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ABSTRACT

5IN and SOLDIER are heuristic programs written im LISP which solwve
symbolic integration problems. SIN (Symbolic INtegrator) solves inda=
finite integration probloms at the difficulty approaching those in the
larger integral tables. SIN contains soveral more mothods than are used
in the previous aymbolic integration program SATHNT, and solwves most of
the problems attempted by SAINT in less chan opne second, SOLDIER (SOLu-
tion of Drdinary DIfferential Equations Routine)} solves firsat arder,
first degree ordinary diffcrential equations at the level of a good col=-
lege sophomore and at an average of about five seconds per problem attespted.
The differonces in philosophy and operacion between SAINT and SIN arc

described, and suggestions for excending the work presented are made.
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Chapter 1

Intreduction

in the last few years there has been a surge of activitey on
the design of algebraic manipulation systems¥. Algebraic manipu-
lation systems are cosputer based systems which facilitate the
handling of algebraic and analytic expressions. One of the oft
stated capabilicies desired of such systema ils an ability to per-
form symbolic integration. Besides the obvious value of such a
capability in symbolic caleulacions there is the possibility of em-
ploying it as an adjunct to numerical ilncegratien programs for
functions which involve parameters. In such cases a single accur-
ate symbolic integration is likely to be preferable o numerical
integrations taken ovoer the range of values of the parameters. An-
other reason for the interestc in symbolic integration programs L8
the faec that the case with which such a program could be writcten
in a proposed langusge for algebraic manipulation has becoms an in-
formal test of the power of that language. Yet the only previcusly
announced eymbelic integration program with any claim to generality
is SAINT (Symbolic Automatic INTCegrator), written as a doctoral
disscrcation by Slagle in 1961 [58]. Siagle described SAINT as ba-
ing as powerful as a good freshman caleulus student. Thus the wn-

modified SATNT program does net appear powerful enough te warrantc

wFor a survey of the field of algebraic manipulation see Sammec [35].
For a bibliocgraphy of work in the ficld up to 1966 see Sammet [B6].




its use in & practical algebraic manipulatios ayscem. In 1964 a
program which Integrates rational functiona was writtem for the

HATHLAR project by Manove, Bloom,. and Engelman of che MITRE Carpor-

ation [36]. This program filled an important gap in che capabili=-

Eies of SAINT. By using such a program {e appeaTed possible to
write a more powerful integration program than SAINT. Furchermor
it scomad that programs which solwve ordinary differencial equacions

at least as well gophomore ecllege students (and a good deal

faster than such students) could also bs written. Such PrOETomE

bacame the goala of our research.

He used the ratlional Function Package of MATHIABR in writing a

i called EIN (Symbolic INtegrator).

svcond symbolie incegration progr

SIN, in turn, we used Lo wrice a program which =olwves first arder ;
firsc degreo ordinary differentinl cquations. This program is

called SOLDIER (SOLuci of DIfferontial Equationa Routine). SIN

and BQOLDIER are both written in LISP [34], [20] for the CTSS SYE LR

at Project MAC [11]. These exporiments in symbolic integration are

2ve these programa to

the principal subjects of this thesis. We
posscss sullicient power and cfficiency that they could be offectivaly
used in a practieal on-line algebraic manipulation svstem.

In order te clarify the domain of applicabilicy of our pro=-
grams and in order to indicate the power of the present versions

problems

of SIN a SOLDIER, we proasent bolew twe oxamn

solved by each prograsm. The solutions that these programa obeain

&

to the four problems can be found in Chapters 4 and 6.
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Problems solved by SIN and SOLD

uglh tha o

impressive,

we found compelling reasons for taking, in SIN, a

subscancially

difforvent approach. The moat fundamental differeéence between SI

and SAINT Ls in the organization of the programs. SAINT utilizes
a troc search as It aorganizational device. Slagle compares
(& T wavior of SAINT to that of freshman calculus students. e

sought an organi

tional model which behaved like our conception

of the behavior of an expert human [actegrator.

model was sup=

posed to determine the methods needed to solve a problem quite

quickly. A diascusalon of the approach Takd in SIN is given in

Chapter 2.

