
Maps: A Compiler-Managed Memory System for Raw Machines

Rajeev Barua, Walter Lee,
Saman Amarasinghe, Anant Agarwal�

M.I.T. Laboratory for Computer Science
Cambridge, MA 02139, U.S.A.

fbarua,walt g@lcs.mit.edu
fsaman,agarwal g@lcs.mit.edu

http://cag-www.lcs.mit.edu/raw

Abstract

Microprocessors of the next decade and beyond will be built using VLSI chips employing billions
of transistors. In this generation of microprocessors, achieving a high level of parallelism at a reason-
able clock speed will require full distribution of machine resources. Raw architectures explore this
architectural space by distributing all their processor and memory resources as a 2-D mesh of simple
tiles. To provide a simple sequential programming model, a Raw architecture exposes the hardware
fully and relies on the compiler or the software run-time system to achieve efficient execution while
maintaining the semantics of a single instruction stream and a unified memory system.

Supporting a single view of memory on top of a distributed memory architecture presents a chal-
lenging compiler problem. This paper presents a compiler system called Maps that supports a unified
view of memory on a Raw architecture. Maps relies on two inter-tile interconnects: a fast, statically
schedulable network and a slower dynamic network. Maps attempts to schedule the memory accesses
for maximum parallelism and speed while enforcing proper dependence. It optimizes for speed in
two ways: by finding accesses that can be scheduled on the static interconnect through a process
calledstatic promotion, and by minimizing dependence sequentialization for the remaining accesses.
Static accesses are discovered through applications of traditional pointer and array analysis, and a
new technique calledmodulo unrolling. Maps enforces proper dependence through a combination
of explicit synchronization and a technique calledsoftware serial ordering. We have implemented
Maps based on the SUIF infrastructure. This paper presents preliminary results based on compiling
several programs using Maps.

1 Introduction

We live in an age where Moore’s law is as prophetic as Murphy’s law. Bigger and more processors
are being placed inside a single chip at a rate consistent with Moore’s law. Within the chip boundary,
however, shrinking technology makes the speed of basic logic faster and faster, while improvement in

�This research is funded in part by ARPA contract # DABT63-96-C-0036 and in part by an NSF Presidential Young Inves-
tigator Award.

MIT-LCS-TM-583, July 1998

1

wire speed lags behind [8]. These forces impose increasing relative penalties on complex logic and
global wires. Consequently, locality and simplicity become the key principles of good hardware design.

Locality suggests that processing resources be fully distributed with near neighbor connectivity and
the elimination of global buses. Simplicity suggests that complex hardware be eliminated from a proces-
sor. But simplicity in the hardware buys little unless simplicity at the programming level is retained as
well. Accordingly, the architecture must be able to run existing sequential programs without requiring
new programming methodologies. To support sequential programs, traditional processors use compli-
cated hardware to provide features like memory reorder buffers and mechanisms to extract instruction-
level parallelism, which violates the simplicity principle of hardware design.

The Raw alternative [12] is to expose fully the raw hardware to the compiler so it can implement the
support functions for sequential programs, thereby maintaining hardware simplicity. For locality, a Raw
architecture distributes not only the functional units and registers but memory as well, and it couples
them with a simple point-to-point network.

Using a distributed processor architecture to run general-purpose sequential programs presents sev-
eral interesting research issues. The scheduling of instruction-level parallelism, which includes both a
spatial and a temporal component, has been addressed in [6]. From the memory’s perspective, the dis-
tributed organization presents both an opportunity and a challenge. The opportunity is to be able to use
compiler knowledge to optimize the references for locality, parallelism, and efficiency. The challenge is
to ensure that the parallelized program has a coherent view of the memory system. In particular, poten-
tially dependent memory accesses which may be spread across the processing tiles must be performed in
correct sequential program order.

The traditional approach to enforcing dependence on parallelized programs is to synchronize through
the memory system using hardware primitives such as locking. This mechanism, however, is expensive
in two respects. In terms of hardware, it relies on cache coherence hardware to avoid making a remote
memory access every time a lock is queried. In terms of execution cost, the mechanism is heavyweight,
which limits the type of programs it can profitably execute to those with access patterns that require few
synchronizations [1] [3]. The approach we present solves the memory coherence problem with much less
hardware, and enables arbitrary sequential programs to be parallelized on distributed, scalable machines.

