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Abstract

In this paper, we give two explicit constructions of extractors, both of which work for a source of any
min-entropy on strings of length n. The �rst extracts any constant fraction of the min-entropy using
O(log2 n) additional random bits. The second extracts all the min-entropy using O(log3 n) additional
random bits. Both constructions use fewer truly random bits than any previous construction which works
for all min-entropies and extracts a constant fraction of the min-entropy.

The extractors are obtained by observing that a weaker notion of \combinatorial design" su�ces
for the Nisan{Wigderson pseudorandom generator [NW94], which underlies the recent extractor of Tre-
visan [Tre98]. We give near-optimal constructions of such \weak designs" which achieve much better
parameters than possible with the notion of designs used by Nisan{Wigderson and Trevisan.

1 Introduction

Roughly speaking, an extractor is a function which extracts truly random bits from a weakly random
source, using a small number of additional random bits as a catalyst. A large body of work has focused on
giving explicit constructions of extractors, as such constructions have a number of applications. A recent
breakthrough was made by Luca Trevisan [Tre98], who discovered that the Nisan{Wigderson pseudorandom
generator [NW94], previously only used in a computational setting, could be used to construct extractors.
Trevisan's extractor improves on most previous constructions and is optimal for certain settings of the
parameters. However, when one wants to extract all (or most) of the randomness from the weakly random
source, Trevisan's extractor performs poorly, in that a large number of truly random \catalyst" bits are
needed. In this paper, we give an extractor which extracts all of the randomness from the weakly random
source using fewer truly random bits than any previous construction. This is accomplished by improving
the combinatorial construction underlying the Nisan{Wigderson generator used in Trevisan's construction.
Applying a construction of Wigderson and Zuckerman [WZ95], we also obtain improved expanders.

Extractors. A distribution X on f0; 1gn is said to have min-entropy k if for all x 2 f0; 1gn, Pr [X = x] �
2�k. Think of this as saying that X has \k bits of randomness." A function Ext: f0; 1gn�f0; 1gd! f0; 1gm

is called an (k; ")-extractor if for every distribution X on f0; 1gn of min-entropy k, the induced distribution
Ext(X;Ud) on f0; 1g

m has statistical di�erence at most " from uniform (where Ud is the uniform distribution
on f0; 1gd). In other words, Ext extracts m (almost) truly random bits from a source with k bits of hidden
randomness using d additional random bits as a catalyst. The goal is to explicitly construct extractors which
minimize d (ideally, d = O(log(n="))) while m is as close to k as possible.1 Dispersers are the analogue of
extractors for one-sided error; instead of inducing the uniform distribution, they simply hit all but a " fraction
of points in f0; 1gm.

1Actually, since the extractor is fed d truly random bits in addition to the k bits of hidden randomness, one can hope to
have m be close to k + d. This will be discussed in more detail under the heading \Entropy loss."
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Previous work. Dispersers were �rst de�ned by Sipser [Sip88] and extractors were �rst de�ned by Nisan
and Zuckerman [NZ96]. Much of the motivation for research on extractors comes from work done on \some-
what random sources" [SV86, CG88, Vaz87b, VV85, Vaz84, Vaz87a]. There have been a number of pa-
pers giving explicit constructions of dispersers and extractors, with a steady improvement in the parame-
ters [Zuc96, NZ96, WZ95, GW97, SZ98, SSZ98, NT98, TS98, Tre98]. Most of the work on extractors is based
on techniques such as k-wise independence, the Leftover hash lemma [ILL89], and various forms of composi-
tion. A new approach to constructing extractors was recently initiated by Trevisan [Tre98], who discovered
that the Nisan{Wigderson pseudorandom generator [NW94] could be used to construct extractors.

Explicit constructions of extractors and dispersers have a wide variety of applications, including simu-
lating randomized algorithms with weak random sources [Zuc96]; constructing oblivious samplers [Zuc97];
constructive leader election [Zuc97]; randomness e�cient error-reduction in randomized algorithms and in-
teractive proofs [Zuc97]; explicit constructions of expander graphs, superconcentrators, and sorting net-
works [WZ95]; hardness of approximation [Zuc96]; pseudorandom generators for space-bounded computa-
tion [NZ96]; and other problems in complexity theory [Sip88, GZ97, ACR97].

For a detailed survey of previous work on extractors and their applications, see [NT98].

Our results. In this paper, we construct two extractors:

Theorem 1 For every n, k, m, and ", such that m � k � n, there are explicit (k; ")-extractors Ext: f0; 1gn�
f0; 1gd ! f0; 1gm with

1. d = O
�
log2(n=")
log(k=m)

�
2. d = O

�
log2(n=") log(1=)

�
, where 1 +  = k=(m� 1), and 1=m �  < 1=2.

In particular, using the �rst extractor with k=m constant, we can extract any constant fraction of the
source min-entropy using O(log2 n) additional random bits, and, using the second extractor with k = m,
we can extract all of the source min-entropy using O((log2 n)(log k)) additional random bits. A comparison
of these extractors with the best previous constructions is given in Figure 1. Our second extractor directly
improves that of Ta-Shma [NT98], in that ours uses O((log2 n)(log k)) � O(log3 n) truly random bits in
comparison to a polynomial of unspeci�ed (and presumably large) degree in logn. Both of our extractors
use more truly random bits than the extractors of [Zuc97, Tre98] and the disperser of [TS98], but our
extractors have the advantage that they work for any min-entropy (unlike [Zuc97]) and extract all (or a
constant fraction) of the min-entropy (unlike [TS98, Tre98]). The disadvantage of the extractors of [GW97]
described in Figure 1 is that they only use a small number of truly random bits when the source min-entropy
k is very close to the input length n (e.g., k = n � polylog(n)), whereas ours uses O(log3 n) random bits
for any min-entropy. There are also extractors given in [GW97, SZ98] which extract all of the min-entropy,
but these use a small number of truly random bits only when the source min-entropy is very small (e.g.,
k = polylog(n)), and these extractors are better discussed later in the context of entropy loss.