SAINT utilirzres a macching program for &

brajic expressions

called Elinst (ELementc

INSTance) s We desired a program which

wWis more \'.'l.ﬂﬂ\.'l}' organlized as an inCerprécar [Oor 4 paLtLarn macchi

Thisa

rdl SCHATCHEN, is a service routine em-

SOLDIER. The power of SCHATCHEN greatly

the problem of writing an algebraic &

splificacion pra-=

gram, called SCHVUOS. SCHATCHEN and

are described in Chap-



Chapter & containz a

methods. A comparizon

It ig noted that SIN

made .

i SAINT. Among these is

gration problems. Thus SIN

I'x

dx are not integrable 1

]

In Chapter 35 weo

istie. The Edge heuristic

s theo

tegration.

i

between methods used in

introduce
5 bascd

tailed description of SIN and its

SAINT and S5IN =

contains several methods not included
a declsion procedure for a sct of fata-
| e

iz able to determine that _1."‘ dx and

closed form.

(EDucat Lomal

the Edge CuEssa) heur=

on the I lle in-

theory of

if m

ghown that funccion ig inta=

grable In closed form, then the form of the integral can be deducsd
up te certain coefficlents. A program which employs the Edge heur-
istic, called Edge, uses a eimple analysia to at the form of
the integral and then it attempts to obtain the coefficients. Edge
is a ponctraditional (nCegration methed and one that we believe ig
the f a line of very powerful mechods.

The methods and organizacion ©f SOLDIER are incroduced im

Chapter &, The area of nonlinear first opder differcntinl equatiens

is much more difficule than jusc integration. Thus we were hardly

surpriged at not being able to find o concept analogous to the Edge
itlstic of SIN. Monethelcss the powsr of the current version

of SOLDIER is comparable to that of a sophos student in an or-

differential

ATy

The appendices contain

&EIN

and SOLDIER

and

cerned with theass programs.

aguacion

LB COUTEE.

results of experiments performed with

a report on some other work not directly con-



Hany people probably believe that the cheapest way to obtaln

an integracion ral cable

ppablilicty would ba Lo design an Intog
look=up program. While we do not espouse this course of action,
wo did exporiment with such a program (called ITALU). Appoendix A
describes this program.

Richardson has recently obtained a recursive unsolvabilicy re-

gult in integratlon wick

v has aroused great Interest [52]. Wae des-

cribe this theorem and present some of our own related resules

which invelve anonlinear dilfferential eguations in Appendi=x B.
SAINT was asked to solve 86 problems. Of these ic solved BS

all B6 problems

in an average cime of

wicth solution cimes which were froquently more than two orders of

magnitude faster than SAINT. 81N solved the other two prohlems
by using integration methods not avallable in SAINT. The facc that

SIN was compiled and that SAINT was run interpretively accounted

r most of the goin 1., Reaults and

interproetatci

of this experiment are given Iin Appendix C.

A physicisc, Harold McIncosh, used an ince cable to solwve

even fairly difficu inceg

B e SIN, alcear a9

acion prol

prodding, solved these problems and found some minor errors in

Professor MeIntoash'"s ansgwoers. This expor [

lg described in Ap-
pendix D.

In ordor to test tha

pecivenosgs of SOLDIER we mgkoad It £o
golve 76 problems taken out of a differential equations text. SOL-

DIER solved 67 of these problems cleanly with an average time of



With the

ation can

wish to ignorc




CHAFTER 2

HOW SIN DIFFERS FROM SALNT

Introduccion

In this chaptef we discuss in broad terms the organizacional dif-
forences between SIN and SAINT. SAINT employs rather loose progress
constraintes in generating subproblems, and obtafns a solution through
a tree search. SIN relies on a such tighter anmlysis of cthe problem
domain {f.e., integration} and strict constraints on progress in order
o obtain a relatively sctraightforward solutionm.