This paper presentsMaps, a compiler-managed memory system for Raw architectures. The Maps
approach consists of a minimal-hardware, compiler-managed memory system built on top of distributed
memory coupled by both a static and a dynamic network. Processors are also distributed along with the
memory so that each processor is coupled to a local memory. The hardware provides two mechanisms to
each processor for accessing memory: a fast path for local accesses or for memory accesses that can be
routed using a fixed schedule through the static network; and a slower, fail-safe path for dynamic accesses
over the dynamic network. Maps allows parallel accesses for both the static and dynamic mechanisms,
while enforcing proper dependence through a combination of compiler analysis, explicit synchronization,
and a new technique calledsoftware serial ordering. To efficiently use the provided mechanisms, the
Maps system optimizes the performance of an application in two ways: by finding static accesses using
a new process calledstatic promotion, and by minimizing dependence sequentialization. These goals are
realized through applications of traditional pointer and array analysis. A new technique calledmodulo
unrolling further improves the discovery of static accesses.

We have implemented a SUIF-based compiler that implements Maps by incorporating software serial
ordering and static promotion based on pointer analysis and modulo unrolling. We have been able to
compile several programs and run them on a simulator of a Raw machine. Ongoing work is to push

2

IMEM
DMEM

REGS

ALU

CL
SMEM

SWITCH

PC

PC

RawTile

Raw P

Figure 1:A Raw microprocessor.

several larger benchmarks through the system. This paper discusses the techniques employed by the
compiler and presents the basic costs of various operations and a few application results. We demonstrate
a high degree of speedup for several regular programs, and we show that software serial ordering is able
to achieve moderate speedup in cases where dynamic accesses are necessary.

The rest of this paper is organized as follows. Section 2 briefly describes the Raw architecture and
its mechanisms for accessing memory. Section 3 overviews Maps, explaining the issues it faces, the
solutions it adopts, and its organization in the context of the Raw compiler. Section 4 describes the
traditional analysis techniques leveraged by Maps. Section 5 describes techniques for static promotion.
Section 6 describes software serial ordering. Section 7 presents the results. Section 8 discusses the
related work, and Section 9 concludes.

2 Raw architecture and memory mechanisms

The Raw architecture [12] is a simple, distributed, software-exposed architecture motivated by the de-
sire to maximize the performance per silicon area of a machine. Together, distribution and simplic-
ity enable a fast clock, and they maximize the amount of processing resources that can fit on a chip.
Software-exposure allows the compiler to implement features traditionally implemented in hardware,
such as memory coherence and the discovery of ILP.

Figure 1 depicts the layout of a Raw machine. The design features a two-dimensional mesh of
identical tiles, each with its own processor, memory, and switch. The processor is a simple five-stage
pipeline, and the switch is integrated directly into this processor pipeline to support fast register-level
communication between neighboring tiles. A word of data travels across one tile in one clock cycle. The
interface to this interconnect is fully exposed to the software.

Each switch contains two distinct networks, a static and a dynamic one. The static switch is pro-
grammable, allowing statically inferable communication patterns to be encoded in the instruction streams
of the switches. This approach eliminates the overhead of composing and routing a directional header,
which in turn allows a single word of data to be communicated efficiently. Furthermore, it allows the
communication to be integrated into the scheduling of instructions at compile time. Accesses to com-
munication ports have blocking semantics that provide near-neighbor flow control; a processor or switch
stalls if it is executing an instruction that attempts to access an empty input port or a full output port.

3

Tile x

load_request(x)

Tile y

load_handler

Tile z

load_repl_handler

y=wait_for_load()

Figure 2: Anatomy of a dynamic load. A dynamic load is implemented with a request and a reply dynamic
message. Note that the request for a load needs not be on the same tile as the use of the load.

This specification ensures correctness in the presence of timing variations introduced by dynamic events
such as interrupts, and it obviates the lock-step synchronization of program counters required by many
statically scheduled machines. The dynamic switch is a traditional wormhole router that makes routing
decisions based on the header of each message while guaranteeing in-order delivery of messages. It
serves as a fallback mechanism for non-statically inferable communication. A processor handles dy-
namic messages via either polling or interrupts.

From these communication mechanisms, the Raw architecture provides three ways of accessing
memory: local access, remote static access, and dynamic access, in increasing order of cost. A memory
reference can be a local access or a remote static access if it satisfies thestatic residence property–
that is, every dynamic instance of the reference must refer to memory on the same tile. The access is
local if the Raw compiler places the subsequent use of the data on the same tile as its memory location;
otherwise, it is a remote static access. A remote static access works as follows. The processor on the
tile with the data performs the load, and places the data value onto the output port of its static switch.
The precompiled instruction streams of the static network route the data value through the network to the
processor needing the data. That processor accesses its static input port to get the data.

If a memory reference fails to satisfy the static residence property, it is implemented as a dynamic
access. A load access, for example, turns into a split-phase transaction requiring two dynamic messages:
a load-request message followed by a load-reply message. Figure 2 shows the components of a dynamic
load. The requesting tile extracts the resident tile and the local address from the “global” address of the
dynamic load. It sends a load-request message containing the local address to the resident tile. When a
resident tile receives such a message, it is interrupted, performs the load of the requested address, and
sends a load-reply with the requested data. The tile needing the data eventually receives and processes
the load-reply through an interrupt, which stores the received value in a predetermined register and sets
a flag. When the resident tile needs the value, it checks the flag and fetches the value when the flag is set.
Note that the request for a load needs not be on the same tile as the use of the load.