Plugging our second extractor into a construction of [WZ95] immediately yields the following expander
graphs:

Corollary 2 For every N and K � N , there is an explicitly constructible graph on N nodes with degree
(N=K) � 2O((log logN)2(log logK)) such that every two disjoint sets of vertices of size at least K have an edge
between them.

This degree compares with a degree bound of (N=K) � 2O(poly(log logN)) due to Ta-Shma [NT98]. Such
expanders have applications to sorting and selecting in rounds, constructing depth 2 superconcentrators, and
constructing non-blocking networks [Pip87, AKSS89, WZ95].

The Trevisan extractor. The main tool in the Trevisan extractor is the Nisan{Wigderson genera-
tor [NW94], which builds a pseudorandom generator out of any predicate P such that the security of the
pseudorandom generator is closely related to how hard P is to compute (on average). Let S = (S1; : : : ; Sm)
be a collection of subsets of [d] each of size `, and let P : f0; 1g` ! f0; 1g be any predicate. For a string
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reference min-entropy k output length m additional randomness d type

[GW97] any k m = k d = O(n� k + log(1=")) extractor

[Zuc97] k = 
(n) m = (1� �)k d = O(logn) extractor

[NT98] any k m = k d = polylog(n) extractor

[TS98] any k m = k1�o(1) d = O(logn) disperser

[Tre98] k = n
(1) m = k1�� d = O(logn) extractor

any k m = k1�� d = O((log2 n)=(log k)) extractor

ultimate goal any k m = k d = O(logn) extractor

this paper any k m = (1� �)k d = O(log2 n) extractor

any k m = k d = O((log2 n)(log k)) extractor

(Above, � is an arbitrarily small constant.)

Figure 1: Comparison with best previous constructions

y 2 f0; 1gd, de�ne yjSi to be the string in f0; 1g
` obtained by projecting y onto the coordinates speci�ed by

Si. Then the Nisan{Wigderson generator NWS;P : f0; 1g
d ! f0; 1gm is de�ned as

NWS;P (y) = P (yjS1) � � �P (yjSm):

In the \indistinguishability proof" of [NW94], it is shown that for any function D: f0; 1gm ! f0; 1g
which distinguishes the output of NWS;P (y) (for uniformly selected y) from the uniform distribution on
f0; 1gm, there is a \small" circuit C (or procedure of small \description size") such that CD(�) (i.e. , C
with oracle access to D) approximates P (�) reasonably well. It is shown that the size of the C is related
to maxi6=j jSi \ Sj j, so one should use a collection of sets in which this quantity is small, while trying to
minimize the seed length d.

We now give a rough description of the Trevisan extractor Ext: f0; 1gn�f0; 1gd! f0; 1gm. For a string
u 2 f0; 1gn, let u 2 f0; 1gn be an encoding of u in an error-correcting code (whose properties are unimportant
in this informal description) and de�ne ` = logn. We view u as a boolean function u: f0; 1g` ! f0; 1g.

Then the extractor is simply

ExtS(u; y) = NWS;u(y) = u(yjS1) � � �u(yjSm):

The analysis of this extractor in [Tre98] shows that the output of this extractor is close to uniform as
long as the source min-entropy required is greater than the size of the circuit built in the security reduction
of [NW94]. Hence, one needs to keep this circuit size small while minimizing the number d of truly random
bits needed, which is equal to the seed length of the Nisan{Wigderson generator. Unfortunately, using
maxi6=j jSi \ Sj j as the measure of the circuit size as in [NW94, Tre98], one cannot make d much smaller
than what is obtained in [Tre98].

The improvement. The improvements of this paper stem from the observation that actually maxi
P

j<i 2
jSi\Sjj

is much better than maxi 6=j jSi \Sj j as a measure of the size of the circuit built in the Nisan{Wigderson se-
curity reduction. So we are left with the problem of constructing set systems in which this quantity is small;
we call such set systems weak designs (in contrast to designs, in which maxi6=j jSi\Sj j is bounded). We show
that with weak designs, one can have d much smaller than is possible with the corresponding designs. The
weak designs used in our �rst extractor are constructed using an application of the Probabilistic Method,
which we then derandomize using the Method of Conditional Expectations (see [ASE92] and [MR95, Ch.
5]). We then apply a simple iteration to these �rst weak designs to obtain the weak designs used in our
second extractor. We also prove a lower bound showing that our weak designs are near-optimal.

Entropy loss. Since a (k; ")-extractorExt: f0; 1gn�f0; 1gd! f0; 1gm is given k bits of hidden randomness
in its �rst input and d truly random bits in its second input, one can actually hope for the output length
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m to be almost k + d, rather than just k. The quantity � = k + d �m is therefore called the entropy loss
of the extractor. Hence, in this language, the goal in constructing extractors is to simulataneously minimize
both d and the entropy loss.

