Communication-Minimal Partitioning of Parallel L oopsand Data Arraysfor
Cache-Coherent Distributed-Memory M ultiprocessor s

Rajeev Barua, David Kranz and Anant Agarwal

Laboratory for Computer Science
Massachusetts | nstitute of Technology
Cambridge, MA 02139 *

December 19, 1994

Abstract

Harnessing the full performance potential of cache-coherent distributed shared memory multiprocessors without inor-
dinate user effort requires a compilation technology that can automatically manage multiple levels of memory hierarchy.
This paper describes aworking compiler for such machinesthat automatically partitions loops and data arraysto optimize
locality of access.

The compiler implements a solution to the open problem of finding communication-minimal partitions of loops and
data. Loop and data partitions specify the distribution of loop iterations and array data across processors. A good loop
partition maximizesthe cache hit rate while agood data partition minimizes remote cache misses. The problems of finding
loop and data partitions interact when multiple loops accessarrays with differing reference patterns. Our algorithm handles
programswith multiple nested parallel loops accessingmany arrayswith array accessindicesbeing general affine functions
of loop variables. It discovers communication-minimal partitions when communication-free partitions do not exist. The
compiler also uses sub-blocking to handle finite cache sizes.

A cost model that estimates the cost of aloop and data partition given machine parameters such as cache, local and
remote accesstimings, is presented. Minimizing the cost as estimated by our model is an NP-complete problem, asis the
fully general problem of partitioning. A heuristic method which provides solutionsin polynomial time is presented.

The loop and data partitioning algorithm has been implemented in the compiler for the MIT Alewife machine. The
paper presents results obtained from a working compiler on a 16-processor machine for three real applications: Tomcatv,
Erlebacher, and Conduct. Our results demonstratethat combined optimization of loops and datacan result inimprovements
in runtime by nearly afactor of two over optimization of loops alone.

1 Introduction

Cache-coherent distributed shared memory multiprocessors have multiple levels in their memory hierarchy which must
be managed to obtain good performance. These levels include local cache, locad memory, and remote memory that is
accessed by traversing an interconnection network. Although local memory has a longer access time than the cache, and
the remote memory has a longer access time than local memory, the programming abstraction of shared memory hides
these distinctions. Consequently, shared-memory programs written without regard to the increasing cost of access to the
various levels often suffer poor performance. Fortunately, acompiler can relieve the user from the burden of managing the
memory hierarchy for many classes of programs through loop partitioning and data partitioning so that the probability of
access from the closest level in the memory hierarchy is maximized.

The goa of loop partitioning for applications with nested loops that access data arrays is to divide the iteration space
among the processors to get maximum reuse of datain the cache, subject to the constraint of having a good load balance.
For architectures where remote memory references are more expensive than local memory references (NUMA machines),
the goa of data partitioningisto distribute data to nodes such that most cache misses are satisfied out of thelocal memory.

This paper presents an agorithmto find loop and data partitionsautomatically for programswith multipleloop nestsand
data arrays. The agorithm does not resort to square blocking when communication-free partitions do not exist. Rather, it

*Authors’ email: {bar ua, kr anz, agarwal }@cs. m t. edu. Authors' phone: (617)253-8438.

discovers a partitioning of loopsand data that minimizes communication cost over the multiplelevels of memory hierarchy
for the entire program.

Simultaneous partitioning of loops and data is difficult when multiple loops access the same data array with different
access patterns. If aloopispartitionedin order to get good datareuse in the cache, that partition determineswhich processor
will access each datum. In order to get good data locality, the data should be distributed to processors based on that loop
partition. Likewise, given a partitioning of data, aloop should be partitioned based on the placement of data used in the
loop. Thisintroduces a conflict when there are multipleloops because aloop partition may have two competing constraints:
good cache reuse may rely on one loop partition being chosen, while good datalocaity may rely on another.

Making cost tradeoffsin discovering communication-minimal partitionsin the presence of multiple memory hierarchy
level srequiresacommunication cost model. For agivenloop and datapartiti oning, the communi cation cost model presented
estimates the cost of executing theloop partition given the data partitions of arraysaccessed in theloop and the architectural
parameters of the machine, such as the cost of local and remote cache misses. Although finding communication-free
partitions does not require acommunication cost model, real programs often do not admit communication-free partitions.