Houriscic Search

In “"The Search for Generaliey"™ [ &5 ], Newell £inds chat the most
frequent organizatisnal acructure gyaed in Areificial Intelligonce pro=
gramz is one he calls heuristic search. We shall call programs which
employ this organization as the gole or central organizational dewvice
H& programs. SAINT is an example of an HS program. HE programa can
be consgidercd to be programs which attempt to generate a path from a
starting nede A (ususlly the statement of the problem to be solved,
given in the intcrnal representation) to a terminal node B (usually the
last link nocessary to find a solutlion £ A). The path from A to B con-
gists of one or more nodes which are (again, uwsually) in the same problem
domnin a8 A and B, Thus in a theorem proving pregram the nodes would
repregent statementcs of possible theorems and in SAINT the nodes repre-
sont exprezsions to be {ntegrated. From each node the program is able
Lo generate one Or more succesEor nodes. All of cthese sucesssor nodes
could be examined o detevmine &f they lead to o solution (a "B" node),

but it luw in the nature of AL problems that Lif thia were te occur the

11




program would consume too much time and Hence heuristics are 5l
to select a set (possibly a null gec) of successor nodes for cxaminarion

in erance to others. The use of much heuristics leads te the "heuris-
tic" term in "heuristic search." The process of examining nodes in che

Exeg which is generally produced leads £o the "search” term in "houriscic

search."

There are many scrateg for guiding cthe search of rhe tree. Hou—

rer several stand out and deserve o be mencioned. One strategy is

called "depth firsc.’ It usually selecta the las

node penerated as tho

one Eo be examined next. This acrategy has the of forcing an

cxamination of a single path until it clither leads o a solution or the

that it will not yield a solution. S

program decidea :h a strategy is

e=ployed in most game p

YINE programs. At tha ¢ 1T axtre is & stra=

tegy called "breadch F t” which selects the node which was generated

earliest. Such a strategy was uszed in the Logic Tt [44]. SBAITNT

chooses the node which represents an e preazion which {£ deems to b

one of the simplest

bprob to be integratad.

HWe wish to clarify the senee in which we

HS program. The fact that a subroutine in a g

does not always imply that the program is an HS For example Lif

BAINT's simplifier had used houristic search in simplify expres-

sions, then this fact does not imply that SATINT {=s an HS program (for

Hor is

example SAINT could have boen Just a table look-up progra

that any program which perfon search even 1if the ssarch is

cthe cane

guided by heuristic an HS program. L0 researve
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pame to progeams which rTely on conductimg a search in the same demain
in which the problem is poged. Thus programs which search for a plan
in & different space from the one in which the problem is pescd and
thereafter find the solution immediately are nob HS nrngrmnu.*
The Trend cownrd Gepopality

One of Howell's other coneluaions in "The Sesrch for Generalicy"
is that AL programs have tended in the recent past to shy away from
dealing with complex problem domains such as chess, geometry, or intes
gration, and have inereasingly concerned themsalves with generality.
By programs which cmphasize goenerality we shall mean programs which
are concerned with an examination of mechanisms (e.g., heurlistic seavch)
which are uscful in many problem domains. By programs which emphasize
exportise we shall mean programs which econcencrate on a particular
{complox) problem domain. Examples of the trend teward generality are
the advice taking programs (e.g., Black [ 3 ], Slagle's DEPUCOMI 5% 1.
and evon Nerten's ADEFT [ &7 |). These programs solve toy problems
whiech have been pesed from time to time by McCarthy. One of the striking
feacures of cthese programs is how little knowledge they require in order
to obtainm a solution. In fact Persson, in his recent thesis[ 49 ] which
deals with "sequence prediction'" scems to feel that placing a great
deal of context dependant information im a program would be Ychearing.™

This emphasis scems o be uscful when one desires to study certain

Dur omphasls regarding cthe space to be searched may differ from Hewsll's.
In fact our negpd to use intuitive definitions and rely on analogies and

examples pointa out the lLack of a firm theoretical foundatiem in computa=
cion, and in Arctificial Intelligence,




problem solving mechanisms in as pure a manner as poasgible.