Nonconstructively, one can show that, for any n and k � n, there exist extractors Extn;k: f0; 1g
n �

f0; 1gd ! f0; 1gk+d�� with d = log(n� k)+O(1) and entropy loss � = 2 log(1=")+O(1), and these bounds
on d and � are tight up to additive constants [RT97]. The explicit constructions, however, are still far from
achieving these parameters. As for what is known, every entry in Figure 1 with m = k has an entropy loss of
d. For example, the extractor of [GW97] has an entropy loss of O(n�k+log(1=")) (which is only interesting
when k is very close to n) and the extractor of [NT98] has an entropy loss of polylogn. In addition, the
\tiny families of hash functions" of [GW97, SZ98] give extractors with d = O(k + logn) and entropy loss
2 log(1=") +O(1); these are interesting when k is very small (e.g., k = polylogn)

A slight modi�cation to our second extractor enables us to achieve logarithmic entropy loss:

Theorem 3 For every n, k, and " such that k � n, there is a (k; ")-extractor Ext: f0; 1gn � f0; 1gd !
f0; 1gk+d�� with

d = O
��
log2(n=")

�
(log k)

�
and entropy loss

� = 3 log(k=") +O(1)

2 Preliminaries

In this section, we introduce some standard terminology and notation used throughout the paper. log
indicates the logarithm base 2 and ln denotes the natural logarithm. If X is a probability distribution on a
�nite set, we write x X to indicate that x is selected according to X . Two distributions X and Y on a set
S are said to have statistical di�erence (or variation distance) " if

max
D
jPr [D(X) = 1]� Pr [D(Y ) = 1]j = ";

where the maximum is taken over all functions (\distinguishers") D: f0; 1gm ! f0; 1g. A distribution X is
said to have min-entropy k if for all x, Pr [X = x] � 2�k. It is useful to think of distributions of min-entropy
k as being uniform over a subset of the domain of size 2k.

We write Uj for the uniform distribution on strings of length j. A function Ext: f0; 1gn � f0; 1gd !
f0; 1gm is a (k; ")-extractor if for every distribution X of min-entropy k, Ext(X;Ud) has statistical di�erence
at most " from Um. In other words, Ext extracts m (almost) truly random bits from a source with k bits
of hidden randomness using d additional random bits as a catalyst. We say that a family of extractors
fExti: f0; 1g

ni � f0; 1g
di ! f0; 1g

migi2I is explicit if Exti can be evaluated in time poly(ni; di).

3 Combinatorial designs

The combinatorial construction underlying the Nisan{Wigderson generator are combinatorial designs.

De�nition 4 ([NW94]) 2 A family of sets S1; : : : ; Sm � [d] is an (`; �)-design if

1. For all i, jSij = `.

2. For all i 6= j, jSi \ Sj j � log �.

2There is a somewhat related notion in the combinatorics literature known as a 2-design (see, e.g. [AK92]). In 2-designs,
strong additional regularity requirements are imposed (such as all the pairwise intersections being exactly the same size and all
points being contained in the same number of sets). These additional requirements are irrelevant in our applications.
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Motivation. In Trevisan's extractor, the parameters of a design correspond to the parameters of the
extractor as follows:

source min-entropy � �m

output length = m

input length = 2�(`)

additional randomness = d

Hence, our goal in constructing designs is to minimize d given parameters m, `, and � (such that � > 1).
Notice that 1=� is essentially the fraction of the source min-entropy that is extracted, so ideally � would be
as close to 1 as possible.

One explicit construction of designs is given by the following:

Lemma 5 ([NW94, Tre98]) For every m, `, and � > 1, there exists an e�ciently constructible (`; �)-
design S1; : : : ; Sm � [d] with

d =
`2mO(1= log �)

log �
:

Notice that the dependence on � is very poor. In particular, if we want to extract a constant fraction
of the min-entropy, we need more than mc truly random bits for some c > 0. This is unavoidable with the
current de�nition of designs: if � < 2, then all the sets must be disjoint, so d � m`. In general, we have the
following lower bound, obtained in joint work with Luca Trevisan and proved in Section 6:

Proposition 6 If S1; : : : ; Sm � [d] is an (`; �)-design, then

d � m1= log 2� � (`� log �)

The improvements of this paper stem from the observation that actually a weaker form of design su�ces
for the Nisan{Wigderson generator and the construction of extractors:

De�nition 7 A family of sets S1; : : : ; Sm � [d] is a weak (`; �)-design if

1. For all i, jSij = `.

2. For all i, X
j<i

2jSi\Sj j � � � (m� 1):

We will show that the parameters of a weak design correspond to the parameters of our extractors in
the same way that designs corresponded to the parameters of Trevisan's extractor. Notice that every (`; �)-
design is a weak (`; �)-design. But one can, for many settings of m, `, and � achieve weak (`; �)-designs
S1; : : : ; Sm � [d] with much smaller values of d than possible with (`; �)-designs. Indeed, we will prove the
following in Section 5 using a probabilistic argument:

Lemma 8 For every `;m 2 N and � > 1, there exists a weak (`; �)-design S1; : : : ; Sm � [d] with

d =

�
`

ln �

�
� `:

Moreover, such a family can be found in time poly(m; d).