The cost model is used to drive an iterative search procedure for finding a communication-minimal partitioning for
the entire program. Although other search techniques can be used as well, the following solution is implemented in our
compiler and described in this paper. We have found that this search procedure does not add much to the compilation time
and it yields good results. The iterative solution has two steps. (1) an initial seed partitioning, and (2) an iterative search
through the space of loop and data partitions commencing from theinitia partitioning.

The iterative solution is seeded with an initial partitioning of each individual loop nest that disregards data locality.
Thisinitid loop partitioningisfound using the method described in [2]. Theiterative solutionisalso seeded with an initial
data partition. Thisinitial partitioning of each array is chosen to match the partitioning of the largest loop that accesses that
array. Thus, by first partitioning each loop for cache locality, theinitial seeding favors cache locality over datalocality.

After theinitid seeding, the iterative solution proceeds to use the cost model to repartition the loops according to the
data partitions to increase the locality of access to local memory at the expense of cache locality if it results in better
performance. It then repartitions the data arrays according to the resulting loop partitions to increase the cache locality.
In this manner the loops and data are alternately re-partitioned, thus iteratively improving the solution. The cost model
controls the heuristic search.

The agorithm has been implemented in a compiler for cache-coherent multiprocessors with physicaly distributed
memory. The agorithm, however, is generd and does not require that the target architecture have coherent caches.
Parallelism in the source program is assumed to be specified using paralel do loops, either by a programmer or by a
previous paralledization phase. The agorithm reported in this paper has been implemented as part of the compiler for
the Alewife machine. Results from a working 16-processor machine for several red applications indicate that combined
iterative optimization of loops and data can result in a decrease in runtime by nearly a factor of two over optimization of
loops aone, and that a partitioning of loopsfor cache locality followed by partitioning data arrays according to the largest
loop that accesses them, can result inimprovementsin runtime by a factor of about 1.4 over optimization of loopsa one.

The rest of the paper describes the algorithms and the implementation, and presents several performance results.
Section 2 describes related work. Section 3 overviews the notation and framework for partitioning loops and data. In
particular, it shows how to derive loop partitions that minimize cache misses, and data partitions that match a given loop
partition, which has the effect of minimizing remote memory accesses for a given loop partition. Note that while the
above process minimizes the number of cache misses, it does not minimize overall runtime because the number of remote
memory accesses is not necessarily minimized. Section 4 describes acost model that estimates the communication cost for
a given loop partition and a given data partition. This cost model is used to drive a search for a communication-minimal
partitioning of loops and data arrays. Section 5 describesthe iterative search method, and Section 6 presents performance
results on Alewife.

2 Related Work

The problem of loop and data partitioning for distributed memory multiprocessors with global address spaces has been
studied by many researchers. One approach to the problem isto have programmers specify data partitionsexplicitly in the
program, asin Fortran-D [7, 12]. Loop partitionsare usually determined by the owner computes rule. Though simple to
implement, this requires the user to thoroughly understand the access patterns of the program, atask which is not trivia
even for small programs. For real medium-sized or large programs, the task isa very difficult one. Presence of fully general
affine function accesses further complicates the process. Worse, the program would not be portable across machines with
different architectura parameters.

Ramanujam and Sadayappan [10] consider data partitioning in multicomputers and use a matrix formulation; their
results do not apply to multiprocessors with caches. Their theory produces communication-free hyperplane partitionsfor
loops with affine index expressions when such partitionsexist. However, when communication-free partitionsdo not exist,
they deal only with index expressions of the form variable plus a constant.

Ju and Dietz [8] consider the problem of reducing cache-coherence traffic in bus-based multiprocessors. Their work
involves finding a data layout (row or column mgjor) for arrays in a uniform memory access (UMA) environment. We
consider finding data partitionsfor a distributed shared memory NUMA machine.

Abraham and Hudak [1] look at the problem of automatic loop partitioning for cache locality only for the case when
array accesses have simpleindex expressions. Their method uses only alocal per-loop analysis.

A more general framework for loop partitioning was presented by Agarwal et. al. [2] for optimizingfor cache locality.
That framework handled fully genera affine access functions, i.e. accesses of the form A[2i+j,j] and A[100-i,j] were
handled. However, that work found local minimafor each loop independently, giving possibly conflicting data partitioning
requests across loopsin NUMA machines.

Another view of loop partitioning involving program transformations is presented by Carr et. d. [5]. This paper was
focused on uniprocessors but their method could be integrated with data partitioning for multiprocessors as well.