3 Maps compiler managed memory system

This section overviews Maps, Raw’s compiler-managed memory system. It highlights the two main
issues in the design of such a system and summarizes Raw’s solutions to these issues. It also gives an
overview of the Raw compiler with a focus on its functionality related to Maps.

4

Software serial ordering code transformation

C or Fortran program

Build cfg

Traditional dataflow optimizations

Raw executable

Space−time scheduler

Pointer analysis/ Array analysis

Static Promotion Maps

Figure 3:Structure of the Raw compiler

3.1 Issues of a compiler-managed memory system

The goal of Raw’s compiler-managed memory system is to provide efficient use of the hardware memory
mechanisms while ensuring correct execution. This goal hinges on two issues, the identification of static
accesses and the efficient enforcement of memory dependences. Identifying static accesses is important
because static accesses can employ the fast path to the memory system. Compared to dynamic accesses,
static accesses eliminate the overheads of synchronization, demultiplexing, and message packetization.

For the correct serial execution of memory dependences, three types of dependences must be con-
sidered: those between static accesses, those between dynamic accesses, and those between a static and
a dynamic access. Dependences between static accesses are easily enforced. References mapped to
different processors are necessarily non-conflicting, so the compiler only needs to avoid reordering po-
tentially dependent memory accesses on each tile. The real difficulty comes from dependences involving
dynamic accesses, because accesses made by different tiles may potentially be aliased and require seri-
alization. The challenge is to provide sufficient mechanism to ensure this serialization while inhibiting
performance as little as possible.

The Maps system focuses on effective solutions to these two problems. It actively converts memory
references into static references in a process calledstatic promotion. Static promotion employs two new
techniques:equivalence-class unification, which promotes references through intelligent placement of
data objects guided by traditional pointer analysis; andmodulo unrolling, which promotes references
through loop unrolling and intelligent placement of arrays. These techniques are described in Section 5.
To efficiently enforce dependences involving dynamic references, the compiler employs a new technique
termedsoftware serial orderingto enforce dependences between dynamics, and it uses explicit synchro-
nization through the static network to enforce a dependence between a static and a dynamic access. These
techniques are described in Section 6. By addressing the two central issues, the Raw compiler enables
fast accesses in the common case, while allowing efficient and parallel accesses for both the static and
dynamic mechanisms.

5

3.2 Compiler overview

Figure 3 outlines the structure ofRAWCC, the Raw compiler built on top of SUIF [13].RAWCC accepts
sequential C or Fortran programs and automatically parallelizes them for a Raw machine. The compiler
consists of two main phases, Maps and the space-time scheduler. Maps uses the information provided
by traditional pointer and array analysis to perform static promotion and software serial ordering. The
space-time scheduler [6] parallelizes each basic block of the program across the processors, obeying
dependence and serialization requirements specified by Maps.

4 Analysis techniques

Throughout the memory system, the Raw compiler employs traditional analysis techniques to enhance
the effectiveness of its mechanisms. The techniques include pointer analysis and array analysis. This
section briefly presents the information provided by these techniques.

Pointer analysis is leveraged for three purposes: equivalence class unification, software serial order-
ing, and the minimization of dependence edges. The Raw compiler uses the SPAN, a state-of-the-art
pointer analysis package [9]. It contains a notion of abstract data objects, and it associates alocation
set numberto each data object. As output, the analysis phase marks each pointer reference with the list
of location sets it can refer to, termed itslocation set list. The Raw compiler uses this information to
derive two pieces of information, pointer equivalence classes and dependence information. Apointer
equivalence classis a group of pointer accesses. An access within the class can refer to data referred
by accesses in the same class, but it cannot refer to data referred by pointers outside of the class. The
Raw compiler derives equivalence classes by first finding equivalence classes on location sets1. Based
on this, the equivalence class of any access is simply the equivalence class of any of its location sets, all
which are always the same. Dependence relations is derived by noting that only pointers in the same lo-
cation set can interfere with each other. Therefore, dependence edges are only inserted between memory
references if the intersection of their location set lists is non-empty.

The abstract data objects used in pointer analysis is sometimes too coarse grain. In particular, the
technique does not distinguish between references to different elements in the same array. Therefore,
we employ array data dependence analysis to gather dependence information on array accesses. As for
equivalence classes, an array is usually a single equivalence class, because one array reference often
refer to data in an entire array. Section 5.2 will discuss a novel transformation technique for increasing
equivalence classes for array accesses.