This is already much better than what is given by Lemma 5; for constant �, d is O(`2) instead of `2mc.
However, as � gets very close to 1, d gets very large. Speci�cally, if � = 1 +  for small , then the above
gives d = O(`2=). To improve this, we notice that the proof of Lemma 8 does not take advantage of the
fact that there are fewer terms in

P
j<i 2

jSi\Sjj when i is small; indeed the proof actually shows how to
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obtain
P

j<i 2
jSi\Sjj < � � (i � 1) with the same d.3 Since we only need a bound of � � (m � 1) for all i,

this suggests that we should \pack" more sets in the beginning. This packing is accomplished by iterating
the construction of Lemma 8 (directly inspired by the iteration of Wigderson and Zuckerman [WZ95] on
extractors), and yields the following improvement.

Lemma 9 For every `;m 2 N and 3=m �  < 1=2, there exists a weak (m; `; 1 + ; d)-design with

d = O

�
`2 log

1



�
:

Moreover, such a family can be found in time poly(m; d).

In particular, we can take  = �(1=m) and extract essentially all of the entropy of the source using
d = O(`2 logm) truly random bits. Lemma 9 will be proven in Section 5.

For extractors which use only O(log n) truly random bits, where n is the input length, one would need
d = O(`). However, one cannot hope to do better than 
(`2) using the current analysis with weak designs.
Indeed, the following proposition shows that our weak designs are optimal up to the log(1=) factor in our
second construction.

Proposition 10 For every (`; �)-weak design S1; : : : ; Sm � [d],

d � min

�
`2

2 log 2�
;
m`

2

�

Notice that d = m` can be trivially achieved having all the sets disjoint and that log 2� approaches 1 as
� approaches 1, so the lower bound for � � 1 is essentially 
(`2).

4 The extractor

In this section, we describe the Trevisan extractor and analyze its performance when used with our weak
designs. The description of the extractor follows [Tre98] very closely. The main tool in the Trevisan extractor
is the Nisan{Wigderson generator [NW94]. Let S = (S1; : : : ; Sm) be a collection of subsets of [d] of size `,
and let P : f0; 1g` ! f0; 1g be any boolean function. For a string y 2 f0; 1gd, de�ne yjSi to be the string in
f0; 1g` obtained by projecting y onto the coordinates speci�ed by Si. Then the Nisan{Wigderson generator
NWS;P is de�ned as

NWS;P (y) = P (yjS1) � � �P (yjSm):

In addition to the Nisan{Wigderson generator, the Trevisan extractor makes use of error-correcting codes:

Lemma 11 (Error-correcting codes) For every n and � there is a code ECn;�: f0; 1g
n ! f0; 1gn where

n = poly(n; 1=�) such that every Hamming ball of relative radius 1=2� � in f0; 1gn contains at most 1=�2

codewords. Furthermore, ECn;� can be evaluated in time poly(n; 1=�) and n can be assumed to be a power
of 2.

We will actually use a stronger property of such error-correcting codes:

Proposition 12 Let ECn;� be any family of codes such that every Hamming ball of relative radius 1=2� �
contains fewer than B codewords and lnB � �2 � n. Then, for su�ciently small �, every `1-ball of relative
radius 1=2�2� in [0; 1]n � R

n contains at most B codewords. In other words, for every real vector v 2 [0; 1]n,

#

(
u

����� 1n
nX
i=1

jEC(u)i � vij <
1

2
� 2�

)
< B

3In fact it is necessary that d = 
(`2= log �) if
P

j<i 2
jSi\Sj j < � � (i � 1) for all i. See the remark after the proof of

Proposition 10.
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Since we may assume that n � ��2 ln ��2 in Lemma 11, Proposition 12 applies to those codes with
B = 1=�2. The proof of Proposition 12 was obtained with the help of Madhu Sudan.

Proof: Suppose not, i.e. there are at least B codewords in an `1-ball of radius 1=2 � 2� around some
real vector v. Then, consider a vector w 2 f0; 1gn obtained by randomly rounding v. That is, let wi = 1
with probability vi for every i independently. Now consider any codeword u within `1-distance 1=2� 2� of
v. The Hamming distance between u and w has expectation ku� vk1 and is the sum of n i.i.d. [0; 1]-valued
random variables. By the Hoe�ding inequality, the probability that the Hamming distance between u and
w exceeds ku� vk1+ � is at most exp(�2n�2)) = 1=jBj2. Hence, the probability that there are fewer than B
codewords within Hamming distance 1=2� � around w is at most 1=jBj. Thus, there exists a w with at least
B codewords within Hamming distance 1=2� � contradicting the property of the error-correcting code.

We can now describe the Trevisan extractor, which takes as parameters n, m, k, and ", where m � n � k.
Let EC: f0; 1gn ! f0; 1gn be as in Lemma 12, with � = "=4m and de�ne ` = logn = O(logn="). For
u 2 f0; 1gn, we view EC(u) as a boolean function u: f0; 1g`! f0; 1g.

Let S = (S1; : : : ; Sm) be a collection of subsets of [d] (for some d) such that jSij = ` for each i. (How
S is selected will crucially a�ect the performance of the extractor; we will later choose it to be one of our
weak designs.)

Then the extractor ExtS : f0; 1g
n � f0; 1gd ! f0; 1gm is de�ned as

ExtS(u; y) = NWS;u(y) = u(yjS1) � � �u(yjSm):

We will now analyze this extractor. The following Lemma is implicit in [NW94] and is more explicitly
shown in [Tre98]. It shows how, from any function D which distinguishes the output of NWS;P from uniform,
one can obtain a (randomized) \program" which, using D as an oracle, predicts P with noticeable advantage.
This lemma shows that this \program" can be taken to be of a very simple form, which will allow us to
bound its complexity later on. The only modi�cation we need to the proofs of [NW94, Tre98] is that we do
not use an averaging argument to �x the \random part" of the hybrids in the \hybrid argument"; rather,
we keep these random.

