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1 Introduction

This paper puts forward a very efficient and secure digital signature algorithm based
both on factoring and hash functions.

Relying on both number theory and hash functions is not, per se, a novelty.
Besides some important but not-too-practical exceptions (e.g., [1], [6], [10], [13], [14],
and [15]), a combination of number theory and one-way hashing is employed by
essentially all currently known signature schemes. Some signatures schemes rely on
secure hashing only for signing long messages (e.g., [16]). Other schemes make use of
hashing only for efficiency purposes (e.g., [11]'). The new algorithm, instead, must
hash in order to be secure. This too is not a novel feature, since it is shared by a
variety of prior schemes (e.g., [2], [3], (8], [9], and [12] 2). The real novelty of our
scheme lies in the way in which it combines hashing and number theory, so as to
optimize, simultaneously, many resources: security, efficiency, key generation, and
key length.

MAIN FEATURES OF THE NEW ALGORITHM. The new scheme satisfies a very strong
security requirement. Namely, if the underlying hash function is secure (e.g., if it
behaves like a random function —though a much milder requirement is sufficient)
forging signatures is provably equivalent to factoring.

On the other hand, the new scheme is very efficient. Key generation essentially
consists of selecting two large primes and of performing two modular exponentiations.

'This scheme signs every message in two separate steps: an off-line step solely based on number
theory, and an on-line step solely based on secure hashing.

*For instance, if messages are not securely hashed prior to be signed, an enemy can use legitimate
signature for forging the signatures of additional messages. Even more dramatically, if message are
not hashed prior to be signed, Rabin’s scheme is totally breakable by a chosen-message attack.



A public key consists of the product of these two primes, and we recommend this
product to be at least 1024-bit long —though it could be shorter in many applications.
To achieve 5 980 security-leve]” (assuming that the public key has been chosen long
enough not to disrupt this goal, but otherwise independent of public-key length), in
a typical implementation of the new algorithm a signature needs to be 80-bit longer

than the public key; is computed by means of 120 modular multiplications, 80 of

In sum, the new scheme succeeds in being as efficient as the Fiat-Shamir one [8],
but is much preferable to it in terms of key length, key generation, and signature

ADDITIONAL FEATURES. Our signature scheme has Particularly benefited from the
algorithmic ideas of Rabin [3], Williams [4], Goldwasser, Micali, and Rivest [6], Gol-
dreich [7], and Fiat ang Shamir [8]. Though it makes hon-trivial use of number theory,
it is afgorithmécally very simple, and can be unexpensively realized in hardware. (Pa-
ticularly because, being very efficient, it can be implemented by “slower” chips, and
because, requiring short secret keys, only a smal] portion of these chips needs to be

brevity, however, we refrain from deriving the ; dentification scheme explicitly in this

2 The New Digital Signature Scheme

2.1 Preliminaries

Goldwasser, Micali, and Rivest [6], who used them for quite & different scheme.

Definition. Let n, be the product of twe large primes, p; = 3 mod 8 and p; = 7 mod
8. Define Fo(z) = 2?2 mod n, Fi{z) = 422 moq n, and, for any non-empty string of
bits C = 51&2 e bk, let Fa = Fbk(' = (R2(FEI (.If)) = }l

Definition: If 1s like aboye, and z is a Square mod n, then exactly one of its four
Square roots mod 7 is itself 4 Square mod n, and this root will be denoted by 227, In
general, if £ is a positive integer, z27* will denote the unique square mod n, z, such

that 22" = 2 mod n.

The following properties of the above defined quantities have been proved to hold
in [6]. However, because their statement and notation in that paper is slightly different
from ours, we provide a brief proof of these properties in our appendix.

A: Fy and Fy are bermutations over the Squares mod n, and so is F,, for any string
c.

[



B: 2 is not a square mod n, and thus 472 # 2 mod n.

C: If one computes any two squares mod n, z and y, and any two different strings
of equal length, o and 7, such that F,(z) = F,(y), then one can easily factor n.

The following property D is due to Goldreich [7]. A brief proof of Goldreich’s theorem
is also presented in our Appendix.

D: Let k be a positive integer, let s = 42" mod n, let o be a k-bit string, let int(c)
be the natural number whose binary representation is ¢ without its leading 0s
(i.e., int(011) = 3), and let X and z be squares mod n such that X = F,(z).
Then, z = X2 /s mod n.

