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Abstract

We consider the problem of determining the three-dimensional folding of a protein given its
one-dimensional amino acid sequence. The model we use is based on the Hydrophobic-Polar
(HP) model [2] on cubic lattices in which the goal is to find the fold with the maximum number
of contacts between non-covalently linked hydrophobic amino acids. Hart and Istrail [5] give
a 3/8 approximation algorithm for folding proteins on the cubic lattice. Since the cubic lattice
exhibits the “parity” problem (described below), we instead consider folding proteins on a different
lattice: the three-dimensional triangular lattice. For this lattice, Decatur and Batzoglou [1] give a
simple linear time algorithm which achieves a 16/30 asymptotic approximation. In this work, we
further improve the model by generalizing the HP model to account for hydrophobic residues with
different levels of hydrophobicity. After describing the motivation for this generalization of the
model, we show that in new model we are able to achieve the same constant factor approximation
guarantee on the triangular lattice as was achieved in the standard HP model.
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1 Introduction

A long standing problem in molecular biology is the task of determining the native three-dimensional
structure of a protein when only given the sequence of amino acid residues which compose the protein
chain. Due to the complexity of the protein folding problem, scientists have studied a variety of
simplifications of the general problem. Dill [2] introduced one such model, called the Hydrophobic-
Polar (HP) Model.
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The HP model abstracts the problem by first grouping the 20 amino acids which compose proteins
into two classes: hydrophobic (or non-polar) residues and hydrophilic (or polar) residues. In addition,
the space in which the protein folds is discretized by defining a lattice and requiring residues to lie only
on lattice points. Residues which are adjacent in the primary sequence (i.e. covalently linked) must be
placed at adjacent points in the lattice. A fold of a protein is simply a self-avoiding walk along the
lattice. In order to distinguish the quality of a given fold of a protein, we say a contact between two
residues is a topological contact if they are not covalently linked and there is an edge connecting the
lattice points of the two residues. Then the free energy of a fold is defined to be (�1)�(# of topological
contacts between pairs of hydrophobic residues). We often refer to the score of a fold which we define
to be the absolute value of its free energy. The target fold for the protein is the one which has the lowest
free energy, or equivalently, the highest possible score.

The biological foundation of this model is the belief that the first-order driving force of protein
folding is due to a “hydrophobic collapse” in which those residues which prefer to be shielded from
water (hydrophobic residues) are driven to the core of the protein, while those which interact more
favorably with water (polar residues) remain on the outside of the protein. The protein is hypothesized
to fold in such a way as to minimize the surface area of hydrophobic residues exposed to water or polar
residues. The HP model has been studied extensively and Dill et.al. [3] review much of the research in
this and related models.

From a computational point of view, it is not known whether or not the problem of finding the
fold with maximum score is NP-hard. Hart and Istrail [5] gave the first approximation algorithm for
this problem. They gave an algorithm for generating folds on a cubic lattice (three-dimensional square
lattice) such that for any protein, the score of the generated fold is at least 3=8 of the optimal score for
this protein on a cubic lattice.

Yet, a significant drawback of the cubic lattice is that if two residues are at any even distance from
one another in the primary sequence then they cannot be in topological contact with one another when
the protein is embedded in this lattice. We refer to this as the “parity” problem. Although the folds
constructed by Hart and Istrail are at least 3=8 of the optimal on the cubic lattice, the optimal on this
lattice may by arbitrarily worse than the optimal on lattices without the parity problem. It is therefore
interesting to examine the HP folding problem on a regular lattice which does not exhibit the parity
problem, such as the triangular lattice, and to strive for folds approaching the more natural optimal
score found there. In Section 2, we describe the parity problem as well as the triangular lattices in
more detail.

Decatur and Batzoglou [1] give a simple linear time algorithm for folding a protein on a three-
dimensional triangular lattice which asymptotically guarantees a score at least 16=30 � 53% of the
optimal. This algorithm, which we later adapt, is presented in Section 3. The folds produced by
this algorithm contain a helical hydrophobic core composed of repeated core planes each of which is
formed by the exclusion of polar residues towards the outside of the core.

