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Abstract

A local rule theory is developed which shows that the self-assembly of icosahedral virus

shells may depend on only the lower-level interactions of a protein subunit with its neighbors,

i.e. local rules, rather than on larger structural building blocks. The local rule theory provides

a framework for understanding the assembly of icosahedral viruses. These include both viruses

that fall in the quasi-equivalence theory of Caspar and Klug and the polyoma virus structure,

which violates quasi-equivalence and has puzzled researchers since it was �rst observed. Local

rules are essentially templates for energetically favorable arrangements. The tolerance margins

for these rules are investigated through computer simulations. When these tolerance margins

are exceeded in a particular way, the result is a \spiraling" malformation that has been observed

in nature.
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1 Introduction

The study of virus shell structure and assembly is crucial for understanding how viruses reproduce
and how anti-viral drugs might interfere with the assembly of virus shells. One of the most notable
aspects of virus shells is their highly regular structure: they are generally spherical and possess
strong symmetry properties. Almost all human viruses, and many plant and animal viruses, are
icosahedral [2, 11]. These include the rhinovirus, poliovirus, and herpesvirus, all of which have
rounded icosahedral shells. These shells are constructed of repeated protein subunits, or coat
proteins, which surround their condensed DNA or RNA genomes. A given shell usually consists of
hundreds of copies of one protein, but sometimes copies of two or three di�erent proteins.

Many of these viral shells are believed to assemble with only limited aid from cellular machin-
ery; they appear to \self-assemble," or spontaneously polymerize and take shape, in the host cell
environment. This was originally established for the rod shaped tobacco mosaic virus [12] and has
since been shown for many spherical viruses [6]. Sometimes assembly is assisted by sca�olding
proteins, which assemble with the coat proteins to form a precursor shell, but are removed before
the shell matures. At �rst glance, the assembly of the shells seems easy to understand, because the
structure is so regular. In fact, it has been di�cult to determine the actual pathway through which
the subunits interact to form a closed shell composed of hundreds of subunits [25]. In icosahedral
viruses this has been particularly di�cult to explain because very often the same protein occurs in
non-symmetric positions [25].

Previous attempts at explaining the formation of closed icosahedral shells from subunits have
focused on the icosahedral symmetry, through the Caspar and Klug theory of quasi-equivalence
[8]. This theory classi�es icosahedral shells whose protein subunits all have very similar (quasi-
equivalent) neighborhoods and form hexamers and pentamers in the virus shell. The general belief
was that shells were formed by assembly of these pentamer and hexamer building blocks. However,
in the most closely analyzed experimental system for studying the subunit assembly process, the
bacterial virus P22, closed icosahedral shells assemble e�ciently from puri�ed monomeric protein
subunits, even though the subunits are arranged as pentamers and hexamers in the �nal shell
structures [13, 22, 23]. This suggests that the emphasis on the �nal symmetry of the structure has
been a barrier to understanding how these proteins assemble into such complex structures.

It was also generally believed that proteins took on only one conformation, particularly very
stable proteins such as those that form virus shells. Recent evidence indicates that virus shell
proteins in fact take on several conformations [14, 19, 21], as has been proposed by [7, 25]. This
important observation informs the approach to virus shell assembly presented below.

It is useful to consider what an individual protein \knows," from an information-theoretic point
of view. It might appear that each protein needs to know something about the global structure.
In fact, if the proteins assume di�erent conformations during the assembly process depending on
their relative positions, each protein has enough local information to \know" where to bind. Thus,
a protein needs to know nothing about what is going on in the rest of the structure in order to
form icosahedral shells.

In particular, the local rule-based theory introduced by Berger et al. [3] showed that possible
assembly pathways can be given that depend on only the interactions of a protein with its immediate
neighbors, rather than on larger structural building blocks. This leads to simple, local rule theories
that su�ce to explain assembly. The shell proteins of each virus obey a set of local rules which
direct assembly. A local rule theory can be divided into a combinatorial part, which says which
conformations can bind to each other, and a numerical part, which gives the relative angles and
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the lengths of these bonds. In [3], two combinatorially di�erent sets of local rules for the T = 7
shell are given (the T number classi�es the combinatorial structure of the shell). One uses seven
conformations of the coat protein; the other uses only four. Currently there is not adequate
experimental evidence to say that one of these sets directs assembly in any particular virus.

