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Abstract

The recently developed rateless erasure codes are a near-optimal channel coding technique that guar-
antees low overhead and fast decoding. The underlying theory, and current implementations, of these
codes assume that a network transmitter encodes according to a pre-specified probability distribution.
In this report, we use basic Machine Learning techniques to try to understand what happens when this
assumption is false. We train several classes of models using certain features that describe the empiri-
cal distribution realized at a network receiver, and we investigate whether these models can “learn” to
predict whether a given encoding will require extra overhead. Our results are mixed.

1 Introduction
Rateless erasure codes [9, 11, 16] have several remarkable properties. First, encoding and decoding are
extremely rapid, in some schemes linear in the size of the file. Moreover, using rateless codes, a file of n
input symbols is transformed into a practically infinite set of output symbols, and meanwhile any (1 + o)n
of these output symbols—where o is typically only several percentage points—are sufficient to reconstruct
the original file. In contrast, other erasure coding schemes (e.g., Tornado Codes [10]) associate a file of n
input symbols to a particular set of output symbols that may number, for example, 2n.

In spite of their relatively recent introduction, rateless codes have already been adopted in a variety
of academic, commercial and file-sharing systems [1, 4, 6]. They are particularly useful for decentral-
ized, many-to-many large file transfers: many sources can send to many receivers concurrently simply by
encoding a given file with rateless erasure codes. This scheme requires neither upstream feedback, nor re-
transmission of dropped packets, nor continuous communication with any particular sender; the approach is
thus practical, efficient, and scalable. Among other systems, SplitStream [1] and Bullet [6] use this method.

The process by which a rateless encoder creates an output symbol is almost bafflingly simple: the
encoder randomly selects a weight w from probability distribution P ∗ (where P ∗ depends on the particular
erasure coding scheme), then selects w random input symbols, and then sends the XOR of these input
symbols over the network. (The decoder runs a simple and intuitive algorithm to reconstruct the original
file.) The remarkable properties mentioned above depend on the sender following P ∗ when selecting the
weights of output symbols.

A natural question, particularly in a peer-to-peer context in which senders may be hostile, is what hap-
pens to the required overhead that a client must receive if a sender deviates from P ∗.1 For a given deviation,
(1 + o)n might become, for example, an unacceptable 2.00n instead of the correct 1.05n. Ultimately, we
would like an on-the-fly algorithm for receivers that takes as input only a small set of received output sym-
bols and determines whether a given sender’s output symbols will lead to a value of o that is outside some
acceptable tolerance. In practice, the receiver could use such an algorithm to blacklist a given malicious
sender or to make an informed decision about whether to continue spending bandwidth and time in the face
of an attack specifically designed to squander them.

1A recently proposed scheme thwarts the more obvious attack in which a malicious sender creates improper output symbols
using random data, not derived from the file at all. This scheme replaces XOR with an operation that allows receivers to check
received content against known cryptographic hashes [7]. As a result, in this work, we assume that receivers always get data from
the correct file and that the adversary’s attack mode is to deviate from P∗.
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Figure 1: Two representations of the preprocessed file f ′ = (f1, . . . , f5, a1), and a derived encoding c = (c1, . . . , c7) =
Xf′. The auxiliary block a1 is added to the original file f during the preprocessing phase.

The purpose of this report is to use basic Machine Learning techniques to take a step toward such an
algorithm. We attempt to train simple statistical models to predict, based on a subset of received output
symbols, whether the decoding process will require extra overhead. The rest of this report concerns the
development, application, validation, and analysis of such models. These models are not general-purpose
or universal in any sense. Rather, like the work as a whole, the models should be considered suggestive
and exploratory. We hope to demonstrate only that Machine Learning techniques may yield insight into the
complex problem of inferring required decoding overhead.

2 Approach
We believe that our approach in principle applies to any erasure coding scheme; due to time constraints, we
examined only Online Codes [11, 12].

2.1 Online Codes: Background and Terminology

Figure 1(a) graphically depicts a sample Online Encoding of a very small file. The encoding decomposes
a file f into a series of b-bit input symbols, also called message blocks, and applies a preprocessing step
to add a small amount of redundancy, called auxiliary blocks, to the input symbols; we assume that both
sender and receiver in advance know how the auxiliary blocks relate to the input symbols. The result of this
step is an n′-block preprocessed file f′. Maymounkov [11] suggests setting n ′ = (1 + 2δ)n, where δ is the
probability decoding will fail. For δ = .005, this means that preprocessing expands the input file f by 1%.
To obtain output symbols, also called check blocks, the encoder XORs combinations of message blocks and
auxiliary blocks, according to a process we describe below.