&, tao, egired to use SAINT as a veht

Slag

for studying corta

problem solving mechanisms such as "charascter-mechod tables" {for example,

method A is probably u 1 tha problem {8 of typo 1 or type 5

41 ] far a di sslon of this cechnique) and "jonhericed re=

" (Minsky [ &1 J). We, on the other hand, intended no such

tudy of specific probl ving mechanlams, but mainly desired a

powerful Integration pro am which behaved closely to our conception

f export human integrators (it should be& noted that Slagle compared

the behavior of SAINT to that of college i« i students) .

Honetholess our exps with SIN may be used to modify or impreve

chanisms.

general proble polving me

SIN, we hope, la & return o an examination of complex problem

program [ 22 ] Is another example of a

domaing. Greenblatt"s

recent program which deals with a complex probles domain which has boen

rably noeglected in cthe last few years

Ihe Emphasis on Analvsis

domain. This

the analysis of the proble

r emphasis in SIN
analysis is both an analysisz that we performed and buile into the pro-

but more [mportantly an anslysis which the program malkes while

ic is golving a problem. In order to achieve high performance in av

cogration we did

reqguire thac the Program sake a TEEY OO0

of che sicuation. Nonetholess analyveia that 3TH does

plex anal

When SIN

make markedly affects the performance of the pr 8 solving

one of SAIRT difficult probloms che noticeable difference betwoen

ies performance and SAIN ia mot in the Llocreasced efficieney of the



polution.” but in how quickly SIN usually manages o declde which plan
to follow and the straigheforwvard manner with which it obtains thae
solution thereafter.

Az we ghall see in Chapter & SIN'a methods are quite similar teo

those used by SAINT. However SAINT does not commit lcself to a parti-

cular méthod, but will fregquently explere several paths to a solution

until it finds gome path which zucceeds in obrs ing the onawsr. Hour=

fstic irel im used to fipnd this solution path. FregquenCly such un-

certalintky is nocessary in SAINT becauge it lacks the powerful machinery

chat SIN pos:

sacs and relies on (u.g., the rational function package

of MATHLABY. Thus SAINT is forced to search until it finds a path
"

which leads to subproblems that (€ can solve. For example, in T da

SAINT cannot obtain

I |
Lol k-
leads to S+ 75

a8 solution by using the subsctigution y = tan x whic)

ince {if sannot integrace the racional funcelion.

Thus SAINT is forced te contaln a further subscitution ¥ = got x which
SIK con easily afford co ignore. In other cases the large numbéer of

subpraoblens propossd by SAINT arises wvhen SAINT emplova mechods which

do not perform a sufficiont analyais or po

as sufficiently tight
xL 4+ =
¥ K

progross constralints. For example I:n.J dx, SAINT will consider
transforming the gquadratic in the numerator, though this transformation

iz not reasonable wvhen one comgldors the square-root in the denominator

In this problem SIN would note the aquare-rool and would make A subsci-

Though S8IN solves SAINT's problems about two orders of magnitude
faster thon SAINT's published figures, this stetistic is decepcive. If
SAINT were to be run under optimum condicic « 5IN would only be about
throe times as fast on the average. The principal reason for this [act
iz chact most of cthe procesaing tElme In SIKN is spent in algebraic mani-
I cion {e.g., simplification), and the ccst for these operations is
fairly constant in S3IN and SAINT (see Appondix C).
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tution which would rationalize the denominatar.

