well. Actually this
result can be strenghtned using a recent result by Kharitonov [13], stating that log-depth
circuits are hard to learn even under the uniform distribution. The reduction uses a database
of only eleven facts (the de�nitions of the boolean predicates and, or, not, true) and it is
shown in Figure 1.

Constant-depth indeterminate clauses: This class is not predictable because the
corresponding language includes anNP-complete problem. Schapire [26] proved that this is
a su�cient condition for unpredictability. For example if B de�nes a predicate node(G;X)
to be true if X is a node of G and similarly edge(G;X; Y ) if there is an edge from X to Y ,
then the predicate

cliquek(G) (
k^

i=1

node(G;Xi)) ^ (
^

i6=j

edge(G;Xi; Yj))

is true if and only if the graph G has a clique of size k. Notice that the depth of the above
clause is only 1.

Clauses with k free variables: Learning a predicate de�ned by a single clause with k
free variables is reduced to the problem of learning Boolean DNF formulae. The reduction
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is based on the fact that there can be at most l(n + k)a literals in a clause with k free
variables and at most (ab)k substitutions for the free variables. So let vij be a variable
with i = 1; : : : ; (n+ k)a and j = 1; : : : ; (ab)k representing every possible literal with every
possible substitution. So a clause C  B1 : : :Bs is mapped to the DNF formula

�C =
(ab)k_

j=1

ŝ

i=1

vij

The status of the problem of PAC-learning DNF formulae is open.

6 The problem of imperfect data

Considering the potential practical applications of this problem, it is surprising how little
work has been done on the e�ects of data imperfections over the learning process. An
empirical study of the performance of various noise-handling heuristics is presented in [15].

In a typical ILP problem, the most common forms of data imperfections are the follow-
ing:

1. errors in the training examples, caused by an erroneous classi�cations of facts about
the target predicate.

2. errors in the background knowledge, caused by erroneous classi�cation of facts about
the auxiliary predicates introduced in it.

3. incomplete background knowledge, i.e missing facts about the auxiliary predicates.

If we go back to the protein structure example in Section 3, an example of (1) would be
that the Brookhaven database would tell us that in protein 155C the residue in position 25
forms an �-helix while in reality that residue is on a �-strand. An example of (2) would be
that we may have classi�ed a particular aminoacid as aromatic while instead it is not the
case. Finally an example of (3) would be that when asked, we can't �nd in our database if
a particular aminoacid is aromatic or not.

Implemented machine learning systems have a general criterion for dealing with errors.
It usually involves methods to avoid the output hypothesis from over-�tting the data, i.e.
to prevent concept descriptions that are too speci�c. In GOLEM the system allows the
output hypothesis to cover some of the negative examples. In [15] the authors describe the
noise-handling mechanisms of two other ILP systems: LINUS and FOIL. LINUS transforms
the ILP problem into a attribute-value problem that is learned as a decision tree. Over�t-
ting avoidance is then obtained by various tree pruning heuristics. FOIL instead uses an
encoding length restriction i.e. does not allow output clauses whose encoding is longer of the
encoding of the training examples. All mechanisms are just heuristics with little theoretical
justi�cation besides empirical results. Moreover recently in the literature there have been
various criticisms on the general validity of over�tting avoidance heuristics (see for example
[25])

In this section we will expand our quest for solid theoretical grounds for ILP to the
problem of learning in the presence of imperfect data. We saw in the previous section that
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PAC-learning restricted classes of logic program can be transformed into learning over the
propositional domain. We will show how this transforms the �rst two kind of errors in two
well studied noise models for the \standard" PAC-learning literature. For the third kind of
errors we will introduce a new noise model for the propositional domain that could be of
its own interest.

6.1 Classi�cation errors

Among the most common errors any learning system has to deal with is the one related
to misclassi�cations of the training examples. A very reasonable assumption to make is
to assume that with probability � < 1

2 every example independently can have a wrong
classi�cation. We would say then that we are dealing with random classi�cation noise and
� is called the error rate. If we look back at the transformations outlined in Section 5 we
can see how random classi�cation noise in the ILP problem induces the same kind of noise
in the corresponding propositional problem.