2.2 The Basic Signature Algorithm

The new digital signature algorithm makes use of a secure hash function H, which
could be common to all users. Below, we assume that H produces 80-bit outputs and
that “a 0 b” denotes the concatenation of strings a and b.

CHOOSING KEYS. Each user randomly selects a large prime p; = 3 mod % and a large
. . —81

prime p; = 7 mod 8, and lets n = p;p, be her public key, and s = 1/4>" mod n be

her secret key.

Comment: from now on, all computations are mod n unless otherwise specified.
The value 4> can be obtained in three easy steps by (1) computing u;, the
inverse of 2 mod p; — 1, (2) computing v; = u$' mod p; — 1, and (3) applying

the Chinese reminder Theorem to v; and v, with moduli p; and p,.

SIGNING. A user whose public and secret keys are n and s, respectively, signs a

message M as follows.
1. Off-line step. Randomly select a square z and compute X = z2°

Comment: It is crucial that z, and thus X, be selected afresh for each
message to be signed. By construction, z = X2

2. On-line step. Compute ¢ = H(X o M), t = s™%) and z = zt, and output
(z,0) as your signature of M.

Comment: X " Foo(z) “/2'F F,(2?). (The “dammy 0” has been added
to preserve property D, while avoiding any verification that F,;!(X) is a

square, which is hard without n’s factorization.)

VERIFYING. Given a message M and an alleged signature (z, o) relative to a public
key n, compute X = F,(z?), and check whether H(X o M) = o. If so, accept the
signature.

Cad



2.3 Analysis of the Basic Signature Algorithm

EFFICIENCY. We disregard the single hashing required for signing and verifying,
which is trivial. We count instead the number of modular muitiplications required by
the straightforward implementation of the new algorithm. Notice that the complexity
of on-line signing can actually be decreased at will by computing once and for all,
and then storing, some suitable values. (As we shall explain in the final paper, the
basic algorithm can be modified so that signing can be alternatively/further sped up
by increasing signature length.)

o Off-line signing: 82 multiplications.

On-line signing: ~ 121 multiplications (if only the secret key s is stored), or
~ 41 multiplications (if the 80 values s™2' are stored), or
~ 11 multiplications (if 2600 convenient values are stored), or ...

o Verifying: 81 multiplications.

All multiplications reported above are modulo n. For signing, however, it is more
convenient to use the Chinese Reminder Theorem so as to double the small number
of required multiplications, but carry them out modulo n’s two primes, p; and ps,
which are half as long.

SECURITY. The security of the new scheme follows from the “claw-freeness”of the
hash function H and the permutations ¥y and F;. Such a proof of security will be
presented in the final paper. Here, let us prove a simpler statement; namely, if H is a
random oracle (rather than a function with short description), then the new scheme is
provably as secure as factoring.? Roughly said, what we want to prove is the following:
if an enemy has a probability ¢ of forging a single signature in time T, then he can
factor n in expected time Poly(T /).

The key observation to prove this informal statement of security is the following.
Assume that an enemy chooses a number z and a 80-bit string o and computes
X = F,(2%). Then he will be able to easily sign a message M only if oracle H returns
exactly the bit-pattern o on input X o M. But this will happen only with probability
2780 and the adversary cannot easily increase this negligible probability. In fact, if
he could concoct a X such that he could forge the signature of any message that,
hashed with X yields either of two different 80-bit patterns, o and 7, then he should

3Iucleecl, it is a common experience that, if a signature scheme is secure when using a random
oracle H, then it continues to be secure when H is approximated by a properly defined one-way

hash function. Indeed, this is what it js commonly assumed for schemes like the Fiat-Shamir, the
RSA, etc.



be able to produce two pairs (z,¢) and (w,7) for which F,(2?) = F.(w?) = X. But
then, by property C, he could easily factor n.

Given the enormously many and unpredictable ways by which an enemy can at-
tack a signature scheme, knowing that no attack could bypass the difficulty of integer
factorization if the hash function is secure is of fundamental importance. By compar-
ison, no such proof of security exists for the DSA [16], even even if their hash function
1s assumed to be a random oracle, and if the discrete logarithm problem is assumed tc
be intractable. It should also be noted that, similarly to the schemes of Fiat-Shamir
[8] and Schnorr’s [12], the new algorithm safely relies on short hashed values. (For a
discussion of this important point, see [12], page 244, or this footnote.*)

KEYS AND SIGNATURE LENGTH. In the light of the above proof of security, and on
the basis of our current knowledge about the factoring problem, in most applications
the public key n could be chosen to be 1024-bit long. The corresponding secret key
would be equally long, and a signature 1104-bit long.

