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Abstract

We show that two cooperating robots can learn exactly any strongly-connected directed
graph with n indistinguishable nodes in expected time polynomial in n. We introduce a new
type of homing sequence for two robots, which helps the robots recognize certain previously-seen
nodes. We then present an algorithm in which the robots learn the graph and the homing se-
quence simultaneously by actively wandering through the graph. Unlike most previous learning
results using homing sequences, our algorithm does not require a teacher to provide counterex-
amples. Furthermore, the algorithm can use e�ciently any additional information available that
distinguishes nodes. We also present an algorithm in which the robots learn by taking random
walks. The rate at which a random walk on a graph converges to the stationary distribution
is characterized by the conductance of the graph. Our random-walk algorithm learns in ex-
pected time polynomial in n and in the inverse of the conductance and is more e�cient than
the homing-sequence algorithm for high-conductance graphs.
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1 Introduction

Consider a robot trying to construct a street map of an unfamiliar city by driving along the city's

roads. Since many streets are one-way, the robot may be unable to retrace its steps. However, it

can learn by using street signs to distinguish intersections. Now suppose that it is nighttime and

that there are no street signs. The task becomes signi�cantly more challenging.

In this paper we present a probabilistic polynomial-time algorithm to solve an abstraction of the

above problem by using two cooperating learners. Instead of learning a city, we learn a strongly-

connected directed graph G with n nodes. Every node has d outgoing edges labeled from 0 to d�1.

Nodes in the graph are indistinguishable, so a robot cannot recognize if it is placed on a node that

it has previously seen. Moreover, since the graph is directed, a robot is unable to retrace its steps

while exploring.

For this model, one might imagine a straightforward learning algorithm with a running time

polynomial in a speci�c property of the graph's structure such as cover time or mixing time. Any

such algorithm could require an exponential number of steps, however, since the cover time and

mixing time of directed graphs can be exponential in the number of nodes. In this paper, we present

a probabilistic algorithm for two robots to learn any strongly-connected directed graph in O(d2n5)

steps with high probability.

The two robots in our model can recognize when they are at the same node and can communicate

freely by radio. Radio communication is used only to synchronize actions. In fact, if we assume

that the two robots move synchronously and share a polynomial-length random string, then no

communication is necessary. Thus with only minor modi�cations, our algorithms may be used in a

distributed setting.

Our main algorithm runs without prior knowledge of the number of nodes in the graph, n, in

time polynomial in n. We show that no probabilistic polynomial-time algorithm for a single robot

with a constant number of pebbles can learn all unlabeled directed graphs when n is unknown.

Thus, our algorithms demonstrate that two robots are strictly more powerful than one.

1.1 Related Work

Previous results showing the power of team learning are plentiful, particularly in the �eld of induc-

tive inference (see Smith [Smi94] for an excellent survey). Several team learning papers explore the

problems of combining the abilities of a number of di�erent learners. Cesa-Bianchi et al. [CBF+93]

consider the task of learning a probabilistic binary sequence given the predictions of a set of experts

on the same sequence. They show how to combine the prediction strategies of several experts to

predict nearly as well as the best of the experts. In a related paper, Kearns and Seung [KS93]

explore the statistical problems of combining several independent hypotheses to learn a target con-

cept from a known, restricted concept class. In their model, each hypothesis is learned from a

di�erent, independently-drawn set of random examples, so the learner can combine the results to

perform signi�cantly better than any of the hypotheses alone.

There are also many results on learning unknown graphs, but most previous work has concen-

trated on learning undirected graphs or graphs with distinguishable nodes. For example, Deng and
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Papadimitriou consider the problem of learning strongly-connected, directed graphs with labeled

nodes, so that the learner can recognize previously-seen nodes. They provide a learning algorithm

whose competitive ratio (versus the optimal time to traverse all edges in the graph) is exponen-

tial in the de�ciency of the graph [DP90, Bet92]. Betke, Rivest, and Singh introduce the notion of

piecemeal learning of undirected graphs with labeled nodes. In piecemeal learning, the learner must

return to a �xed starting point from time to time during the learning process. Betke, Rivest, and

Singh provide linear algorithms for learning grid graphs with rectangular obstacles [BRS93], and

with Awerbuch [ABRS95] extend this work to show nearly-linear algorithms for general graphs.

Rivest and Schapire [RS87, RS93] explore the problem of learning deterministic �nite automata

whose nodes are not distinguishable except by the observed output. We rely heavily on their results

in this paper. Their work has been extended by Freund et al. [FK+93], and by Dean et al. [DA+92].

Freund et al. analyze the problem of learning �nite automata with average-case labelings by the

observed output on a random string, while Dean et al. explore the problem of learning DFAs with

a robot whose observations of the environment are not always reliable. Ron and Rubinfeld [RR95]

present algorithms for learning \fallible" DFAs, in which the data is subject to persistent random

errors. Recently, Ron and Rubinfeld [RR95b] have shown that a teacher is unnecessary for learning

�nite automata with small cover time.

In our model a single robot is powerless because it is completely unable to distinguish one node

from any other. However, when equipped with a number of pebbles that can be used to mark

nodes, the single robot's plight improves. Rabin �rst proposed the idea of dropping pebbles to

mark nodes [Rab67]. This suggestion led to a body of work exploring the searching capabilities of a

�nite automaton supplied with pebbles. Blum and Sakoda [BS77] consider the question of whether

a �nite set of �nite automata can search a 2 or 3-dimensional obstructed grid. They prove that a

single automaton with just four pebbles can completely search any 2-dimensional �nite maze, and

that a single automaton with seven pebbles can completely search any 2-dimensional in�nite maze.

They also prove, however, that no collection of �nite automata can search every 3-dimensional

maze. Blum and Kozen [BK78] improve this result to show that a single automaton with 2 pebbles

can search a �nite, 2-dimensional maze. Their results imply that mazes are strictly easier to search

than planar graphs, since they also show that no single automaton with pebbles can search all

planar graphs. Savitch [Sav73] introduces the notion of a maze-recognizing automaton (MRA),

which is a DFA with a �nite number of distinguishable pebbles. The mazes in Savitch's paper are

n-node 2-regular graphs, and the MRAs have the added ability to jump to the node with the next

higher or lower number in some ordering. Savitch shows that maze-recognizing automata and log n

space-bounded Turing machines are equivalent for the problem of recognizing threadable mazes

(i.e., mazes in which there is a path between a given pair of nodes).

Most of these papers use pebbles to model memory constraints. For example, suppose that

the nodes in a graph are labeled with logn-bit names and that a �nite automaton with k log n

bits of memory is used to search the graph. This situation is modeled by a single robot with k

distinguishable pebbles. A robot dropping a pebble at a node corresponds to a �nite automaton

storing the name of that node. In our paper, by contrast, we investigate time rather than space

constraints. Since memory is now relatively cheap but time is often critical, it makes sense to ask
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whether a robot with any reasonable amount of memory can use a constant number of pebbles to

learn graphs in polynomial time.

Cook and Racko� generalized the idea of pebbles to jumping automata for graphs (JAGs)

[CR80]. A jumping automaton is equipped with pebbles that can be dropped to mark nodes and

that can \jump" to the locations of other pebbles. Thus, this model is similar to our two-robot

model in that the second robot may wait at a node for a while (to mark it) and then catch up to

the other robot later. However, the JAG model is somewhat broader than the two-robot model.

Cook and Racko� show upper and lower bounds of logn and logn= log logn on the amount of space

required to determine whether there is a directed path between two designated nodes in any n-node

graph. JAGs have been used primarily to prove space e�ciency for st-connectivity algorithms, and

they have recently resurfaced as a tool for analyzing time and space tradeo�s for graph traversal

and connectivity problems (e.g. [BB+90, Poo93, Edm93]).