In this work, we extend the HP model by considering a more general representation of hydrophobic
residues. The new model is motivated by the fact that certain hydrophobic residues are more hydropho-
bic in character than other hydrophobic residues. While in the standard HP model all hydrophobic
amino acids have identical unit hydrophobic value, our new model allows different hydrophobic amino
acids to have different integral hydrophobic values and contacts between hydrophobic residues con-
tribute to the energy function proportional to their combined hydrophobic strength. We describe this
motivation in more detail in Section 4 and then show that a simple variant of the algorithm of Section 3
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can be used in the generalized HP model to achieve the same factor of approximation.
As mentioned above, optimal folding in the standard HP model is not known to be NP-hard and it

might therefore be possible that the model is insufficient to capture the conjectured difficulty of real
protein folding. As a step towards establishing the NP-hardness of this problem, a related model has
been proposed by Paterson and Przytycka [7] in which there is an unlimited alphabet of residue types
and only contacts between identical types make unit contribution to the energy function. In their model,
they show that finding the optimal energy fold on a cubic lattice is NP-hard. Central to their proof
is the use of arbitrarily many different types of residues and the rule that only exact matches between
residues contribute. As these are not properties found in the folding of actual proteins, it would be
preferable to show NP-hardness in a more plausible extension of the HP model. We hope that it will
be possible to show that optimal folding in the generalized hydrophobic model of Section 4 is NP-hard
and that therefore this more plausible model does in fact capture the conjectured difficulty of protein
folding.

2 Lattices and the Parity Problem

As originally formulated, the HP model uses the square (2D) or cubic (3D) lattice. These lattices are
simple to think about and to manipulate, but as mentioned above they posses a flaw referred to as the
“parity problem” in which two residues of even distance from one another in the primary sequence
are unable to be placed in contact with one another regardless of how one arranges the intervening
sequence. For example, a protein sequence whose first residue is placed at the “*” in Panel A of
Figure 1 may only have even numbered residues at “E” positions and odd numbered residues at “O”
positions. An example sequence is shown in Panel B of Figure 1. Note that the cubic lattice also
exhibits this problem.
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Figure 1: The Parity Problem. Figure 2: The Two-Dimensional Triangular Lattice.

This parity restriction is clearly not present when considering the real folding of proteins. For this
reason, we instead consider protein folding in the HP model on a lattice which does not exhibit the
parity problem, specifically the triangular lattice. The two-dimensional triangular lattice is shown in
Figure 2. It is not hard to verify that this lattice does not exhibit the parity problem. That is, for any
two residues of distance at least two from one another, one can construct a fold of the protein along the
lattice which has a non-covalent contact between these two residues.

It is also important to note that the score of an optimal fold of a protein in the HP model can differ
by an arbitrarily large amount between the square lattice and the triangular lattice. For example, when
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folding the sequence HPHPHP...HP (alternating hydrophobic and polar residues) on the square lattice,
not even a single contact can be achieved between hydrophobic residues since all are at odd positions
in the sequence. Yet, as shown in Figure 3, on the triangular lattice this sequence can be placed
in a confirmation reminiscent of a protein beta-sheet which achieves a number of contacts between
hydrophobic residues (dashed lines between solid circles) linear in the length of the sequence.

Figure 3: HPHPHP...HP folded on the triangular lattice.

As real protein folding occurs in three-dimensional space we in fact consider the lattice shown in
Figure 4, which is a three-dimensional extension of the lattice shown in Figure 2.1 It is not hard to
verify that the three-dimensional lattice also does not exhibit the parity problem.

Figure 4: The Three-Dimensional Triangular Lattice. Figure 5: A single node and its twelve neighbors.

By examination of these triangular lattices, we may compute upper bounds on the score of a protein
on such lattices in terms of the number of hydrophobic residues in the protein. In the two-dimensional
lattice, each lattice point has six neighbors. Since each residue has two covalent neighbors, a residue
at a lattice point may be in topological contact with at most four other residues.2 Thus, each residue
may be involved in at most 4 H-H contacts. Since each contact is shared by two residues, there may be
at most 2 H-H contacts per hydrophobic residue, and therefore the optimal number of contacts on this
lattice for a given protein is at most twice the number of hydrophobic residues in the protein. In the case
of the three-dimensional triangular lattice, each node instead has 12 neighbors, as shown in Figure 5.
Thus, the optimal number of contacts on this lattice for a given protein is at most (12�2)=2 = 5 times
the number of hydrophobic residues in the protein.

1This three-dimensional lattice is based on the topology of the � form of Silicon Carbide. The nodes in this lattice
correspond to the silicon atoms in the Silicon Carbide crystal. Two nodes in this lattice are connected if there exists a
carbon atom that is bonded to both of the two silicon atoms corresponding to the nodes.