2.4 Comparison with Other Factoring-Based Schemes

The new scheme is much preferable to the previously-known algorithms based on
factoring. For instance, the new scheme is preferable to the RSA from a security
point of view. In fact, even if implemented with a random oracle as a hash function,
forging messages in the RSA scheme is not known to be equivalent to factoring and
it may be much simpler than factoring.

The new scheme is also much preferable to the RSA, Rabin’s and William’s
schemes from the point of view of computational efficiency. In fact, all these schemes
sign a message by means of an exponentiation modulo the public key, and no por-
tion of this computation can be performed off-line. Thus, if public keys are chosen
1024-bit long, after hashing the message to be signed, these schemes require, on the
average, 1500 modular multiplications for on-line signing. It can then be seen that
the new algorithm is 12 times faster than the RSA, Rabin’s and William’s schemes,
even if it does not precompute and store any of the s? values. If all 81 such values
are precomputed, then the new algorithm is 37 times faster than those schemes.

4To the contrary, DSA needs to hash messages to at least 160-bit values to be safe against 25%-step
attacks against their hash function. In fact, if an enemy keeps on hashing new messages until he
finds two messages, M; and My, such that H(M;) = H(M-), then, by asking the signer to sign My,
he automatically succeeds in forging the signature of M. By contrast, in the new scheme —like in
the ones of Fiat-Shamir [8] and Schnorr [12)— if an enemy finds two new messages that hash to the
same value, he has nothing to gain. In fact, when asked to sign M, the legitimate signer will first
hash it together with a new random square X; and H(M;) being equal to H(M3;) does not imply
anything about H(X o M;) being equal to H{X o M). (Similarly, for forging the messages of a new
message M, the enemy cannot utilize previous messages M; that the legitimate signer has signed
via their relative squares X; and hashed values o; = H(X; o M;). In fact, if he hashes M with one of
the squares used by the legitimate signer —say, X;— he can successfully exploit the corresponding
legitimate signature only with probability 278 that is, only if H(X; o M) = 0;.)



The new scheme is also preferable to that of Even, Goldreich and Micali [I1]. In
fact, whether or not its off-line step is implemented with a factoring-based scheme,
the latter algorithm produces much longer signatures.

The new scheme also compares very favorably, from an efficiency point of view,
with the scheme of Goldwasser, Micali, and Rivest [6]. Indeed, even when this latter
algorithm is implemented with Golderich’s improvements, it requires more than a
modular exponentiation to sign a message, and its signatures are orders of magnitude
longer than those of the new scheme.

The new scheme performs as efficiently as the Fiat-Shamir (8] and the Micali-
Shamir [9] schemes, but is preferable to both of them in terms of key length and
key computation. For instance, if these latter schemes are implemented with & = 80
and t = 1, then their key generation would require to compute not only two large
primes, but also 80 modular exponentiations; in addition, they would require a secret
signing key that is at least 40,000-bit long. This can be very cumbersome in some
applications —like in smart-card applications, where such a long key needs also to be
stored in a tamper-proof storage area.®

3 The New Identity-Based Scheme

The new algorithm also yields a new identity-based signature scheme which is more
secure and efficient than the original proposal of Shamir [5]. In an identity-based
signature scheme® there is a special authority, 4, and a group of users, A;, A,,... Au-
thority A generates a special public-secret key pair (PK, SK ), where PK is assumed
to be universally known within the system, and then assigns to each user A; a secret
key SK;, which he can easily compute via SK. Keys PK,SK, and the SK;’s satisfy
the following three properties (essentially stating that each user A; can easily sign,
and can be kept accountable by A for what he signs): '

1. To each user A; corresponds a key PK; that is easily computable on inputs :
and PK.

2. User A;, thanks to his special knowledge of SK;, can easily sign, relative to
PK;, any message m.

3. User A; cannot forge any signature (relative to PK;) of another user A;.

%Of course, the Fiat-Shamir and the Micali-Shamir schemes could achieve a better performance in
both key generation and key length by choosing smaller values of k£ and correspondigly larger values

Note that Shamir never precisely defined his notion; moreover, he focused primarily on public-key
cryptosystems rather than on digital signature schemes. It should thus be expected that our (still-
informal) description of an identity-based signature scheme may express more our own desiderata
than what Shamir originally intended.