Universal traversal sequences have been used to provide upper and lower bounds for the ex-

ploration of undirected graphs. Certainly, a universal traversal sequence for the class of directed

graphs could be used to learn individual graphs. However, for arbitrary directed graphs with n

nodes, a universal traversal sequence must have size exponential in n. Thus, such sequences will

not provide e�cient solutions to our problem.

1.2 Strategy of the Learning Algorithm

The power behind the two-robot model lies in the robots' abilities to recognize each other and to

move independently. Nonetheless, it is not obvious how to harness this power. If the robots separate

in unknown territory, they could search for each other for an amount of time exponential in the size

of the graph. Therefore, in any successful strategy for our model the two robots must always know

how to �nd each other. One strategy that satis�es this requirement has both robots following the

same path whenever they are in unmapped territory. They may travel at di�erent speeds, however,

with one robot scouting ahead and the other lagging behind. We call this a lead-lag strategy. In a

lead-lag strategy the lagging robot must repeatedly make a di�cult choice. The robot can wait at

a particular node, thus marking it, but the leading robot may not �nd this marked node again in

polynomial time. Alternatively, the lagging robot can abandon its current node to catch up with

the leader, but then it may not know how to return to that node. In spite of these di�culties, our

algorithms successfully employ a lead-lag strategy.

Our work also builds on techniques of Rivest and Schapire [RS93]. They present an algorithm

for a single robot to learn minimal deterministic �nite automata. With the help of an equivalence

oracle, their algorithm learns a homing sequence, which it uses in place of a reset function. It then

runs several copies of Angluin's algorithm [Ang87] for learning DFAs given a reset. Angluin has

shown that any algorithm for actively learning DFAs requires an equivalence oracle [Ang81].

In this paper, we introduce a new type of homing sequence for two robots. Because of the

strength of the homing sequence, our algorithm does not require an equivalence oracle. For any

graph, the expected running time of our algorithm is O(d2n5). In practice, our algorithm can

use additional information such as indegree, outdegree, or color of nodes to �nd better homing

sequences and to run faster.
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Note that throughout the paper, the analyses of the algorithms account for only the number of

steps that the robots take across edges in the graph. Additional calculations performed between

moves are not considered, so long as they are known to take time polynomial in n. In practice,

such calculations would not be a noticeable factor in the running time of our algorithms.

Two robots can learn speci�c classes of directed graphs more quickly, such as the class of

graphs with high conductance. Conductance, a measure of the expansion properties of a graph,

was introduced by Sinclair and Jerrum [SJ89]. The class of directed graphs with high conductance

includes graphs with exponentially-large cover time. We present a randomized algorithm that learns

graphs with conductance greater than n�
1
2 in O(dn4 logn) steps with high probability.

2 Preliminaries

Let G = (V;E) represent the unknown graph, where G has n nodes, each with outdegree d. An edge

from node u to node v with label i is denoted hu; i; vi. We say that an algorithm learns graph G

if it outputs a graph isomorphic to G. Our algorithms maintain a graph map which represents the

subgraph of G learned so far. Included in map is an implicit start node u0. It is worth emphasizing

the di�erence between the target graph G and the graph map that the learner constructs. The

graph map is meant to be a map of the underlying environment, G. However, since the robots do

not always know their exact location in G, in some cases map may contain errors and therefore may

not be isomorphic to any subgraph of G. Much of the notation in this section is needed to specify

clearly whether we are referring to a robot's location in the graph G or to its putative location in

map.

A node u in map is called un�nished if it has any unexplored outgoing edges. Node u is map-

reachable from node v if there is a path from v to u containing only edges in map. For robot k, the

node in map corresponding to k's location in G if map is correct is denoted LocM(k). Robot k's

location in G is denoted LocG(k).

Let f be an automorphism on the nodes of G such that

8a; b 2 G; ha; i; bi 2 G () hf(a); i; f(b)i 2 G:

We say nodes c and d are equivalent (written c � d) i� there exists such an f where f(c) = d.

We now present notation to describe the movements of k robots in a graph. An action Ai of

the ith robot is either a label of an outgoing edge to explore, or the symbol r for \rest." A k-robot

sequence of actions is a sequence of steps denoting the actions of the k robots; each step is a k-tuple

hA0; : : : ; Ak�1i. For sequences s and t of actions, s � t denotes the sequence of actions obtained by

concatenating s and t.

A path is a sequence of edge labels. Let jpathj represent the length of path. A robot follows

a path by traversing the edges in the path in order beginning at a particular start node in map.

The node in map reached by starting at u0 and following path is denoted �nalM(path, u0). Let s be

a two-robot sequence of actions such that if both robots start together at any node in any graph

and execute s, they follow exactly the same path, although perhaps at di�erent speeds. We call

such a sequence a lead-lag sequence. Note that if two robots start together and execute a lead-lag
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sequence, they end together. The node in G reached if both robots start at node a in G and follow

lead-lag sequence s is denoted �nalG(s, a).

For convenience, we name our robots Lewis and Clark. Whenever Lewis and Clark execute a

lead-lag sequence of actions, Lewis leads while Clark lags behind.

3 Using a Reset to Learn

Learning a directed graph with indistinguishable nodes is di�cult because once both robots have

left a known portion of the graph, they do not know how to return. This problem would vanish

if there were a reset function that could transport both robots to a particular start node u0. We

describe an algorithm for two robots to learn directed graphs given a reset. Having a reset is not a

realistic model, but this algorithm forms the core of later algorithms, which learn without a reset.

Algorithm Learn-with-Reset maintains the invariant that if a robot starts at u0, there is a

directed path it can follow that visits every node in map at least once. To learn a new edge (one

not yet in map) using algorithm Learn-with-Reset, Lewis crosses the edge and then Clark tours

the entire known portion of the map. If they encounter each other, Lewis's position is identi�ed;

otherwise Lewis is at a new node. The depth-�rst strategy employed by Learn-Edge is essential

in later algorithms. In Learn-with-Reset, as in all the procedures in this paper, variables are

passed by reference and are modi�ed destructively.

Lemma 1 The variable path in Learn-with-Reset denotes a tour of length � dn2 that starts at

u0 and traverses all edges in map.

Learn-with-Reset( ):
1 map := (fu0g; ;) f map is the graph consisting of node u0 and no edges g
2 path := empty path f path is the null sequence of edge labels g
3 k := 1 f k counts the number of nodes in map g
4 while there are un�nished nodes in map
5 do Learn-Edge(map,path,k)
6 Reset
7 return map

Learn-Edge(map,path,k): fpath = tour through all edges in map g
1 Lewis follows path to �nalM (path,u0)
2 ui := some un�nished node in map map-reachable from LocM (Lewis)
3 Lewis moves to node ui; append the path taken to path
4 pick an unexplored edge l out of node ui
5 Lewis moves along edge l; append edge l to path f Lewis crosses a new edge g
6 Clark follows path to �nalM (path,u0) f Clark looks for Lewis g
7 if 9j < k such that Clark �rst encountered Lewis at node uj
8 then add edge hui; l; uji to map
9 else add new node uk and edge hui; l; uki to map
10 k := k + 1
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Proof: Every time Lewis crosses an edge, that edge is appended to path. Since no edge is added to

map until Lewis has crossed it, path must traverse all edges in map. In each call to Learn-Edge, at

most n edges are added to path. The body of the while loop is executed dn times, so jpathj � dn2.

2

Lemma 2 Map is always a subgraph of G.

