
MUTUALLY INDEPENDENT COMMITMENT

Moses Liskov, Anna Lysyanskaya, Silvio Micali, Leo Reyzin, Adam Smith
mliskov@, anna@, silvio@, reyzin@, asmith@theory.lcs.mit.edu

MIT Lab for Computer Science

Abstract

We describe a new kind of commitment scheme in which two parties

commit to values in a commitment stage, at the end of which we are

assured that the values they have committed to cannot be correlated to

one another. We call this new primitive mutually independent commit-

ments. We present three mutually independent commitment schemes

which handle single bit commitments, and which are computationally

hiding and perfectly binding.

1 Introduction

Commitment schemes. A commitment scheme consists of a method C
which produces \commitments" to an input x based on some randomness.
The commitment is denoted C(x) though we note that C may not be a tradi-
tional function, rather C(x) may be arrived at through a protocol. (For the
immediate discussion, we will consider only non-interactive commitments.)
During this protocol, the committing party learns some side information p,
which together with x can verify that the commitment C(x) is indeed a
commitment to x. Commitment schemes need the following two properties
in order to be secure.

� Hiding It should be hard, seeing only the output C(x), to learn any-
thing about x.

� Binding It should be hard to �nd a quadruple (x; x0; p; p0) such that
y = C(x) can be shown to be a commitment to x with proof p, and
can be shown to be a commitment to x0 with proof p0 where x 6= x0.

A simple correlation attack. These properties are not suÆcient to
infer that anyone seeing a commitment cannot extract any useful information
from it. Indeed, someone seeing a commitment cannot extract information
about the secret value x, but information can be gleaned in other ways.
As a simple example, suppose Alice and Bob each wish to commit to two
values, and Alice will commit to hers �rst. However, Bob may secretly want

1



to commit to the same thing Alice committed to. Then, if ca = C(a) is
Alice's commitment, Bob can just give ca as his own commitment. Now, the
value Bob has committed to is the same as the value Alice has committed
to. Later, when the commitments are opened, if Alice goes �rst, she reveals
her proof p and her secret value a. Then, Bob can claim that p was also his

proof and that he committed to a as well.

A stronger correlation attack. Some may not �nd this attack very
compelling, because Bob's commitment is exactly the same as Alice's, which
means that checking for this would be very easy. So to motivate the problem
further, consider the following scheme for committing to a bit [P91]:

Public Parameters: p; q; g such that p = 2q + 1, p and q are both prime,
and g 2 Z�

q, and separate random value h 2 Z�

q (where the discrete logarithm
of h to the base g is not known to anyone).

Commitment Phase: When a is a bit, Alice computes C(a; r) = grha

mod p.

Revealing Phase: Alice reveals a and r. Anyone can check that grha was
her published commitment.

In this scheme, suppose that Bob sees that Alice's commitment is x.
Bob can commit to the same value as Alice by computing a random value r0

and publishing as his commitment the value xgr
0

. Now, when Alice reveals
a and r, Bob can reveal a and r + r0. Moreover, Bob's copied commitment
looks like a totally random commitment.

Motivation. It is not clear immediately that this is an important problem,
so we consider the following example. Suppose Alice and Bob are bidding
in an auction, but in this auction they each only get one chance to bid,
and a commitment scheme is used to prevent them from changing their bids
later. The rules are that whoever bids more for the item buys it at their
committed-to price, and anyone refusing to open their commitment pays
a large penalty. If Bob, seeing only Alice's commitment to her bid, can
produce a commitment to a bid of one cent more than Alice's commitment,
then he will certainly win the auction, and do so at the lowest possible price.

An inadequate solution. The straightforward solution to this problem
is somewhat inadequate for protocol design. That solution is that during
commitment, Alice commits �rst and Bob commits second, but during re-
vealing, Bob reveals �rst and Alice reveals second. Once Bob opens his

2



commitment, we know that whatever value he committed to is independent
of Alice's committed value. (Otherwise, the hiding property of the commit-
ment scheme would be violated.) This protocol, taken all at once, forms a
scheme for producing mutually independent announcements. That is, once
the reveal stage is completed, the revealed values are independent of one
another. However, at the end of the commitment stage, there is no such
guarantee.