To these basic properties we wish to add the following two optional ones.

4. The users cannot use the keys that allow them to sign in order to encrypt
messages to each other.

3. A can be conveniently replaced by a group of “trustees.”

If Property 5 is not properly enforced, then authority A can also forge signatures for
its users, and thus the applicability of identity-based schemes is primarily confined
to those systems which have a well-defined and well-trusted authority. For instance,
when A is a bank and the A;’s its branches, or when A is the Government and the
A; Government agencies or employees.

We shall show how property 5 can be easily enforced in the final paper. For the
time being, let us see how the other properties can be achieved.

3.1 The Basic Identity-Based Algorithm

While Shamir exemplified identity-based signature schemes based on the RSA func-
tion and some additional and little-understood assumption, we will succeed in imple-
menting them in a way that is provably equivalent to factoring, at least when one
hashes by means of a random oracle H.

We start by pointing out that, in the scheme of Section 2, one can replace the
number 4 with a random square mod n, S, without loosing security. In fact, if a
—1 Jacobi symbol root of S, r, is publicly known (in the basic new scheme, 2 is
guaranteed to be a square root of 4 with Jacobi symbol —1), then the same proof of
security of the basic new scheme applies. (In essence, if one finds squares z and y
such that 22 = Sy?, then one finds a Jacobi-symbol +1 root of S, since z/y = 527,
Thus, ged(z/y+r,n) is a proper factor of n.) On the other side, if S is chosen so that
no enemy knows any square root of it mod n, then, for what we just said, finding two
squares z and y such that 22 = Sy? is tantamount to finding a square root of S. But,
as shown by Rabin [3], finding square roots of an arbitrary square mod n is as hard
as factoring n.

In order to replace 4 with a random square S , we shall use the following property
due to [4].

&: Let n be the products of two primes, one congruent to 3 mod 8 and the other
to 7 mod 8. Then, for any member of Z7, exactly one of z, —z, 2z, -2z mod n
is a square mod n.

Assume now that A has selected one such n, and has stored its secret prime factor-
ization (which needs not to be done in the basic new scheme). Then, A allows his
users to share essentially his same public key n as follows.

=1



ASSIGNING KEYS. A computes S; = H(noz) (i.e., the hash of the concatenation of n
and the name of the user himself). Then, A4 computes o; € {1,-1,2, -2} such that
@;S; is a square mod n, computes the value s; = 1/(&,-5',-)2_81, and gives s; to A; as a
secret key. The corresponding public key of A; will be (n, 4, ;).

(Comment: if n is universally known, the recipient of a signature of A; knows all
of A;’s public key, except for the two bits needed to specify o;.) It is not crucial
that S; = H(n 01), but it is important that Si be “sufficiently random, though
easily computable on input ¢,” so that i’s secret key is sufficiently unpredictable
and unrelated to that of j.

SIGNING. A; signs a message M as in the basic new scheme, but using s; instead of
477" and S; instead of 4. To the resulting signature, (2,0), A; also adds its own .

VERIFYING. To verify the signature ((2,0),2:) of A; for message M, the verifier
checks that o; € {1,-1,2, —2}, computes S; = f(noi) and ;5;. Then, he computes
X = F,(2%), but using Fy(z) = z? and Fi(z) = «;S;z? as basic permutations, and
accepts ((z,0), o) to be A;’s signature of M if H(XoM)=o¢.

Notice that signing will require exactly the same amount of multiplications as
in the basic new scheme; that is, 82 multiplications off-line and either 121 or 40,
depending on storage, on-line. Verifying will instead require 121 multiplications rather
than 81. (Indeed, on the average, the function F; will need to be applied 40 times,
but each application, rather than costing one multiplication —as when Fi(z) were
42%,— now costs two multiplications, since now F(z) = Sz2))

It is now easy to see that Properties 1—3 are satisfied. The main idea behind
proving that Property 4 also holds is simple:

All users in the group share the same public key n without knowing its factor-
tzation.

