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Abstract

We describe the generation of a large pose-mosaic dataset: a collection of several thousand
digital images, grouped by spatial position into spherical mosaics, each annotated with estimates
of the acquiring camera's 6 DOF pose (3 DOF position and 3 DOF orientation) in an absolute
coordinate system.

The pose-mosaic dataset was generated by acquiring images, grouped by spatial position into
nodes (essentially, spherical mosaics). A prototype mechanical pan-tilt head was manually deployed
to acquire the data. Manual surveying provided initial position estimates for each node. A back-
projecting scheme provided initial rotational estimates. Relative rotations within each node, along
with internal camera parameters, were re�ned automatically by an optimization-correlation scheme.
Relative translations and rotations among nodes were re�ned according to point correspondences,
generated automatically and by a human operator. The resulting pose-imagery is self-consistent
under a variety of evaluation metrics.

Pose-mosaics are useful \�rst-class" data objects, for example in automatic reconstruction of
textured 3D CAD models which represent urban exteriors.

1 Introduction

Reconstruction of textured 3D CAD models representing urban environments is an important goal
of computer vision systems, and more recently of computer graphics systems. Existing approaches
employ semi-automatic (human-assisted) reconstruction strategies [5], or assume aerial imagery for which
external camera calibration is given [3].

Developing a system that automatically performs 3-D reconstruction from high-resolution ground-
based imagery will require the acquisition and management of a suitable dataset. Our approach is to
annotate each acquired image with an estimate of 6-DOF pose { 3 DOF of position, and 3 DOF of
orientation for the acquiring camera { through the use of instrumentation. There are several advantages
of such a scheme over a straightforward collection of many high-resolution images. First, pose estimates
are useful in organizing the images in a spatial data structure which supports proximity queries; this
restricts processing to images only when they are close together, or otherwise likely to exhibit signi�cant
correlation. Second, pose information provides useful geometric constraints that can potentially aid the
reconstruction process (e.g., [11]). Third, such an organization also prevents the computational e�orts
expended by the reconstruction system from growing quadratically (or worse) in the number of input
images.

�Funding for this research was provided in part by the Advanced Research Project Agency under contract DABT63-
95-C-0009, and in part by Intel Corporation.
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Existing physical instrumentation alone does not produce pose estimates su�ciently accurate for di-
rect incorporation into reconstruction algorithms which demand pixel-level agreement between features.
For example, pan-tilt heads used to measure rotation can report rotation angles accurate to about a de-
gree. This is one to two orders of magnitude greater than would be required by an algorithm demanding
pixel-level agreement. Thus, we have developed a variety of \pose-re�nement" algorithms which revise
the pose-estimates based on correlation and correspondence among two or more images.

1.1 Related Work

Our work builds upon many fundamental techniques from photogrammetry and computer vision:

� Aerial imagery [3, 4]: Photogrammetric systems that analyze aerial imagery use pose obtained by a
combination of instrumentation, manual input, and \bundle-adjustment" optimization. Acquiring
similar ground-based imagery poses additional challenges: to provide a large �eld-of-view to capture
all visible features and to re�ne initial pose estimates to predict nearby features accurately.

� Mosaicing [14, 20]: These techniques seamlessly stitch together multiple images taken from the
same viewpoint. While such mosaics are typically used in virtual environments, we apply mosaicing
techniques to re�ne our pose estimates and to provide a much larger �eld-of-view than would a
single image. In addition, we consider the problem of registering multiple mosaics in a global
coordinate system.

� Structure from Motion [15, 17, 18]: These techniques recover both scene structure and camera
motion by analyzing correspondences in a closely-spaced image sequence (e.g., frames from a video
sequence). While these techniques correlate nearby images in the sequence, signi�cant analysis
must be performed to relate images that are farther apart.

The novel ideas presented in this paper are:

� Acquisition of close-range, ground-based imagery of urban structures, annotated with absolute
6DOF pose estimates.

� Automatic correlation-based generation of spherical mosaics.

� The use of a world-space notion of adjacency to relate mosaics.