In protocol design, however, it may be important to have a guarantee
that, if the commitment stage is successfully completed, the committed-to
values are guaranteed to be independent at that point, regardless of whether
the revealing protocol is ever run.

Note that any mutually independent commitment scheme gives a mu-
tually independent announcement protocol; once the committed-to values
are known to be independent, the parties simply reveal their commitments.
By the binding property, these plaintexts are the same as the committed-to
values, and so they must also be mutually independent.

1.1 Structure of this paper

First, we describe the de�nition of a mutually independent commitment
scheme. In this paper, we are concerned only with the (1) schemes for
committing to a single bit and (2) schemes which are perfectly binding /
computationally hiding. Finally, we are of course concerned with a commu-
nication model that does not allow perfect synchronization (or the problem
could be trivially solved by having each party publish their commitments
simultaneously).

Next, we go on to describe a mutually independent commitment scheme
based on the assumption of dense, semantically secure public key cryptosys-
tems with a 3-round commitment protocol.1

Next, we describe a stronger property that may be desirable, and present
two mutually independent commitment schemes with that property. The
�rst of these schemes will be based on the discrete logarithm assumption and
will have a 4-round commitment protocol, while the other will be based on
the existence of one-way permutations but will have a 7-round commitment
protocol.

Finally, we give a preliminary discussion about the issues that arise when

1In our schemes, there will be two separate phases: the commitment phase and the
reveal phase. We will measure the eÆciency of the protocol by the number of rounds
needed in the commitment protocol, since in many cases the reveal protocol is very simple,
and since we may sometimes have commitments which are never opened.

3



we try to extend these schemes to ones which allow commitments to longer
strings.

2 Prior Work

3 Acknowledgements

4 De�nitions

A mutually independent commitment scheme is a scheme involving two par-
ties, A and B, which will be modeled by interactive probabilistic polynomial-
time Turing machines. The scheme consists of two protocols, commitment

and revealing.
For ease of notation, we will use the notation A0 to denote an arbitrary

PPT TM taking the place of machine A in the protocol, and similarly B0

for B.
Let us say that (T; pA; pB) = AB(`commit0; a; b) 2 be the output of the

commitment protocol, where T is the transcript, a public output, and pA
and pB are private outputs of A and B, respectively.

Let us say that (cA; cB ; vA; vB) = AB((`reveal0; T ); (a; pA); (b; pB)) is the
output of the revealing protocol. Here, vA and vB are the revealed values
that A and B committed to, respectively, and cA and cB are boolean values
that say whether A (or B) accepts B's (or A's) value, respectively.

The scheme should have the following properties:

� Completeness: If A and B are both honest, then the commitment pro-
tocol produces an output, and if (T; pA; pB) = AB(`commit0; a; b), the
probability that if (cA; cB ; vA; vB = AB((`reveal0; T ); (a; pA); (b; pB)),
then with probability 1, cA = cB = 1 and vA = a and vB = b.

� Perfect A-Binding: No TM A0 can succeed in producing a transcript
T with the honest B such that in the reveal stage with the honest B,
A0 can cause B to accept either of two di�erent values. Formally,

8A0;8B;Pr[b B; (T; pA; pB) A0B(`commit0; �; b); (cA; cB ; vA; vB) 
A0B((`reveal0; T ); (pA; 0); (b; pB)); (c

0

A; c
0

B ; v
0

A; v
0

B) A0B((`reveal0; T ); (pA; 1); (b; pB) :
vA = 0 ^ v0A = 1 ^ cB = c0B = 1] = 0

2Our notational convention here will be that the output of M1M2(P; S1; S2) will be
the outputs of the protocol run between M1 and M2, two (randomized) TMs, where P is
input given to both M1 and M2, S1 is private input given only to M1, and S2 is similarly
given only to M2.