Figure 1(b) illustrates an equivalent adjacency matrix representation of the encoding process; in this
report, we call such a matrix an encoding matrix. Each row of the encoding matrix represents an output
symbol that is the XOR of the input symbols whose corresponding cells in the row are set to 1. The
encoding matrix has dimension m× n′, where m is greater than or equal to the number of output symbols
necessary to reconstruct the file. To create a row of X, the encoder first randomly samples a weight w from
the probability distribution P ∗, defined below. The encoder then uniformly and at random selects w cells
of the row to set to one, and all other cells remain zero. Finally, the encoder computes the matrix product
Xf′ (one may view the cells of X as elements in F2 and f as a vector in F

b
2 so that addition of elements

in this field is algebraically equivalent to XOR). Receivers getting the ith output symbol thus get a pair,
consisting of the ith row of X, and the ith component of the vector Xf ′. In practice, the foregoing means
that meta-data accompanies each output symbol; this meta-data indicates to receivers which input symbols
have been XORed to produce the given output symbol.

The distribution of weights P ∗ is as follows. Let ρi be the probability of selecting weight i. Following
the theory in [11] and letting F , the maximum possible weight, equal (ln δ + ln(ε/2))/(ln(1 − δ), we have

2



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

output symbol weight (w)

pr
ob

ab
ili

ty

(a) PDF

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

output symbol weight (w)

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

(b) CDF

Figure 2: The distribution P ∗, with parameters ε = .01 and δ = .005

that P ∗ is given by:

ρ1 = 1 − 1 + 1/F
1 + ε

, ρi =
1 − ρ1

(1 − 1/F )i(i − 1)
, 2 ≤ i ≤ F, (1)

Again following [11], we set δ = .005, ε = .01 and thus get F = 2114. Figure 2 depicts this dis-
tribution. Assuming the sender is encoding according to P ∗, once a receiver gets the appropriate number
of output symbols, resulting in a matrix X, he can “undo” the effects of applying X to the preprocessed
file and can recover the original file f. As the size of the file n grows large, the theory predicts that this
appropriate number of output symbols approaches (1 + ε)n ′ from above. In the limit, then, our parameters
would yield encodings with approximately 2% overhead. If, however, the sender deviates from P ∗ and en-
codes, say, according to some distribution PD, then the received matrix X might result in an unsuccessful
decoding or might require greater than expected overhead, i.e., the number of rows, m, of the matrix would
have to be much greater than what is predicted by the theory.

The encoding matrix X represents the essential structure of how a file is encoded, and implicitly, how
a file might be decoded. The operations on X at the core of the decoding process are independent of the
file f, and thus we can safely factor out the contents of particular files. The remainder of this report refers
to encodings solely in terms of matrices X. Of course, rateless erasure encoding is a process of sampling
from a distribution; there is no well-defined beginning, end, or order to the output symbols associated with
a given file. So a given matrix X does not represent the only output symbols associated with the file but
rather a particular set of output symbols that happened to make it from the encoder to the receiver across
an erasure channel. Since channel drops are independent of the contents of output symbols, the rows of X
form an empirical distribution drawn from the actual distribution followed by the encoder.

2.2 Goals

We seek data and accompanying models to help us answer the following question: Is it possible to predict,
from the empirical weight distribution on a set of received output symbols, how much overhead decoding
requires? At the beginning of our exploration, we noticed that when a good faith encoder follows the correct
distribution P ∗, the overhead for encodings of 5000 block files ranges from 1.02 to 1.13, a significant range,
given that the theory predicts 1.02 (see Figure 3(a)). We therefore split our question:

(1) If a transmitter encodes according to P ∗, can we predict the required overhead o, using only features
of the empirical distribution of received output symbols?

(2) Alternatively, if the distribution followed by the transmitter is unknown, i.e., it is P ∗ or some other
PD , can we predict o?
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Figure 3: Empirical overhead observations.

In both cases, our goal is to train models on features derived from a full empirical distribution, i.e.,
derived from collections of m rows of X and to have these models be applicable when only a subset of
X’s rows are available, as would be true if a receiver had received only a fraction of the necessary output
symbols.