2If the residue is either the first or last of the protein, then only 1 neighbor is covalently linked. This may only increase
the optimal score by 1 and is therefore ignored for our asymptotic analysis.
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3 The Binary HP Construction on the 3D Triangular Lattice

The folding algorithm of Decatur and Batzoglou [1] for the three-dimensional triangular lattice places
all hydrophobic residues in a single, tightly-packed, hydrophobic core. The core is composed of six
residues at each level and contains as many levels as is necessary to accommodate all hydrophobic
residues in the protein. In Figure 6, a core of depth four is shown in which we wrap the protein in a
clockwise direction from front to back. Thick lines represent the covalent connections, while thin lines
represent the remaining adjacencies in the lattice. The central dark residues are hydrophobic while
the outer light residues are polar. The fold shown is for a hypothetical protein which has exactly two
polar residues between each hydrophobic residue. If instead there were more or less than two polar
residues between a given pair of hydrophobic ones, then these intervening polar residues would be laid
out along a ladder as shown in Figure 8 in order to still place the next hydrophobic residue in its proper
location. This allows the hydrophobic residues to be properly placed in the core regardless of the
number of intervening polar residues. As shown in Figure 7, in each plane there exist nonoverlapping
ladders of this form which extend indefinitely from each ladder of size 2 in Figure 6. Figure 9 shows
how to switch from one plane to the next. When leaving position H6 in the front plane (dark), edge X
is used to reach H1 in the next plane (light) if there are no intervening polar residues. Otherwise edge
Y is used to reach position L1 at the entrance to the first ladder of the next plane.

  L1   L1   L6

  L1   L1   L6   L6

  L2   L2   H1   H6   L6

  L2   L2   H2   H5   L5   L5

  L3   H3   H4   L5   L5

  L3   L3   L4   L4

  L3   L4   L4

Figure 6: Four levels of the 16/30 factor layout. Figure 7: The six ladders in a plane.

The algorithm which folds protein sequences as described above can be clearly seen to run in linear
time. In need only scan through the sequence once. Each hydrophobic is positioned in the next free
location of the core. After a hydrophobic residue is positioned, the algorithm then counts the number
of polar residues before the next hydrophobic and lays out the polar ladder of the correct size.

The asymptotic analysis assumes that the protein contains arbitrarily many hydrophobic residues
in order to ignore the constant fewer contacts at the end of hydrophobic core. As shown in Figure 10,
each group of six hydrophobic residues in the constructed core has 9 contacts within the group (thick
lines) and 13 contacts to the next group (thin lines). At most 6 of these contacts could be covalent
bonds. Thus, each group of six hydrophobic residues contributes at least 9 + 13� 6 = 16 topological

5



L1
L1

L1
L1

H6

Y

X
H1

H1
H6

Figure 8: The ladder between
hydrophobic i and i+ 1.

Figure 9: Switching levels. Figure 10: Hydrophobic con-
tacts within one plane and to the
next plane.

contacts. Therefore, the score of a protein folded in this manner asymptotically approaches at least
16�(# of hydrophobics)=6. As noted above, each hydrophobic residue can contribute at most 5 new
contacts, and thus the asymptotic approximation is (16=6)=5 = 16=30.

4 Generalized Hydrophobicity

The standard HP model makes the simplifying assumption that all residues which are hydrophobic can
have the same energy contribution to the hydrophobic collapse. Yet it is well known that different
types of hydrophobic residues are more strongly hydrophobic than others. In fact, scientists have
developed many such hydrophobicity scales in order to quantify the relative hydrophobicity of amino
acids. (See for example Kyte and Doolittle [6] or Engelman, Steitz and Goldman [4].) We therefore
propose an extension of the hydrophobic-polar model which accounts for residues of differing levels
of hydrophobicity.3

In the new model, we allow each of the 20 amino acids to have a value from the set f0; 1; 2; : : :g.
Zero represents polar residues and non-zero values represent proportional levels of hydrophobicity.
We then consider the value of a contact to be the amount of hydrophobicity buried from polar residues
and solvent. Thus, a contact between any residue and solvent shields no hydrophobicity and is given a
value of 0. A contact between a hydrophobic residue (with value from f1; 2; : : : :g) and a polar residue
(value 0) also shields no hydrophobicity and is given a value of 0. Finally, a contact between two
hydrophobic residues (each with value from f1; 2; : : : :g) shields both and is given value equal to their
sum, the combined amount of hydrophobicity that is shielded.