� Decoupling scene reconstruction from camera pose estimation, and using pose estimates both for
initializing optimization procedures and for semi-automatic identi�cation of feature correspon-
dences across mosaics.

1.2 Acquisition of Raw Images and Nodes

Our dataset consists of photographs acquired by a Kodak DCS 420 digital camera mounted with �xed
optical center on an indexed pan-tilt head, itself attached to a tripod base. The tripod was manually
positioned at eighty-one locations among the buildings of an o�ce complex. At each position, the camera
was rotated through a predetermined \tiling" of 50-70 orientations, yielding a roughly hemispherical
�eld of view. We call a set of images obtained from a common optical center a node. Initial translation
estimates for each node were obtained with surveying instruments. Initial orientation estimates for each
node were obtained by manual pointing of the pan-tilt head at some other node (marked by a second
tripod and orange ball). These orientation estimates are expressed and manipulated as quaternions,
which possess useful stability properties for optimization [7].
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1.3 Overview

The rest of the paper is organized as follows. Section 2 describes an automatic spherical mosaicing
algorithm that accurately computes relative rotations between images taken from the same position
using a quaternion-based correlation maximization algorithm. Section 3 describes correspondence and
optimization techniques for a global registration algorithm that uses these pose-mosaics as fundamental
data objects, and Section 4 concludes.

2 Automatic Spherical Mosaicing

In this section, we use the simple relation between images taken from the same nodal point to re�ne
relative orientations. As depth/parallax e�ects do not occur across images taken from a single node, a
constrained 2-D projective transformation (collineation) describes the relation between any such pair of
images [6]. Computing and re�ning the projective transformations using correlation of pixel-values is
the basis of our approach to re�ne orientation estimates.

Our approach is closely related to the mosaicing algorithm proposed by Szeliski [14] and extended
to cylindrical panoramas by McMillan [8]. Unlike McMillan [8], who computes a cylindrical panoramic
image from a set of images taken with rotation around a single axis, we compute a spherical panoramic
image. Szeliski & Shum in their recent papers [12, 16] also compute full-view panoramas. However,
their global alignment algorithm requires a combination of both correlation-based and feature-based
optimization. In contrast, we directly optimize correlation to perform global alignment, avoiding the
step of identifying suitable features.

The approach we follow is to optimize a global correlation function de�ned for adjacent images with
respect to all orientations (represented as quaternions). In addition, the algorithm also revises internal
camera parameters (camera focal length and image center initially estimated using Tsai's calibration
algorithm [19]) to maximize correlation. The result of the optimization is a spherical mosaic, a composite
of all images corresponding to a single node.

The basis of the optimization is the 2-D projective transformation P12 between two images (labeled
1 and 2) taken from the same camera [6]:

P12 = KR2R
�1
1
K�1

which maps pixels from image 1 to pixels in image 2 by a 2-D projective transformation (�= denotes
projective equality): 2

4 x2
y2
1

3
5 �= P12

2
4 x1

y1
1

3
5

where (x1; y1) and (x2; y2) are pixel positions in images 1 and 2; K is the 3�3 upper triangular camera-
calibration matrix; and R1 and R2 are 3� 3 rotation matrices.

Our algorithm uses the above relation to minimize the function:

C =
X

i;j are adjacent

Cij + Cji

where Cij is the sum-of-squared-di�erence error between luminance values1 of the images under the

1In practice, we perform the optimization on band-pass luminance values instead of luminance values �rst, and then
perform the optimization on luminance values. This results in both faster convergence and increased avoidance of false-
minima.
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mapping Pij :

Cij =
X
xi;yi

(Li(xi; yi)� Lj(Pij(xi; yi)))
2

The correlation function is computed only for pairs of adjacent images in the spherical tiling, and only
for pixels of image i that map to a valid pixel of image j. This function is minimized by computing
derivatives with respect to the orientations and using Levenberg-Marquadt nonlinear optimization [10]
starting from the initial orientations and internal parameters. The optimization involves updating these
unknowns with increments computed using the gradient G and (an approximation to) the Hessian H of
the objective function, until convergence is achieved. The various steps in the computation are described
in greater detail below.