2.3 Data

Using a custom encoder in MATLAB, we generated a set, GF , of sample “Good Faith” encodings according
to P ∗. We shall refer to the matrices that represent these encodings as Xg;1,Xg;2, . . . ,Xg;|GF |. These
matrices have varying degrees of rows and n ′ = (1 + 2δ)5000 = 5050 columns. We also generated a set,
D, of sample “Deviant” encodings according to various distributions, including the uniform distribution,
a scaled exponential distribution, a randomly perturbed P ∗ and combinations of the foregoing. In each
case, we endeavored to make the mean of the deviant distribution close to the mean of P ∗. (If an adversary
departed significantly from the correct mean, a client could easily detect that fact.) We shall refer to the
matrices that represent the deviant encodings as Xd;1,Xd;2, . . . ,Xd;|D|. Of course we have by no means
exhausted the space of possible deviant distributions and doubt such a feat is possible; Section 7 further
discusses this point.

Using a custom decoder in MATLAB, we generated, for each matrix X, two outputs: z(X), where z
is the amount of overhead actually required to decode, and y(X), where y is a ±1 label indicating that z is
above or below a pre-specified threshold. Although we are interested primarily in whether we can predict
z(X), we are also interested in whether models can “learn” to classify based on the y labels; in this case, the
model would obviously be making a much coarser distinction. As we describe in Section 3, we derived, for
each matrix X, a feature vector Φ(X) = [φ1(X), . . . , φk(X)] with the intent of building models to predict
y(X) and z(X) based on Φ(X).

We perform our experiments in duplicate, using two separate datasets: GoodFaith and Mix, each of
which has designated training and test data. We use the GoodFaith dataset to answer question (1), above,
and thus this dataset consists of all matrices X ∈ GF and associated y and z values. For this dataset, y = 1
if z <= 1.05 and y = −1 if z > 1.05. We selected this threshold arbitrarily. GoodFaith has 3200 elements
(including training and test data), approximately 24% of which are labeled −1. We use the Mix dataset to
answer question (2), above. For balance, we ignore many of the elements of GF and instead use as our data
H ∪D, where H ⊂ GF . For this dataset, y = 1 if z <= 1.07 and y = −1 otherwise. In this case, 1.07
works reasonably well as a threshold: only 10% of the z values are ∈ [1.06, 1.08]. Mix has 2150 elements;
approximately 42% are labeled −1 and approximately 37% are members of H , i.e., were generated from
P ∗. For both GoodFaith and Mix, 20% of each dataset is training data, and the remainder is test data.
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To explore our models’ ability to predict overheads given only a subset of encoding symbols, we also
considered additional test sets within GoodFaith and Mix; we call these TruncGoodFaith and TruncMix,
respectively. To construct TruncGoodFaith (and analogously for TruncMix), we truncate each matrix X in the
test data of GoodFaith, keeping only the first n′/5 rows. Since, by design, our features φi are indifferent
to the number of rows in an encoding matrix, our existing feature capture code runs without modification.
For a given matrix X, the truncated version receives the same y and z values as the original matrix X,
which models using a subset of output symbols to predict the eventual result. For convenience, rather than
subscripting, we sometimes use the label Trunc. The important point is that TruncGoodFaith and TruncMix

each amount to a second set of test data within their respective dataset.

3 Features
Our goal was to select features to help a model learn characteristics of the ideal distribution, P ∗, as well as,
perhaps, the fundamental reasons that deviations from P ∗ result in high decoding overhead. We included
characteristics that we as human observers expected to be useful in describing the divergence between
probability distributions. To ensure these characteristics would be useful in a linear regression model, we
mapped them to metrics such that the metrics would increase or decrease monotonically with changes in
perceived divergence. In future work, we intend to look at techniques such as Partial Least Squares [8]
that help in deriving a small number of complex “super-features” from a large set of features of varying
relevance to the data. After describing our features below, we discuss our models and feature selection
process in the next section. The features are categorized as follows:

(1) Standard metrics of distance between two distributions, specifically the empirical distribution and
the ideal, P ∗.

• χ2 tests [3, 5]: The χ2 goodness-of-fit test is most effective when each cell is equiprobable [3] and has
an empirical population of at least five [5]. With these guidelines, we chose seven different bucketing
schemes such that each bucket is composed of consecutive weights. In addition, we included χ 2

values computed on portions of the distribution representing the first 95%, 97% and 99% of the total
probability mass. We converted the χ2 statistics to confidence values and used these confidence values
as features.