In this paper, the mathematical theory behind the local rules is presented for the �rst time. We
focus on the combinatorics of the local rules, giving several alternative sets of rules for each com-
binatorial shell structure. These combinatorial sets of rules may help in the determination of virus
structures: a virus with unknown structure might be hypothesized to obey a given combinatorially
set of local rules for assembly, possibly by analogy with a related virus. We also give a proof that
a set of local rules for each icosahedral structure guarantees the �nal form.

A complete set of local rules for a virus, in addition to the combinatorial structure of the rules,
must also specify interaction angles in 3D space, torsional angles, and interaction lengths. These
will determine the exact shape of the assembled structure. Two sets of rules that are approximately
the same tend to produce nearly identical �nal shapes, whereas those that are very di�erent from
each other produce di�erent shapes. Computer simulations can show the relationship between the
interaction angles and lengths of the local rules and the consequent virus shape. For the T =7 shell,
computer investigations of the interaction angles and lengths indicate that if these are changed by
less than 8%, the �nal shapes will be nearly identical. In this paper, we further elaborate on the
numerical parts of the local rules through computer experimentation.

Local rule theories are not limited to viruses that conform to the theory of quasi-equivalence.
Recently, investigators have discovered viruses with unusual icosahedral symmetries [19, 24, 20],
such as the polyomavirus, which causes tumors in mice. These have �ve-sided building blocks sur-
rounded by six neighboring building blocks. Little is understood about the assembly of these \non-
quasi-equivalent" viruses. The distinction between quasi-equivalence and non-quasi-equivalence is
not so important if viewed in terms of local rules for assembly. Because local rules break the
quasi-symmetry during the assembly process in any case, the fact that this symmetry is broken
in non-quasi-equivalent viruses does not a�ect the local rule hypothesis. In particular, a set of
local rules is presented that completely and uniquely determines the �nal conformation of the
polyomavirus.

For a number of viruses, incorrect or malformed assemblages of coat protein subunits have been
described, including tubular and spiral variants. The coat subunits in these structures are normal,
but there have been errors in their interactions with each other [10, 18]. We have a computer
simulation (see also [3]) which shows that if the local rules are distorted in certain ways, or if
certain mistakes are made in the assembly process, spiral structures can form.

Previous attempts at interfering with the infection process have mainly focused on interrupting
infection by a fully-formed shell at the binding site. The local rules tell us that if we can interfere
with a single binding interaction, the shells may not close. Recent experiments indicate that the
subunit assembly process may be a sensitive locus for inhibitors of virus assembly [29].

2 Icosahedral Structure

One striking aspect of virus shells is their strong symmetry properties. All the viruses discussed in
this paper have what is called icosahedral structure. They are based on the icosahedron (�gure 1a),
a mathematical solid, and they have the same symmetry properties as the icosahedron.

Caspar and Klug [8] pointed out the link between icosahedra and icosahedral virus shells in
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Figure 1: a) An icosahedron has 5-fold rotational symmetry at its 12 vertices, 3-fold rotational
symmetry at its 20 triangular faces, and 2-fold rotational symmetry at its 30 edges. There are
60 symmetric regions in an icosahedron, each one lying in a third of a triangular face. b) Each
triangular face has three proteins, one in each symmetric region. This icosahedral virus shell is
made of 20 triangular faces and 60 identical proteins. c) The same icosahedral structure as in (b)
but with pentameric clustering. Heavy lines group the proteins into pentamers around the 5-fold
axes of symmetry. One triangular group is shaded for contrast.

their theory of quasi-equivalence. They classify icosahedral shells according to their T number.

Their de�nition of T number is equivalent to the following: The T number of an icosahedral shell
is the number of subunits per corner of each triangular face.