Proof: Initially map contains a single node u0 and no edges. Assume inductively that map is a

subgraph of G after the cth call to Learn-Edge (when map has c edges). To learn the next edge,

the algorithm chooses a node ui in map and explores a new edge e = hui; l; vi. By Lemma 1 and

the inductive hypothesis, if Clark encounters Lewis at uj then v is identi�ed as uj . Otherwise v is

recognized to be a new node and named uk. Therefore the updated map is a subgraph of G. 2

Lemma 3 If map contains any un�nished nodes, then there is always some un�nished node in

map map-reachable from �nalM (path,u0).

Proof: Suppose this assumption were false. Then there is some un�nished node in map, but

all nodes of map in the strongly-connected component of �nalM(path,u0) are �nished. Thus by

Lemma 2, there are no additional edges of G leaving that component, so graph G is not strongly

connected. 2

Theorem 4 After O(d2n3) moves and dn calls to Reset, Learn-with-Reset halts and outputs a

graph isomorphic to G.

Proof: The correctness of the output follows from Lemmas 1 { 3. For each call to Learn-Edge,

each robot takes length(path)� dn2 steps. The algorithm Learn-Edge is executed at most dn

times, so the algorithm halts within O(d2n3) steps. 2

4 Homing Sequences

In practice, robots learning a graph do not have access to a reset function. In this section we

suggest an alternative technique: we introduce a new type of homing sequence for two robots.

Intuitively, a homing sequence is a sequence of actions whose observed output uniquely deter-

mines the �nal node reached in G. Rivest and Schapire [RS93] show how a single robot with a

teacher can use homing sequences to learn strongly-connected minimal DFAs. The output at each

node indicates whether that node is an accepting or rejecting state of the automaton. If the target

DFA is not minimal, their algorithm learns the minimal encoding of the DFA. In other words, their

algorithm learns the function that the graph computes rather than the structure of the graph.

In unlabeled graphs the nodes do not produce output. However, two robots can generate output

indicating when they meet.

De�nitions: Each step of a two-robot sequence of actions produces an output symbol T if the

robots are together and S if they are separate. An output sequence is a string in fT; Sg� denoting
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the observed output of a sequence of actions. Let s be a lead-lag sequence of actions and let a be

a node in G. Then output(s,a) denotes the output produced by executing the sequence s, given

that both robots start at a. A lead-lag sequence s of actions is a two-robot homing sequence i�

8 nodes u; v 2 G;

output(s; u) = output(s; v)) �nalG(s; u) � �nalG(s; v):

Because the output of a sequence depends on the positions of both robots, it provides information

about the underlying structure of the graph. Figure 1 illustrates the de�nition of a two-robot

homing sequence. This new type of homing sequence is powerful. Unlike most previous learning

results using homing sequences, our algorithms do not require a teacher to provide counterexamples.

In fact, two robots on a graph de�ne a DFA whose states are pairs of nodes in G and whose

edges correspond to pairs of actions. Since the automata de�ned in this way form a restricted class

of DFAs, our results are not inconsistent with Angluin's work [Ang81] showing that a teacher is

necessary for learning general DFAs.

Theorem 5 Every strongly-connected directed graph has a two-robot homing sequence.

Proof: The following algorithm (based on that of Kohavi [Koh78, RS93]) constructs a homing

sequence: Initially, let h be empty. As long as there are two nodes u and v in G such that output(h,u)

= output(h,v) but �nal(h,u) 6� �nal(h,v), let x be a lead-lag sequence whose output distinguishes

�nal(h,u) from �nal(h,v). Since �nal(h,u) 6� �nal(h,v) and G is strongly connected, such an x

always exists. Append x to h.

Each time a sequence is appended to h, the number of di�erent outputs of h increases by at

least 1. Since G has n nodes, there are at most n possible output sequences. Therefore, after n� 1

iterations, h is a homing sequence. 2

In Section 5 we show that it is possible to �nd a counterexample x e�ciently. Given a strongly-

connected graph G and a node a in G, a pair of robots can verify whether they are together at a node

equivalent to a on some graph isomorphic to G. We describe a veri�cation algorithm Verify(a,

G) in Section 5. The sequence of actions returned by a call of Verify(u;G) is always a suitable

counterexample x. Using the bound from Corollary 8, we claim that this algorithm produces a

homing sequence of length O(n4) for all graphs. Note that shorter homing sequences exist; the

homing sequence produced by algorithm Learn-Graph in Section 5 has length O(dn3).

4.1 Using a Homing Sequence to Learn

Given a homing sequence h, an algorithm can learn G by maintaining several running copies of

Learn-with-Reset. Instead of a single start node, there are as many as n possible start nodes,

each corresponding to a di�erent output sequence of h. Note that many distinct output sequences

may be associated with the same �nal node in G.

The new algorithm Learn-with-HS maintains several copies of map and path, one for each

output sequence of h. Thus, graph mapc denotes the copy of the map associated with output
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1

1

0

0

0

1

0

c

a b

d

output =

8>>>><
>>>>:

T if Lewis and Clark are to-
gether at a node

S if Lewis and Clark are at
separate nodes.

homing sequence h =

(
Lewis: 0r1r
Clark: r0r1

sequence s =

(
Lewis: 0r
Clark: r0

start node output end node

a TTST b
b STST b
c STST b

d STTT c

start node output end node

a TT a
b ST a
c ST a

d ST c

Figure 1: Illustration of a two-robot homing sequence and a lead-lag sequence. Note that both h

and s are lead-lag sequences. However, sequence h is a two-robot homing sequence, because for
each output sequence there is a unique end node. (Note that the converse is not true.) Sequence
s is not a two-robot homing sequence, because the robots may end at nodes a or c and yet see the
same output sequence ST .

sequence c. Initially, Lewis and Clark are at the same node. Whenever algorithm Learn-with-

Reset would use a reset, Learn-with-HS executes the homing sequence h. If the output of h is

c, the algorithm learns a new edge in mapc as if it had been reset to u0 in mapc (see Figure 2).

After each execution of h, the algorithm learns a new edge in some mapc. Since there are at most

n copies, each with dn edges to learn, eventually one map will be completed. Recall that a homing

sequence is a lead-lag sequence. Therefore, at the beginning and end of every homing sequence the

two robots are together.

Theorem 6 If Learn-with-HS is called with a homing sequence h as input, it halts within

O(d2n4 + dn2jhj) steps and outputs a graph isomorphic to G.

Proof: The algorithm Learn-with-HS maintains at most n running versions of Learn-with-

Reset, one for each output of the homing sequence. In particular, whenever the two robots execute
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Learn-with-HS(h):
1 done := FALSE
2 while not done
3 do execute h; c := the output sequence produced f instead of a reset g
4 if mapc is unde�ned
5 then mapc := (fu0g; ;) f mapc = graph consisting of node u0 and no edges g
6 pathc := empty path f pathc is the null sequence of edge labels g
7 kc := 1 f kc counts the number of nodes in map g
8 Learn-Edge(mapc,pathc,kc)
9 if mapc has no un�nished nodes
10 then done := TRUE
11 return mapc

a homing sequence and obtain an output c, they have identi�ed their position as the start node u0

in mapc, and can learn one new edge in mapc before executing another homing sequence.

Eventually, one of the versions halts and outputs a complete mapc. Therefore, the correctness

of Learn-with-HS follows directly from Theorem 4 and the de�nition of a two-robot homing

sequence.

Let r = O(d2n3) be the number of steps taken by Learn-with-Reset. Since there are at most

n start nodes, Learn-with-HS takes at most nr + dn2jhj steps. 2

5 Learning a Homing Sequence

Unlike a reset function, a two-robot homing sequence can be learned. The algorithm Learn-Graph

maintains a candidate homing sequence h and improves h as it learns G.