Lemma 13 Let P : f0; 1g`! f0; 1g be any predicate and let D: f0; 1gm ! f0; 1g be any \distinguisher" such
that

Pr
r
[D(r) = 1]� Pr

y
[D(NWS;P (y)) = 1] > ";

where r is selected uniformly from f0; 1gm and y from f0; 1gd. Then there exists a there exists an i � m and
functions P1; : : : ; Pi from f0; 1g

` to f0; 1g

1. Prx;b;r [D(P1(x); : : : ; Pi�1(x); b; r) � b = P (x)] > 1
2 +

"
m , where x is selected uniformly from f0; 1g`, b

from f0; 1g, and r from f0; 1gm�i.

2. Each Pj depends on only jSi \ Sj j bits of x (where these bit positions depend only on S and i, but not
on P or D)

Proof sketch: We can expand the hypothesis of Lemma 13 as

Pr
r1���rm

[D (r1 � � � rm) = 1]� Pr
y
[D (P (yjS1) � � �P (yjSm)) = 1] > ";

where r1; : : : ; rm are uniformly and independently selected bits and y is uniformly selected from f0; 1gd. By
the \hybrid argument" of [GM84] (cf. [Gol95, Sec. 3.2.3]), there is an i such that

Pr
y;ri���rm

�
D
�
P (yjS1) � � �P (yjSi�1)ri � � � rm

�
= 1
�
� Pr

y;ri+1���rm
[D (P (yjS1) � � �P (yjSi)ri+1 � � � rm) = 1] > "=m

Now, renaming ri as b and using the standard transformation from distinguishers to predictors [Yao82] (cf.
[Gol98, Sec. 3.3.3]), we see that

Pr
y;b;ri+1���rm

�
D
�
P (yjS1) � � �P (yjSi�1)bri+1 � � � rm

�
� b = P (yjSi)

�
>

1

2
+

"

m
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Using an averaging argument we can �x all the bits of y outside Si while preserving the prediction advantage.
Renaming ySi as x, we now observe that x varies uniformly over f0; 1g` while P (yjSj ) for j 6= i is now a
function Pj of x that depends on only jSi \ Sj j bits of x. So, we have

Pr
x;b;ri+1���rm

[D (P1(x) � � �Pi�1(x)bri+1 � � � rm)� b = P (x)] >
1

2
+

"

m
;

as desired. 2

Now we use a counting argument to bound the complexity (or \description size") of the \program" above
and illustrate the connection with weak designs:

Lemma 14 There is a set F of functions from f0; 1g`+1+m to f0; 1gm (depending only on S) such that

1. For every predicate P : f0; 1g` ! f0; 1g and distinguisher D: f0; 1gm ! f0; 1g such that

Pr
r
[D(r) = 1]� Pr

y
[D(NWS;P (y)) = 1] > ";

there exists a function f 2 F such that

Pr
x;b;r

[D(f(x; b; r)) � b = P (x)] >
1

2
+

"

m
;

where x is selected uniformly from f0; 1g`, b from f0; 1g, and r from f0; 1gm.

2. log jFj � logm+maxi

�P
j<i 2

jSi\Sjj
�
.

3. Each function in F can be computed by a circuit of size O
�
maxi

�P
j<i jSi \ Sj j � 2

jSi\Sjj
��

.4

We will not use Item 3 (the bound on circuit size) in the analysis of our extractor; we only use this for
our quantitative improvement to the pseudorandom generators of [NW94] given in Section 8.

Proof: By Lemma 13, to meet Condition 1 it su�ces to let F be the set of functions f of the form
(x; b; r) 7! (P1(x); P2(x); : : : ; Pi�1(x); b; r), where Pj(x) depends only some set Tij of bits of x, where jTij j =
jSi \ Sj j. The number of bits it takes to represent i is logm. Given i, the number of bits it takes to
represent each Pj is 2jTij j = 2jSi\Sjj. So, the total number of bits it takes to represent a function in F is
logm+maxi

P
j<i 2

jSi\Sjj, giving the desired bound on log jFj.
For the bound on circuit size, notice that the circuit size of f is simply the sum of the circuit sizes of the

Pj 's, and every function on k bits can be computed by a circuit of size O(k2k).

We now analyze the extractor ExtS when we take S to be a weak design. The argument follows the
analysis of Trevisan's extractor in [Tre98] except that we use the more re�ned bounds on jFj given by
Lemma 14.

Proposition 15 If S = (S1; : : : ; Sm) (with Si � [d]) is a weak (`; �)-design for � = (k � 3 log(m=")� 5)=m
(where c is a �xed constant), then ExtS : f0; 1g

n � f0; 1gd! f0; 1gm is a (k; ")-extractor.

Proof: Let X be any distribution of min-entropy k. We need to show that the statistical di�erence between
Um and Ext(X;Ud) is at most ". By the de�nition of statistical di�erence, this is equivalent to showing
that, for every distinguisher D: f0; 1gm ! f0; 1g,

Pr
r
[D(r) = 1]� Pr

u X;y
[D(NWS;u(y)) = 1] � "

4We measure circuit size by the number of internal gates, so, for example, the identity function has circuit size 0.
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where r and y are selected uniformly from f0; 1gm and f0; 1gd, respectively. (We have dropped the absolute
value in the de�nition of statistical di�erence; this is without loss of generality since we may replace D by
its binary complement.) So let D: f0; 1gm ! f0; 1g be any distinguisher and let F be as in Lemma 14, so

jFj � m2�m. For every f 2 F , we obtain a function f̂ : f0; 1g` ! [0; 1] given by

f̂(x) = Pr
b;r
[D(f(x; b; r)) � b = 1]:

Think of D(f(x; b; r))� b as a randomized algorithm built out of D with input x and random coins (b; r).