The theory of quasi-equivalence classi�es icosahedral shells whose protein subunits all have very
similar (quasi-equivalent) neighborhoods. Caspar and Klug assume that every protein subunit is a
member of a hexamer or a pentamer, that the hexamers are arranged in a hexagonal lattice, and
that there are exactly 12 pentamers, which lie on the �ve-fold axes of symmetry of the icosahedral
shell. These assumptions are derived from the hypothesis that all subunits lie in nearly identical
neighborhoods. Given these assumptions, it follows that there are only a limited number of pos-
sibilities for shell structures. A mathematical consequence is the restriction of the possible set of
T numbers: the only ones allowed are 1; 3; 4; 7; 9; 12; 13; 16; 19; 21; 25; : : :. Although the following
theorem has been cited [8, 5, 4], a proof has never appeared in the literature to the best of our
knowledge.

Theorem 2.1 Given the above hypothesis, the possible T numbers are of the form a2 + ab + b2,
where a and b are non-negative integers.

Proof: We start by embedding the icosahedron on a hexagonal lattice where each pair of pentagonal
vertices v and w are (a; b) apart; that is, we can get from v to w in the lattice by going in a straight
line distance a, making a 120� turn, and going in a straight line distance b. Thus, a and b form two
sides of a triangle lying on the lattice and (v; w) can be thought of as the third side, not necessarily
on the lattice. By the law of cosines, we have

dist(v; w) =
q
a2 + b2 � 2ab cos(120�) =

p
a2 + b2 + ab:

Consequently, the icosahedron is composed of 20 equilateral triangles, each with sides of length
dist(v; w). Since the area of an equilateral triangle is

p
3=4 times the length of a side squared, the

surface area of the icosahedron is 20 � (a2 + ab+ b2) � (
p
3=4).

Next we count the number of proteins that can pack on the icosahedron by counting the number
of unit triangles that pack on it. Since the unit triangles cover the entire icosahedron, the number
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Figure 2: a) A portion of a T =7 virus shell with the seven subunits in a corner unit shaded, the
pentamers and hexamers drawn in light lines, and the triangular face in a heavy curved line. The
protein subunits are depicted as circles. b) The same overall structure as (a), but redrawn in a
graph representation to emphasize binding interactions, rather than the pentameric and hexameric
building blocks. Every protein is a vertex and every binding interaction is an edge.

of unit triangles is the surface area divided by the area of a unit triangle, which is

20(a2 + ab+ b2)(
p
3=4)p

3=4
= 20(a2 + ab+ b2):

Since each unit triangle can have three proteins, one at each corner, there are 60(a2 + ab + b2)
proteins overall. Consequently, there are T = a2 + ab + b2 proteins per corner of each triangular
face. 2

This paper represents these shells in a way that better illustrates local rules. For example, the
T =1 shell of satellite tobacco necrosis virus [5] is typically viewed as an icosahedron, except that
instead of having one protein at each vertex, it has a protein at each corner of each triangular
face (�gure 1b). The same structure can be redrawn by grouping the proteins at each vertex into
pentamers, as in Figure 1c. See Figure 2 for an example of a T = 7 icosahedral shell. A graph
representation of an icosahedral structure can be obtained by replacing the proteins with vertices
and drawing an edge between two vertices when there is a binding interaction1 between the two
proteins (Figure 2b). All these structures still have icosahedral symmetry.

The focus on quasi-equivalence has led to the restriction on T numbers, which may be somewhat
arti�cial. These constraints have grounding in mathematical symmetry, but they are not required
by nature, because not all viruses satisfy Caspar and Klug's hypotheses. There is no physical reason
for ruling out T =2, for example. Indeed, T =6, which will be discussed later, occurs in nature but
does not �t the quasi-equivalent format. However, most viruses do �t into this format.

3 Local Rules

An alternative hypothesis is described for how icosahedral structures form, based solely on simple
local rules for determining how proteins interact. For simplicity, we will assume virus shells contain

1For the purposes of abstraction, we refer to the interactions between two proteins, comprised of electrostatic, van

der Waals, or other non-covalent chemical interactions, as a single binding interaction.
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a single type of coat protein; the theory of assembly presented here works in all cases.