For a single error term of the form:

e2x;y = (L(x; y)� L0(x00; y00))2

where:

x00 = x0

z0
y00 = y0

z0

and 2
4 x0

y0

z0

3
5 = v0 = P

2
4 x

y

1

3
5 = KR0R�1K�1

2
4 x

y

1

3
5

the derivatives are computed as follows (the rotation-matrix derivative is given in the appendix):

@v0

@q
= KR0(

@R�1

@q
)v

where v =K�1[x; y; 1]T . Then, the derivative of the term ex;y with respect to the quaternion q is given
by:

@x00

@q
=

@x0

@q
�x00 @z

0

@q

z0
@y00

@q
=

@y0

@q
�y00 @z

0

@q

z0

@ex;y

@q
=

@L0

@x00
@x00

@q
+

@L0

@y00
@y00

@q
(1)

Note that Equation 1 involves image derivatives @L0

@x00
and @L0

@y00
; these are approximated using �nite

di�erences.

The gradient term corresponding to the quaternion qi is computed using Equation 1 by accumulating
over all terms that depend on qi:

Gi =
X
x;y

ex;y
@ex;y

@qi

Similarly, the Hessian term corresponding to two adjacent images i and j is:

Hij =
X
x;y

@ex;y

@qi
(
@ex;y

@qj
)T

For a spherical tiling consisting of n images, values of Gi and Hij are concatenated to yield the global
1� 4n gradient G and the global 4n� 4n Hessian H.

In an unconstrained optimization, the increments would be computed as �H�1G [10]. However,
as quaternions are constrained to be unit vectors, the following additional constraints involving the
increments �qi are necessary:

8i : qi � �qi = 0
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Using Lagrangemultipliers �i to enforce the above constraints, the equation for computing the increments
becomes: �

H Q

QT 0

��
�Q
�

�
= �

�
G

0

�
(2)

where:

Q =

2
6664
q1 0 : : : 0

0 q2 : : : 0
...

...
...

...
0 0 : : : qn

3
7775; �Q =

2
6664

�q1
�q2
...

�qn

3
7775; � =

2
6664

�1
�2
...
�n

3
7775

The optimization proceeds by solving Equation 2 for �Q and � using a linear-solver2, and then
updating quaternion qi to its new value (with re-normalization):

qi + �qi

kqi + �qik

Convergence in the procedure is detected when the objective function changes by less than some threshold
(e.g., 0.1%).

Several mosaics resulting from the optimization are shown in Figures 1{ 3 (see color plate). Note
that the input images are seamlessly blended, without any \blurring" or \ghosting" artifacts. In a
batch process, our algorithm was able to successfully mosaic all (close to four thousand) input images
3 into eighty-one nodes, requiring about twenty minutes of processing per node on a 150MHz SGI O2
workstation. Internal camera parameters converged to values that di�ered by less than 1% across all
nodes.

Grouping images into spherical mosaics has several bene�ts. First, it allows robust automatic esti-
mation of internal camera parameters. Second, it e�ectively produces an image with a spherical �eld
of view, eliminating the ambiguity between camera motion and camera rotation found in narrow �eld-
of-view images. Third, it reduces, by a factor of about �fty, the number of degrees of freedom when
optimizing global positions and orientations. This is an important engineering advantage.

3 Global Mosaic Registration

The problem addressed in this section is registering initial camera pose estimates in a global coordinate
system so that the image locations of 3-D points are known accurately, to within a pixel. The input
to this stage is a set of nodes with estimated camera orientations and positions in a global coordinate
system.

In contrast to techniques that work in projective space (e.g., [9]), we designed our algorithm to operate
in Euclidean space for the following reasons. First, this makes full use of available camera-calibration
and pose information. Second, the use of the Euclidean framework decreases the complexity of the
optimization by eliminating extra projective variables. Third, from a practical standpoint, it is much
easier to visualize and debug (using computer graphics) algorithms operating in 3-D than algorithms
that operate in projective space.