De�nition: Candidate homing sequence h is called a bad homing sequence if there exist nodes

u; v, u 6= v, such that output(h; u) = output(h; v), but �nalG(h; u) 6� �nalG(h; v).

De�nition: Let a be a node in G. We say that mapc with start node u0 is a good representation

of ha;Gi i� there exists an isomorphism f from the nodes in mapc = (V c; Ec) to the nodes in a

subgraph G0 = (V 0; E0) of G, such that f(u0) = a, and

8ui; uj 2 V c; hui; `; uji 2 Ec () hf(ui); `; f(uj)i 2 E 0:

In algorithms Learn-with-Reset and Learn-with-HS, the graphs map and mapc are always

good representations ofG. In Learn-Graph if the candidate homing sequence h is bad, a particular

mapc may not be a good representation of G. However, the algorithm can test for such maps.

Whenever a mapc is shown to be in error, h is improved and all maps are discarded. By the proof

of Theorem 5, we know that a candidate homing sequence must be improved at most n� 1 times.

In Section 5.1 we explain how to use adaptive homing sequences to discard only one map per

improvement.

We now de�ne a test that with probability at least 1=n detects an error in mapc if one exists.

9



output of starting node map
homing sequence of map

TTST b
1

d cb 1 0

STST b

a1

0

b

STTT c

a bc 0 1

Figure 2: A possible \snapshot" of the learners' knowledge during an execution of Learn-with-
HS. The robots are learning the graph G from Figure 1 using the two-robot homing sequence h
from Figure 1. (Node names in maps are not known to the learner, but are added for clarity.) The
following example demonstrates how the robots learn a new edge using Learn-with-HS. Suppose
that the robots execute h and see output TTST . Then the robots are together at node b. Lewis
follows path 1; 0 to un�nished node c and then crosses the edge labeled 1. Now Clark follows path
1; 0; 1. Since Clark sees Lewis after 2 steps, the dotted edge is added to mapTTST . Next, the robots
execute h again and see output STST . Thus, they go on to learn some edge in mapSTST .

De�nition: Let pathc be a path such that a robot starting at u0 and following pathc traverses

every edge in mapc = (V c; Ec). Let u0 : : :um be the nodes in V c numbered in order of their �rst

appearance in pathc. If both robots are at u0 then testc(ui) denotes the following lead-lag sequence

of actions: (1) Lewis follows pathc to the �rst occurrence of ui; (2) Clark follows pathc to the �rst

occurrence of ui; (3) Lewis follows pathc to the end; (4) Clark follows pathc to the end.

De�nition: Given mapc and any lead-lag sequence t of actions, de�ne expected(t, mapc) to be

the expected output if mapc is correct and if both robots start at node u0 and execute sequence t.

We abbreviate expected(testc(ui),mapc) by expected(testc(ui)).

Lemma 7 Suppose Lewis and Clark are both at some node a in G. Let pathc be a path such that

a robot starting at u0 and following pathc traverses every edge in mapc. Then mapc is a good

representation of ha;Gi i� 8ui 2 V c; output(testc(ui)) = expected(testc(ui)).

Proof:

(=)): By de�nition of good representation and expected(testc(ui)).

((=): Suppose that all tests produce the expected output. We de�ne a function f as follows: Let

f(u0) = a. Let p(ui) be the pre�x of pathc up to the �rst occurrence of ui. De�ne f(ui) to be the
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Learn-Graph():
1 done := FALSE
2 h := � (empty sequence)
3 while not done
4 do execute h; c := the output sequence produced f instead of a reset g
5 if mapc is unde�ned
6 then mapc := (fu0g; ;) f mapc is the graph consisting of node u0 and no edges g
7 pathc := empty path f pathc is the null sequence of edge labels g
8 kc := 1 f kc counts the number of nodes in map g
9 if mapc has no un�nished node map-reachable from �nalM (pathc)
10 then Lewis and Clark move to �nalM (pathc)
11 comp := maximal strongly-connected component in mapc containing �nalM (pathc)
12 h-improve := Verify(�nalM(pathc),comp)
13 if h-improve = �
14 then done := TRUE f mapc is complete g
15 else f h-improve 6= �. error detected g
16 append h-improve to end of h f improve homing sequence : : :g
17 discard all maps and paths f : : :and start learning maps from scratch g
18 else v := value of a fair 0/1 coin 
ip f learn edges or test for errors? g
19 if v = 0 f test for errors g
20 then ui := a random node in mapc f randomly pick node to test g
21 h-improve := Test(mapc, pathc, i)
22 if h-improve 6= � f error detected g
23 then append h-improve to end of h f improve homing sequence : : :g
24 discard all maps and paths f : : : start learning maps from scratch g
25 else Learn-Edge(mapc,pathc,kc)
26 return mapc

Test(mapc, pathc, i): fu0; u1; : : : ; uk = the nodes in mapc indexed by �rst appearance in pathc g
1 h-improve := the following sequence of actions:
2 Lewis follows pathc to the �rst occurrence of ui in pathc
3 Clark follows pathc to the �rst occurrence of ui in pathc
4 Lewis follows pathc to the end
5 Clark follows pathc to the end
6 if output(h-improve) 6= expected-output(h-improve) f if error detected g
7 then return h-improve f return testc(ui) g
8 else return � f return empty sequence g

Verify(v0, map): f v0; v1; : : : ; vk are the nodes in map ordered by �rst appearance in pg
1 path := path such that a robot starting at v0 in map and following path visits all nodes

in map and returns to v0
2 for each i; 0 � i < k
3 do h-improve := Test(map, path, i)
4 if h-improve 6= �
5 then return h-improve
6 return �

11



node in G that a robot reaches if it starts at a and follows p(ui). Let G
0 = (V 0; E0) be the image

of f(mapc) on (V;E).

We �rst show that f is an isomorphism from V c to V 0. By de�nition of G0, f must be surjective.

To see that f is injective, assume the contrary. Then there exist two nodes ui; uj 2 V c such that

i 6= j but f(ui) = f(uj). But then output(testc(ui)) 6= expected(testc(ui)), which contradicts our

assumption that all tests succeed. Next, we show that hui; `; uji 2 V c () hf(ui); `; f(uj)i 2 V 0;

proving that mapc is a good representation of ha;Gi.

((=): By de�nition of G0, the image of mapc.

(=)): Inductively assume that hui; `; uji 2 V c () hf(ui); `; f(uj)i 2 V 0 for the �rst m edges

in pathc, and suppose that this pre�x of the path visits only nodes u0 : : :ui. Now consider the

(m+1)st edge e = ha; `; bi. There are two possibilities. In one case, edge e leads to some new node

ui+1. Then by de�nition f(ui+1) is b's image in G, so hf(a); `; f(b)i 2 G0. Otherwise e leads to

some previously-seen node ui�k. Suppose that f(ui�k) is not the node reached in G by starting at

u0 and following the �rst m + 1 edges in pathc. Then output(testc(ui�k)) 6= expected(testc(ui�k)),

so testc(ui�k) fails, and we arrive at a contradiction. Therefore f(b) = f(ui�k) and hf(a); `; f(b)i
2 G0. 2

Corollary 8 Suppose Lewis and Clark are together at u0 in mapc. Let mapc be strongly connected

and have n nodes, u0; : : :un�1. Then the two robots can verify whether mapc is a good represen-

tation of hLocG(Lewis);Gi in O(n3) steps.