For each possible T number or shell size of an icosahedral virus, a set (or several alternative
possible sets) of local rules exist that build the corresponding shell. These local rules are all of
the following form: We assume that identical protein subunits take on a small number of distinct
conformations. The local rules then specify, for each conformation, which other conformations it
can bind to and the approximate interaction angles, interaction lengths, and torsional angles that
will then occur between them. We are able to show that solely by following this local information,
a closed, icosahedral shell will form with the desired T number. Some, but not all, sets of local
rules require the building process to start with a given initiation complex to guarantee formation
of the desired structure. We �rst give an example set of local rules where the assumed number of
conformations is the same as the T number. We then give example sets of local rules where the
assumed number of conformations is less than the T number, but the rules are somewhat more
complex.

In a local rule theory, a protein \knows" where it is in the shell by looking at the conformations
of its neighbors. Thus, any set of local rules for structures with T >1 requires a number of di�erent
conformations; otherwise, a protein binding to the structure will not \know" in which of the various
non-equivalent positions it will be and thus whether it should be part of a pentamer or a hexamer.
These di�erent conformations need not be maintained in the mature form of the virus. For P22, the
di�erences between the protein conformations in non-equivalent positions are noticeably less in the
mature form than in the precursor form [21]. Perhaps functionally di�erent protein conformations
are required for assembly, while in the mature form all the proteins assume the same functionality
and need only be di�erent enough to hold the shell together stably. This may also be the reason
for the substantial changes that other bacteriophages undergo between their precursor and mature
forms [15].

Local rule theories can be constructed for all T numbers. There is always a set of local rules
with the number of conformations equal to the T number. However, in the case of higher T number
structures, this many conformations would be infeasibly large. The number of conformations can
sometimes be reduced by using rules that assign the same conformation to non-equivalent positions.

3.1 Local Rules for Quasi-Equivalent Viruses

3.1.1 Example: T = 7 Rules

The local rule theory can be illustrated through the example of the bacteriophage P22 virus shell,
which is a T =7 virus; that is, there are seven proteins in positions that are not equivalent under
icosahedral symmetry, giving 420 proteins overall.

Seven conformations of the coat protein, or shapes, have been observed in the P22 precursor
capsid [21]; however, it is not clear these are all truly distinct. First, let us suppose there are
seven conformations. One of these seven conformations will be considered �rst. Figure 3 gives
the rules for how the �rst conformation chemically binds in 3D. The type 1 conformation is in the
center. Given the binding interaction to the type 2 neighbor, then, at a position clockwise from
this at about an angle of 130�, only a type 1 conformation can attach. Similarly, only a type 1
conformation can attach at an angle of about 108� from this latter binding interaction. We call
this representation the type 1 local rule.

Similar local rules can be constructed for all the seven conformations in bacteriophage P22
(�gure 4). For these rules, all subunits with the same conformation will have the same binding
interactions. The binding interactions in the local rules are present in micrographs of the shell;
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Figure 3: A representation of a local rule for the type 1 conformation of P22. Each protein subunit
is represented as a circle or a part of a circle labeled with its conformation. Angles between binding
interactions are the approximate number of degrees between the centers of the protein subunits,
obtained from computer simulations. Binding interactions are represented as unit length, possibly
with an associated direction. One way to think about a binding interaction is that the protein is
sticking its arm out into another protein, like a key into a lock. For many viruses, this interpretation
is consistent with experimental observations.
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Figure 4: Possible local rules for a left-handed T =7 virus. Angles are not based on any particular
virus, but are derived from a computer simulation.

however, additional interactions may also be present [21]. These could be having a secondary e�ect
which can be accounted for by the 8% tolerance margins of the local rule theory, described below.
For these rules, the angles were at �rst derived from a physical model of a spherical T =7 structure
and subsequently re�ned by using the results of an initial computer simulation. The rule angles
and lengths could likewise be derived by �rst guessing likely values, simulating on the computer to
see where, if at all, the structure breaks down, and modifying the guess accordingly. This process
is repeated until a guess is found for which the structure closes.