We can view each f̂ as a vector f̂ 2 [0; 1]n. Notice that for a predicate P : f0; 1g`! f0; 1g (which we can also

view as a vector P 2 f0; 1gn), the `1-distance between f̂ and P gives the probability that the randomized
algorithm corresponding to f computes P incorrectly. That is,

jf̂ � P j1 = Pr
b;r
[D(f(x; b; r)) � b 6= P (x)]:

Let B be the set of u for which there exists an f 2 F such that jf̂ � uj1 < 1=2� "=2m. In other words,

B is the set of \bad" u for which u can be approximated easily by one of these randomized algorithms f̂ .
By the property of the error-correcting code given in Proposition 12, for each function f 2 F , there are at
most (4m=")2 strings u 2 f0; 1gn such that jf̂ � uj1 < 1=2� "=2m. By the union bound,

jBj � (4m=")2 � jFj = (4m=")2 � 2�m:

Since X has min-entropy k, each u 2 B has probability at most 2�k of being selected from X , so

Pr
u X

[u 2 B] �
�
(4m=")2m2�m

�
� 2�k

=
�
(4m=")2m2k�3 log(m=")�5

�
� 2�k

< "=2

Now, by Lemma 14, if u =2 B, then

Pr
r
[D(r) = 1]� Pr

y
[D(NWS;u(y)) = 1] < "=2:

Thus,

Pr
r
[D(r) = 1]� Pr

u X;y
[D(NWS;u(y)) = 1] = E

u X

�
Pr
r
[D(r) = 1]� Pr

y
[D(NWS;u(y)) = 1]

�
� Pr

u X
[u 2 B] + Pr

u X
[u =2 B] � "=2

� "=2 + "=2 = ":

Combining Proposition 15 with the weak designs given by Lemmas 8 and 9 essentially proves Theorem 1.
The only technicality is that Proposition 15 does not allow us to take � = k=m (or k=(m� 1)) which is what
we would need to deduce Theorem 1 directly. Instead, we lose � = 3 log(m=")+ 5 bits of the source entropy
in Proposition 15. However, since � is so small, we can give our extractor � more truly random bits in its
seed (increasing d by only a constant factor) which we just concatenate to the output to compensate for the
loss. The details of this are given below.

Proof of Theorem 1: Let � = 3 log(m=")+5. Let k0 = k��, m0 = m���3, and � = k0=m0 > k=(m�1).
For 1 or 2, apply Proposition 15 with the weak (`; �)-design S1; : : : ; Sm0 � [d0] of Lemma 8 or Lemma 9,

respectively. This gives an (k; ")-extractor Ext: f0; 1gn � f0; 1gd
0

! f0; 1gm
0

, with d0 = O
�
log2(n=")
log(k=m)

�
or

d0 = O(log2(n=") log(1=)), respectively. By using � + 3 additional bits in the seed and simply concate-
nating these to the output, we obtain a (k; ")-extractor Ext: f0; 1gn � f0; 1gd

0+�+3 ! f0; 1gm, as desired.

9



(In applying Lemma 9, we need to make sure that � < 3=2, but if � � 3=2, we can use the weak design of
Lemma 8 instead.)

Remark The stronger property of error-correcting codes given by Proposition 12 which corresponds to
hardness against randomized algorithms could have been avoided by using an averaging argument to \�x" r
and b in Lemma 13. If this is done in a straightforward manner, we would have to pay a price for these bits
in the size of F , as they would be needed to fully describe a function. The cost of these bits can be avoided,
however, if we do the hybrid argument while we are still looking at the advantage of the distinguisher averaged
over the choice of u; then these bits can be �xed independently of u and absorbed into the distinguisher
before we make the counting argument which says that the distinguisher fails with probability at least 1�"=2
over the choice of u X . Doing the analysis this way eliminates the logm term in the bound on log jFj.
However, the approach we have taken, advocated by Oded Goldreich, corresponds better to the intuition
that one should not pay a price for r and b since they can be taken to be random.

5 Construction of weak designs

Proof of Lemma 8: Let `, m, and � be given, and let d = d`= ln �e � `. We view [d] as the disjoint union
of ` blocks B1; : : : ; B`, each of size d`= ln �e. We construct the sets S1; : : : ; Sm in sequence so that

1. Each set contains exactly one element from each block, and

2.
P

j<i 2
jSi\Sjj � � � (i� 1).

Supppose we have S1; : : : ; Si�1 � [d] satisfying the above conditions. We prove that there exists a
set Si satisfying the required conditions using the Probabilistic Method [ASE92] (see also [MR95, Ch.
5]). Let a1; : : : ; a` be uniformly and independently selected elements of B1; : : : ; B`, respectively, and let
Si = fa1; : : : ; a`g. We will argue that with nonzero probability, Condition 2 holds. Let Yj;k be the indicator
random variable for whether ak 2 Sj , so Pr [Yj;k = 1] = 1=jBj j = 1=d`= ln�e. Notice that for a �xed j, the
random variables Yj;1; : : : ; Yj;` are independent.