Proof: Since mapc is strongly connected, there exists a path pathc with the following property:

a robot starting at u0 and following pathc visits all nodes in mapc and returns to u0. Index the

remaining nodes in order of their �rst appearance in pathc. The two robots verify whether, for all

ui in order, output(testc(ui)) = expected(testc(ui)). Note that Lewis and Clark are together at u0

after each test. By Lemma 7, this procedure veri�es mapc. Since pathc has length O(n2), each test

has length O(n2), so veri�cation requires O(n3) steps. 2

In Learn-Graph after the robots execute a homing sequence, they randomly decide either to

learn a new edge or to test a random node in mapc. The following lemma shows that a test that

failed can be used to improve the homing sequence.

Lemma 9 Let h be a candidate homing sequence in Learn-Graph, and let uk be a node such

that output(testc(uk)) 6= expected(testc(uk)). Then there are two nodes a; b in G that h does not

distinguish but that h � testc(uk) does.

Proof: Let a be a node in G such that when both robots start at a, output(testc(uk)) 6=
expected(testc(uk)). Suppose that at step i in testc(uk), the expected output is T (respectively

S), but the actual output is S (resp. T ). Each edge in pathc and mapc was learned using Learn-

Edge. If mapc indicates that the ith node in pathc is uk, there must be a start node b in G where

uk really is the ith node in pathc. Since output(testc(uk)) 6= expected(testc(uk)), the sequence h �
testc(uk) distinguishes a from b. 2

12



The algorithm Learn-Graph runs until there are no more map-reachable unexplored nodes in

some mapc. If mapc is not strongly connected, then it is not a good representation of G. In this

case, the representation of the last strongly-connected component on path must be incorrect. Thus,

calling Verify on this component from the last node on path returns a sequence that improves h.

If mapc is strongly connected, then either Verify returns an improvement to the homing sequence,

or mapc is a good representation of G.

Before we can prove the correctness of our algorithm, we need one more set of tools. Consider

the following statement of Cherno� bounds from Raghavan [Rag89].

Lemma 10 Let X1; : : : ; Xm be independent Bernoulli trials with E[Xj] = pj. Let the random

variable X =
Pm

j=1Xj, where � = E[X ]� 0. Then for � > 0,

Pr[X > (1 + �)�] <

"
e�

(1 + �)1+�

#�
;

and

Pr[X < (1� �)�] < e���
2=2:

In our analysis in this section and in Section 6, the random variables may not be independent.

However, the following corollary bounds the conditional probabilities. The proof of this corollary

is exactly analogous to that of a similar corollary by Aumann and Rabin [AR94, Corollary 1].

Corollary 11 Let X1; : : : ; Xm be 0/1 random variables (not necessarily independent), and let bj 2
f0; 1g for 1 � j � m. Let the random variable X =

Pm
j=1Xj. For any b1; : : : ; bj�1 and � > 0, if

Pr[Xj = 1jX1 = b1; X2 = b2; : : : ; Xj�1 = bj�1] � pj and � =
Pm

j=1 pj > 0; then

Pr[X > (1 + �)�] <

"
e�

(1 + �)1+�

#�
;

and for any b1; : : : ; bj�1 and � > 0, if Pr[Xj = 1jX1 = b1; X2 = b2; : : : ; Xj�1 = bj�1] � pj and

� =
Pm

j=1 pj > 0; then

Pr[X < (1� �)�] < e���
2=2:

Theorem 12 The algorithm Learn-Graph always outputs a map isomorphic to G and halts in

O(d2n6) steps with overwhelming probability ( 1 � e�cn, where constant c > 0 can be chosen as

needed).

Proof: Since Learn-Graph veri�es mapc before �nishing, if the algorithm terminates then by

Corollary 8 it outputs a map isomorphic to G. It is therefore only necessary to show that the

algorithm runs in O(d2n6) steps with overwhelming probability.

In each iteration of the while loop in Learn-Graph, if there are no map-reachable un�nished

nodes, then the algorithm attempts to verify the map. Otherwise, the algorithm decides randomly

whether to learn a new edge or to test a random node in the graph. It follows from Lemma 10 that

a constant fraction of the random decisions are for learning and a constant fraction are for testing.

13



By Theorem 4 the total number of steps spent learning edges in each version of map is O(d2n3).

For each candidate homing sequence, there are n versions of map, and the candidate homing

sequence is improved at most n times. Thus, O(d2n5) steps are spent learning nodes and edges.

We consider the number of steps taken testing nodes. Each test requires jpathj = O(dn2) steps.

Once a map contains an error, the probability that the robots choose to test a node that is in error

is at least 1=n. A map with more than dn edges must be faulty. Note that the candidate homing

sequence is improved at most n � 1 times. Thus by Corollary 11, with overwhelming probability

after O(n2) tests of maps with at least dn nodes, the candidate sequence h is a homing sequence.

Overall, the algorithm has to learn O(dn3) edges, and therefore it executes O(dn3) tests. Thus the

total number of steps spent testing is O(d2n5).

After each test or veri�cation, the algorithm executes a candidate homing sequence. Since

there are O(dn) edges in each map, candidate homing sequences are executed O(dn3) times. Each

improvement of the candidate homing sequence extends its length by jpathj, so the time spent

executing homing sequences is O(d2n6). Thus, the total running time of the algorithm is O(d2n6).

2

5.1 Improvements to the Algorithm

The running time for Learn-Graph can be decreased signi�cantly by using two-robot adaptive

homing sequences. As in Rivest and Schapire [RS93], an adaptive homing sequence is a decision

tree, so the actions in later steps of the sequence depend on the output of earlier steps. With an

adaptive homing sequence, only one mapc needs to be discarded each time the homing sequence is

improved. Thus the running time of Learn-Graph decreases by a factor of n to O(d2n5).

Any additional information that distinguishes nodes can be included in the output, so homing

sequences can be shortened even more. For example, a robot learning an unfamiliar city could

easily count the number of roads leading into and out of intersections. It might also recognize

stop signs, tra�c lights, railroad tracks, or other common landmarks. Therefore, in any practical

application of this algorithm we expect a signi�cantly lower running time than the O(d2n5) bound

suggests.

Graphs with high conductance can be learned even faster using the algorithm presented in

Section 6.

5.2 Limitations of a Single Robot with Pebbles

We now compare the computational power of two robots to that of one robot with a constant

number of pebbles. Note that although Learn-Graph runs in time polynomial in n, the algorithm

requires no prior knowledge of n. We argue here that a single robot with a constant number of

pebbles cannot e�ciently learn strongly-connected directed graphs without prior knowledge of n.

As a tool we introduce a family C = [nCn of graphs called combination locks. 1 For a graph

1Graphs of this sort have been used in theoretical computer science for many years (see [Moo56], for example).

More recently they have reemerged as tools to prove the hardness of learning problems. We are not sure who �rst

coined the term \combination lock."
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C = (V;E) in Cn (the class of n-node combination locks), V = fu0; u1; : : : ; un�1g and either

hui; 0; ui+1mod ni and hui; 1; u0i 2 E; or hui; 1; ui+1mod ni and hui; 0; u0i 2 E; for all i � n (see

Figure 3a). In order for a robot to \pick a lock" in Cn | that is, to reach node un�1 | it must

follow the unique n-node simple path from u0 to un�1. Thus any algorithm for a single robot with

no pebbles can expect to take �(2n) steps to pick a random combination lock in Cn.

uu u u u u0 1 2 3 4 5

0
1 0 0 0,1

11010

1

(a)

(b)
0,1 u 0,1 u 0,1 u 0,1 u u 0 u 1 u 0 u 1 u 1 u0,1u0 1 2 3 4 5 6 7 8 9 10

1 0
0 0 1 01

Figure 3: (a) A combination-lock, whose combination is 0; 1; 0; 1; 1. (b) A graph in R11. Graphs in
R = [1n=1Rn cannot be learned by one robot with a constant number of pebbles.

