THE MASC COMPOSABLE COMPUTING
INFRASTRUCTURE FOR INTELLIGENT ENVIRONMENTS

Sandeep Chatterjee and Srinivas Devadas
{sandeep, devadas}@]lcs.mit.edu

MIT Laboratory for Computer Science
545 Technology Square, NE43-212
Cambridge, MA, 02139, USA

Abstract. We present a system architecture and framework for creating rapidly deployable intelligent environments.
The rapid pace of innovation of computer hardware and intelligent systems software leads to uncertainty that deters
manufacturers from adopting a single processor, network, or software environment Jfor placement into their products.
The MASC Composable Computing infrastructure addresses these issues by providing an upgradable hardware and
software infrastructure that supports rapid development and deployment, as well as simple and economical

maintenance of intelligent environment systems.

I. Introduction

There is presently tremendous interest in building
intelligent and interactive environments. The
availability of cheap computing systems, networks, and
appliances (comprising sensors and actuators) is
enabling the development and deployment of these
environments [11]. Such environments offer the
promise of moving computing from a simple
productivity tool to a pervasive value-added system
that is a part of our daily lives [1, 8-10, 13, 15].

The setting of an intelligent environment—whether
within a home, throughout an office complex, or in an
industrial plant—affects the environment’s systems-
level architecture. For example, neither embodied
robots nor video camera (observation) based intelligent
environments, such as that described in [7], would be
readily accepted into typical homes. Intelligent
environments within homes must be seamless and non-
intrusive. One approach is based on the framework of
adding computational intelligence to common
household information appliances, such as televisions,
stereos, and telephones. Such a system relies on the
hypothesis that information appliances provide a set of
essential points from which to “observe” and readily
interact with members of a household [3, 5, 14].

Many office environments also have societal norms
and ethical implications that dictate the architecture
and individual components of the intelligent
environment system.

Intelligent environments for manufacturing, on the
other hand, must be optimized for efficiency, safety,
speed, budgetary concerns, and the need to run
continuously (24-hours a day, 365 days a year).

Whatever the setting of the intelligent environment,
the system may be centralized or it may be distributed.
The primary determinant may be the resource demands
of the applications of the environment. For example, to
lessen network bandwidth utilization, vision analysis
systems may be based on local computation to decode
and analyze video streams. Conversely, lower
bandwidth devices (sensors and actuators) may be
coupled together over a network and connected to a
single set of computing resources.

Intelligent environments for various settings will
have some differing requirements, while sharing some
overlapping qualities. However, current state-of-the-art
intelligent systems are, for the most part, very
specialized, closed-loop feedback systems that are
expensive and complex to install, and are optimized for
the environment dynamics at installation time. Since
the dynamics of all environments vary and drift over
time, these installed systems frequently become useless
and need to be reconfigured at great expense every few
years.

An intelligent environment system that is
comprised of connecting together various hardware and
software building blocks would be attractive. Such a
composable system would leverage the similarities of
all intelligent environments, while providing user-
configurable “hooks” to tailor the environment to the
particular needs of the environment or to those of its
inhabitants.

To this end, a set of generalized and composable
intelligence mechanisms must be developed. These




include a monitoring mechanism to sample inputs or
internal state, a feedback mechanism to enable control
adaptation or evolution, a caching mechanism to utilize
past knowledge, and a pattern recognition mechanism
to relate input/output data streams to control
parameters. These mechanisms are basic to intelligent
control, yet time after time considerable effort goes
into implementing such mechanisms into each
application-specific control task.

Not only must the software infrastructure be
composable, but also the hardware infrastructure. A
composable or “building-block™ approach to hardware
will facilitate supporting varying software
configurations and their hardware resource
requirements. Providing these composable software
and hardware mechanisms within the environment
allows for easy control specification, as well as
enabling software, hardware, or hybrid implementation
50 as to achieve optimum cost or performance.

In this paper, we discuss the development and
deployment of such a composable intelligent
environment. In particular, we discuss the development
of a composable software infrastructure for control
automation, which enables the synthesis of efficient,
adaptive control strategies across multiple different
application domains. We also describe the development
of a composable hardware infrastructure that allows
users to simply connect various computing resource
building blocks together to achieve a desired systems
architecture.

IL. Cross-Domain Intelligence Mechanisms

Adaptive control systems have been extensively used
in applications such as automobile engine control,
handwriting recognition, and speech processing for
many years. However, despite isolated successes,
significant effort is required to construct an adaptive
control strategy for each new application.