Figure 4 presents a running example we will use in the rest of this paper to give a step-by-step
illustration of the Maps compiler-managed memory system. Figure 4(a) shows the initial code fragment,
which contains five memory accessesA[4], �p, B[x], C[y] and�q. Figure 4(b) shows the information
derived after pointer and array analysis, which includes location set lists, equivalence classes, and data
dependence. The location set list for each access was generated by pointer analysis, which derived
the actual values using the assumed context of the program (not shown). The dependence edges are
introduced whenever the intersection of the location set lists was non-empty. The equivalence classes
were derived using connected components, as noted earlier. The remaining parts of the figure, from 4(c)
onwards will be explained later as we go along.

1Equivalence classes on location sets can be shown to be the connected components on a graph whose nodes are location
set numbers and whose edges connect location sets which can be referred to by the same access.

6

//location set list = {1,2}, equiv class = 1

//location set list = {1}, equiv class = 1

//location set list = {3}, equiv class = 2

//location set list = {3}, equiv class = 2

//location set list = {2}, equiv class = 1A[4] = inpa;

outp = *p;

B[x] = inpb;

C[y] = inpc;

outq = *q;

//static promoted to proc = P4

//location set list = {1,2}, equiv class = 1

//location set list = {1}, equiv class = 1

//location set list = {3}, equiv class = 2

//location set list = {3}, equiv class = 2

//location set list = {2}, equiv class = 1

(a) (b)

A[4] = inpa; A[4] = inpa;

A[4] = inpa;

A[4] = inpa

P1 P2 P3 P4 P6P5

inpa

outp = *p;

outq = *q;

B[x] = inpb;

C[y] = inpc;

outp = *p;

B[x] = inpb;

C[y] = inpc;

outq = *q;

addrb = &B[x];

addrc = &C[y];

addrb=&B[x]

p

inpb

addrc=&C[y] inpc

q

//static promoted to proc = P4

(d)

(e)

(c)

load_request(p);

outp = wait_for_load();

store_request(addrb, inpb);

store_request(addrc, inpc);

load_request(q);

outq = wait_for_load();

load_handler()

outp=wait_for_load()

load_request(p)

store_handler()

store_request(addrb,inpb)

store_request(addrc,inpc)

load_request(q)

outq=wait_for_load()

store_handler()

load_handler()

(turnstile = 1) (turnstile = 2)

//turnstile = 1

//turnstile = 1

//turnstile = 2

//turnstile = 2

Figure 4: Example of compilation through memory system compilation. (a) initial code; (b) after analysis; (c)
after static promotion; (d) after software serial ordering, which includes turnstile assignment, split-phase code
generation and dependence inheritance; (e) one possible outcome after partitioning.

7

for i = 0 to 99 step 4 do

A[i + 0] =

endfor

A[i + 1] =

A[i + 2] =

A[i + 3] =

(c)(b)(a)

for i = 0 to 99 do

A[i] =

endfor

A[0]
A[4]
A[8]
....

A[1]
A[5]
A[9]
....

A[2]
A[6]
A[10]

....

A[3]
A[7]
A[11]
....

Tile 0 Tile 1 Tile 2 Tile 3

Unrolling
Modulo

Figure 5: Modulo Unrolling Example.(a) shows the original code; (b) shows the distribution of array A on a 4
processor Raw machine; (c) shows the code after unrolling. After unrolling, each access refers to locations in only
one processor.

5 Static promotion of memory accesses

Static references are references that always refer to memory on the same compile-time known tile loca-
tion. These references can employ the fast path to the memory system, either as local memory references
or remote references which can be routed through the static network. The Raw compiler aims to make
most memory references static. Without analysis, all memory references carry no information and must
by default be dynamic. This section describes two techniques for inducingstatic promotion, the process
of making a memory reference static via careful data layout and code transformation. The result of static
promotion is transformed code that has a fixed known processor number for each promoted access. Sec-
tion 5.1 describes equivalence class unification, a general promotion technique based on the use of pointer
analysis to guide the placement of data. Section 5.2 describes modulo unrolling, a code transformation
technique applicable to most array references in the loops of scientific applications. Section 5.3 explains
the limitation of static promotion and motivates the need for an efficient dynamic fall-back mechanism.

5.1 Equivalence-class unification

Standard pointer analysis can help guide the placement of data such that static promotion of accesses
become possible. Equivalence classes can be used for static promotion as follows. All the data in an
equivalence class can be mapped uniformly to the memory on a single tile. Then, references to that
equivalent class will refer exclusively to that tile and can be statically promoted. By mapping every
equivalent class in such a manner, all memory references can be statically promoted.