We construct a restricted family R of graphs and consider algorithms for a single robot with a

single pebble. For all positive integers n, the class Rn contains all graphs consisting of a directed

ring of n=2 nodes with an n=2-node combination lock inserted into the ring (as in Figure 3b). Let

R = [1n=1Rn. We claim that there is no probabilistic algorithm for one robot and one pebble that

learns arbitrary graphs in R in polynomial time with high probability.

To see the claim, consider a single robot in node u0 of a random graph in R. Until the robot
drops its pebble for the �rst time it has no information about the graph. Furthermore, with

high probability the robot needs to take �(2n) steps to emerge from a randomly-chosen n-node

combination lock unless it drops a pebble in the lock. But since the size of the graph is unknown,

the robot always risks dropping the pebble before entering the lock. If the pebble is dropped outside

the lock, the robot will not see the pebble again until it has passed through the lock. A robot that

cannot �nd its pebble has no way of marking nodes and cannot learn.

More formally, suppose that there were some probabilistic algorithm for one robot and a pebble

to learn random graphs in R in polynomial time with probability greater than 1/2. Then there

must be some constant c such that the probability that the robot drops its pebble in its �rst c steps
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is greater than 1/2. (Otherwise, the probability that the algorithm fails to learn in time polynomial

in n is greater than 1/2.) Therefore, the probability that the robot loses its pebble and fails to

learn a random graph in R2c e�ciently is at least 1/2.

A similar argument holds for a robot with a constant number of pebbles. We conjecture that

even if the algorithm is given n as input, a single robot with a constant number of pebbles cannot

learn strongly-connected directed graphs. However, using techniques similar to those in Section 6,

one robot with a constant number of pebbles and prior knowledge of n can learn high-conductance

graphs in polynomial time with high probability.

6 Learning High Conductance Graphs

For graphs with good expansion, learning by walking randomly is more e�cient than learning by

using homing sequences. In this section we de�ne conductance and present an algorithm that runs

more quickly than Learn-Graph for graphs with conductance greater than
p
log n=dn2.

6.1 Conductance

The conductance [SJ89] of a graph characterizes the rate at which a random walk on the graph

converges to the stationary distribution �. For a given directed graph G = (V;E), consider a

weighted graph G0 = (V;E;W ) with the same vertices and edges as G, but with edge weights

de�ned as follows. Let M = fmi;jg be the transition matrix of a random walk that leaves i by

each outgoing edge with probability 1=(2 � degree(i)) and remains at node i with probability 1=2.

Let P 0 be an initial distribution on the n nodes in G, and let P t = P 0M t be the distribution after

t steps of the walk de�ned by M . (Note that � is a steady state distribution if for every node

i; P t
i = �i �! P t+1

i = �i. For irreducible and aperiodic Markov chains, � exists and is unique.)

Then the edge weight wi;j = �imi;j is proportional to the steady state probability of traversing the

edge from i to j. Note that the total weight entering a node is equal to the total weight leaving it;

that is,
P

j wi;j =
P

j wj;i.

Consider a set S � V which de�nes a cut (S; S). For sets of nodes S and T , let WS;T =P
s2S;t2T ws;t. We denote WS;V by WS , so WV represents the total weight of all edges in the graph.

Then the conductance of S is de�ned as �S = WS;S=
P

i2S �i = WS;S=WS:

The conductance of a graph is the least conductance over all cuts whose total weight is at most

WV =2: �(G) = minS fmax (�S ; �S)g : The conductance of a directed graph can be exponentially

small.

Mihail [Mih89] shows that after a walk of length ��2 log(2n=�2), the L1 norm of the distance

between the current distribution P and the stationary distribution � is at most � (i.e.
P

i jPi��ij �
�). In the rest of this section, a choice of � = 1=n2 is su�cient, so a random walk of length

��2 log (2n5) is used to approximate the stationary distribution. We call T = ��2 log (2n5) the

approximate mixing time of a random walk on an n-node graph with conductance �.
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6.2 An Algorithm for High Conductance Graphs

If a graph has high conductance it can be learned more quickly. In a high-conductance graph, we

can estimate the steady state probability of node i by leaving Clark at node i while Lewis takes w

random walks of ��2 log (2n5) steps each. Let x be the number of times that Lewis sees Clark at

the last step of a walk. If w is large enough, x=w is a good approximation to �i.

De�nitions: Call a node i a likely node if �i � 1=2n+1=n2. Note that every graph must have at

least one such node. (The 1=n2 term appears because of the distance � = 1=n2 from the stationary

distribution. Its inclusion here simpli�es the analysis later.) A node that is not likely is called

unlikely.

Algorithm Learn-Graph2 uses this estimation technique to �nd a likely node u0 and then calls

the procedure Build-Map to construct a map of G starting from u0. The procedure Build-Map

learns at least one new edge each iteration by sending Lewis across an unexplored edge hu; `; vi of
some un�nished node u in map. Clark waits at start node u0 while Lewis walks randomly until

he meets Clark. (If u0 is a likely node, this walk is expected to take O(Tn) steps.) Lewis stores

this random walk in the variable path. Thus, pathi is the label of the edge traversed at the ith step

of the random walk, path[i : : : j] represents edges pathi to pathj, and jpathj represents the length of

path. We say that path-step(Lewis) = i if Lewis has just crossed the ith edge on path.

Learn-Graph2(w;B;M; T ):
1 done := FALSE
2 T := ��2 log (2n5) f the mixing time g
3 while (not (done))
4 do map := (fu0g; ;) f map is the graph consisting of node u0 and no edges g
5 lost := FALSE
6 Lewis and Clark together take a random walk of length T
7 Lewis takes w random walks of length T f approx. stationary prob. of LocG(Clark) g
8 x := number of walks where Lewis and Clark are together at the last step
9 path := the path Lewis followed since leaving Clark
10 if x=w � B f bound B < 1=n chosen for ease of proof g
11 then Clark follows path to catch up to Lewis f not at a frequently-visited node g
12 else Lewis moves randomly until he sees Clark f call node where they meet u0 g
13 done := Build-Map(map,M;T )
14 return map

The procedure Compress-Path returns the shortest subpath of path that connects v to u0.

Finally, Truncate-Path-at-Map compares nodes on the path with all nodes in map and returns

the shortest subpath connecting v to some node in map. By adding the �nal path to the map,

Build-Map connects the new node v to map, so map always represents a strongly connected

subgraph of G. Figure 4 illustrates a single iteration of the main loop in Build-Map.

Algorithm Learn-Graph2 takes as input parameters the number of random walks w, a bound

B to separate the probability of likely and unlikely nodes (we choose B to be approximately 3=4n),

the mixing time T , and a quantity M . This quantity is chosen so that the probability of a robot's
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Build-Map(map,M;T ):
1 while there are un�nished nodes in map and not lost f Lewis and Clark both at u0 g
2 do ui := an un�nished node in map
3 restart := a minimal path in map from u0 to ui
4 m := largest index of the nodes in map
5 path := empty path
6 Lewis follows restart and traverses unexplored edge ` f Lewis crosses a new edge g
7 while length(path) < MT and robots are not together f Lewis walks randomly : : :g
8 do Lewis traverses a random edge `0 and adds `0 to end of path
9 if robots are together f : : :until he sees Clark at u0 g
10 then both robots follow restart to ui and cross edge `
11 path := Compress-Path(path, restart) f removes loops from path g
12 path, uj := Truncate-Path-At-Map(path, map) f shortest path back to map g
13 if jpathj = 0
14 then add edge hui; `; uji to map
15 else add nodes um+1; : : : ; um+jpathj to map