The work of Anderson and Lam [4] does a global anaysis across loops, but has the following differences with our
method: (1) It does not take into account the combined effect on performance of globaly coherent caches and local
memories. (2) It attempts to find a communication free partition by satisfying a system of constraints, failing which it
resorts to rectangular blocking and does not attempt to eval uate competing partitioning alternatives. Because our method
usesacost model, it can eval uate different competing alternatives, each having some amount of communication, and choose
between them. (3) We guarantee aload balanced solution.

Guptaand Banerjee [6] have developed an algorithm for partitioning doing a global analysis across loops. They alow
simple index expression accesses of the form ¢y * i + ¢, but not general affine functions. They do not allow for the
possibility of hyperparallel epiped datatiles, and do not account for caches.

Knaobe, Lucas and Steele [9] give a method of allocating arrays on SIMD machines. They aign arrays to minimize
communication for vector instructions, which access array regions specified by subranges on each dimension.

Wolf and Lam [13] dea with the problem of taking sequentia nested loops and applying transformations to attempt
to convert them to a nest of parallel loops with at most one outer sequential loop. This technique can be used before
partitioning when the programming model is sequentia to convert to parallel loops, and hence complements our work.

3 Overview of the Partitioning Framework

This section overviews the notation and framework used for partitioning. It describes how the number of cache misses can
be estimated for a given loop partition. It aso gives abrief summary of the method for loop partitioning to increase cache
reuse previously published [2]. This method will be used to find aninitial loop partitionand an initial data partition to seed
the search driven by acost model for communication-minimal loop and data partitioning.

The framework handles programs with loop nests where the array index expressions are affine functions of the loop
variables. In other words, the index function ¢ can be expressed as,

i) = iG+a (1)

where G isal x d matrix with integer entries, i isthe vector of loop variables and a is an integer constant vector of length
d, termed the offset vector. Thus accesses of the form A[2i+,100-i] and A[j] are handled, but not A[:?], wherei j are nested
loop induction variables. Consider the following example of aloop:

Doall (i=0:99, j=0:99)
Ali,j] = Bli+),j]+B[i+]+1,]+2]
EndDoall

A loop partition L is defined by a hyperparallel epiped at the origin as pictured in Figure 1. Each hyperparallel epiped
represents the region executed by a different processor, and the whole loop space is tiled in this manner. The number of
iterations contained in matrix L is| detL|.

The footprint of an iteration tile L with respect to an array reference is the set of pointsin the data space accessed by
thetile through that reference. Thisfootprintisgiven by LG, trandated by a. A set of references to one array in one loop
with the same G but different offsets a are called uniformly intersecting references. The footprints associated with such

L ,L
21 22

Figure 1: Iteration space partitioning is completely specified by theftile at the origin.

@ ¢ ¢ @ ©o
G

T A

Figure 2: Datafootprint wrt B[z + j,j] and B[z + 5 + 1,5 + 2]

sets of references are the same shape, but aretransated in the data space. They are said to bein the same Ul-set (Uniformly
Intersecting set).

Thisisillustrated by the above code fragment. The code has only one Ul-set for array B, asthe two accesses to B differ
only by aconstant vector. The G matrix for the Ul-set is given by

Y]

For some loop tile L at the origin, the footprint in the data space is the union of LG trandated by each offset in the
Ul-set. Since thisloop has two references to B in the same Ul-set with offsets a of (0,0) and (1,2), the footprint looks like
that shown in Figure 2.

The total number of cache misses for a given loop nest is the number of its first time data accesses. This number is
simply the size of the combined footprint with respect to al the accesses in theloop. [2] shows how the combined footprint
in a Ul-set can be computed. It also shows how the loop partitioning L can be chosen to minimize the number of cache
misses. Cache misses are minimized when the combined footprint with respect to all the accesses in theloop has minimum
area, asthe area isthe number of first time data accesses.

For cache-coherent machines with uniform-access memory (UMA), because all cache misses suffer the same cost,
loop partitioning aone is sufficient. Loop partitioning performed with complete disregard to data partitioning is termed
“random” in our performance resultsin Section 6. Random refers to random data placement.

The cost model also refers to the data partition D, relevant for NUMA machines. A matrix D represents atile at the
origin of the data space in the same way as L represents atile a the origin of the iteration space. An array reference in
a loop will have good data locality when partitions are chosen such that LG = D, and the trandlation offsets of the two
differ by at most small constants.