5.2 Modulo unrolling

The major limitation of equivalence-class unification is that arrays are treated as single objects belong
to a single equivalence class. Mapping an entire array to a single processor sequentializes accesses to
that array and destroys the parallelism found in many loops. Therefore, we use a different strategy to
handle the static promotion of array accesses. First, arrays are layed out in memory throughlow-order
interleaving. In this scheme, consecutive elements of the array are interleaved in a round-robin manner
across successive tiles on the Raw machine. We then apply modulo unrolling, a code transformation
technique which statically promotes array accesses in loops.

8

Modulo unrolling is a framework for determining the unroll factor which can statically promote all
array references inside a loop. We illustrate this technique through a simple example. Consider the
source code in Figure 5(a). Using low-order interleaving, the data layout for array A on a four-processor
Raw machine is shown in Figure 5(b). In the loop, successive A[i] accesses go to processors 0, 1, 2, 3, 0,
1, 2, 3 The edges out of tiles in Figure 5(b) point to the program accesses which refer to that tile. As
we can see, the A[i] access in Figure 5(a) refers to memory on all four tiles. Hence the access as written
cannot be statically promoted.

Intelligent unrolling, however, can enable static promotion. Figure 5(c) shows the result of unrolling
the code in Figure 5(a) by a factor of four. Now, each access always refers to elements on the same
processor. Specifically, A[i] always refers to processor 0, A[i+1] to processor 1, A[i+2] to processor 2,
and A[i+3] to processor 3. Therefore, all resulting accesses can be statically promoted. This technique
is always applicable for loops with array accesses having indices which are affine functions of enclosing
loop induction variables. For a detailed explanation and the derivation of the unrolling factor, see [2].

5.3 The need for dynamic references

A compiler can statically promote all accesses through equivalence-class unification alone, and modulo
unrolling helps improve the distribution of data during promotion. There are several reasons, however,
why it is undesirable to promote all references. First, in rare cases modulo unrolling may require un-
rolling of multi-dimensional loops, resulting in excessive code expansion. In addition, static promotion
may inhibit parallelism. Indirect array accesses of the formA[B[i]], for example, cannot be promoted
unless the arrayA[] is mapped to a single tile. This mapping creates a memory hot-spot which inhibits
exploiting parallelism in a program. If the array were distributed instead and accessed dynamically, we
would lose the static references, but gain parallel access to the A array. The decision of what accesses in
a program should be promoted is based on whole-program analysis, which looks at the requirements of
different accesses weighted by their frequency, and attempts to minimize the total runtime.

Therefore, it is important to have a good fall-back mechanism for dynamic references. More impor-
tantly, it is important for such mechanisms to integrate well with the static mechanism. The next section
explains how these goals are accommodated.

Continuing our running example, Figure 4(c) shows the result of static promotion. Only theA[4]
reference is promoted, as it is a simple affine function. For the sake of illustration, we assume that the
compiler chooses not to promote the other four references.

6 Software serial ordering

The software system for implementing dynamic accesses is responsible for ensuring that all possible
dependences involving dynamic accesses are satisfied. Such dependence can be between a static access
and a dynamic access or between two dynamic accesses. This section describes the mechanisms for
handling each type of dependence.

A static-dynamic dependence can be enforced through explicit synchronization between the static
reference and either the initiation or the completion of the dynamic reference. When a dependence re-
lation orders a static before a dynamic, a synchronization message is sent at the completion of the static
memory operation to the issue of the dynamic operation. When a dependence relation orders a dynamic
before a static, a synchronization message is sent at the completion of the dynamic reference to the static

9

reference. If the dynamic reference is a store, this synchronization requires a store acknowledgment
message. The reason is that otherwise a store completion on the dynamic network cannot be guaranteed.
If the dynamic reference is a load, its reply guarantees completion. The important feature of this mecha-
nism is that the source and destination of the synchronization message is known at compile-time, so that
the message can be routed on the static network.

Enforcing dependences between dynamic references is a little more difficult. To illustrate this dif-
ficulty, consider the dependence which orders a dynamic store before a potentially conflicting dynamic
load. Because of the dependence, it would not be correct to issue their requests in parallel from differ-
ent processors. Furthermore, it would not suffice to synchronize the issues of the requests on different
processors. This is because there are no timing guarantees on the dynamic network: even if the memory
operations are issued in correct order, they may still be delivered in incorrect order. One obvious solution
is complete serialization, that is to wait for the earlier access to send back a dynamic acknowledgment
from the remote memory tile, before latter request is issued. While correct, complete serialization is
expensive because it serializes the slow round-trip dynamic requests.