As soon as a subunit has at least one binding interaction, these rules can be applied unambigu-
ously to determine the subunit's remaining neighbors. The di�erent orders in which local rules can
be applied give all the possible ways in which the assembly process might proceed. It is also con-
ceivable that the rules can be applied simultaneously. While it would be consistent with the local
rules that pentamers and hexamers initially form and later bind together, as previously believed,
this is not required by the theory.

Chemically speaking, the local rules do not dictate which event comes �rst: a protein adopting

7



a conformation and then forming binding interactions as speci�ed, a protein acquiring a binding
interaction and then being forced into the corresponding conformation, or some cooperative com-
bination. It is also possible that a protein does not adopt the conformation speci�ed by the rules
until after several of its neighbors have arrived.

The question remains, what structures can be built if these local rules must be respected?
Applying the local rules to an arbitrary starting protein can result in a structure resembling the
T =7 shell, or some subset of the shell, but nothing else (�gure 5).
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Figure 5: The same overall structure as in �gure 2b, but redrawn to emphasize local rules.

Theorem 3.1 The only structures consistent with those produced by the T = 7 rules in Figure 4,

allowing su�ciently small tolerances, are subsets of the �nal T = 7 structure.

Proof Sketch: Consider the �nished shell, which by assumption has icosahedral symmetry. Sup-
pose the angles and lengths of the rules are exactly those of the �nal shell. Since the rules give
unique positions and conformations for the neighbors of any subunit, any subunit binding to a site
in a partially completed shell must occupy the proper position and take the proper conformation
of the corresponding subunit in the �nished shell. Thus, the only possible structures that can be
built respecting the local rules are subsets of the shell.

Next, we show that there is a length � and an angle � such that if all the interaction angles are
perturbed by � and the interaction lengths by �, the only structures allowed are still subsets of the
shell. Consider a partially completed shell. Any two subunits are connected by a path of at most
length 420, since there are only 420 subunits in the completed shell. Thus, if we perturb every
angle by �, the direction of a bond between a given pair of proteins can only be perturbed from its
position in the �nal shell by 420�. The the vector between two adjacent proteins is thus perturbed
by at most 420�l + �, where l is the interaction length between these two proteins. Summing over
all edges between a pair of proteins in a partially completed shell, we �nd that the distance between
these proteins changes by at most 4202�l+420�, so if � and � are chosen su�ciently small, the only
possible resulting structure is the desired shell. 2

In actuality, if a protein binding to a growing shell chooses a random growth site, the probability
of getting a long path at any point during the assembly process is fairly small, since subunits would
likely attach at sites making a \shortcut" on this path. Thus, actual tolerances in the rules which
produce T = 7 shells with high probability are much larger than the ones in the above theorem.
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We have done computer experiments investigating these tolerances, which will be discussed later
in this paper.

An alternate set of local rules for T = 7, using only four conformations, is given in �gure 6.
There is a trade-o� for using fewer conformations in that this set of rules is not as robust as the
set given in Figure 4, and the last rule (the forbidden hexagon) may require a more complicated
control mechanism.
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is not allowed.

Figure 6: A second set of local rules for assembly of a left-handed T = 7 virus. Solid lines are
binding interactions within capsomeres; dotted lines are binding interactions between capsomeres.
We assume that the shell is initiated at a pentamer and that a protein does not assume its �nal
con�guration until there is at least one other protein in the same capsomere. The disallowed
con�guration might be impossible because the sum of the angles around the hexagon is too large
or too small to allow it to close. Alternatively, since the three type 4 conformations in the hexagon
are spatially adjacent, they may form a trimer that has higher energy than the 4-4-2 trimer. These
rules produce the structure in Figure 6 but with conformations 5, 6, and 7 replaced by 2, 3, and 4,
respectively.

In the alternate set of T =7 rules, the hexamers are symmetric under rotations of 180�. This
is intriguing because the micrographs of P22 show near-symmetry of the hexamers under 180�

rotations [21]. It is possible that this alternate set of rules is responsible for determining the
assembly of P22, and that the reason seven di�erent conformations of the protein are observed is
that functionally equivalent conformations in non-equivalent positions are responding to di�erent
stresses.