16 add edges hui; `; um+1i and hu
m+jpathj; pathjpathj; uji to map

17 8k; 1 � k < jpathj add edges hum+k; pathk; um+k+1i
18 both robots move to u0
19 else f if Lewis walks MT steps without seeing Clark g
20 Clark follows restart, `, path to catch up to Lewis
21 lost := TRUE
22 if lost
23 then return FALSE
24 else return TRUE

Compress-Path (path,restart):
1 while Clark not at end of path f Lewis and Clark both at u0 g
2 do while Lewis not at end of path
3 do Lewis traverses the next edge of path
4 if Lewis and Clark are together f found a loop in path | remove it g
5 then path := path[1 : : :path-step(Clark) � path[path-step(Lewis) + 1 : : : jpathj]
6 Lewis follows restart and edge `
7 Lewis traverses edges path[1 : : :path-step(Clark) ]
8 both robots are now together and traverse one edge of path
9 return path f Lewis and Clark both at u0 g

Truncate-Path-At-Map(path,map ):
1 earliest := jpathj f �rst position on path that is a node already in map g
2 earliest-node := u0 f the name of this node g
3 for each node uk in map
4 Clark moves to uk
5 Lewis follows restart and edge `
6 while Lewis not at end of path
7 do if Lewis and Clark are together and path-step(Lewis) < earliest
8 then earliest := path-step(Lewis)
9 earliest-node := uk
10 Lewis traverses next edge on path
11 both robots move to u0
12 return path [1 : : :earliest ], earliest-node
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Figure 4: Procedure Build Map during one execution of the while loop. The ovals represent map,
the portion of graph G learned so far. Note that map is strongly connected. Node u0, the �rst
node added to map, is with high probability a node with a large stationary probability (a likely
node). The robots �nd u0 in procedure Learn-Graph2 using random walks in line 2 of Build
Map. The robots agree on a node ui with unexplored outgoing edges (an un�nished node). Then
Lewis moves to ui and follows the unexplored edge `, while Clark stays at u0. Since ` is unexplored,
Lewis is now at an unknown node. Lewis walks randomly until, visiting u0, he �nds Clark. The
dotted line of Figure 4 [a] depicts this random walk, denoted path. Random walk path may pass
through the same node many times. In procedure Compress-Path, the robots collectively remove
all of the loops from the path (reducing the path to the solid line in [a] and [b]). In procedure
Truncate-Path-at-Map, the robots �nd uj, the �rst node in path already in map. All the nodes
and edges of path until uj (the bold line in [b]) are added to map.
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starting at a likely node and walking randomly for MT steps without returning to its start node is

very small.

In sections 6.3 and 6.4 we prove the following theorems.

Theorem 13 When Learn-Graph2 halts, it outputs a graph isomorphic to G.

Theorem 14 Suppose Learn-Graph2 is run on a graph G with w =
p
(4 + �)dn3 and M =

(4 + �)dn2 for some constant � > 0, and B = 3
4n

�
1 + 2

n

�
. Then for su�ciently large n, with

probability at least 1�� Learn-Graph2 halts within O((4+�)dn3T ) steps, where � = e�
1
20

p
(4+�)nd+

e�
1
2

p
(4+�)nd + e�

dn�
4 .

6.3 Correctness of Learn-Graph2

In this section, we prove the correctness of each procedure in Learn-Graph2.

Lemma 15 The procedure Compress-Path halts in O(n jpathj) steps and returns a path in which

no node occurs more than once.

Proof: We prove the following invariant by induction: in Compress-Path, whenever Lewis

reaches the end of path, each node in path[1 : : :path-step(Clark)] appears at most once in the entire

path.

Assume that this claim holds after Clark has crossed the �rst k edges in path. By the inductive

hypothesis, we know that when Clark crosses the (k + 1)st edge, he arrives at some new node not

previously encountered along path. Now Lewis follows the entire path. Whenever the path loops

back to LocG(Clark), the loop is removed from the path. Thus, all repeated occurrences of the new

node are removed from the path, proving the inductive step.

Since there are n nodes in the graph, Clark can only make n moves before he returns to u0. Lewis

can move at most jpathj steps for every move of Clark's, so the total running time is O(n jpathj). 2

Lemma 16 The procedure Truncate-Path-At-Map �nds the index of the �rst path step leading

to a node already in map. The algorithm runs in O(n2) steps.

Proof: For each node uk in map, Lewis traverses the path once while Clark waits at uk. The pro-

cedure keeps track of the earliest node found that is already in map, so the procedure's correctness

follows. Clark takes at most n steps to reach each node uk. Lewis needs at most n steps to follow

the compressed path and n more to return to the start of the path. Thus the algorithm requires no

more than 3n2 steps. 2

The algorithm Learn-Graph2 halts only when Build-Map returns TRUE. The following

lemma shows that whenever Build-Map returns TRUE, map is isomorphic to G.

Lemma 17 InBuild-Map, whenever Clark is at u0, map is a good representation of hLocG(Clark);Gi.
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Proof: We inductively build a subgraphG0 = (V 0; E0) ofG = (V;E) and construct an isomorphism

f from map to G0. Initially, Lewis and Clark are both at u0 and map consists of the single node

u0 and no edges. Let V 0 = LocG(Clark); E
0 = ;; and f(u0) = LocG(Clark). Then map is a good

representation of hLocG(Clark);Gi.
Consider the robots starting an iteration of the �rst while loop in Build-Map. Both robots

are together at u0. Inductively assume that map is a good representation of hLocG(Clark);Gi and
that map is strongly-connected. Thus, Lewis can always reach an un�nished node in map if one

exists. Lewis walks to an un�nished node ui, crosses a new edge ` to an unknown node v, and

then walks randomly until he returns to u0, where Clark is waiting. From Lemmas 15 and 16, after

the algorithm executes subroutines Compress-Path and Truncate-Path, ` � path is a path that

begins at ui, crosses edge `, ends at uj , and whose intermediate nodes are not represented in map.

If path is empty after Truncate-Path-At-Map, then v is node uj already in map. Adding

edge hf(ui); `; f(uj)i to E0 and hui; `; uji to map and therefore maintains the invariant that G0 is a

subgraph of G and preserves the isomorphism between map and G0.

If path is not empty, then by lemmas 15 and 16 all nodes reached by starting at ui and following

path to the end are distinct, and only the last node reached is already in map. Let m be the highest

index so far of any node in map. The algorithm adds new nodes um+1; : : : ; um+jpathj and new edges

hum+k; pathk; um+k+1i 8k; 1 � k < jpathj, hui; `; um+1i, and hum+jpathj; pathjpathj; uji to map. Let

f(um+k) be the location of Lewis in G after Lewis has crossed the kth edge of the path. Add the

jpathj�1 new nodes to V 0, and edges hf(um+k); pathk; f(um+k+1)i to E0. Then f is an isomorphism

from map to G0 � G, so map is a good representation of hLocG(Clark);Gi. Since path connects an

un�nished node to another node in map, map remains strongly-connected. 2

When Build-Map halts and returns TRUE, there are no un�nished nodes in map . Since

map is isomorphic to G0 � G and has no un�nished nodes, map must have the same number

of nodes and edges as G. Therefore, map is isomorphic to G when Build-Map returns TRUE,

proving Theorem 13. 2

6.4 Running Time and Failure Probability of Learn-Graph2

We proved that when the algorithm terminates it is correct. In this section, we prove Theorem 14

by analyzing the probability that the algorithm terminates in a reasonable amount of time. We

say the algorithm fails if any of the following cases holds:

1. Algorithm Learn-Graph2 �nds an unlikely node but estimates that it is a likely node.

2. Algorithm Learn-Graph2 fails to �nd a likely node in the allotted time. We allow w =p
(4 + �)dn3 iterations, each consisting of w random walks.