Recently Kearns in [10] introduced a very powerful technique to deal with random classi-
�cation noise. Using so-called statistical queries he proves that a large class of propositional
learning algorithms works in the presence of random classi�cation noise with error rate
� < 1

2
. This class contains the algorithm to learn conjunctions, the one to learn k-DNF and

the Blum-Singh one to learn k-term DNF by general DNF. Those are the algorithms that
we used in Section 5 to prove PAC-learnability of the corresponding classes of restricted
logic programs. So as a corollary we get that Theorems 3 and 4 hold also in the presence
of random classi�cation noise with error rate � < 1

2

Corollary 5 The class of predicates de�ned by non-recursive clauses of constant locality
i with at most k literals and the class of predicates de�ned by k non-recursive clauses of
constant locality i are PAC-learnable under any distribution, in the presence of random
classi�cation noise with error rate � < 1

2, by the larger class of predicates de�ned by clauses
of constant locality i.

6.2 Errors in the background knowledge

Now we turn to a di�erent kind of data errors. We assume that some of the facts in
our background knowledge are stated incorrectly. Going back to the transformations of
Section 5 we can see that this problem induces a related attribute noise in the corresponding
propositional problem.

The de�nition of attribute noise is as follows: suppose we are learning Boolean concepts
over f0; 1gn, and let e =< (c1; : : : ; cn); le > be a correctly labeled example. Then the learner
will be presented with e0 =< (c01; : : : ; c

0
n); le > where for some of the indices i c0i = �ci. The

most studied version of this model is random attribute noise, where we assume that c0i = �ci
with probability � < 1

2
independently for each single feature and example.

For this model we can use the results of Goldman and Sloan [8] that show how to learn
conjunctions and Shackelford and Volper [27] that show how to learn k-DNF with random
attribute noise. Nothing is known on learning k-term DNF with random attribute noise.

However we feel that modeling errors in the background knowledge with random at-
tribute noise in the corresponding propositional problem is inappropriate. In fact this
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model could be acceptable if we think of our background knowledge to be errorless and
then something happening during the query process that randomly 
ips the classi�cation
of our background query (like an imperfect communication channel between the learner
and the database). Even if this is an eventuality to consider, what we are talking here is
something di�erent.

For example some of the background predicates could be more sensitive to errors than
others. If we take the protein example we could imagine that the lab test for aminoacid
aromaticity has a higher con�dence rate than the one for aminoacid hydrophobia. This
would in turn imply that di�erent attributes have di�erent noise rates �i in the corre-
sponding propositional problem (remember that each attribute corresponds to a particular
background predicate applied to some variables). But Goldman and Sloan prove in [8] that
for this kind of attribute noise, even the simple task of learning conjunctions become im-
possible unless �i < 2� for all i where � is the admissible error of the output hypothesis. So
we can tolerate only very small amount of noise.

Moreover if some facts are stated wrong in the background knowledge, when queried
they will consistently return wrong answers. The errors in the attributes are not really
randomly distributed, but there is some determinism involved in the process. If we think of
an adversary choosing the places where to 
ip the attribute bits, then we fall in the model
considered by Kearns and Li [11]. And again they prove that only a �

1+� fraction of errors
can be tolerated.

Errors in the background knowledge appear then as a very hard problem to deal with.

6.3 Incomplete background knowledge

In this case we are assuming that some important facts are not present in the background
knowledge B. If we follow the logic programming approach and consider B as a Prolog
program to query for some facts, then everything that is not provable from B is assumed to
be false. So if some facts are missing we just assume that they do not hold. This assumption
will reduce this case to the previous one of errors in B. But since we failed in �nding a
satisfactory solution to this last problem we will try to consider another approach.