• Kullback-Liebler distance [2]: Let W be the set of weights empirically realized in a given encod-
ing, let P ∗ be as above and let PE be the empirical distribution. Then the K-L distance, a common
way to express the divergence between two probability distributions, is defined by D(PE ||P ∗) =∑

w∈W PE(w) log PE(w)
P ∗(w) .

• Matusita distance [14]: Commonly known as the Hellinger distance (for continuous distributions), this
distance measure is appropriate for heavy-tailed distributions. Here W is the set of all possible weights
(in our example W = {1, . . . , 2114}). The measure is defined by M(PE , P

∗) = (
∑

w∈W(
√PE(w)−√

P ∗(w))2)
1
2 , with PE and P ∗ as above.

(2) Central moments of the empirical weight distribution: In addition to the mean and variance, the
tail and the peak at w = 2 are important characteristics of the ideal distribution, P ∗ (see Figure 2). A
heavy tail permits the encoder to select high weight output symbols with non-vanishing probability. The
theory predicts that these high weight symbols are key toward the end of the decoding process when
only a few input symbols have yet to be decoded—in those cases, having high weight output symbols
makes it considerably more likely that the the missing input symbol is “represented”. 2 Similarly, the
theory predicts that output symbols with w = 1, 2 permit the decoder to bootstrap.
Our feature set thus includes Skewness, to check the right-skew in the empirical distribution [13], and
Kurtosis, to verify the peak at w = 2 [13]. Let W be the set of weights realized empirically. Skewness

2Luby [9] gives an elegant and clear treatment of the decoding process; while the theory there is slightly different from that used
by Online Codes, the principles and intuition are similar.
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and Kurtosis are defined as follows:

Skew(PE) =
∑
w∈W

PE(w)
(w − µPE

)3

σ3
PE

Kurt(PE) =
∑
w∈W

PE(w)
(w − µPE

)4

σ4
PE

Our feature set also includes the mean, variance, and third central moment of the empirical weight dis-
tribution. To transform these statistics into metrics, we define our features as the magnitudes of offsets
from the corresponding statistic of the ideal distribution P ∗. We also normalize because, under regular-
ization, relative magnitudes of the features can affect modeling. For example, our feature representing
the mean of PE will be |µPE

− µP ∗ |/µP ∗ .

(3) Specific characteristics of the weight distribution:

• Probability ratios of specific weights: We have used |PE(w) − P ∗(w)|/P ∗(w) for w ∈ {1, . . . , 40}
as features. We had initially included the probability ratios of the first 20 weights only, based on our
belief that deviations in these weights would have the greatest impact on decoding. We included the
next 20 weights as we observed one of our models favoring probability ratios of higher weights.

• Thickness of Tail: We included five features measuring the thickness of the tail of the empirical distri-
bution. In this case, “tail” means all the probability mass after a given weight w∗, where w∗ is chosen
to be, for the five features, the 93rd, 95th, 97th, 98th and 99th percentiles under P ∗. The difference in
probability mass is converted into a feature by normalizing with respect to the expected thickness of
the ideal distribution.

(4) Columnwise Characteristics: Up to now, we have been concerned with statistics taken over sums of
of the rows of the encoding matrix, in attempts to capture information about the weights of the output
symbols. But recall that once a row’s weight, w, is sampled from the distribution P ∗, the encoder must
then randomly choose w elements uniformly at random to set to one. We hypothesized that even for
good faith encoders, outlying events in this uniform selection process might result in poor encodings.
Working from the encoding distribution P ∗ over weights w, we can deduce that any cell in the m ×
n′ encoding matrix should be set to one with probability EP ∗{w}/n′. Since the encoding process
independently generates the rows, we can view each column as m independent flips of a biased coin,
and hence the column sums are distributed binomially with parameter p = EP ∗{w}/n′. Note that for
our setting of the encoding parameters, EP ∗{w} ≈ 8.17.
The three features we included are the observed mean, variance and third central moment of the sums
of the columns; we again used magnitudes of offsets and normalization, this time with respect to the
Binomial Distribution.

Table 1 in the appendix lists all of the features we used to train our models.

4 Predictive Models and Results
Using the data, X, and associated labels y and z, as described in Section 2.3, we trained and tested various
predictive and classification models using the features just presented. After discussing our predictive models
in this section, namely regularized least squares and forward fitting, we focus on approaches to classification
in the next. Recall that the two questions we are trying to answer concern two datasets, GoodFaith and
Mix; we accordingly train and test each of our models twice.