We propose a technique calledsoftware serial orderingto efficiently ensure dependence. The
technique leverages the in-order delivery of messages on the dynamic network between any source-
destination pair of tiles. It works as follows. As explained in Section 2, a dynamic load is converted into
a split-phase transaction with distinct load-request and load-reply operations, while a dynamic store is
converted into a store-request. Each equivalence class is assigned aturnstile processor. The role of the
turnstile is to serialize the request portions of the memory references in the corresponding equivalence
class. Once memory references go through the turnstile in the right order, correct behavior is ensured
from three facts. First, requests destined for different processors must necessarily refer to different mem-
ory locations, so there is no memory dependence which needs to be enforced. Second, requests destined
for the same processor are delivered in order by the dynamic network, as required by the network’s in-
order delivery guarantee. Finally, the memory processor handles requests in the order they are delivered.

Note that in order to guarantee correct ordering of processing of memory requests, serialization is
inevitable. Our system keeps this serialization low, and it allows the exploitation of parallelism available
in address computation, latency of memory request and reply, and processing time of memory requests
to different tiles. Furthermore, different equivalence classes can employ different turnstile processors
and issue requests in parallel. Interestingly, though the system enforces dependences correctly while
allowing potentially dependent dynamic accesses to be processed in parallel, it does not employ a single
explicit check of run-time addresses.

Figure 4(d) shows the result of the software serial ordering transformation on the code in 4(c). It
shows the four dynamic accesses (*p, B[x], C[y] and *q) converted to split-phase transactions using a
request/reply model. For simplicity, the loadreply handler is not shown; instead the reply directly points
to the waitfor load. The figure also shows the turnstile assignments. Finally, the dependence edges are
inherited from Figure 4(c) in the obvious manner. Additional dependences are placed to serialize the
requests assigned on the same turnstile as required by software serial ordering.

Figure 4(e) shows one possible outcome after space-time scheduling. The computation is distributed
on six processors P1 through P6. The dynamic requests are serialized on turnstiles 1 and 2, assigned to
processors P3 and P5. TheA[4] static access is placed on the processor it was promoted to, namely P4.
All other computation is partitioned a manner which exploits parallelism while respecting dependences.
The shaded nodes represent loads of input variables at their latest locations. The interrupt-driven remote
memory handlers are run on processors resolved at run-time and unknown at compile-time. The dotted

10

Distance 0 1 2 3 4

Static load 3 6 7 8 9
Static store 1 4 5 6 7
Dynamic load 28 34 36 38 40
Dynamic store 17 20 21 22 23

Figure 6:Cost of memory accesses.

57

1

7 9

net. reply net. receive userequest

6 6

2 6

dynamic load

static load

Figure 7:Breakdown of the cost of static and dynamic
loads.

edges represent dynamic messages. Note that the partitioner can schedule the two turnstile nodes P3 and
P5 with other associated computation relatively in parallel. On turnstile 1 on P3, the storerequest does
not have to wait for the previous load to reply before proceeding. Hence most of the latency in the load of
p and the store ofaddrb is overlapped with each other. Furthermore, all other computation, including the
address computation, waitfor loads, memory handlers, and unrelated computation, can be potentially
scheduled in parallel.

7 Results

This section presents some initial results evaluating the performance of Maps and the Raw compiler.
It first presents the end-to-end cost of static and dynamic memory accesses. It then measures the per-
formance of dynamic memory accesses. Finally, it presents some preliminary application performance
results.

Cost of memory accessesFigure 6 lists the end-to-end cost of memory operations as a function of
the tile distance. It includes both the processing cost and the network latency. The result shows the
considerable benefit of a static access over a dynamic one. Figure 7 breaks down the cost of static and
dynamic loads for a tile distance of four. It shows that the overhead of a dynamic access is dominated by
the protocol cost of sending and processing messages, as well the need to request data. A static access,
on the other hand, leverages compiler-orchestration to eliminate most of that overhead. Note that much
of the cost can be alleviated by prefetching.

Performance of dynamic accessesWe evaluate the effectiveness of software serial ordering in sup-
porting parallelism. Table 1 shows the ability to overlap successive loads issued on the same turnstile
processor. It assumes that messages are zero-latency and free of contention overhead for both the network
and the processor; thus it illustrates the maximal performance allowed by this approach. Our measure-
ments show that of the 28 cycles, seven for the request are serialized and 21 can be overlapped. The
maximal throughput of a turnstile is thus one request every seven cycles.

11

Number of issues 1 2 3 4 5 6

Cost/issue 28 17.5 14 12.25 11.2 10.5

Table 1:Average cost of memory references issued through one turnstile.

Serialization P=1 P=2 P=4 P=8 P=16 P=32

Single turnstile 1.00 0.28 0.55 0.84 1.04 1.23
Multiple turnstiles 1.00 0.31 0.62 1.17 1.52 2.59
No turnstile 1.00 0.45 0.86 1.92 3.63 7.00

Table 2:Speedups of program kernel with varying degrees of serializations.