3. Algorithm Learn-Graph2 calls Build-Map from a likely node, but Build-Map returns

FALSE.

In fact, these conditions overestimate the probability that the algorithm fails to run in O((4 +

�)dn3T ) steps. The next three lemmas bound the probabilities of each of the three failure conditions.
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At the end of the section, we analyze the running time of Learn-Graph2 when no failure condition

occurs.

Lemma 18 (Failure Condition 1) Suppose that Learn-Graph2 is run with w =
p
(4 + �)dn3

and M = (4 + �)dn2. Assume that the algorithm estimates node u's steady-state probability to be

greater than B = 3
4n
(1+ 2

n
). Then the probability that u is not a likely node is at most e�

1
20

p
(4+�)nd.

Proof: Call each random walk in Learn-Graph2 a phase. Let Xi be the random variable where

Xi =

(
1 if Lewis and Clark are together at the end of phase i

0 otherwise.

Then X =
Pw

i=1Xi is the number of phases where Lewis and Clark end together. If u is an unlikely

node, then E[X ]� (w=2n)(1+(2=n)), because the estimation of �u could be inaccurate by at most

� = 1=n2. We therefore bound the quantity

Pr

�
X >

3w

4n

�
1 +

2

n

� ��� E[X ]� w

2n

�
1 +

2

n

��
:

Using the Cherno� bound from Lemma 11 with � = 1=2, we get:

Pr

�
X � 3w

4n

�
1 +

2

n

��
�
"
e
1
2

(3
2
)
3
2

# w
2n(1+ 2

n)

�
 r

8e

27

! w
2n

� eln
�p

8e
27

�p(4+�)dn
2 � e

�

p
(4+�)dn

2 ln
�p

27
8e

�
� e

�

p
(4+�)dn
20 :

2

Lemma 19 (Failure Condition 2) The probability that Learn-Graph2 fails to �nd and recog-

nize a likely node after
p
(4 + �)dn3 iterations is at most e�

1
2

p
(4+�)dn for su�ciently large n.

Proof: De�ne a good node to be a node with steady state probability at least 1=n. (Note that

every graph has at least one good node.) We can bound the probability that we fail to �nd and

recognize a likely node by the probability that we fail to identify a good node within w iterations.

First, we bound the probability that the algorithm fails to recognize a good node when testing

one. Random variables Xi andX are de�ned as in Lemma 18. Then, since the stationary probability

of a good node is greater than 1=n,

E(X)� w

�
1

n
� 1

n2

�
:

To simplify the math, note that for su�ciently large n,

w

�
1

n
� 1

n2

�
� 15w

16n

�
1 +

2

n

�
:
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Then by the Cherno� corollary in Lemma 11, for � = 1=5,

Pr

�
X < (1� �)

15w

16n

�
= Pr

�
X <

3w

4n

�
� e�

1
2
15
16

1
25

w
n � e�

3
160

p
(4+�)dn:

De�ne 
 to be the quantity �
1� 1

n

��
1� e�

3
160

p
(4+�)dn3

�
:

The probability that the node reached at the end of a random walk of both robots is a good node

and is identi�ed as such is at least�
1

n
� 1

n2

��
1� e�

3
160

p
(4+�)dn3

�
=




n
:

Therefore the probability that after w trials, no likely node is found and recognized is at most

�
1� 


n

�p(4+�)dn3

=

�
1� 


n

��n



�
�

p

(4+�)dn
�
= e�


p
(4+�)dn:

Note that 
 approaches 1 as n increases. For su�ciently large n; 
 > 1=2, so the probability

that the robots fail to �nd a likely node after w trials is at most e�
1
2

p
(4+�)dn. 2

Now we analyze the running time of Build-Map. The procedure Build-Map executes the

main while loop at most once for each of the dn edges in the graph. Let ki be the length of the

random walk in the ith iteration of the while loop. Then let K =
Pdn

i=1 ki be the total length of all

the random walks in the algorithm. Since by Lemmas 15 and 16 Compress-Path runs in O(nki)

steps and Truncate-Path-At-Map runs in O(n2) steps, the ith iteration takes O(n+ki+nki+n
2)

steps. Therefore the total running time of the algorithm is O(dn3 + nK):

Lemma 20 (Failure Condition 3) If u0 is a likely node, then with probability at least 1�e�
�dn
4 ,

K � (4 + �)dn2T .

Proof: We use an amortized analysis to prove the bound on K. First we subdivide all of Lewis'

random walks during Build-Map into periods of T = ��2 log 2n=�2 steps each, where T is the

approximate mixing time. Recall that if Lewis starts from any node, after T steps Lewis is at node

uk with probability between �k � 1=n2 and �k + 1=n2. Thus, Lewis' position after the kth period

is almost independent of Lewis' position after the (k+ 1)st period.

We associate a 0=1-valued random variable, Xk, with the kth period of Lewis' random walk.

Xk =

(
1 if Lewis is at node u0 at the end of the kth period

0 otherwise.

Since u0 is a likely node, Xk = 1 with probability at least 1=2n. Let X =
P(4+�)dn2

k=1 Xk be the

number of times Lewis returns to u0 in (4+ �)dn2 periods. Note that E(X) is at least (4+ �)dn=2.

Using Cherno� bounds with � = 1� (2=(4+ �)) we �nd:

Pr[X < (1� �)E[X ]]< Pr[X < dn] < e
�(4+�)dn

4 (1� 2
4+� )

2
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< e
�(4+�)dn

4

�
1� 4

4+� +
4

(4+�)2

�
< e

�(4+�)dn
4 +dn < e

�dn�

4 :

2

Thus, with high probability Build-Map runs in O(dn3 + dn3(4 + �)T ) steps. Suppose none

of the failure conditions occurs in a run of Learn-Graph2. Then the execution never calls

Build-Map on an unlikely node, does call Build-Map on a likely node, and when it does,

Build-Map returns TRUE. Therefore Learn-Graph2 makes at most w steady-state probabil-

ity estimates, each taking O(wT ) steps, before calling Build-Map once. Therefore, the running

time is O((4 + �)dn3T ), proving Theorem 14. 2

6.5 Exploring Without Prior Knowledge

Prior knowledge of n is used in two ways in Learn-Graph2: to estimate the stationary probability

of a node and to compute the mixing time T . If T is known but n is not, the algorithm can forego

estimating �i entirely and simply run Build-Map after step 6. The removal of lines 7 { 12 from

Learn-Graph2 yields a new algorithm whose expected running time is polynomially slower than

the original. If we know neither n nor T , we can run this new algorithm using standard doubling to

estimate the quantity MT . This quantity can be used in line 6 of Learn-Graph2 and also in line

7 of Build-Map as an upper bound on the length of the random walks. Thus no prior knowledge

of the graph is necessary.

7 Conclusions and Open Problems

Note that with high probability, a single robot with a pebble can simulate algorithm Learn-

Graph2 with a substantial but polynomial slowdown. However, Learn-Graph2 does not run in

polynomial expected time on graphs with exponentially-small conductance. An open problem is

to establish tight bounds on the running time of an algorithm that uses one robot and a constant

number of pebbles to learn an n-node graph G. We conjecture that the lower bound will be a

function of �(G), but there may be other graph characteristics (e.g., cover time) which yield better

bounds. It would also be interesting to establish tight bounds on the number of pebbles a single

robot needs to learn graphs in polynomial time.

Another direction for future work is to �nd other special classes of graphs that two robots can

learn substantially more quickly than general directed graphs, and to �nd e�cient algorithms for

these cases.
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