In the above code, both references to B will have simultaneously good probability of being satisfied in local memory
when D is picked to be L G. The only communication for B then, (that is, memory accesses to remote memory), is at the

periphery of LG, dueto small offsets. This periphery iswhat was minimized in [2]. Indeed, D is chosen as shown above
to seed the search process.

Data partitioning performed according to the loop partitioning istermed “local” in our performance results. With data
partitioning, the probability that a cache miss will be satisfied in the local memory is increased. However, athough the
number of cache misses satisfied in local memory isincreased it is not necessarily maximized.

The following sections discuss how a cost model can be used to make a tradeoff between the number of cache misses
and the number of remote memory references, and to discover a communication-minimal partitioning of loops and data
(termed “globa” in our results) that yieldsthe lowest runtime.

4 TheCost Modd

The key to a finding acommunication-minimal partitioningisacost model that allows atradeoff to be made between cache
miss cost and remote memory access cost. This cost model drives an iterative solution and is a function that takes, as
arguments, aloop partition, data partitionsfor each array accessed in the loop, and architectural parameters that determine
the relative cost of cache misses and remote memory accesses. It returns an estimation of the cost of array references for
the loop.

The cost due to memory references in terms of the architectura parametersis computed by following equation:

71total_access = TR(nremote) + TL(nlocal) + TC(ncache)

where T, 71, T are the remote, local and cache memory access times respectively, and 7, cmote, Riocal, Peache A€
the number of references that result in hits to remote memory, loca memory and cache memory. 7T and T, are fixed by
the architecture, while Ty isdetermined both by the base remotelatency of the architecture and possible contentionif there
are many remote references. Tx may aso vary with the number of processors based on the interconnect topol ogy.

Neaeher Nocal AN npemote depend on the loop and data partitions. Given a loop partition, for each Ul-set consider
the intersection between the footprint (LG) of that set and a given data partition D. First time accesses to data in that
intersection will be in local memory while first time references to data outside will be remote. Repeat accesses will likely
hitin the cache. A Ul-set may contain several references, each with slightly different footprintsdue to different offsetsin
the array index expressions. Oneis selected and called the base offset, or b. In the following definitionsthe symbol ~ will
be used to compare footprints and data partitions. LG ~ D means that the matrix equality holds. This equality does not
mean that al references in the Ul-set represented by G will be local in the data partition D because there may be small
offset vectors for each reference in the Ul-set.

We define the functions R, £y and F3, which are dl functions of the loop partition L, data partition D and reference
matrix G with the meanings given in Section 3. For simplicity, we aso use R, 'y and £}, to denote the val ue returned by
the respective functionsof the same name.

Definition 1 R, isafunctionwhichmapsL, D and G to the number of remote references that result from a single access
defined by G and the base offset b.

In other words, Ry returnsthe number of remote accesses that result from a single program reference in aparalel 1oop,
not including the small peripheral footprint due to multiple accesses in its Ul-set. The periphery is added using £ to be
described bel ow.

Note that in most cases G’s define Ul-sets: accesses to an array with the same G but different offsets are usualy in the
same Ul-set, and different G’s dways have different Ul-sets. The only exception are accesses with the same G but large
differencesin their offsetsrelative to tile size, in which case they are considered to be in different Ul-sets.

The computation of R; is simplified by an approximation. One of the two following cases apply to loop and data
partitions.

1. Loop partition L matches the data partition D, i.e. LG ~ D. The references in the periphery due to small offsets
between references in the Ul-set are considered in F;. Inthiscase R, = 0.

2. L doesnot match D. Thisis case where the G matrix used to compute D (perhaps from another Ul-set), is different
from the G for the current access, and thusL G and D have different shapes, not just different offsets. In thiscase dl
references for L are considered remote and R = |Det L|.

Doall (i=0:100, j=0:75)
B[i,j] = Ali,j] +Ali+,j]
EndDoall

(a) Code fragment

5 Rectangles : Footprints for A[i,j]
4 5 6 7 . L
Parallelograms : Footprints for A[i+j,j]
0 1 2 3 Processor 7’s footprints have no overlap
0 (Numbering for footprints of Ali,j]
0 100 175

(b) Data space for Array A(8 processors)
Figure 3: Different Ul-sets have no overlap

Thisisagood approximation because L G and D each represent aregular tiling of thedata space. If they differ, it means
the footprint and data tile differ in shape, and do not stride the same way. Thus, even if L's footprintsand D partialy
overlap at the origin, therewill beless overlap on other processors. For areasonably |arge number of processors, some will
end up with no overlap as shown in the example in Figure 3. Since the execution timefor aparalel l1oop nest islimited by
the processor with the most remote cache misses, the non-overlap approximation is a good one.