We measure the basic effectiveness of the dynamic memory system with a program kennel. The main
body of the kernel is the following loop:

for (i=0; i<SIZE; i++) {
A[i] = A[i] + B[XB[i]] + C[XC[i]] + D[XD[i]]

+ E[XE[i]] + F[XF[i]];
}

All the arrays are laid out in a low-order interleaved manner.A and theX arrays can be statically pro-
moted through modulo unrolling. The arraysB throughF , however, are dynamic because they can refer
to any part of the interleaved arrays. Table 2 measures the performance benefit of reducing serialization
through compiler optimizations. For each configuration, we parallelize the kernel for varying number of
tiles, denoted by P. Each speedup figure is computed by comparing the run-time against the uniprocessor
case, where all accesses are local. From Table 2, when accesses are sequentialized and issued on a single
turnstile, performance is poor, with negligible speedup on 32 tiles. When dynamic accesses are divided
into five turnstiles, one for each dynamic array, we attain a modest speedup of 2.59. Finally, when the
dynamic accesses are recognized to be loads and thus require no sequentialization through any turnstile,
we attain a good speedup of 7.00. These results show that it is indeed possible to attain overall speedup
even when a program has a substantial number of dynamic accesses.

Preliminary application performance The RAWCC compiler has been evaluated on a set of regular
benchmarks shown in Table 3. We compare the results of the Raw compiler with the results of a MIPS
compiler provided by Machsuif [11] targeted for an R2000. Table 4 shows the speedups attained by the
benchmarks for Raw machines of various sizes. For all these benchmarks, Maps is able to statically
promote 100% of the accesses. This result enables the Raw compiler to profitably exploit the significant
amount of parallelism available in the benchmarks. Consequently, the average speedup attained on 32
tiles is a promising 17.2.

Note that the speedups are attained from sequential code using automatic parallelization, and not for
code tailored to any high-performance architecture.

12

Benchmark Source Lang. Lines Primary Seq. RT Description
of code Array size (cycles)

btrix Nasa7:Spec92 Fortran 236 15�15�15�5 287M Vectorized Block Tri-Diagonal Solver
cholesky Nasa7:Spec92 Fortran 126 3�32�32 34.3M Cholesky Decomposition/Substitution
vpenta Nasa7:Spec92 Fortran 157 32�32 21.0M Inverts 3 Pentadiagonals Simultaneously
tomcatv Spec92 Fortran 254 32�32 78.4M Mesh Generation with Thompson’s Solver
mxm Nasa7:Spec92 Fortran 64 32�64, 64�8 2.01M Matrix Multiplication

Table 3:Benchmark characteristics. ColumnSeq. RTshows the run-time for the uniprocessor code generated by
the Machsuif MIPS compiler.

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

btrix 0.83 1.48 2.61 4.40 8.58 9.64
cholsky 0.88 1.68 3.38 5.48 10.30 14.81
vpenta 0.70 1.76 3.31 6.38 10.59 19.20
tomcatv 0.92 1.64 2.76 5.52 9.91 19.31
mxm 0.94 1.97 3.60 6.64 12.20 23.19

Table 4:Benchmark Speedup. Speedup compares the run-time of theRAWCC-compiled code versus the run-time
of the code generated by the Machsuif MIPS compiler.

8 Related work

Both the Raw architecture and Maps are influenced by research in several areas. Due to space limitations,
we do not present related work on the architectural aspects of Raw. For a detailed comparison to other
architectures, see [12].

Software distributed shared memory schemes on multiprocessors (DSMs) [10] [4] are similar in spirit
to Map’s software approach of managing memory. They emulate in software the task of cache coherence,
one which is traditionally performed by complex hardware. In contrast, Maps turns sequential accesses
from a single memory image into decentralized accesses across Raw tiles. This technique enables the
parallelization of sequential programs on a distributed machine.

Static promotion is related to static memory bank disambiguation, a term used by Ellis [5] for a point-
to-point VLIW model. For such VLIWs, he shows that successful disambiguation allows an access to be
executed through a fast “front door” to a memory bank, while an non-disambiguated access is sent over
a slower “back door.” Most VLIWs today, however, use global buses rather than point-to-point networks
for communication. The lack of point-to-point VLIWs seems to explain the dearth of work on memory
bank disambiguation for compiling for VLIWs.

A different type of memory disambiguation is relevant on the more typical bus-based VLIW ma-
chines such as the Multiflow Trace [7]. Relative memory disambiguation [7] aims to discover whether
two memory accesses never refer to the same memory location. Successful disambiguation implies that
accesses can be executed in parallel. Hence, relative memory disambiguation is more closely linked to
dependence and pointer analysis techniques.