Given a batch of positive and negative examples of the target predicate we saw how to
transform these in corresponding examples of a propositional concept. In particular to do
so we have to query the background knowledge over a bunch of questions. We will think of
B as of an oracle that will answer those questions by three possible answers: \true", \false",
\don't know". We will assume that we will ask all the questions at once to B and so we
may think of an adversary deciding on when to answer \don't know" to a question, with
a complete full knowledge of the questions being asked. The only condition that we make
on B is that every feature of the corresponding propositional problem must have at most
a fraction � < 1 of unanswered questions. We will call � the ignorance of the background
knowledge B. Before proceeding let us notice that this a pretty realistic model of the
incomplete background knowledge: it is deterministic and the only condition imposed is
that for each predicate the facts that we know and those we don't know are in some �xed
proportion.

Under these assumptions we reduce the problem of learning logic programs with incom-
plete background knowledge to the one of learning a boolean concept over f0; 1gn in the pres-
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ence of the following form of noise. Let ei =< (c1i ; : : : ; c
n
i ); li > for i = 1; : : : ; m the examples

drawn according to the target distribution, then the learner receives �ei =< (�c1i ; : : : ; �c
n
i ); li >

where �cji = cji or �c
j
i =? The only condition is that for all j = 1; : : : ; n the set fi : �cji =?g has

cardinality less than �m for � < 1. We will call this model the �xed attribute noise with
hidden rate �.

Conjunctions: The standard algorithm for learning conjunctions can be modi�ed to
work under this kind of noise. Start with the hypothesis h containing a conjunction of
all literals. For each positive example erases from the hypothesis the literals that make h
false on that example. After m examples output the current hypothesis. Now let z be a
literal that appears in h but not in the target conjunction c. Then z causes h to err on
those positive examples in which z = 0. Let wz be the weight of this set under the target
probability distribution. If wz �

�

2n
then we don't care since the error due to those literals

will never sum up to more than �. What is then the probability of a bad literal (i.e. such
that wz >

�

2n
) to appear in h? For a particular bad literal z the probability that it survives

m examples is less than (1� �

2n)
m�dz where dz is the number of examples in which the bit

corresponding to z was deleted. Since dz < �m for any z we have that the probability that
some bad literal is still in h after m examples is

2n(1�
�

2n
)m(1��) � 2ne�m(1��) �

2n < �

if

m >
2n

�(1� �)
log

2n

�

So we can PAC-learn conjunctions with just an increase of a factor of (1��)�1 in the sample
complexity.

k-DNF: Remember that learning k-DNF is performed by learning a disjunction over
f0; 1gn

k

where each variable represents a possible conjunction over x1; : : : ; xn. Learning
disjunctions is the dual of the algorithm above (just consider negative examples instead of
positive). To have an hidden rate � < 1 in the disjunction learning problem we need that
the original hidden rate to be less than 1

k
. In fact a single bit set to ? can set to ? the entire

conjunction. It is not hard to come up with an example in which if the original rate is > 1
k

then in the disjunction problem we are going to have � = 1 i.e. for some bit we see no
information at all.

k-term DNF:A reasoning similar to the one above applies to the algorithm of Blum and
Singh [3] to learn k-term DNF by general DNF formulae. It can be shown that restricting
the hidden rate to be � < 1

k
we can PAC-learn with only a constant factor increase in the

sample complexity ((1� k�)�1 to be precise)

Notice that in the algorithms above, we need to use the original 2-buttons model of
Valiant [28] i.e. we need to be able to ask for a positive or a negative example. Consider
the algorithm for learning conjunctions. There we use only positive examples. Since the
hidden bits are placed maliciously by an adversary, he can concentrate them on the positive
examples, so while the hidden rate is still � < 1, since we discard negative examples the
practical hidden rate for us could easily be equal to 1. Similarly we could de�ne a weak
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version of the �xed attribute noise model in which the rate of hidden bits is � separately
for both positive and negative examples.