Definition 2 I} isthe number of first time accesses in the footprint of L with base offset b. Hence:
Fy = |DetL|

Definition 3 £ isthe difference between (1) the cumulative footprints of all the references in a given Ul-set for a loop
tile, and (2) the base footprint due to a single reference represented by G and the base offset b. F; isreferred to as the
peripheral footprint.

See [2] for details on how the peripheral footprint is computed.

Theorem 1 Thecumulative accesstimefor all accessesinaloopwith partitionL , accessing an array having data partition
D with reference matrix G ina Ul-set is

Trr—set = Tr(Ry + F¢) + Tr.(Fy — Ry) + Te(nref — (Fy + Fy))

where nre f isthe total number of references made by L for the Ul-set.

Thisresult can be derived as follows. The number of remote accesses n,..mote 1S the number of remote accesses with
the base offset, which is Ry, plusthe size of the peripheral footprint /7, giving nyemote = Ry + F¢. The number of local
references ni,.q1 iSthebase footprint, lesstheremote portion, i.e. /3 — R;. Finally, number of cache hitsn.4.p. isclearly
nref — Nyemote — Nioear Whichisequa to nref — (Fy + Fy).

Sub-blocking The above cost model assumes infinite caches. In practice, even programs with moderate-sized data sets
have footprints much larger than the cache size. To overcome this problem the loop tiles are sub-blocked, such that each
sub-block fitsin the cache and has a shape that optimizes for cache locality. This optimization |ets the cost model remain
valid even for finite caches. It turned out that sub-blocking was critically important even for small to moderate problem
sizes.

Finite caches and sub-blocking also alows us to ignore the effect of datathat is shared between loop nests when that
data is left behind in the cache by one loop nest and reused by another. Data sharing can happen in infinite caches due
to accesses to the same array when the two loops use the same G. However, when caches are much smaller than data
footprints, and the compiler resorts to sub-blocking, the possibility of reuse across loopsis virtually eliminated.

Thismodel aso assumes alinear flow of control through the loop nests of the program. Whilethisisthe common case,
conditiona control flow can be handled by our algorithm. Although we do not handle this case now, an approach would be
to assign probabilitiesto each loop nest, perhaps based on profile data, and to multiply the probabilitiesby the loop size to
obtain an effective loop size for use by the agorithm.

5 TheMultiple LoopsHeuristic Method

This section describes the iterative method, whose goal is to discover a partitioning of loops and data arrays to minimize
communication cost. We assume loop partitions are non-cyclic. Cyclic partitions could be handled using this method but
for simplicity we leave them out.

51 Graph formulation

Our search procedure uses bipartite graphs to represent loops and data arrays. Bipartite graphs are apopular data structure
used to represent partitioning problemsfor loopsand data[8, 4]. For agraph G = (1, Vy, E), theloopsare pictured as a set
of nodes V; on the left hand side, and the data arrays as a set of nodes V; on theright. An edge ecE between aloop and
array nodeis present if and only if the loop accesses the array. The edges are labeled by the uniformly intersecting set(s)
they represent. When we say that a data partitionisinduced by aloop partition, we mean the data partition D isthe same
as the loop partition L'sfootprint. Similarly, for loop partitionsinduced by data partitions.

5.2 lterative Method Outline

We usean iterativelocal search techniquethat exploitscertain specia propertiesof loopsand dataarray partitionsto moveto
agood solution. Extensive work eval uating search techniques has been done by researchers in many disciplines. Simulated
annealing, gradient descent and genetic algorithms are some of these. See [11] for a comparison of some methods. All
techniques rely on a cost function estimating some objective value to be optimized, and a search strategy. For specific
problems more may be known than in the genera case, and specific strategies may do better. In our case, we know the
search direction that leads to improvement, and hence a specific strategy is defined. The algorithm greedily moves to a
local minimum, does a mutation to escape from it, and repeats the process.

The following is the method in more detail. To derive the initia loop partition, the single loop optimization method
described in Section 3isused. Then an iterative improvement method is followed, which has two phases in each iteration:
the first (forward) phase finds the best data partitions given loop partitions, and the second (back) phase redetermines the
values of the loop partitions given the data partitionsjust determined.