4



� Perfect B-Binding: Similarly for the above de�nition, but B being the
dishonest party.

� Computational A-Hiding: For all B0, if after participating in a com-
mitment protocol with A, then produces a value z, the probability
that a = z is at worst negligibly larger than 1/2.

� Computational B-Hiding: Similarly for the above de�nition, but with
A being the dishonest party.

� Non-A-correlation: For all binary relations R on pairs of bits, for
all distributions A, and for all B0, if a is generated from A, and
(T; pA; pB) is the output of AB0(`commit0; a; �) and b is a bit such
that (cA; cB ; vA; b) is the output of AB

0((`reveal0; T ); pA; pB) then the
probability that R(a; b) and ca = 1 is only negligibly better than the
probability that R(a0; b) where a0 is generated independently of a from
the distribution A.

� Non-B-correlation: As for Non-A-correlation, but with A being the
dishonest party instead of B. We should note that in our protocols,
Non-B-correlation is trivial to show since A will commit to their value
in the commitment protocol before B does.

Note that the schemes we present are only set up for commitments to
single-bit values, but the de�ntions we present are exible and are capable
of handling larger values.

5 First Protocol

For this protocol, we require a semantically secure public key cryptosystem
which is dense,3 that is, that a randomly chosen string of the right length is
a valid public key.

The commitment protocol consists of three rounds:

Step 1. B generates a random value R1 and sends a commitment to R1 to A.

Step 2. A sends a commitment C(a), and a random value R2.

3What we want, speci�cally, is that any string of the appropriate length be a valid
public key, and moreover that the distribution on public keys chosen through the key
generation protocol be the uniform distribution on strings of the appropriate length. This
seems like a de�nition that would have come up before, but we have not found it in the
literature. It is similar to the de�nition given in [DP92], but di�erent.

5



Step 3. B sets PKB = R1 �R2, and sends R1 and EB(b) to A.

The revealing protocol simply consists of B opening his commitment
EB(b); providing the random bits used, and of A and B opening their com-
mitments C(a) and C(R1).

In order to show the security of this scheme, we need only assume the
security of the cryptosystem and the (perfectly binding) commitment scheme
used in it.

That this scheme is complete, binding, and hiding is fairly straightfor-
ward. Furthermore, Non-B correlation is trivial. To show that it has Non-A
correlation, suppose there was a B0 that succeeded in creating a commitment
to a value correlated to a, then we can create an algorithm for breaking the
GM security of the cryptosystem. The primary trick in the proof is that
this algorithm C interacts with B until it sees R1, then it rewinds the pro-
tocol and sends a di�erent R2 so that R1 � R2 is a public key for which C
knows the secret key. Then, C simply decrypts the value EB(b), and uses
this information to recover information about a, thus violating the hiding
property of the commitment scheme used by A.

However, this protocol lacks one property which we may sometimes wish
to have. That is, when the commitment stage of the protocol completes,
we know that the values A and B committed to are independent of one
another, but we don't know for sure whether A and B know how to actually
open them. If they proceed honestly they will actually succeed in the reveal
stage. However, if they are dishonest, they might not. Thus, we propose
additional security properties which we may desire.

� A-Extractibility: There exists an extractor EA such that for any A0, A0

and EA engaging together in the commitment protocol (with EA play-
ing the part of B, and with EA capable of \rewinding" A0,) produce a
transcript T and private output pB such that (1) T is distributed just
as it would be if A0 were interacting with an honest B, and that (2)
with overwhelming probability, the value pB is such that if A0 chooses
to open its commitment at all in a valid way, pB is the value it can
open to.

� B-Extractibility: Similar to A-Extractibility, except that we use an
extractor EB in place of the A party, and a dishonest B0 in place of
B.