Moreover, it is usually the case that the control
strategy is tailored for a particular context. For
example, different ranges of ambient light correspond
to different contexts for the application of autonomous
vehicle navigation. A change in contexts will
frequently require significant re-engineering work,
since efficient, automated control mandates the
utilization of context-specific information. A control
system for an autonomous vehicle that works well
during daytime will require significant modification to
work at night.

It is possible to learn the new context automatically.
The field of Artificial Intelligence (Al) has produced
general-purpose automated control methodologies such
as machine learning, neural networks, and probabilistic

reasoning which have been applied to a variety of
control problems. Parameters of a chosen control
framework are tuned upon encountering new contexts,
utilizing feedback about the correctness of past
decisions, in an effort to evolve the controller for
improved performance. However, parameter-based
control frameworks do not incorporate mathematical
models of system behavior, which are necessary for
efficient automation in many applications.

We propose the development of an intelligent
environment for control automation, which enables the
synthesis of efficient, adaptive control strategies across
different application domains. We call these Cross-
Domain Intelligence Mechanisms (CDIMs).

This environment consists of*

1. Mechanisms that embody application- and context
independent intelligence, and

2. A language for coding control algorithms, which
utilize the built-in mechanisms.

The mechanisms correspond to a three-phase control
synthesis approach of Watch, Reason, and Automate.
In particular, 2 monitoring mechanism to sample inputs
or internal state, a feedback mechanism to enable
control adaptation or evolution, a caching mechanism
to utilize past knowledge, and a correlation mechanism
to relate input/output data streams to control
parameters are required. These mechanisms are basic
to intelligent control, yet time after time considerable
effort goes into implementing such mechanisms into
each application-specific control task. The
compactness of such a specification stems from the
utilization of built-in constructs and mechanisms for
implementing basic control functions. The efficiency
of the control algorithm specified by the language is
also a product of the constructs and mechanisms.

Consider an intelligent home application, The large
amount of input data is filtered using simple language
constructs, improving control algorithm efficiency. It is
assumed that library functions for hashing are available
in the language to compactly specify the caching of
input values, output values, and control parameters.
The hashing may be implemented in software, or as a
hardware cache, but this will be transparent to the
programmer.

The feedback mechanism of updating the cache
entries based on actual cost data is also specified in the
language. This involves tagging the control decisions
and associated predicted costs, and propagating these
tags through to the actual costs. Propagation is
necessary to relate the actual cost to the appropriate
cache entry. Tagging of decisions and costs can be
automatically performed using a built-in mechanism.



Time —» CF
Driver g i
Preference | 7 T
Traffic E E
Density TS
/‘//
g
n//
a/‘
/ Current Current
i Position Destination
; |
Y
N

Evolving
Control

Routesry, ..., T

System
Car + Driver + GPS

“Best”
route ry

\\ -
Shortest route ;™ | Predicted
y SOstp(r)

Figure 1: Intelligent Navigation

The evolution of the control strategy may follow
many different trajectories. A particular trajectory can
be compactly specified in the language, for example,
by cost prediction functions, time series forecasting,
curve fitting such as least squares, and correlation
functions. Internal state in the control module may be
monitored, and also serve as a basis for control
decisions. Complex control based on mathematical
models of system behavior can be coded in the
language in the same manner as in a conventional
programming language.

111 Typical Deployment Scenarios

In this section, we give detailed examples of systems
that may be built with our CDIM composable
intelligence system.

A. Intelligent Navigation

We consider a problem of navigation in the context of
automobiles. One or more persons are driving an
automobile equipped with GPS (Global Positioning
Satellite) on a daily basis. GPS technology knows the
position of the car at any time instant, and given
destination coordinates, is able to compute a route, or
routes, based on simple metrics such as shortest
distance to destination. Current state-of-the-art
corresponds to an open-loop system with no feedback
or memories, where factors such as driver preferences,
traffic conditions, and time-of-day, are ignored in the
selection of the route.

Formal Statement of Problem

We consider a navigation system to be comprised of a
manned vehicle, a GPS system, and a control module.
GPS tracks the current position p of the vehicle at each
time instant. The current destination d is an input to
the system from the driver. A route r; corresponds to a
path from p to d that does not violate traffic rules. The
cost of a route 7, call it ¢(#;), can be computed in
different ways. The simplest cost metric corresponds to
the distance traversed when taking route r; ; this is a
static quantity. However, a more pertinent cost metric
is the time it takes to traverse r, which depends on
dynamically changing traffic conditions.