Details will be given in the final paper.

3.2 Applications to Public-Key Certification
Identity-based signature schemes like the one above also enjoy the following important
property: -

There is no need to certify individual public keys for the users in the group.

That is, only n needs to be certified outside the group, if it is not already uni-
versally known. This property makes such algorithms very suitable for public-key
certification. Indeed, in a digital signature scheme, the public verification-keys of



the users need to be certified, since it is unlikely that they are universally known.
For instance, a user U may have his public key PKy; signed by a local authority A;.
relative to this authority’s public key PK;. However, since there may be thousands
of local authorities, their public keys may not be universally known either, and thus
Ai’s signature does not quite certify PKy. It maybe assumed, however, that the pub-
lic key of central authority A is universally knwon; thus 4 may easily sign the local
authorities public keys, and a certificate of PKy may consist of (1) A;’s signature of
PKy, (2) PK; and (3) A’s signature of PK;. Thus, such a certificate of PKy is rather
long. This is unfortunate, since most of the time user U sends a signature of his, he
must also send this certificate along; and this certificate will need to be stored by the
recipient for a long time. Thus these long certificates are very costly, both in terms of
transmission and in terms of storage. An identity-based scheme like the one above,
may instead reduce these costs by two thirds. For instance, the local authorities (e.g.,
the post offices) may use the new identity-based scheme for signing messages, and
since the composite number n chosen by the central authority is universally known,
the certificate of PKy may just be 7 and A;’s signature of PKj,.

Notice that string.i is very short (in the case of a post office may coicide with its
ZIP code). Moreover, the recipient of the certificate needs not to verify whether a
post office with that ZIP code exists: if central authority A had computed the right
secret key for “¢” this means that “:” was a legitimate name. Finally, notice that in
this application there is a natural and trusted central authority, and thus the issue of
replacing A with a group of trustees may not be relevant.

Indeed, the new algorithm offers such a simple key certification (and the new
circuitry sufficiently unexpensive) that it is almost worth using it even if another
signature scheme were adopted for the individual users.

Acknowledgements. Special thanks to Mihir Bellare and Oded Goldre-
ich. Thanks also to Shafi Goldwasser and Philip Rogaway.
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4 Appendix

Many of the properties listed in Section 1 can be established based on the the Jacobi-
symbol function. Let us recall some well-known facts about it. If p is a prime and z
a integer mod p, then the Jacobi symbol of z mod p, denoted here by (z/p), equals
2P=1/2 mod p. Thus, by virtue of Euler’s theorem, (z/p) = +1 if z is a square
mod p, and —1 otherwise. The Jacobi-symbol function can be extented to Z» when
n 1s composite. In our case, since n = p;p,, this extension is simply described as
(z/n) = (z/p1)(z/p2). Thus, a necessary condition for z to be a square mod n is
that (z/n) = +1. (In fact, z is a square mod n if and only if it is a square mod both
p1-and ps, and if (z/n) = —1, then (z/p;) = —1 for either i = 1 or ¢ = 2.) On the
other side, this condition is not sufficient. (In fact, if (z/p;) = (z/p2) = —1, then
(z/n) = +1, but z is not a square.) The Jacobi symbol is also multiplicative on its
first argument (i.e., (z122/n) = (21/n)(zy/n)). Finally, from these basic facts, one
can easily derive the following properties about those integers n which are product of
one prime congruent to 3 mod 8 and another prime congruent to 7 mod 8&:

(¢) (=1/n) = +1, but —1 is not a square mod n.

(¢¢) If z,—=,y, and —y are the four square roots of a given square mod n, then
exactly one of them is a square mod n.

(iii) (2/n) = —1.

Properties A, B,C, and D are then immediately derivable from the above simple facts.

Proof of A: Fj is a permutation over the squares of n due to (41). F) is a permutation
over the squares of n because it is the composition of two permutations over the
squares mod n: Fp and multiplication by 4. (In fact, multiplication by a fixed integer
Is a permutation over Z, and since 4 is a square mod n, multiplication by 4 mod n
is a permutation over the squares mod n.) For any string o, F, is a permutation over
the squares mod n because it is a composition of Fy and F}.

Proof of B: Straightforward from (z::), the definition of =2, and the fact that Jacobi-
symbol —1 elements cannot be squares mod n.