We call any mutually independent commitment scheme with these two
properties a mutually independent and aware commitment scheme, since
these properties ensure that the parties are aware of their commitments.

6



6 Second Protocol

We now exhibit the �rst of the two mutually independent and aware com-
mitment schemes. The �rst scheme requires only a 4-round commitment
stage, but relies on the hardness of the discrete logarithm problem.

Public parameters: a large prime p = 2q + 1 where q is also prime, and
a generator g of Z�

q .

STEP 1. A privately generates a value k 2 Zq such that if A wants to commit
to 0, k 2 f1; : : : ; (q � 1)=2g and otherwise, k 2 f(q+1)=2; : : : ; q� 1g.
Then, A generates n values rA1

; : : : ; rAn , and sends the 2n values
gk�rA1 ; grA1 ; : : : ; gk�rAn ; grAn . Call these values �1;0; �1;1; : : : ; �n;0; �n;1.

STEP 2. B similarly generates a value k0 and n values rB1
; : : : ; rBn , and gen-

erates �1;0; : : : ; �n;1 as A does in step 1. During this step, B also
produces a challenge bit string of length n: SB1

SB2
: : : SBN .

STEP 3. A checks that for all i 2 [1; n], the value �i;0�i;1 is the same. A also
produces a challenge string SA of length n, and for each i 2 [1; n]
produces the discrete logarithm of �i;SBi , and sends these to B.

STEP 4. B checks that for all i 2 [1; n], the value �i;0�i;1 is the same, and ver-
i�es the discrete logarithms provided by A, and answers A's challenge
similarly.

STEP 5. A checks that B answered the challenge correctly.

In the revealing protocol, A and B reveal their secret values k and k0

and these are veri�ed, and vA and vB are calculated based on k and k0.
The idea here is that whether the secret discrete logarithm of �i;0�i;1 is

in the top or bottom half of Zq is a hard-core predicate of the discrete log-
arithm function, which provides the hiding property and the noncorrelation
properties. The discrete logarithm problem itself provides the property of
perfect binding we require. Finally, the "cut-and-choose" structure of the
protocol makes the A- and B-extractibility fairly easy to demonstrate.

One issue we will bring to light in the extractibility proof is this. Suppose
that A0 is just like A except that it will never reveal the discrete logarithm
of �i;j for some speci�c i; j (until the revealing protocol, if A0 chooses to
open her commitment). Then with probability 1=2, A0 makes it through the
protocol, and the canonical extractor EA would run into problems when the
second time around, A0 refused to open the challenge. However, EA could
just try new random challenges until it got A0 to respond to its challenge

7



and the challenge is di�erent in even one position. Then, EA can reconstruct
k, which reveals a.

This protocol is eÆcient (only 4 rounds in the commitment phase, since
step 5 does not necessarily have to take place, as it can be veri�ed by anyone),
but relies on a fairly strong security assumption. Next, we will demonstrate
a protocol which relies on weaker assumptions, but which requires more
rounds.

7 Third Protocol

This protocol is a bit more complicated than the previous two. It involves,
in the commitment protocol, a zero knowledge proof of knowledge. The
best scheme we know of to give a zero-knowledge proof of knowledge in
constant rounds depends on the existence of a perfectly hiding commit-
ment scheme, so we assume that in addition to the existence of one-way
permutations (which is suÆcient for perfectly binding commitments). This
zero-knowledge proof of knowledge requires 5 rounds, and the prover speaks
�rst. For brevity, we will call the rounds of communication in the proof
< BA >1; < BA >2, et cetera. In [FS89] the authors show how to give
a zero knowledge argument of knowledge in 5 rounds based on one-way
functions. The di�erence between a \proof" and an \argument" is that in a
proof, the prover may be unbounded computationally, while in an argument,
the prover need not be. Since in our scheme we assume both players are
computationally bounded, it suÆces to rely on a zero-knowledge argument.

Here is the protocol.