The modulo unrolling scheme used in Raw [2] is related to an observation made by Ellis [5]. He ob-
serves that unrolling can sometimes help disambiguate accesses, but he does not attempt to formalize the

13

observation into a theory or algorithm. Instead, his technique relies on user-identified array accesses and
user annotations to provide the unroll factors needed. In contrast, modulo unrolling is a fully automated
and formalized technique for dense matrix codes. It includes a precise specification of the scope of the
technique and a theory to predict the minimal required unroll factor.

9 Conclusion

Raw microprocessors are designed for aggressive on-chip memory performance. They distribute their
memory and processing resources over a large number of on-chip tiles coupled with point-to-point in-
terconnects. Thus, each memory unit is small and close to its processing element, thereby allowing
low latency access. The distributed memory system has no central bottlenecks and can sustain a high
aggregate memory system bandwidth. To retain hardware simplicity, the distributed memory system is
exposed to the compiler, so it can provide the abstraction of a unified memory system to support tradi-
tional programming models.

This paper addresses the challenging compiler problem of orchestrating distributed memory and
communication resources to provide a uniform view of the memory system. We present a compiler-
managed memory system called Maps that provides a sequential memory abstraction to the programmer.
The Maps solution attempts to minimize the synchronization and sequentialization necessary for correct
program behavior, and it strives to allow as many parallel accesses as possible. Through static promotion
of memory references, Maps attempts to maximize its utilization of the fast static network. It seamlessly
integrates support for dynamic accesses – memory references that it fails to promote – over the dynamic
network using software serial ordering, incurring minimal synchronization.

We show that Maps is able to statically promote a large number of memory accesses, which can
then executed in an efficient manner. The overhead and register-like latencies of the statically promoted
memory operations are lower than any hardware-based techniques such as coherent caches. We also
show that software serial ordering based on turnstiles and the dynamic network provides an efficient
fallback mechanism for memory references that the compiler cannot statically promote. Software serial
ordering tries to minimize the sequentialization of dependent dynamic memory references. For example,
it is able to overlap three-fourths of the individual latency when multiple dependent dynamic memory
operations are issued from separate tiles. Furthermore, Maps extracts parallelism by using a distinct
turnstile for each equivalence class of dynamic references.

We are encouraged by the results of our compiler-Maps approach to memory orchestration for the
small set of benchmarks we have executed on the system. We are currently pushing larger and more
general programs through the system. We demonstrate a high degree of speedup for several regular
programs, and we show that software serial ordering is able to achieve moderate speedup in cases where
dynamic accesses are necessary. If the results for more general programs continue to be positive, our
software-based Maps approach will be a viable competitor to hardware supported coherent memory
systems for single chip micros.

References

[1] S. Amarasinghe, J. Anderson, C. Wilson, S. Liao, B. Murphy, R. French, and M. Lam. Multiprocessors from
a Software Perspective.IEEE Micro, pages 52–61, June 1996.

14

[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Memory Bank Disambiguation using Modulo Un-
rolling for Raw Machines. InProceedings of the ACM/IEEE Fifth Int’l Conference on High Performance
Computing(HIPC), Dec 1998.

[3] R. Cytron. Doacross: Beyond vectorization for multiprocessors. Aug. 1986.

[4] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An integrated compile-time/run-time software distributed
shared memory system. InProceedings of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 186–197, Cambridge, Massachusetts, October 1–5,
1996.

[5] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. InPh.D Thesis, Yale University, 1985.

[6] W. Lee, R. Barua, D. Srikrishna, J. Babb, V. Sarkar, S. Amarasinghe, and A. Agarwal. Space-Time Schedul-
ing of Instruction-Level Parallelism on a Raw Machine. InProceedings of the Eighth International Con-
ference on Architectural Support for Programming Languages and Operating Systems, San Jose, California,
October 1998.

[7] G. Lowney et al. The Multiflow Trace Scheduling Compiler. InJournal of Supercomputing, pages 51–142,
January 1993.

[8] D. Matzke. Will physical scalability sabotage performance gains?Computer, pages 37–39, Sept. 1997.

[9] R. Rugina and M. Rinard. Span: A shape and pointer analysis package. Technical report, M.I.T. LCS-TM-
581, June 1998.

[10] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A low overhead, software-only approach for sup-
porting fine-grain shared memory. InProceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 174–185, Cambridge, Massachusetts,
October 1–5, 1996.

[11] M. D. Smith. Extending suif for machine-dependent optimizations. InProceedings of the First SUIF Com-
piler Workshop, pages 14–25, Stanford, CA, Jan. 1996.

[12] E. Waingold, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, S. Devabhaktuni, R. Barua,
J. Babb, S. Amarasinghe, and A. Agarwal. Baring It All to Software: The RAW Machine.IEEE Computer,
September 1997. Also as MIT-LCS-TR-709.

[13] R. Wilson et al. SUIF: A Parallelizing and Optimizing Research Compiler.SIGPLAN Notices, 29(12):31–37,
December 1994.

15