4.1 Least Squares Regression

We began by attempting to train a simple least squares regression model for GoodFaith and Mix. As usual,
for a given dataset, our input matrix is given by the feature representation of the training data; for example,
our GoodFaith input matrix is X = [Φ(Xg;1)′, . . . ,Φ(Xg;|GF |)′]. Because we have comparatively many
features, X has many columns, and, as a result, XT X is a singular or near-singular matrix; hence we were
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not able to compute directly the optimal least square parameters w = (XT X)−1XT z, where z is the vector
of overhead values z for the training data. We address this problem three separate ways: (1) using an L 2

norm penalty to regularize our solution and break the singularity of XT X; (2) using L1 norm penalty reg-
ularization; (3) selecting features using as a heuristic the pairwise mutual information between individual
features and the actual overhead. We measure the effectiveness of each approach on given samples using
“prediction error”, which we define as the average error in predicted overhead:

∑
sample |z − ẑ|/n, where n

is the sample size.

Regularization with L2 norm penalty. We choose to instantiate L2 regularization by minimizing the
following objective with respect to w; J depends on a pre-specified regularization parameter, λ:

J(w, λ) = (z − Xw)T (z − Xw) + λwT w

We obtain our solution by differentiating J(w, λ) with respect to w and setting it to 0. Solving for w:

−XT z + XT Xw + λw = 0 =⇒ w = (XT X + λI)−1XT z

We did not observe good learning with this technique for any dataset. The prediction error of these
models on GoodFaith and Mix datasets was almost exactly what the prediction error would be if our pre-
diction was always the mean of the training data. So, essentially the models are learning no more than the
mean of z. Figure 4 shows the behavior of these two models.

Regularization with L1 penalty. The average prediction error for the standard test data in GoodFaith
and the TruncGoodFaith test data is slightly better than in the L2 case, above. The features included by the
model are a mix of χ2 statistics (such as 3, 9, 11, 28) and higher-weight probability ratios (such as 64, 71,
79, 81, 83). As in the L2 case, the prediction error for Mix data is again only slightly better than if the
predictor learned the mean z value, only, and nothing about the relationship between the features and z.

Feature Selection with Mutual Information. Using training data, we constructed joint pairwise empirical
probability distributions over each individual feature and the associated z values. The features are con-
tinuous variables, so we divided each into quantized cells. We experimented with different cell partitions
and compiled the results. For the GoodFaith dataset, the features with highest mutual information are the
probability ratios of weights from 1-40, with the higher weights yielding higher mutual informations. The
mean of the weights distribution and variance in column sums also have high mutual information with the
training values z. Our hypothesis is that the high weight probability ratios are informative because higher
weight symbols are more likely to encode auxiliary blocks. In turn, auxiliary blocks are crucial to decoding
a file to completion. Due to time constraints, we were unfortunately unable to verify the hypothesis for this
report and must leave doing so for future work.

Results from the Mix dataset are entirely different. The Matusita distance (feature 35) has the highest
mutual information with the observations, z. Next are the various χ2 features (1-28). All these features
are measures of “difference” between the ideal distribution and the empirical distribution realized at the
receiver. That measures capturing the entire probability distribution are informative indicates that the shape
of the distribution matters everywhere along the distribution. We speculate that deviation anywhere, partic-
ularly in the tail (as measured by the Matusita distance) leads to increased decoding overhead.

We select the top 50 features for both GoodFaith and Mix as regressors in a least squares model with L 2

regularization. The advantage of having 50 features (as opposed to 80) is avoiding the singularity of X T X;
we can thus compute exact least squares parameters and directly compare to results under regularization. For
both datasets, no regularization leads to the lowest prediction error. Prediction errors for the standard test
data in GoodFaith and the TruncGoodFaith test data are similar to previous cases. We see a slightly improved
performance for Mix—the prediction error goes down to 0.022 from 0.03. However, this performance can
hardly be considered satisfactory.
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4.2 Forward Fitting

Using mutual information as a heuristic for selecting features ignores interaction among the features or the
presence of redundant features; in contrast, an iterative technique for feature selection might be able to
capture some of these interactions. We therefore test the following iterative forward fitting technique: at
each stage of the iteration, we search for the weak regression model f(X; θ) = w · φk(X), θ = {k,w}
that minimizes the previous iteration’s residual squared error. Our results for the GoodFaith case are
summarized in Figure 6, where the depicted prediction error is, as above,

∑ |ẑ − z|/n. The graph in
Figure 6(b) strongly indicates that the model quickly begins to overfit: the test error begins to rise and,
also, both the test and training error follow a regular zig-zag pattern suggesting that the model, rather than
learning anything new, is simply eliminating noise. The features that appear to reduce the test and training
error are the first eight: a measure of the tail probability (29), probability ratios of individual weights (39,
37, 64), and a χ2 test (3). Forward fitting’s performance on the Trunc data is disappointing: apparently the
best predictor in this case is simply the guess 1.0453; every successive regressor adds to the prediction error.
In this respect, its behavior echoes the least squares models in Section 4.1 which also appear to “learn” the
mean.