E

2
4X
j<i

2jSi\Sj j

3
5 =

X
j<i

E
h
2
P

k
Yj;k
i

=
X
j<i

E

"Y
k

2Yj;k

#

=
X
j<i

Y
k

E
�
2Yj;k

�

= (i� 1) �

�
1 +

1

d`= ln �e

�`
� (i� 1) � �

Hence, with nonzero probability, Condition 2 holds, so a set Si satisfying the requirements exists. How-
ever, we want to �nd such a set deterministically. This can be accomplished by a straightforward application
of the Method of Conditional Expectations (see [ASE92] and [MR95, Ch. 5]). Details can be found in
Appendix A.

Remark A perhaps more natural way to carry out the above probabilistic construction is to chose Si
uniformly from the set of all subsets of [d] of size `, rather than dividing [d] into ` blocks. This gives essentially
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the same bounds, but complicates the analysis because the elements of Si are no longer independent. The
cleaner approach in the above proof was suggested by David Zuckerman.

Proof of Lemma 9: For simplicity, assume that 1+ = 1=(1�2�h) andm = 2q=(1+). Let d0 = d`= ln 2e�`
and let d = h � d0 = O(`2 � log(1 + )). We view [d] as the disjoint union of h blocks B1; : : : ; Bh each of size

d0. For each t 2 [h], let mt = 2q�t and nt =
Pt�1

s=1ms, so
P

tmt = m.
Now we de�ne our weak design S1; : : : ; Sm. For each t 2 [h], we let Snt+1; : : : ; Snt+mt

� Bt be a weak
(`; 2)-design as given by Lemma 8. In other words, we take the ordered union of h weak (`; 2)-designs
(consisting of m1;m2; : : : ;mh sets, respectively) using disjoint subsets of the universe for each. The number
of sets is m, the size of the universe is d, and each set is of size `, so we only need to check that for all i 2 [m],P

j<i 2
jSi\Sj j < � � (m� 1). For i 2 fnt + 1; : : : ; nt +mtg, Si is disjoint from any Sj for any j � nt and

i�1X
j=nt+1

2jSi\Sj j � 2 � (mt � 1):

since Snt+1; : : : ; Snt+mt
is a weak (`; 2)-design.

Thus, we have

X
j<i

2jSi\Sj j =

ntX
j=1

2jSi\Sj j +

i�1X
j=nt+1

2jSi\Sjj

� nt + 2 � (mt � 1)

= 2q � 2 < (1 + )(m� 1);

as desired.

6 Lower bounds for designs

Proof of Proposition 6: Let I = maxi6=j jSi \ Sj j � log �. For each j = 1; : : : ;m, let �j be the set of

subsets of Sj of size I + 1, so j�j j =
�

`
I+1

�
. Let � =

S
j �j . Notice that the sets �j are disjoint, because no

two distinct sets Si; Sj share more than I elements. Thus, j�j = m �
�

`
I+1

�
. At the same time, j�j consists of

subsets of [d] of size I + 1, so j�j �
�

d
I+1

�
. So we have

m �

�
`

I + 1

�
�

�
d

I + 1

�
:

Expanding the binomial coe�cients and rearranging terms, we have

m �

�
d

`

��
d� 1

`� 1

�
� � �

�
d� I

`� I

�
�

�
d

`� I

�I+1
�

�
d

`� log �

�log 2�

Proof of Proposition 10: We have

� � max
i

1

m� 1

X
j<i

2jSi\Sj j

�
1

m(m� 1)

mX
i=1

X
j<i

2jSi\Sj j
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=
1

2m(m� 1)

X
i6=j

2jSi\Sjj

�
1

2

�
2

1
m(m�1)

P
i6=j jSi\Sjj

�
where the last inequality follows from Jensen's inequality. Thus,

log 2� >
1

m2

X
i6=j

jSi \ Sj j (1)

Now, for a 2 [d], let na = jfi: a 2 Sigj. Then
P

a na =
P

i jSij = m � `.

X
i6=j

jSi \ Sj j =
X
a2[d]

na(na � 1)

=
X
a

n2a �
X
a

na

=
X
a

n2a �m`

�
1

d

 X
a

na

!2

�m`

=
m2`2

d
�m`

�
m2`2

2d
;

unless d � (m`)=2. Putting this in Inequality 1, we have

log 2� >
1

m2
�
m2`2

2d
=

`2

2d

which proves the proposition.

Remark The above proof gives a stronger bound on d if we have a family of sets S1; : : : ; Sm such that for
all i,

P
j<i 2

jSi\Sjj < � � (i � 1) (e.g., the family of sets constructed in the proof of Lemma 8). If we have
such a bound, then summing over i from 1 to m gives

� �

�
m

2

�
>

1

2

X
i6=j

2jSi\Sj j;

and applying Jensen's inequality and taking logs as in the above proof gives

log � >
1

m2

X
i6=j

jSi \ Sj j

instead of Inequality 1. Following the rest of the proof without change, this shows that

d � min

�
`2

2 log �
;
m`

2

�
:
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7 Achieving small entropy loss

Recall that the entropy loss of an extractor Ext: f0; 1gn � f0; 1gd ! f0; 1gm is de�ned as � = k + d �m,
and we can hope for this to be as small as 2 log(1=") +O(1) with d = log(n� k) +O(1) [RT97].