This alternate set of local rules for T =7 is nearly the same as a set of local rules for T =4: the
�rst, second, �fth, and sixth rules in Figure 6 are the same as the rules in Figure 13. By changing
the forbidden-hexagon rule (which is what prevents this set of rules from forming T =4 shells) we
can obtain a set of rules for a T =4 shell. In fact, the coat proteins of three T =7 bacteriophages
can also form T =4 shells. One of the mistakes observed in the assembly of P22 in the absence of
sca�olding proteins is the formation of a T =4 shell instead of a T =7 structure [10]. This would
seem to indicate that the sca�olding protein is involved in enforcing the forbidden-hexagon rule in
P22. In bacteriophage �, mutations of the coat protein exist that form functional T =4 shells [17].
Finally, the T = 7 bacteriophage P2 has a satellite virus P4 that forms T = 4 shells using the P2
coat protein by substituting a di�erent sca�olding protein [9, 1].
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3.1.2 Example: T = 3 Rules

Many viruses have T = 3 shells. Because of the small size of these viruses, the determination of
their atomic structure is in many cases feasible, and the atomic structure for several of these viruses
is known. Thus, T = 3 shells make an excellent testing ground for exploration of local rule theories.
We have been able to �nd three combinatorially di�erent sets of local rule theories, and for each of
these sets there are viruses whose structures suggest that that set directs the assembly of the virus.
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Figure 8: Possible local rules for a T =3 virus. Angles are not based on any particular virus, but
are derived from a computer simulation.

The simplest set of local rules for a T = 3 shell, with three comformations of the coat protein, is
given in �gure 8. The picornaviruses, which include rhinovirus and poliovirus have three di�erent
proteins which make up the shell [4]. These proteins appear to be designed so that they can �t
together in only one way to form a virus shell, thus corresponding to the set of rules in 8.

2 2

1

2

1

2

1,2 1,2

1

1

Figure 9: A second set of local rules for assembly of a T =3 virus.

Another well-studied class of icosahedral viruses are the T =3 plant viruses [14, 16, 27]. Several
theories for their assembly have been advanced [26, 28]. Although these T = 3 virus shells have three
non-equivalent positions, the proteins in two of these positions assume quite similar conformations
[28, 27]. These are labeled 1 in the graph representation in Figure 10, while proteins in the third
position are labeled 2. A set of rules can be extracted from this representation that permits both
T =3 and T =1 shells (Figure 9). The coat proteins of many of these viruses can in fact form T =1
shells [26]. However, as similarly noted by [28], if assembly is initiated by a structure containing
a type 2 conformation, these will propagate during assembly to uniquely determine the T = 3
structure.

The �nal set of local rules for T = 3 is given in Figure 11. This set of rules has two confor-
mations, 1 and 2, and determines the T = 3 structure given in Figure 12. The structure of the
bacteriophage MS2 was recently determined [30]. This bacteriophage has a coat protein which is
di�erent structurally from any previously known viral coat protein. It also appears to use this
combinatorial set of rules for assembly, again unlike any previously known virus. Although this
bacteriophage has three non-equivalent positions, the proteins in two of these positions (2 and 2'
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Figure 10: A graph representation for T =3 plant viruses. Not all binding interactions are shown,
but the binding interactions shown are su�cient to abstract a set of local rules (see Figure 9) that
direct assembly of virus shells. The shell proteins are believed to form dimers in solution, which
are represented by solid lines in the �gure.
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Figure 11: A third set of local rules for assembly of a T = 3 virus. The three-way interactions
represented by triangles with edges are required to have one conformation 1 and two conformation
2's.
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in Figure 12) are in quite similar conformations. The third protein (1 in Figure 12 has a loop that
is con�gured quite di�erently near where the �ve proteins in conformation 1 meet. Also, as in the
rules for Figure 11, the three-way interaction shown by curved triangles in Figure 12 is not sym-
metrical; the spatial relationship between conformations 20 and 1 is di�erent from the relationships
between conformations 2 and 20 and conformations 1 and 2.