Strategy

An intelligent navigation system should choose a route
based on many factors, including driver preference and
current traffic conditions. There are two basic ways in
which route computation can be intelligent, using past
knowledge, or by sampling additional pertinent input.
The former requires the system to have memory and
feedback, and the latter may require instrumentation
beyond vehicle positioning. Driver preference
corresponds to an example of the utilizing past
knowledge, and utilizing information about current
traffic conditions corresponds to an example of
additional input.

Our basic strategy for intelligent navigation is
summarized in Figure 1. We assume that a “black box”
route generator exists which can compute multiple
routes r;, ..., ry which represent ways of reaching a
destination position from a given current position.
(From a theoretical point of view, route computation is
equivalent to graph traversal.) The dotted oval




represents our view of existing GPS navigation
systems, where the route generator produces a single
route based on the current position and current
destination.

Intelligent navigation may sample additional inputs
such as time of day, day of the week, traffic conditions,
and current driver preference. These inputs may have
to be filtered prior to being useful in making control
decisions. For example, the particular day may not be
relevant, what may be relevant is whether the day is a
weekday or not. Traffic densities on streets may not be
relevant, the useful densities typically correspond to
highway entry ramps or exits.

The route generator will generate multiple routes r;,
..., ry which will be evaluated using different criteria
by the control module. Evaluation criteria will depend
on distance as well as the additional input(s) described
above. An important evaluation criterion of past
knowledge is enabled by the feedback loop from the
car and driver to the control module, which tells the
control module the actual route cost, i.e., the real time
taken to traverse the route, once the route is completed.
Obviously, this can only be done for routes that are
chosen.

It is this feedback loop that allows the control to
evolve, and become more intelligent with repeated use.
The control module chooses the “best” route from
amongst ry, ..., ry by predicting the cost of each route
c(r;). If route 7 is chosen and traversed, then the actual
time required to traverse r; is fed back to the control
module. The control module then compares the time
component of the predicted cost ¢(#) to the actual time,
and the prediction function is corrected so as to
produce better estimates upon encountering (parts of)
route ry again.

Each route #; consists of a set of legs I, ..., lur. The
cost ¢(r;) of a route r; is assumed to be cumulative, i.e.,
e(ry) is the sum of the ¢(/;). Since the time taken to
traverse a set of legs and the distance traversed in a set
of legs are both cumulative, this assumption is tenable.
We will assume in the sequel that the cost reflects the
time taken traversing a leg, or a route.

A lookup table or a cache is implemented in the
control module. The cache is initially empty. The
control module produces a predicted cost or time for a
route r; namely, p(r) by summing the p(l;). This
prediction function p is based on the filtered inputs,
and stored maps that provide information about each
leg, I, including distance. Each entry in the cache is
indexed by a tuple < [, input >, where input
corresponds to the current input condition. Each entry
stores p(l;) or c(l;;) which corresponds to the actual
time required to traverse /;. Note that an entry is
created when a cost estimate for a leg needs to be

returned, and is filled initially with the predicted cost.
It is updated with the real cost when the leg is actually
traversed. The algorithm to utilize past knowledge
simply uses the cache prior to returning predictions.

A daptive control is achieved by evolving the
prediction function. Actual costs of traversing legs are
again the primary source of information to improve the
prediction function. Characteristics of inputs that result
in mispredictions are recognized and taken into
account. Correlation between two or more legs can be
discovered via static analysis, and a correlator can
change the predicted cost of a leg, given the actual cost
of another leg, which is deemed to be strongly
correlated to the first leg. A correlator can be run
periodically on the cache entries to reflect recently
determined actual costs.

A possible change in context could correspond to a
different driver with different preferences. For
example, a particular driver may prefer to drive on
highways rather than streets. A context switch can
either be a human input to the system, or automatically
learnt. The former is more efficient since cost
predictions can be stored for different contexts or
appropriately computed, whereas in the latter case
predictions are initially inaccurate and have to be
refined using the feedback loop.

B. Intelligent Manufacturing

Problems in manufacturing fall into different classes.
In batch manufacturing, raw materials are provided at
the start of the job, and the final product is created at
the end of the job. Examples of batch manufacturing
are pulp processing, and food manufacturing.
Continuous manufacturing, for example, cement or
steel manufacture, is a 24-hour, 365-days-a-year
process. Here, raw materials are constantly added, and
the final product is constantly created.

In batch and continuous manufacturing, the goal of
intelligent manufacturing is to maximize some
objective function composed from manufacturing cost,
time, and product quality.

Formal Statement of Problem

We consider a continuous manufacturing system to be
comprised of a plant, a control module, and a plant
operator. The system continuously samples sensors x;
and displays them to an operator; different sensors may
be sampled at different rates, but in general the x;’s can
be viewed as samples of a time series, x;(2), where t is
time.