For two views, registration is equivalent to computing relative orientation as in classical photogram-
metry [7]. While this technique performs well for pairs of images, a disadvantage of using this approach

2Sparse matrix techniques can be used to improve the speed of the solver. However, as most of the computational e�ort
is expended in computing the entries of H, this optimization is not worthwhile.

3A few input images were unusable due to sun 
are and/or CCD oversaturation.
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is that computing only pairwise pose may result in global inconsistency. Instead, we use global opti-
mization to re�ne pose estimates, similar to the techniques proposed in structure-from-motion [15, 17].
These approaches use correspondences (either manually speci�ed [17] or obtained by tracking [15]) be-
tween image features to set up a global objective function, and perform an optimization using non-linear
methods.

Though the problem of automatically generating correspondences is well studied in computer vision,
the process tends to be very fragile, especially across disparate images. The large inter-node distance in
our dataset (with baselines of tens of meters) produces fairly dissimilar images due to perspective and
occlusion e�ects. In addition, di�erent nodes are acquired in very di�erent lighting conditions, further
accentuating the dissimilarity.

Fortunately, as we are interested primarily in recovering accurate pose for each node, very few
correspondences are necessary (�ve points [7] per mosaic). Thus, our system allows a user to manually
correspond points computed by intersecting adjacent straight edges obtained by using the Canny edge
detector [1]. The user's task is further simpli�ed by our system, which uses the available pose information
to generate matches automatically in most cases. The matching technique is described in Section 3.2,
after the optimization described in Section 3.1.

3.1 Optimization

Formally, the pose re�nement problem is as follows. Given:

� For 1 � i � m, p0i (position) and q
0
i (orientation) estimates of the i

th camera pose;

� For 1 � i � m, 1 � j � n, unit vectors rij (in camera i's coordinate system) describing rays
through the image feature corresponding to world-space point sj .

Compute:

� pi, qi for 1 � i � m (the true camera poses);

� sj for 1 � j � n (the true 3-D feature positions).

The pose-re�nement algorithm performs a global optimization that re�nes both position and orientation
estimates. Our approach is to use the Levenberg-Marquadt optimization to minimize the objective
function described below.

Let uij =
sj�pi
ksj�pik

represent the world-space unit vector directed from camera i to point sj . The

same vector predicted by using the image feature is vij = R�1
i rij , where Ri is the 3� 3 rotation matrix

equivalent to qi. Their di�erence in the spherical image, eij = uij � vij , is the residual error vector of
predicting ray uij . The objective function O is simply the sum of the squared magnitudes of the residual
vectors:

O =

mX
i=1

nX
j=1

keijk
2

To perform the optimization, we use an approach similar to \bundle-adjustment" in photogrammetry
[13] that alternately re�nes 3-D positions and pose estimates. The advantage of this method is that �xing
the 3-D positions of point features decouples the optimization of the various camera poses, each of which
can be independently updated (and vice-versa). Thus, an e�cient implementation of the optimization
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involves inverting only small constant-sized matrices. Our experiments show that the optimization
requires only a few iterations, making it usable in an interactive system.

The derivatives of a single residual term (omitting subscripts) are computed as follows. Let I be the
3� 3 identity matrix. Then, the gradient Gs and Hessian Hs with respect to a 3-D point s are:

@e

@s
=
I� uuT

ks� pk

Gs = (@e
@s
)Te Hs = (@e

@s
)T @e

@s
(3)

The gradient Gp;q and Hessian Hp;q with respect to pose parameters p and q are:

@e
@p

= uuT�I
ks�pk

@e
@q

= �(@R
�1

@q
)r D =

h
@e
@p

@e
@q

i

Gp;q = DTe Hp;q = DTD (4)

To update the position of a 3-D point sj , the gradient Gsj and the Hessian Hsj are computed by
accumulating Equation 3 over all cameras that \see" sj . To update the pose pi;qi of camera i, the
gradient Gpi;qi and Hessian Hpi;qi are computed by accumulating Equation 4 over all points visible to
camera i. As in Section 2, Lagrange multipliers are used to enforce the unitary constraint for quaternions.

Typical residuals after optimization are about 0:001, equivalent to 0:05 degrees of error in predicting
a ray, and to about 2:5 cm of error in predicting the location of a 3-D point about 25 meters from the
camera.