If the ratio between the largest and smallest hydrophobic values assigned to the 20 amino acids is
�, then blindly using an algorithm for the binary HP model could in the worst case result in a factor of
� loss in the approximation factor. In the case of the algorithm of Section 3, as � grows arbitrarily the
16/30 approximation factor only falls by a constant to 2/5. These losses occur since some positions
in a fold are involved in fewer contacts than others. If the strongly hydrophobic residues are placed
in these positions, then the approximation suffers. Therefore, we must adapt our algorithms to adjust
the construction based on the strength of the hydrophobic residues in the protein. Below, we adapt
the algorithm of Section 3 for the generalized HP model and analyzed its performance. In addition,

3Note that although surface area of the actual residue may contribute to the strength of hydrophobicity attributed to a
residue, we do not model the actual size differences in the spatial layout of the protein. Furthermore, we do not address
the fact that polar residues also have diversity when compared to one another as well as when compared to water. These
extension not considered here would still further improve the modeling of the protein folding problem.
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other folding algorithms constructed for the binary HP model should also be examined in this respect
and one would hope that their performance could also be kept comparable to their performance in the
binary HP model.

A C

B B

C A

Figure 11: Contacts for positions A, B and C.

In adapting the algorithm described in Section 3, we are able to achieve the same 16/30 asymptotic
approximation that was possible in the binary HP model. The new algorithm will once again place
all hydrophobic (non-zero) residues in the core using the layout shown in Figure 6. In this layout,
the number of contacts that a hydrophobic residue participates in depends on which of three different
types of positions within the core it occupies (See Figure 11). If we number the hydrophobic residues
starting at 0, then the number of hydrophobic contacts (2 of which may be covalent) in which the r-th
hydrophobic residues participates is

6 ) if r � 0 mod 3 (Position A)
9 ) if r � 1 mod 3 (Position B)
7 ) if r � 2 mod 3 (Position C)

out of a possible 12 contacts. Thus, there are three equivalence classes of residues, depending on their
hydrophobic position in the primary sequence modulo 3. For i 2 f0; 1; 2g, let Hi be the set of residues
at position r such that r � i mod 3, let Wi be the sum of the hydrophobic values of all of the residues
in set Hi and let indices i1; i2; i3 be such that Wi1

� Wi2
� Wi3

. If we define W = Wi1
+Wi2

+Wi3
,

then the optimal score for a protein is at most (12 � 2) �W . Note that a single scan of the residues is
sufficient to determine the values W0, W1 and W2.

By placing the first hydrophobic residue at a different starting position in the construction, we
effectively replace r in the above equations with r+ 1 or r+ 2. Furthermore, by wrapping the core in
the opposite direction, we effectively replace r by �r. Therefore, we adapt the construction to place
the residues of Hi3

in position B, the residues of Hi2
in position C, and the residues of Hi1

in position
A. If we let x =Wi1

, y = Wi2
�Wi1

and z =Wi3
�Wi2

, then we achieve:

Score = (9 � 2) �Wi3
+ (7 � 2) �Wi2

+ (6� 2) �Wi1

= 7 �Wi3
+ 5 �Wi2

+ 4 �Wi1

= 7 � (x+ y + z) + 5 � (x+ y) + 4 � (x)

= 16x + 12y + 7z

� 16x +
32

3
y +

16

3
z (1)

=
16

3
� (3x+ 2y + z)
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=
16

3
�W

The approximation factor is therefore at least

APPROX �
16=3 �W

10W
=

16

30
:

Inequality (1) is exact equality (yielding an approximation factor lower bound of 16=30) when y =
z = 0, i.e. W0 = W1 = W2. When the weights of the three classes differ, the approximation factor
bound increases and asymptotically approaches 7=10 as all of the weight becomes concentrated in one
of the three classes.

In some proteins, the weight of residues in one class (e.g. W0) may be largest in the first half of the
protein sequence, while the weight of residues in another class (e.g. W2) may be largest in the second
half of the protein sequence. In such cases, we would prefer one wrapping of the core in the first half
and another wrapping in the second half. In order to change the wrapping in the middle of the sequence,
there is a loss in the score due to the break in the core. Yet, in some cases this loss would be more than
made up for by placing the heavier weighted residues at the B position in both halves of the sequence.
Furthermore, this change in wrapping can be done as many times as is productive. Using dynamic
programming, one could construct the best score possible by this strategy in time O(nb) where n is
the number of residues in the protein and b is the number of breaks permitted.

Note that these arguments for improving the approximation do not yield better worst case asymptotic
approximations since here the worst case is when all classes have equal weight. But, since real proteins
undoubtably have diverse hydrophobic makeup, the ability of an algorithm to leverage this diversity
when present would be preferable. As this diversity is not guaranteed to exist in a worst-case analysis,
it would also be of interest to determine if there are properties in biological protein sequences which
HP folding algorithm could make use of to improve their performance guarantees, possibly using an
average case analysis.
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