We define a bool ean val ue called the progressflag for each array. Specifically, in the forward phase the data partition of
each array having atrue progressflag is set to the induced data partition of the largest 10op accessing it, among those which
change the data partition. The method of controlling the progressflag isexplained in section 5.2.2. In the back phase, each
loop partitionis set to bethe data partition of one of the arrays accessed by the loop. The cost mode is used to evaluate the
alternative partitions and pick the one with minimal cost.

These forward and backward phases are repeated using the cost model to determine the estimated array reference cost
for the current partitions. After some number of iterations, the best partition found so far is picked as the fina partition.
Termination is discussed in Section 5.2.2.

521 Anexample

The workings of the heuristic can be seen by asimple example. Consider the following code fragment:

Doall (i=0:99, j=0:99)
Alijl =1 *

EndDoall

Doall (i=0:99, j=0:99)

(loop spaces)

23 b
X A
1
j,i
2
Y
01 B

Figure4: Initid solutionto loop partitioning (4 processors)

(loop spaces) (data spaces) L
. 1]
] 2|3 -
213 y A 213 X A L2
0 0]1 0]1 . 0]1
ji I
2|3 213 e — 2
213 YZ——/—= 3 01 Y B
0 1 .. 0|1 i 0 1
i, !
forward phase back phase
Iteration 1
(changed)
i,] T3 i,
l 3 ——
1 X A X A 1|3
j / 0| 2 0] 2 i ol 2
213 Y ——= |2 2|3 — 2|3
0 1 - 0 0 Y B
i,j 1 i 0|1

forward phase back phase

(optimal solution)
Iteration 2

Figure5: Heurigtic: iterations 1 and 2 (4 processors)

B[i,jl = Alj,i]
EndDoall

The code does a transpose of A into B. The first loop is represented by X and the second by Y. The initia cache
optimized solution for 4 processorsis shownin Figure4. Inthisexample, asthereisno periphera footprint for either array,
adefault load balanced solutionis picked. Iterations 1 and 2 with their forward and back phases are shown in Figure 5.

In iteration 1's forward phase A and B get data partitions from their largest accessing loops. Since both loops here
are equa in size, the compiler picks either, and one possible choice is shown by the arrows. In 1's back phase, loop Y
cannot match both A and B’s data partitions, and the cost estimator indicates that matching either has the same cost. So an
arbitrary choice as shown by theback arrows resultsin unchanged data partiti ons; nothing has changed from the beginning.

Asexplained inthe next section, the choice of data partitionsin the forward phase isfavored in the direction of change.
So now array A picksadifferent data partitionfrom before, that of Y instead of X. Inthe back phaseloop X now changesits
loop partition to reduce cost as dictated by the cost function. Thisisthe best solution found, and no further change occurs
in subsequent iterations. In thiscase, thisbest solution is also the optima solution asit has 100% locdity. Inthisexample
a communi cation-free sol ution exists and was found. More generaly, if one does not exist, the heuristic will evaluate many
solutionsand will pick the best one it finds.

5.2.2 Somelmplementation Details

The agorithm of the heuristic method is presented in Figure 6. Some details of the algorithm are explained here.

Choosing a data partition different from the current oneis preferred because it ensures movement out of local minima.
A mutation out of alocal minimumisachangeto apossibly higher cost point, that sets the algorithm on another path. This
rule ensures that the next configuration differs from the previous, and hence makes it unnecessary to do global checks for
local minima.

However, without a progress flag, always changing data partitionsin the forward phase may change data partitionstoo
fast. Thisis because one part of the graph may change before a change it induced in a previous iteration has propagated to
the whole graph. Thisis prevented using abiasrule. A data partition is not changed in the forward phase if it induced a
loop partition change in theimmediately preceding back phase. Thisis done by setting its progressflag to false.

Aswith dl deterministic loca search techniques, thisagorithm could suffer from oscillations. The progress flag helps
solve this problem. Oscillations happen when a configuration is revisited. The solution isto, conservatively, determine if
acost has been seen before, and if it has, ssimply enforce change at dl data partition selections in the next forward phase.
This setsthe heuristic on another path. There isno need to store and compare entire configurationsto detect oscillations.

One issue is the number of iterationsto perform. In this problem, the length of the longest path in the bipartite graph
is a reasonable bound, since changed partitions in one part of the graph need to propagate to other parts of the graph.
This bound seems to work well in practice. Further increases in thisbound did not provide a better solutionin any of the
examples or programstried.

In al of the small programs we tried, the heuristic found the known optimal solution. For the large applicationsin
section 6 ,we do not know the optimal, but the heuristic found improved solutionswith very high locality. Careful manual
examination did not result in finding better partitions.