In constructing our extractor ExtS(u; y) = NWS;u(y), we \threw away" y after using it as a seed for the
Nisan{Wigderson generator and hence the d bits of entropy carried by y were lost. However, the analysis of
the Nisan{Wigderson generator actually shows that the quality of the generator is not a�ected if the seed
is revealed. Thus, we de�ne Ext0S(u; y) = (y;NWS;u(y)). Now all the analysis of Ext done in Section 4
actually applies to Ext0 (in Lemmas 13 and 14, give the distinguisher D the seed y in addition to NWS;u(y)),
and we obtain the following strengthening of Proposition 15:

Proposition 16 If S = (S1; : : : ; Sm) (with Si � [d]) is a weak (`; �)-design for � = (k� 3 log(m=")� 5)=m,
then Ext0S : f0; 1g

n � f0; 1gd ! f0; 1gm+d is a (k; ")-extractor.

Combining Proposition 16 and Lemma 9 with m = k � 1 immediately gives Theorem 3. An additional
additive factor of logm can be removed from the entropy loss by taking the alternative approach mentioned
in the remark at the end of Section 4. Note that the trick of adding extra bits to the seed and concatenating
these to the output, as we did in the proof of Theorem 1, does not help in reducing the entropy loss.

8 Better pseudorandom generators

Using alternative types of designs also gives some quantitative improvements in the construction of pseu-
dorandom generators from hard predicates in [NW94]. From Lemma 14, we see that the relevant notion of
design in the setting of circuit complexity-based pseudorandom generation is the following:

De�nition 17 A family of sets S1; : : : ; Sm � [d] is a type 2 weak (`; �)-design if

1. For all i, jSij = `.

2. For all i, X
j<i

jSi \ Sj j � 2
jSi\Sj j � � � (m� 1):

Notice that it is meaningful to consider even values of � less than 1, since jSi \ Sj j � 2
jSi\Sj j can be zero.

Using a construction like the one in Lemma 8, we obtain

Lemma 18 For every `;m 2 N and � > 0, there exists a type 2 weak (`; �)-design S1; : : : ; Sm � [d] with

d =

8<
:
O
�

`2

ln �`

�
if � � 6

`

O
�
`
�

�
if � < 6

`

Moreover, such a family can be found in time poly(m; d).

The quantitative relation between pseudorandom generators and type 2 weak designs follows readily from
Lemma 14:

Lemma 19 Suppose P : f0; 1g` ! f0; 1g is a predicate such that no circuit of size s can compute P correctly
on more than a fraction 1

2 + " of the inputs and suppose that S = (S1; : : : ; Sm) where Si � [d] is a type
2 weak (`; �)-design. Then no circuit of size s � �m can distinguish NWS;P from uniform with advantage
greater than m".

Combining this and Lemma 18 with � = 1 and s = 2m, we obtain

13



Theorem 20 Suppose P : f0; 1g` ! f0; 1g is a predicate such that that no circuit of size 2m can compute P

correctly on more than a fraction 1
2 +

"
m of the inputs. Then there is a generator GP;m: f0; 1g

O(`2= log `) !
f0; 1gm computable in time poly(m; `), making m oracle calls to P , such that no circuit of size m can
distinguish the output of G from uniform with advantage greater than ".

In other words, to obtain m bits which are pseudorandom against circuits of size m, we need only assume
that there is a predicate which is hard against circuits of size O(m). In contrast, the results of [NW94]
always need to assume that the predicate is hard against circuits of size m1+� for some constant � > 0 (or
else their generator will require a seed length that is polynomial in m instead of `). In fact, if we instead
take � = 1=`, we need only assume that the predicate is hard against circuits of size (1 + 1=`) �m (and the
generator will have a seed length O(`2)).
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A Derandomizing the proof of Lemma 8

In the analysis of the probabilistic choice of Si, we showed that

E

2
4X
j<i

2jSi\Sj j

3
5 � � � (i� 1)

By averaging, this implies that there exists an �1 2 B1 such that

E

2
4X
j<i

2jSi\Sj j

������a1 = �1

3
5 � � � (i� 1) (2)

So, assuming we can e�ciently calculate the conditional expectation E
hP

j<i 2
jSi\Sj j

���a1 = �1

i
for every

�1 2 B1, we can �nd the �1 that makes Inequality 2 hold. Then, �xing such an �1, another averaging
argument implies that there exists an �2 2 B2 such that

E

2
4X
j<i

2jSi\Sjj

������ a1 = �1; a2 = �2

3
5 � � � (i� 1) (3)

Again, assuming that we can compute the appropriate conditional expectations, we can �nd an �2 that
makes Inequality 3 hold. Proceeding like this, we obtain �1; : : : ; �` such that

E

2
4X
j<i

2jSi\Sjj

������ a1 = �1; a2 = �2; : : : ; a` = �`

3
5 � � � (i� 1) (4)

But now there is no more randomness left in the experiment, and Inequality 4 simply says that
P

j<i 2
jSi\Sj j �

� � (i� 1), for Si = f�1; : : : ; �`g. To implement this algorithm for �nding Si, we need to be able to calculate
the conditional expectation

E

2
4X
j<i

2jSi\Sj j

������ a1 = �1; : : : ; ai = �i

3
5 ;
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for any i and �1; : : : ; �i. If we let T = f�1; : : : ; �ig, then a calculation like the one in the proof of Lemma 8
for the unconditional expectation shows

E

2
4X
j<i

2jSi\Sjj

������ a1 = �1; : : : ; ai = �i

3
5 =

X
j<i

2jT\Sjj
�
1 +

1

d`= ln �e

�`�i
;

which can be easily computed.
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