1

1
1

1
1

2

2

2

22

2 2

2

2 2

1

1
1

1

2

2

2

2

2 2
2

1

22

2

2 2

2 1

1

1

2

1

2

2

1

2

2’

2’

2’

2’

2’
2’

2’

2’
2’

2’

2’

2’

2’

2’

Figure 12: The graph representation of the T = 3 bacteriophage MS2. This structure is produced
by the set of rules in Figure 11.

These sets of rules correspond to three of the �ve set partitions of the three non-equivalent
positions on a T = 3 shell. The set partition taking all proteins to the same conformation cannot
give rise to a local rule theory, because a protein will not have enough information to determine
whether it should be in a pentamer or a hexamer. The remaining set partition, which takes two
of the three positions to conformation 1's and the other two conformation 2's, but in a di�erent
manner than in Figures 11 and 9 also does not appear to have any set of local rules. In particular,
there does not appear to be any way of drawing local interactions between neighboring proteins
which permits an assembly path which uniquely determines the desired shell.

3.1.3 Example: T = 4 Rules

Simple rules for a T = 4 shell are given in �gure 13. There are other sets of possible rules for
T = 4 shells with both two and three distinct conformations. One of these is given in Figure 14.
We do not know of any cases where enough information is known about a T = 4 virus to form a
hypothesis that a particular set of rules directs the assembly of any particular virus.

2 3 4

4 3 2 4 23

1 4

132 114 114

113 120 123113 122 120

3

1

1 1

2

108

124124

Figure 13: Possible local rules for a T =4 virus. Angles are not based on any particular virus, but
are derived from a computer simulation.
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Figure 14: A second set of local rules for assembly of a T =4 virus.

3.2 Local Rules for a Non-Quasi-Equivalent Virus.

In what follows, we apply the local rule theory to a polyomavirus, simian virus 40 (SV40), to
produce a new hypothesis for its assembly. SV40 is one of a class of polymaviruses which all have
similar structures and cause cancer in various species [19]. SV40 is a 360-subunit spherical virus
with a shell consisting entirely of pentamers, some of which contact �ve other pentamers and some
of which contact six other pentamers (�gure 15). This structure still has 5-fold, 3-fold, and 2-fold
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Figure 15: A simpli�ed diagram of how the coat proteins in the SV40 shell connect with each other.

symmetry and is therefore icosahedral.

SV40 has been considered an anomaly, because the theory of quasi-equivalence assumes that all
icosahedral shells have exactly 12 equally-spaced pentavalent (i.e. have �ve neighboring capsomeres)
pentamers and that all other subunits are packed into hexavalent hexamers. Clearly this assumption
does not hold for SV40. Research [19, 24, 20] on the structure of SV40 has focused on how pentamers
could be hexavalent and on how the same protein could occupy very asymmetric environments.

Another way to describe this anomaly is in terms of T numbers; SV40 would correspond to a
T =6 in that there are six proteins per corner of each triangular face. However, as the theory of
quasi-equivalence does not allow 6 as a possible T number, it was classi�ed as an anomalous T =7.
The capsomeres are indeed arranged in much the same pattern as for a T =7 virus.

Local rules for SV40 can be constructed that are not substantially di�erent than for other
icosahedral viruses. It could simply have six local rules (�gure 16), one for each of its conformations,
as described in Berger et al. [3]. For SV40, six protein conformations have been con�rmed, but the
binding interactions are more complicated than as indicated by the local rule theory [19].
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Figure 17: An example of how the local rules can be \broken": the connected components with
solid directed edges between them are assumed to form before the dashed edges arise.

These simple rules for six conformations guarantee the �nal form: applying the rules in �gure 16
in random order on the computer resulted in the same pattern of interconnectivity as in �gure 15
with high probability. It is true that the rules are somewhat di�erent than those in �gure 4, since
a protein can have four binding interactions instead of three.

4 Closure and Malformation

Although the above discussion might suggest that closure is easily assured, simulations show that
a spiraling malformation can occur if the local rules are \broken" just once. Such incorrectly
polymerized spiral structures have been observed with P22 and other viruses [18, 10, 15].