5.3 Algorithm Complexity

Here we show that the above algorithm runsin polynomial timein n and m, the number of loopsand distributed arraysin
the program. An exhaustive search guaranteed to find the optimal for this NP-compl ete problem is not practical.

Theorem 2 The time complexity of the above heuristicis O(n?m + m?n).

To provethis, note that the number of iterationsis the length of the longest acyclic path in the bipartite graph, whichis
upper bounded by n 4+ m. Thetime for oneiteration isthe sum of the times of the forward and back phases. The forward
phase does a selection among 1 possible [oop partitionsfor each of » loops, giving a bound of O(nm). The back phase
does a selection among n possible data partitionsfor each of m arrays, giving abound of O(nm). Thusoveral thetimeis
O((n + m)mn) = O(n?m + m?n).

6 Results

The algorithm described in this paper has been implemented as part of the compiler for the Alewife [3] machine. The
Alewife machine is a cache-coherent multiprocessor with physicaly distributed memory. The nodes are configured in a
2-dimensiona mesh network. The approximate average Alewife latencies for a 16 node machine are: 2 cycle cache hit, 11
cycle cache miss to local memory hit and 40 cycle remote cache miss. The last number will be larger for larger machine
configurations or when network contention is present.

We compared performance on the following applications:

Tomcatv A code from the SPEC suite. It has 12 loopsand 7 arrays, al two dimensiond.

Erlebacher A codewrittenby ThomasEidson, from |CASE. It performs3-D tridiagonal solvesusing Alternating Direction
Implicit (ADI) integration. It has 40 loops and 22 distributed arrays, in one, two and three dimensions.

Conduct A routinein SIMPLE, atwo dimensiona hydrodynamics code from Lawrence Livermore Nationa Labs. It has
20 loopsand 20 arrays, in one and two dimensions.

These programs were run using each of three compilation strategies:

global Usesthe agorithm described in this paper.

Procedure Do_forward_phase()
for al d € Data_set do
if Progress_flag[d] then
| — largest loop accessing d which induces changed Data_partition[d]
Data_partition[d] — Partition induced by L oop_partition[l]
Origin[d] — Accessfunction mapping of Origin[l]
endif
Inducing_loop[d] — |
endfor
end Procedure

Procedure Do_back_phase()
for al | € Loop_set do
d — Array inducing Loop_partition[I] with minimum cost of accessingall its data
Loop_partition[l] < Partition induced by Data_partition[d]
Origin[l] — Inverse accessfunction mapping of Origin[d]
if Inducingloop[d] # | then
Progress flag[d] — false
endif
endfor
end Procedure

Procedure Partition
Loop_set : set of al loopsin the program
Data set : set of all dataarraysin the program
Graph_G : Bipartite graph of accessesin Loop_set to Data_set

Min_partitions — ¢
Min_cost « oo
for al d € Data_set do
Progress_flag[d] < true
endfor
for i= 1 to (length of longest path in Graph_G) do
Do_forward_phase()
Do_back_phase()
Cost — Find total cost of current partition configuration
if Cost < Min_cost then
Cost — Min_cost
Min_partitions < Current partition configuration

endif
if cost repeated then /* convergence or oscillation */
for al d € Data_set do [* force progress*/
Progress_flag[d] < true
endfor
endif
endfor

end Procedure

Figure 6: The heuristic algorithm

10

Running time

Running time

-~ random
—— local

120F -= global

110

100§

90}

80}

70

0 40 80 120 160
Extra Remote Latency (cycles)
Figure 7: Tomcatv (N = 800)

60 ¢
-e- random

551 —— local
-2~ global

50

a5t

40k

35F

30 . . .

0 50 100 150

Extra Remote Latency (cycles)

Figure 9: Conduct (480 x 384)

11

20

18

Running time

16

14

12

10
0

-e- random
-~ local
-2~ global

40 80 120 160
Extra Remote Latency (cycles)

Figure8: Erlebacher (N = 48)

Program Problem Size | Speedup
Tomcatv N =192 15
Erlebacher N =48 10
Conduct 153 x 133 11

Figure 10: Speedup (global) on 16 processors

local Usesthe anaysisin[2] to determine theloop partition, and then partitionseach array by using the partition induced
by the largest loop that accesses that array, to achieve some data locality. This analysis proceeds as in global but
does only thefirst iterations' forward phase, and halts.

random Allocates the data across processors randomly.