Proof of C: Let us first rephrase C a bit more precisely. Namely, if z and y are squares
mod n, and ¢ and 7 are two different strings, of equal and positive length, such that
Fo(z) = F:(y), then there exists two shorter, equal-length, prefixes (possibly empty)
of o and 7, respectively, o’ and 7/, such that ged(F,:(z)+2F,(y),n) is a proper factor
of n —and thus equal to either p; or p;. (Since, for uniformity of presentation, we
considering empty prefixes, we need to enlarge our definition of F, as follows: if ¢ is
the empty string, then we define F; to be the identity.)

The proof is by induction over the length of o and 7. We start with proving
the base case: |o| = |7| = 1. Assume that z and y are squares mod n and that

11



Fo(z) = Fi(y), that is, 22 = 4y® mod n. Then z and 2y are square roots of a
common square mod n. Moreover, z % 2y mod n. (In fact, {z/n) = +1 because z
is a square, but (2y/n) = (2/n)(y/n) = -1, because of (122) and the fact that y is
a square.) Similarly, z % —2y mod n. (In fact, (z/n) = +1 because = is a square,
but (—2y/n) = (=1/n)(2/n) = —1, because what we have observed about —1 and
2y.) Thus, by a well-known theorem, we have, except for renaming, ged(Fy(z) +
2E(u),n) = ged(z + 2y, m) = p1 and ged(Fy(z)  26,(y),m) = god(s - 29.7] o
This proves the base case. Assume now that Property C holds for 0 < lo| = |7} < k.
and let us show that it holds for & + 1. Let o and 7 be two different bit-strings of
length £ + 1, let z and y be two squares such that F,(z) = F,(y) = z, and let o’ and
7’ be, respectively, the k-bit prefixes of o and 7. Then, if F,/(z) = Fo{y), we are
done because of our inductive hypothesis. If, instead, =’ = F,/(z) # F.(y) =y, then
z’ and y’ are squares mod n (by Property A), and the last bit of o is different from
the last bit of 7. (In fact, if b were the last bit of both strings; then permutation £}
should map the two different squares =’ and ¥’ to the same value z, since Fy(z') =
Fy(Fou(z)) = F(z) = 2 = Fi(z) = Fy(Fo(z) = Fi(y’).) But then, assuming without
loss of generality that o = o0 and 7 = 7’1, the two squares z’ and y’ are such that
Fo(2') = z = Fi(y"). Thus by the already proven base case, ged(z' +2y',n) is a proper
factor of n. In virtue of our definition of 2’ and y’, this proves that C holds for £ + 1
Proof of D: By induction on k, the length of o. (All computations are mod n.)
For proving the bage step, k = 1, set s = 427" apd let & be a bit. If & = 0, then
z = Fy'(X). Thus, because X and z are both squares and because of the definition
of the (-)27" operator, z = X?7'. And by re-writing the last equation we obtain

=X 1= X770 = X277 /gint(0),
If o =1, then 2z = FrY(X). Thus, because X/4 and z are both squares and

because of the definition of the (-)*" operator, z = (X/4)*”. And by re-writing the
last equation we obtain

= X T = XV s = x0T gt 2y ginet),

Thus D holds for k& = l.kAssume now that D holds for & > 0. For proving that D
holds for £ + 1, set 5 = 427 ™ and let & be an arbitrary &-bit string.

If X = Fo,(2), E?fn ;.:r_zi(gg)) ;lint(a) a,nc'l.z. = (F.C,‘I(X))Tl. .Thus, by in-ductive
hypothesis, z = (X* /4 )¥ . By re-writing this last equation we obtain

o s XZ‘("+1)/42‘("+1)""‘("') — X?"(’"H};,'Sint{o’) — X?‘“‘*”/Sint((}o‘).
If X = Fi,(2), then int(lo) = Qkint(a) and z = (F7HX)/4)7, Thus, by inductive
hypothesis, z = ((X27* /427" " 4y2 By re-writing this last equation we obtain
5= (XQ—(k+1)/42—(k+1):'nt(o-)}/42-«1 . Xg—-(k-f-l)/st'nt(a)q-«zﬁl =
X2_(k+1)/sint(a)82k — )(2"(’7°'{“1)/‘Sint{o')-i@jc En X2"‘("+1)/Sint(lo).

This completes the proof of the inductive step.
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