STEP 1. A generates 2n values a1;0; : : : ; an;1 such that for all i 2 [1; n], ai;0 �
ai;1 = a and computes �i;j = C(xi;j), where C is the perfectly hiding
commitment scheme.

STEP 2. B publishes a commitment C(b) to b. B andA start the zero knowledge
proof of knowledge that B knows his commitment b and knows how
to open it. B sends C(b) and < BA >1 to A.

STEP 3. A sends < BA >2 to B.

STEP 4. B sends < BA >3 to A.

STEP 5. A sends < BA >4 to B.

STEP 6. B sends < BA >5 to A and sends a challenge s to A, where s is a bit
string of length n.

8



STEP 7. A opens for B the values ai;si for each i 2 [1; n].

STEP 8. B checks that A's opened values from step 7 were valid.

In the revealing protocol, A opens all the remaining commitments and
B opens his commitment C(b).

The completeness and binding properties for this protocol are clear. The
hiding properties are not so obvious: to prove that A's value is hidden, we
employ a hybrid argument. To prove that B's value is hidden, we use the
simulator from the zero-knowledge proof. Extractibility is fairly easy; to
extract B's value we simply use the extractor from the proof of knowledge.
To extract A's value, we need only rewind B's challenge and provide a
di�erent random one. With a good probability, A will provide both ai;0 and
ai;1 and then we can XOR these to get a. Proving that A cannot correlate
his value to B's is trivial. Proving that B cannot correlate to A's is done by
using his ability to do this with a hybrid argument to construct a machine
that breaks the hiding property of the underlying commitment scheme.

Invalid commitments. One important di�erence between the discrete
logarithm protocol (the \second protocol") and this proocol is that in this
protocol it is possible for A to get through the commitment stage with an
invalid commitment. In this protocol, A's commitment is only valid if for
every i, ai;0 � ai;1 produces a single value a. If some produce one value and
some produce another, the commitment is invalid. This possibly undesirable
property of the protocol can be �xed by having A simply commit to C(a)
and perform a ZKPOK that A knows how to decommit that value. It is
not obvious that we can interleave that proof with the other proof, so this
would add rounds to the protocol.

However, we have an intuitive argument that suggests that this kind of
behavior on the part of A is not really a matter for concern. We start by
remarking that regardless of the scheme involved, either player always has
the option of refusing to cooperate in the reveal stage of the scheme, which
e�ectively gives the players three options: commit to 0 and reveal it, commit
to 1 and reveal it, or refuse to reveal. If we add to this the possibility that a
player can also commit in an invalid way and reveal it, we have four options,
but we can treat an invalid commitment and the refusal to reveal as the same
result for any player. The only problem with this is that it seems as if the
two situations are di�erent, but in a sense, every situation boils down to
this: each player is asked to pick a value, 0 or 1, and commit to it, and
then open it later. Any deviation from this is a refusal to cooperate in the
protocol, and furthermore is only detected during the reveal stage. Thus,

9



if we just treat the two situations the same, no honest player is losing any
of their options, and we are not relaxing the ability of the scheme to notice
this lack of cooperation.

8 Conclusion

We have described a protocol for mutually independent commitments which
has a 3-round commitment phase, the security of which is based on the
existence of a secure public key cryptosystem.

We have also described two protocols for mutually independent and
aware commitments, one which is a four-round protocol based on the dis-
crete logarithm assumption, and one which is a seven-round protocol based
only on a perfectly binding commitment scheme and general zero-knowledge
proofs of knowledge.

9 References

[DP92] A. De Santis and G. Persiano. Zero Knowledge Proofs of Knowledge
Without Interaction (Exended Abstract). In FOCS 1992.
[FS89] U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in

Two Rounds. In Advances in Cryptology { CRYPTO '89, 1990.
[P91] T. Pedersen. Non-Interactive and Information-Theoretic Secure Veri-

�able Secret Sharing. In Advances in Cryptology { CRYPTO '91, 1991.

10