Suppose the two distinct connected components in �gure 17, drawn as solid lines, were formed
independently. When they encounter each other (i.e. the dashed lines are added), the local energy
may be minimized by their forming a hexamer, when they really should form a pentamer. This
distortion of the rules allows six type 1 subunits instead of �ve to �t together to form a capsomere
at what \should" be a 5-fold axis of symmetry. If the local rules are correctly followed thereafter,

14



Figure 18: A cross-sectional diagram of spiraling. On the left, a spherical shape is constructed
from segments with regularly-spaced curvature. On the right, a region without curvature is created
at the bottom of the sphere, but subsequent growth retains its regularly-spaced curvature. The
resulting structure does not achieve closure.

this hexamer would next be surrounded with six capsomeres instead of �ve. Since hexagons tile a
plane, a region of an icosahedral surface having a hexamer in place of a pentamer will be relatively
planar, but the regions growing around it will have the normal radius of curvature. When the
sides have curved 180�, they will not be near enough to close because they will be separated by
the length of the planar region (�gure 18). One side may curl inward, and the second may form
another shell layer around it. Computer experiments show that if local rules are broken in this way,
spiraling can indeed occur. This exact malformation may not occur in nature, but other mistakes
in formation could result in large planar sections of a shell which would likewise spiral.

Another common malformation of virus shells is the formation of open tubes. These can be
viewed as planar sheets of hexamers which have been curved until two of their edges meet. This
kind of malformation has been observed in many viruses, including SV40 [2] and bacteriophages
� and T4 [15]. The formation of these tubes may require some binding interactions between two
conformations which are not allowed in the local rules. Possibly these binding interactions have
higher energy than those in closed shells, but once a tube has begun to form, the lowest energy
additions to this structure are a continuation of the tube. The structure of these tubes might
further illuminate the rules for assembly.

5 Implementation

Local rules are essentially templates for energetically favorable arrangements. An individual protein
can adhere to a slightly asymmetric location, and then the surrounding structure would readjust
to �nd a low energy arrangement. Implementing these 
exible templates was the main di�culty
in doing a computer simulation of the assembly process. We used computer simulations to explore
which rules result in closed shells; for example, starting with the local rules in Figure 4, a closed
T =7 shell can be built.

The computer simulations worked as follows: An energy model was set up assuming a quadratic
penalty for deviations from the interaction angles, torsional angles, and interaction lengths given
in the rules. The proteins were added to existing binding sites; if there were no candidates able to
attach in the existing structure within one protein diameter of the binding site, a new protein was
added. The local rules were used to determine the conformation and location of each new protein.
After a protein was added, the resulting structure was optimized to minimize energy by iterating
optimization steps. In each step, all the proteins were moved in accordance with the forces and
torques computed from the energy model. The binding sites were examined both in random and
breadth-�rst orders, in each case resulting in the formation of a closed shell.
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Computer simulations show that the local rules are relatively robust. Even initial rules o�set
from the rules in �gure 4 by a randomly selected amount of up to 9:6� (about 8%) for each rule angle
and 8% for each interaction length lead to the formation of a closed shell in 3D space (�gure 7b),
which looks nearly identical to the one formed by the original rules (�gure 7a). If the angles were
changed by up to 10%, the shell failed to close in approximately half the trials; but when it closed,
it still looked very similar to the original shell. (Clearly, these numbers depend on the underlying
assumptions of the algorithm.) Through more substantial (non-random) changes in the local rules,
a virus' shell can vary between spherical and polyhedral shapes.

As discussed above, we have also performed computer simulations on all sets of simple local
rules up to T = 16, the T = 6 shell, and spiraling malformations. We even have produced in our
simulations T = 2, T = 5, and T = 8 shells, which are not \allowable" T numbers. Furthermore, we
have shown through computer simulation that by allowing a protein to make only one of its bonds,
given by the simple local rules, with a growing shell structure, the shell will not form correctly.
This suggests that biological experiments which add a mutant protein to a growing shell may be
fruitful.
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Figure 7: a) Silicon Graphics Indigo 2 computer graphics image of the shell resulting from the
rules in Figure 4. b) The same �gure as in (a), except formed from randomly selected rules, o�set
up to 8% from the rules that formed (a).
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