Like the least squares models, forward fitting performs quite poorly on Mix data. Here the performance
is slightly worse than always predicting the mean of the training data. Figure 7 shows the learning progress.
That all four column characteristics are included suggests to us that the distribution over column sums
affects decoding overhead; we plan to conduct further analysis of this hypothesis in future work.

5 Classification Models and Results
We use logistic regression and boosting to try to learn to classify according to the y labels. We were also
curious whether the predictive models from the last section would be useful for classification, and so we
“retrofit” those models so that overhead predictions were mapped to labels of ±1, according to whether the
predicted overhead is above or below a threshold, as discussed in Section 2.3.

5.1 Standard Classification Models

Logistic Regression. We used standard logistic regression regularized with both the L 1 and L2 norms to
classify our various datasets. In general, we found both varieties of logistic regression fared poorly when
making classification decisions among the samples in GoodFaith. We did not observe much consistency
between the features that the L1 model selected and those that the L2 model favored. With both regulariza-
tion penalties, training and test errors on the complete dataset did not drop significantly below 27%. Since
a predictor based solely on the a priori class probabilities could do just as well, we can assume this classi-
fication scheme is modeling little aside from noise. We might conjecture that the GoodFaith dataset is not
linearly separable. Our attempts to train the model on quadratic features yielded insignificant performance
gains, despite an explosion in required computational cost.

Logistic regression does much better when classifying samples from the Mix dataset. In particular, we
note that regularizing with the L1 norm penalty λ ≈ 5 generalizes well over the truncated dataset, as shown
in Figure 10. To arrive at these classifications, the L1 model favors a mixture of χ2 parameters (such as fea-
tures 21,11,10), tail mass metrics (such as 30), and higher-weight pointwise features (such as 50,49,83,82
and 81). By contrast, the L2 model is not as likely to select χ2 parameters. This distinction conforms to our
intuition. Since the L1 model needs to “economize” the total number of features it selects, it must select
at least some features that encapsulate aggregate information over the entire distribution, namely, the χ2

parameters. Because the L2 model has no such constraint, it is free to approximate aggregate features by
combining many more pointwise features. Indeed both models seem to require data from all regions of the
distribution to make accurate classifications.

Boosting. We used AdaBoost [15] as a combined feature selection and classification technique. We sep-
arately train the model for both GoodFaith and Mix, use Φ(X) as our feature representation and y(X) as
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the ±1 labels. Our weak learners are simply decision stumps: sign(w1φi(X) − w0) with θ = {i, w1, w0}
and w1 ∈ {−1, 1}. We use two different loss functions: the standard exponential loss function and the
logistic loss function Ll(z) = log(1 + e−z). The results for the GoodFaith data are partially summarized
in Figure 8. The model learns to predict with almost no test error, and the algorithm selects Features 64-80,
only, with a decided preference for the highest numbered features. This preference is consistent with the
informative nature of these features, as discussed in Section 4.1.

Although the boosting algorithm learns to classify correctly when presented with the full empirical
distribution, it struggles to make any sense out of the truncated data. At 27% classification error, the
model performs slightly worse than chance (recall from Section 2.3 that 24% of the elements in GoodFaith
are labeled −1). This is not cause for concern, however. The primary purpose of the GoodFaith data
is to help us understand what aspects of the entire empirical distribution most affect decoding overhead,
and, indeed, boosting has been an admirable success in that regard: it successfully discriminates between
various encodings in an identical population. We are not surprised that the truncated features cannot capture
essential qualities of the empirical distribution. For example, the expected number of weight 40 symbols is
5000 · ρ40 = 3.18; when only 20% of the output symbols have been received, the truncated version of this
feature is unlikely to give any information at all.