The output of the plant, Z(?), is a complicated
objective function, that needs to be optimized.
Typically, the value of Z(%) is only known after the fact.
For example, in cement manufacture, the quality of the



Time —p r
Additional L =
Sensors yi9—>| T Evolving
Shift E Control
Change “Begt”
¢ s action ry
Actions ry, ..., Ty
Predicted
Cost
Control P =219

Current Objective
Sensors Function
x(t)

Module

System
Plant + Operator

Current action r;

Real cost of action c(r) from Z(t)

Figure 2: Intelligent Manufacturing

produced cement in only known 12-24 hours later, after
samples are tested at a laboratory. Even if the output
can be directly measured once the product is produced,
the value of Z(7) is typically influenced by actions that
took place earlier in the manufacturing process. This
effectively means that Z() cannot be used in a
feedback loop to control the process, because the value
of Z(t) may be unrelated to the current state of the
process.

Strategy

In this discussion we focus on two simple aspects of
intelligent manufacturing.

§ An intelligent manufacturing system should pick
control actions more accurately based on experience.

§ An intelligent manufacturing system must be able
to deal with sensor failure.

Our basic strategy is summarized in Figure 2. We
assume that a “black box™ exists which generates
control actions, r;. (The ;s could have continuously
varying parameters, in which case they should be
viewed as a parameterized set of actions; for the
purpose of this discussion, assume that there are a
finite number of control actions). The control module
selects the action, r;, deemed to be the most useful,
based on a predictive cost estimate, p(r).

The actual cost ¢(r;), can be determined after the
fact, once the real Z(?) has been measured.

The intelligent manufacturing system can improve
its ability to choose control actions by adjusting its
predictive cost function based on actual measurements
of Z(t). It can also learn an accurate estimator Z*),
which would be a function of values that are measured,

such as the x;(2)’s, other sensors y;(%) (see below), and
additional variables that may be measured infrequently.
Note that the evolving control will deal not only with
short-term context changes, but also long-term context
drift, and the latter will be indicated by lowered output

Z().

Typically, manufacturing plants are over-
instrumented with sensors. The control module
typically uses a much smaller fraction of these sensors
(the x;’s) to make its decisions. However, additional
sensors, y;’s, can be used to compensate for sensor
failure. For example, if a sensor x; fails, from historical
data, we can learn how to estimate x; from the values
of sensors that have not failed (e.g., other x;’s or the
¥;’s). In fact, information about sensor failure becomes
part of the context, and the intelligent manufacturing
system either switches to a different set of control
strategies designed to work in the presence of missing
information, or requests additional information to
estimate the missing sensors.

The very nature of composable or configurable
software demands a similarly composable hardware
platform. As the hardware resource requirements of the
software environment change (e.g., because of
configuring the software differently), hardware
mechanisms must be provided to enable the user to
easily and economically upgrade or replace the
underlying computing and peripheral hardware
resources. We describe such a mechanism next.



APPLIANCE-

SIDE
INTERCONNEC
~ L

APPLIANCE WITHIN THE
INTELLIGENT ENVIRONMENT

APPLIANCE

MASC COMPUTER CARD

I/0 OR PERIPHERAL CARD

TO

Figure 3: MASC Composable Computing Hardware Platform Based Intelligent Environment.

IV. The MASC Composable Computing
Hardware Platform

The MASC Composable Computing hardware platform
addresses the need for a modular computation device
for intelligent systems and environments [2, 4, 6].

As shown in Figure 3, MASC is comprised of the
five following components:

MASC computer cards

Appliances with MASC appliance-side connectors
Software running atop MASC cards

Internal network

Gateway to external networks

P2 v v 7

MASC cards form the computation and
communications hardware platform of our approach.
Each card synthesizes the properties of “smart cards”
and PCMCIA [12] cards (PC cards), and contains
within it a microprocessor, a network adapter, main
memory, and non-volatile storage, and implements a
common interface with which to communicate with all
host appliances'.

Microprocessor. Any standard microprocessor can be
used as the computation engine for MASC.
Furthermore, different implementations may emphasize
different performance characteristics, e.g., speed versus
power consumption, to suit different applications.

Network Adapter. Any network can be used as the
vehicle for communication between different MASC
cards. Accordingly, different implementations may
represent different combinations of processor and
internal network architecture. MASC's network adapter
can be used to provide connectivity between different

! The network adapter and non-volatile storage may be
placed onto separate cards in order to enhance the modularity
and flexibility of the approach.

appliances, and to download new software onto the
card.