3.2 Automatic Matching

In this section, we describe a technique that exploits the availability of pose-information to aid the user
in establishing correspondences across nodes. The basic idea, similar to that proposed by Collins [2],
is as follows. If any sparse set of points in a set of nodes is projected into 3-D rays, regions with high
incidence of rays correspond to likely locations of 3-D features. If a 3-D feature is present in multiple
nodes, then rays through the corresponding 2-D points pass near the 3-D feature, increasing its incidence
count. Conversely, as the set of points are sparse, it is rare that unrelated rays pass through the same
3-D region by chance.

The matching algorithm �rst de�nes a notion of adjacency using a 2-D Delaunay triangulation of
node positions projected onto the ground plane4. Given a nearness threshold T , the match for a selected
point r of node i is generated as follows:

For each sj in decreasing order of incidence
If keijk < T associate r with point sj .

If r is not matched
Let minimum error e = T , closest 3-D point s = �.
For each Delaunay neighbor node i0 of i

For each unmatched point r0 of node i0

Generate sk closest to rays r and r0.
If kei0kk < e then e = kei0kk; s = sk.

If s 6= � add s to the 3-D point set.

4This spatial notion of adjacency is necessary as the usual temporal notion used in structure-from-motion is not
applicable to our dataset, where nodes acquired at very di�erent times can observe nearby 3-D regions.

7



Informally, given a newly selected point r, the algorithm �rst searches for an existing high incidence
3-D point sj that projects close to r. If such a point is not found, the algorithm matches r with a close
unmatched point r0 from a neighboring node i0.

Figure 3 (color plate) shows a snapshot of the global registration algorithm in action. To test this
matching algorithm on our dataset, a user interactively selected �ve or more points (typically, building
corners) in each mosaic. The algorithm automatically inferred su�cient number of matches to generate
pose for over 95% of the nodes; for the remaining nodes, the user established correspondences manually.
The user required about one hour to process the entire dataset (eighty-one mosaics comprising nearly
four thousand images).

4 Conclusion

In this paper, we described the process of acquiring pose-mosaics, utilizing two techniques that compute
accurate pose from approximate estimates. Our algorithms are simple and robust, and scale to a large
set of input images. Preliminary results indicate that pose-imagery can be used to reconstruct urban
vertical facades. Figure 2 (color plate) shows some initial reconstruction results, co-located with the
input spherical mosaics.

In future work, we plan to investigate fully automatic matching techniques for use in the inter-
mosaic registration procedure. A promising approach, exploiting domain-speci�c knowledge, would be
to automatically detect sky-lines in the input nodes, and attempt to match only features of the sky-lines.
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A Rotation-Matrix Derivative

The derivative of a rotation matrix R�1 with respect to a quaternion q = [q0; qx; qy; qz]
T is a tensor of

dimension 3� 4� 3. Since the derivative is typically multiplied by a vector (say, v = [vx; vy; vz]
T ), only

its value at v, a 3� 4 matrix, is given below:

a = +q0vx + qzvy � qyvz

b = �qzvx + q0vy + qxvz

c = +qyvx � qxvy + q0vz

d = +qxvx + qyvy + qzvz

(
@R�1

@q
)v =

2
4 a d �c b

b c d �a
c �b a d

3
5
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(a) (b)

Figure 1: Part (a) shows the input images. Part (b) shows the results of the mosaicing optimization
mapped onto a sphere.

Figure 2: This �gure shows initial reconstructed vertical facades in wireframe, co-located with input
spherical mosaics.
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(a)

(b)

Figure 3: This �gure shows a snapshot of the global registration algorithm for ten nodes. Part (a) shows
two such nodes (represented on a plane using an equal-area projection) with manually selected points
(squares). Points colored other than red have been automatically matched by the incidence counting
algorithm, despite the signi�cant dissimilarity due to perspective, occlusion, and lighting e�ects. Part
(b) shows the locations of the ten nodes (in green) and reconstructed points in 3-D. For these nodes,
automatically identi�ed matches were su�cient to recover pose.
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