Figures 7, 8 and 9 show the execution times for each application and partitioning strategy for a variety of remote
latencies. The smallest latency uses the default Alewife configuration. The larger latencies were obtained by imposing a
hardware-supported delay on remote cache misses. Thiswas done by causing the processor to trap on aremote cache miss.
This trap occurs at the same time that the request for datais sent to the remote node. A delay |oop was then executed for
the number of cycles shown in the graphs.

Due to the relatively short remote access latency in Alewife, the numbers for local are close to global for the default
latency. The difference becomes much more significant for longer latencies that can be found in some other architectures.
In Alewife, programs with higher cache-coherency overheads will have longer latencies.

Figure 10 gives the basdline speedup numbers. They represent the default remote latency with global optimization on
16 processors. Because the original problem sizes for some of them were too small to run on asmall number of processors,
these numbers are for smaller problem sizes as indicated in the table.

7 Conclusions and Summary

We have presented an algorithm to find loop and data partitions automatically for programs with multiple loop nests and
data arrays. The agorithm discovers a partitioning of loops and data that minimizes communication cost over the multiple
levels of memory hierarchy for the entire program. It does this by balancing the cost of cache misses and remote memory
accesses using a cost function. If no communication-free partition is found, the cost function is used to guide a heuristic
search through the global space of loop and data partitions. This method has been implemented as part of the compiler for
the Alewife machine. We showed results from executing three applications on areal machine with 16 processors. These
resultsindicate that significant performance improvements can be obtained by looking at datalocality and cache locality in
agloba framework.

In the future we would like to add the possibility of copying data at runtimeto avoid remote references asin [4]. This
factor could be added to our cost modd.

References

[1] S. G. Abraham and D. E. Hudak. Compile-time partitioning of iterative parallel loops to reduce cache coherency
traffic. IEEE Transactionson Parallel and Distributed Systems, 2(3):318-328, July 1991.

[2] Anant Agarwal, David Kranz, and Venkat Natargjan. Automatic Partitioning of Paralld Loops for Cache-Coherent
Multiprocessors. In 22nd International Conference on Parallel Processing, St. Charles, IL, August 1993. IEEE. To
appear in |IEEE TPDS.

[3] A. Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multiprocessor. In Proceedings
of Workshop on Scalable Shared Memory Multiprocessors. Kluwer Academic Publishers, 1991. An extended version
of this paper has been submitted for publication, and appears as MIT/LCS Memo TM-454, 1991.

[4] Jennifer M. Anderson and Monica S. Lam. Global Optimizations for Parallelism and Locality on Scalable Parallel
Machines. In Proceedings of SIGPLAN '93 Conference on Programming Languages Design and Implementation.
ACM, June 1993.

[5] SteveCarr, KathrynS. McKinley, and Chau-Wen Tzeng. Compiler Optimizationfor Improving DataLocality. In Sxth
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
VI), pages 252—-262, October 1994.

[6] M. Guptaand P. Banerjee. Demonstration of Automatic Data Partitioning Techniques for Parallelizing Compilerson
Multicomputers. |EEE Transactions on Parallel and Distributed Systems, 3(2):179-193, March 1992.

12

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD Distributed Memory
Machines. Communicationsof the ACM, 35(8):66-80, August 1992.

Y. Juand H. Dietz. Reduction of Cache Coherence Overhead by Compiler Data Layout and Loop Transformation. In
Languages and Compilersfor Parallel Computing, pages 344-358. Springer Verlag, 1992.

Kathleen Knobe, Joan Lukas, and Guy Steele Jr. Data Optimization: Allocation of Arraysto Reduce Communication
on SIMD Machines. Journal of Parallel and Distributed Computing, 8(2):102-118, August 1990.

J. Ramanujam and P. Sadayappan. Compile-Time Techniquesfor Data Distributionin Distributed Memory Machines.
|EEE Transactionson Parallel and Distributed Systems, 2(4):472-482, October 1991.

Bart Selman, Henry Kautz, and Bram Cohen. Noise Strategies for Improving Local Search. In Proceedings, AAAI,
volume 1, 1994.

C.-W. Tseng. An Optimizing Fortran D compiler for MIMD Distributed-Memory Machines. PhD thesis, Rice
University, Jan 1993. Published as Rice COMP TR93-199.

Michael E. Wolf and MonicaS. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. In
The Third Workshop on Programming Languages and Compilersfor Parallel Computing, August 1990. Irvine, CA.

13