Memory and Non-volatile Storage. Each MASC card
contains memory for use by the processor and some
local non-volatile storage. Again, the type and amount
of memory and storage can be tailored to meet the
demands of different applications. The non-volatile
storage allows application programs and user data to be
saved locally. Additional application programs can be
downloaded over the network and executed in a
manner similar to that used in a network computer.

Interface Block. The interface block allows
communication between the MASC card and the
appliance-side connector. When a MASC card is
connected to an appliance, the interface block
deciphers the type of the appliance and how to
communicate with it. After this, its primary task is to
send data and commands between the MASC card and
the appliance socket.

As newer computation engines and networks
become available, the user can simply remove the
MASC card from the appliance and replace it with a
new one. Essentially, the architecture of the MASC
allows three degrees of freedom (in choosing and
upgrading 1. the processor, 2. the network and 3. the
software environment) which can be exploited to take
advantage of the areas of greatest technological change
and improvement. MASC’s modular and user-
swappable cards are essential because software
upgrades often first require hardware upgrades. As
software becomes increasingly complex, the most
common hardware components for upgrading are
processors and memory (including L2 cache).

V. Conclusions

This paper presented a novel framework and paradigm
for creating rapidly deployable intelligent
environments for various settings, including homes,



offices, and industrial manufacturing plants. We argued
that by using composable building blocks for the
hardware and software architecture, benefits including
easier development, simpler installations and
maintenance, and lower costs might be achieved. To
this end, we described our composable computing
hardware and software infrastructure. Furthermore, we
showed that applications of significant import can be
created with our framework.

VL Acknowledgements

We thank R. Bharat Rao of Siemens Corporate
research for discussions regarding intelligent
manufacturing. This work was supported in part by a
grant from NTT, Atsugi, Japan.

References

1. Abowd, G., et al. Teach and learning a Multimedia
Authoring: The Classroom 2000 Project. in
Proceedings of ACM Multimedia’96 Conference.
1996.

2. Chatterjee, S. The MASC Network Architecture: A
Novel Paradigm of Computing Through
Information Appliances. in Proceedings of the First
IEEE International Symposium on Consumer
Electronics. 1997. Singapore.

3. Chatterjee, S. SANI: A Seamless and Non-Intrusive
Framework and Agent for Creating Intelligent
Interactive Homes. in Proceedings of the Second
ACM International Conference on Autonomous
Agents. 1998. Minneapolis/St. Paul.

4. Chatterjee, S. Towards a MASC Appliances-Based
Educational Computing Paradigm. in Proceedings
of the Thirteenth ACM Symposium on Applied
Computing. 1998. Atlanta, Georgia.

5. Chatterjee, S. Towards Rapidly Deployable
Intelligent Environments. in Proceedings of the
Eleventh AAAI Spring Symposium on Intelligent
Environments. 1998. Stanford, California: AAAI
Press.

10.

I1.

14.

15.

.Want, R., et al,

. Chatterjee, S. and S. Devadas, MASC: 4 User-

Embeddable Hardware Platform and Infrastructure
for Information Appliances, . 1999, MIT
Laboratory for Computer Science TR-591:
Cambridge, MA.

. Coen, M. Building Brains for Rooms: Designing

Distributed Software Agents. in Proceedings of the
Innovative Applications of Artificial Intelligence
Conference. 1997. Providence, RI.

. Druin, A. and K. Perlin. Immersive Environments:

A Physical Approach to the Computer Interface. in
Proceedings of Conference on Human Factors in
Computer Systems (CHI'94). 1994.

Lucente, M., G. Zwart, and A. George.
Visualization Space: A Testbed for Deviceless
Multimodal User Interface. in Proceedings of AAA4]
1998 Spring Symposium on Intelligent
Environments, AAAI TR §5-98-02. 1998.

Mozer, M. The Neural Network House: An
Environment that Adapts to its Inhabitants. in
Proceedings of A4A41 1998 Spring Symposium on
Intelligent Environments, AAAI TR §5-98-02. 1998.

Saffo, P., Sensors: The Next Wave of Innovation, in
Communications of the ACM. 1997. p. 92-97.

. Shanley, T., PCMCIA System Architecture. 2nd ed.

PC System Architecture: MindShare. 464.

The ParcTab Ubiquitous
Computing Experiment, , Xerox Parc Technical
Report.

Weiser, M., The Computer for the Twenty-First
Century, in Scientific American. 1991. p. 94-100.

Weiser, M., The World Is Not a Desktop, in
Interactions. 1994. p. 7-8.