So we can state the following:

Theorem 6 Under the �xed attribute noise 2-button model (or the weak 1-button version
of it) with hidden rate � we can learn the following Boolean concept classes

� conjunctions, for all � < 1

� k-DNF if � < 1
k

� k-term DNF if � < 1
k

The increase in sample complexity is linear in (1� �)�1.

If we remember that:

� learning a predicate de�ned by a single local clause corresponds to the propositional
problem of learning a conjunction.

� learning a predicate de�ned by local clauses with at most k literals corresponds to the
propositional problem of learning a k-DNF formula.

� learning a predicate de�ned by k local clauses corresponds to the propositional prob-
lem of learning a k-term DNF formula.

we get the following as a corollary:

Corollary 7 The following classes of logic programs are PAC-learnable with incomplete
background knowledge of ignorance �:

� predicates de�ned by a single local clause for any � < 1

� predicates de�ned by local clauses with at most k literals for any � < 1
k

� predicates de�ned by k local clauses for any � < 1
k

The easy way out: It may still happen that after translating all the m examples
in the propositional form, some features can have a higher hidden rate than the allowed
�. The easy way out of this problem is to allow interaction between the program and the
user. The program would stop, query the user about some facts it could not �nd in the
database (probably ask the questions that will reduce the number of hidden bits around)
and when all features have an acceptable hidden rate apply the algorithms described above.
The interesting part of this approach would be that the program �nds out by itself what
are the relevant missing information to perform the learning task.
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7 Final Remarks

In this paper we have discussed a new emerging area of research: Inductive Logic Program-
ming. This area is concerned with the inductive inference of Prolog programs from examples
of their behavior and a general background knowledge.

We have surveyed the following results: Muggleton and Feng's approach to learn Prolog
clauses by relative least general generalization [19]; Cohen's non-constructive results on
PAC-learning local Prolog clauses under broad classes of distributions [4].

We have improved some of these results by giving algorithms that PAC-learn local Prolog
clauses under any distribution. Moreover we presented the �rst (up to our knowledge)
theoretical framework for Inductive Logic Programming in the presence of imperfect data.

This investigation leaves many questions open for further research. Let us address some
of them:

Open Problem 1 We have discussed only the inference of a single predicate. It would be
very interesting to address the issue of inferring large logic programs composed by de�nitions
of multiple predicates.

Open Problem 2 In our treatment of data imperfections we did not mention the pos-
sibility of having inappropriate background knowledge. By that we mean a background
knowledge that introduces facts and predicates that are not relevant to the learning prob-
lem at hand. This appears to be a very serious problem. Maybe some of the work done in
Machine Predicate Invention (see [18]) could be useful in this case.

Open Problem 3 In spite of the progress done in this paper, the question about learning
subclasses of Prolog clauses is far from being settled. There are still various interesting
classes of Prolog clauses that are not known to be PAC-learnable or to be hard to PAC-
learn. For many of them the transformation to the propositional domain yields a DNF
learning problem. Maybe some recent results about PAC-learning DNF (see [2]) could be
useful in this setting.

Open Problem 4 Finally lot has to be done regarding the new noise model we introduced.
For example

� We have just analyzed the learning algorithms (conjunctions, k-DNF, k-term DNF)
that arise in the transformation of restricted ILP problems to the propositional do-
main. What happens to other learning algorithms under the �xed attribute noise
model?

� We introduced three variations of the �xed attribute noise model: 2-button, 1-button,
and weak model. Are they equivalent? Or are they separable?

� The tolerance of higher hidden bits rates can improve if we assume a particular dis-
tribution over the examples. Consider the case of k-DNF, we said that � must be less
than 1

k
. But if we assume that the examples are distributed uniformly, maybe with

high probability we can tolerate a higher hidden rate, since a hidden bit will hide the
entire conjunction if and only if the other bits are all 1's. So the question is: in the
�xed attribute noise model are distribution-dependent improvements possible?
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