The results for the Mix data are partially summarized in Figure 9. In this case, for both loss functions,
the model learns to predict with 95% accuracy, but all of the learning occurs with the selection of the first
feature! The remainder of the features decrease training error but leave test error largely constant, meaning
that, conditioned on the first feature having been selected, the subsequent decision stumps are overfitting.
The magic feature, the first one selected, is feature number 24, a χ2 test; its associated decision stump is
w0 = 2.6 ·10−9. Since this value is quite small, and since our desired χ2 features can only be approximated
using MATLAB’s gammainc function which yields feature values as small as 10−320, the quality of this
feature might be a numerical artifact and thus suspect. However, the decision stump is not making random
decisions; indeed, despite our discomfort with the minute value of w0, this stump correctly classifies 95%
of our test data correctly. Another way of looking at this is as follows: if a numerical artifact has arisen, it
is a highly consistent one, and thus we can view our weak learner as “the output of a particular MATLAB
function”. This decision stump has 15% classification error on the Trunc test data; the logistic models
achieved similar rates, after some regularization. Thus, in this case, AdaBoost has discovered a single weak
learner that does as well as a full logistic regression model.

5.2 Retrofitting Predictive Models for Classification

Least Squares Regression. We used predictions made by the least squares regression model with L 1 norm
penalty to classify test data in our datasets. Overall, we found that the model performed quite poorly. On
the GoodFaith data, for both the standard test data and the TruncGoodFaith test data, the model performed
no better than chance. While classification error on the Mix test data was a reasonable 11%, the model
performed significantly worse than chance on the TruncMix test data. The poor performance is likely a
result of the model’s objective; it is not overly penalized for uncertain predictions nor is it sensitive to the
demarcation between the ±1 halfspaces. By contrast, the boosting technique introduces a heavy penalty for
a misclassified sample.

Forward Fitting. We found that forward fitting was similarly ineffective. For the GoodFaith dataset,
forward fitting performed no better than chance, even on the training data. For the Mix dataset, forward
fitting after 15 iterations produced a test classification error of approximately 25% and a classification error
on the Trunc test data of 30%, hardly impressive results. This poor performance likely results from the
same factors described above for the least squares case.
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6 Discussion and Summary
Our first goal in this work, embodied by the GoodFaith dataset, was to understand what aspects of an
empirical probability distribution over weights affect decoding overhead. Although our work here is pre-
liminary, the boosting experiment was unambiguous about preferring the high weight probability ratios
when doing feature selection. None of our other models was as decisive as the ones derived from Ad-
aBoost, though some, such as the logistic regression model, incorporated similar high weight probability
ratios into their favored feature sets. Together, these findings suggest that the encoding overhead is partic-
ularly sensitive to the empirical frequencies of high weight symbols. We intend to verify the hypothesis
discussed in Section 4.1—that these features are selected because higher weight output symbols are more
likely to have auxiliary blocks XORed into them and that auxiliary blocks are crucial for decoding a file
using low overhead.

Our second goal in this work was to understand if a receiver could predict, based on a sample of output
symbols, what the decoding overhead would be. In response to this question, our predictive models clearly
failed. They perform no better, and in some cases worse than, the very weak model z(X) = 1.05, which
makes a constant prediction. We intend to rectify this failure in future work by revisiting our model choice
and our feature choices. We also wish to understand if there are interactions—e.g., second order, third
order or something more complex—among the features that could make them informative in groups but
ineffective when taken as individuals.

Despite our embarrassing predictive models, our classification schemes are reasonably effective. Lo-
gistic regression with L1 norm regularization generalizes to the truncated Mix test data set with only 7%
classification error, and boosting, although unable to generalize to the truncated data, achieves 5% error on
the standard test data for the Mix dataset. We admit to disappointment that our models do not select the
same, or even similar, sets of features as each other. Our hypothesis for this divergence is that we have not
successfully captured the ultimate causes of high overhead in decoding, either because the information ex-
ists in interactions between features, which we do not model, or because the information cannot be captured
by our current feature set at all.

In conclusion, we are disappointed by our failure to produce quality predictive models but are nonethe-
less encouraged by the moderate success of some of our classifiers. Our experience leads us to believe that
better models, features, and feature selection techniques might result in a decent predictive model.

7 Future Work
Some of the shortcomings and gaps in this work have been imposed on us by time constraints whereas others
result from the exploratory nature of this work and from the intermediate nature of our analyses. Following
this distinction, we break our future work into two categories: (1) exploring further models, features, and
analyses and (2) revising some of our simplifying assumptions.

Performing More Analyses. These are avenues of investigation that time constraints rendered inaccessible:
(1) Investigating additional linear model classes, including, e.g., Support Vector Machines; (2) Including
higher order features in our models, which are currently limited by their inability to capture interactions
among features; (3) Applying a priori feature selection techniques, beyond the mutual information heuris-
tic, to avoid having to present a regression model with a number of terms polynomial in the number of
features; (4) Using more involved feature selection techniques, such as neural nets, in which the presence
or absence of similar features could be learned and (5) Augmenting our feature set in various ways. These
augmentations include: (a) adding more features relating to the distribution over input symbols, e.g., cap-
turing whether particular input symbols are underrepresented among the output symbols by including the
minimum input symbol frequency as a feature; (b) Including specific features to determine whether the
number of auxiliary blocks—which are important, both in theory and in practice—is near the expectation;
and (c) Being more systematic in selecting features by, for example, determining which features are closely
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correlated in practice and then including only one of such a set in a model.

Revising Simplifying Assumptions. First, we assumed that test data was immediately and freely avail-
able at the time we trained our models. This assumption conveniently removed the need for cross-validation
measures on training data to test our models’ effectiveness. We instead directly examined the models’ per-
formance on test data. Our justification is that the purpose of this work is to gain an understanding of
whether ML techniques would even be useful, not to build a production predictor or classifier. In the future,
however, we would have to incorporate cross-validation measures into our process.

Second, we assumed, for lack of an alternative, that we could generate truly adversarial data. This
assumption is of course false. Moreover, we (knowingly) ignored an arsenal of encoding deviations, such as
sending mostly linearly dependent output symbols but doing so according to the correct weight distribution.
Our working assumption is that the various avenues for attack are in some sense orthogonal, and that
an eventual complete solution to our problem might involve a combination of independent statistical and
algebraic tests. Intuitively, the algebraic properties of the encoding matrix X determine if it contains enough
information to be decoded, without regard to practicality, while the statistical properties of X indicate if
decoding can happen efficiently.

Our ultimate hope is that by combining a refined version of the work presented here with a scheme that
forces adversaries to send linearly independent output symbols, we can, with high probability, provably
detect all attacks an encoder could mount.
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Figure 4: Results of Least Squares Regression with L2 norm penalty.
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Figure 5: Results of Least Squares Regression with L1 norm penalty
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Figure 6: (a) First 10 weak regressors selected when forward fitting the GoodFaith dataset. (b) Prediction error,
defined as the average difference between the predicted overhead and the actual overhead. After the first several
regressors, the model is overfitting.
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Figure 7: (a) First 10 weak regressors selected when forward fitting the Mix dataset. (b) Prediction error, defined as
the average difference between the predicted overhead and the actual overhead.
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80 0.3715 -1 0.2320 13
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Figure 8: (a) Top 10 decision stumps selected by AdaBoost on the GoodFaith dataset using exponential loss. The
iter field indicates in which iteration the particular stump is selected. Features capturing pointwise deviances for high
weight symbols are overwhelmingly favored. (b) AdaBoost can discriminate within the GoodFaith dataset but cannot
do better than chance on the Trunc test data.
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Figure 9: (a) Top 10 decision stumps selected by AdaBoost on the Mix dataset using exponential loss. (b) The first
weak learner classifies test and training data with 5% error.
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Figure 10: Logistic Regression Results For the Mix Dataset

i φi

0 the constant 1
1-7 χ2 tests, bucketing 7 different ways; using entire distribution
8-14 χ2 tests, again bucketing 7 different ways; ignoring tail after F−1(.95)
15-21 χ2 tests, again bucketing 7 different ways; ignoring tail after F−1(.97)
22-28 χ2 tests, again bucketing 7 different ways; ignoring tail after F−1(.99)
29 difference in tail probability mass, measuring from weight F−1(.93)
30 difference in tail probability mass, measuring from weight F−1(.95)
31 difference in tail probability mass, measuring from weight F−1(.97)
32 difference in tail probability mass, measuring from weight F−1(.98)
33 difference in tail probability mass, measuring from weight F−1(.99)
34 Kullback-Liebler distance
35 Matusita distance
36-55 pointwise probability difference at weights 1-20 respectively
56 mean (normalized)
57 variance (normalized)
58 third central moment (normalized)
59 kurtosis (normalized)
60 skewness (normalized)
61 mean column sum (normalized)
62 variance of the column sums (normalized)
63 third central moment of the column sums (normalized)
64-83 pointwise probability difference at weights 21-40 respectively

Table 1: List of features
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