We feel that SAINT = not the only HS pr ram in which greater

analysis would yield fmproved results. In the MATER program of Si:

Bayloyr [ 2 ). heuristie ssarch is used te find a macing combinati

in chasa. When MATER era the set of replies that Black might be

able to make in response to 8 given move of White, 1t atores theso re

Plies in a "ery lisc." The try list ls ordered so that moves which have

fewest T

¢d are considered firsc.

aSpon #et of moves whieh have the
same number of replies are normally considered in & firsc-in, firsc-out
manner ([ 2 ], p. 435). Thiz leads to a breadth-first search. Mad
the moves been stored in a lasc-in, first-out manoncr a doprh-firse

g#earch would have resulted. This search would mean that the program

would gxplore a path until it became worse tl

f #ome ocher path in con-
trast to MATER's cricerion that a path is abandoned when Lt L& no better
than some other path. This slight change in the =t rategy of the program

would lead HMATER to find

ions to some problems on which if ran out
of space, and would not materially affect its performance otherwise.

This analys of MATER is due to Henneman [ 26 ].

While we do not wish to suggest that a rvadically improved perfor=
mance can be haod in all HS programs through greater analveis, we cor-
tainly want to emphasize the effect that such analysis can have on many
HS programs. Since any nontrivial analyeis requires a good deal of
context dopondont information, we also wish to emphaeize the need For
such information in problem solving programs. In the long run, of

course, complex snalyses and strategles will have to be represcated in



spocialized languages. Wi uld like Eo see thi®: development oceur in

the Greenblatt program;,; for example.

re Stapes of SIM

EIN is a three stage program. In this respect already the organi-

zation of SIN diffors from most AL pPrograms are composaed of a

eingle stage with a heuristic spearch am i ganization.

The multiplicicy of stages allows the programs to devote increasing effort

atoges.
Stage 1 of SIN uses a method (Derivat ive-divides) which solves most

The experiment in Appendix € indicates that

1f the problems attespted by SAINT. Some proble

this method solves h

me 3 —_—

ated by this thod are: o8 %, =¢ , tan % sec =, ®+ 1 + x*

We feel that all too few AL progri the fact that In many

problem domains there exi

schads which solve a large number of

prueblems

quickly. SAINT did esploy t

H
o
R
k
-
=]
F
B
i

o
c*

¥ )

idea inm fic

{see Chapter &) .- Howswver IMSLM is not as powerful as

ana' ANALOGY program [L7] whieh Ls one of the few AL pro-

o gould have profit

which does not roly on heuristic search a

a first stage method. Evans' program deals with geometry analogles.

logies are

Instructions given to mans taking & test based on these ana

"Pind the by which figure A has been changed to make

figure B. Apply the rule co Figure C. Select the ¥

ulcing fig

Evans’ performs as If It were [ollowing the in-

"Find the rule by which Ffigure A has been changed to =

flpure B. Also find rules which Eranaform [i

ures 1-5. Select the answer figure which corresponds to a cransformacion



iich most closely fits a transformation from A to B." The test makera

are easentially suggesting chat one ashowld

inms the ansgwer f

icheme , we have found, is elfective in almost all the problems attespted

by AMALOGY. Consider the figureca A. B, © bolow:
r = .

| /\\ 5

ing the test makers' asdvice is-:

TRIAL ANSWER

chen one should

If much a figure is present among the answes £1

choose that answer. All that would be required for this step Ls that

1 . If this

entity with the answer

one test Ehe guesa [or

ehould fail to find an angwer, then one wo

ld snter a second

stage in the progr in vhich one would "debug' the previous guess or
employ an analysis similar te Evana'. Yot once one 1s forced to entes

a4 socond stage, one has a ploce of informntion that one did not previ-

ously possess--that the problem iz relativelw difficulc, Such infor=-

Eion may bé u I to guide further processing. A further use of g

will be indicated below in digcussing the Edge heuristie.

The sccond staga of S5IN Ls the stago in h we spent most of the

programming cffortc. In this stage cthe program 1= to apply elewven

this scage ia chat

highly specific methods. The principle i



cthie program de

d, Lf any, is applic

quite guickly. We shall call tha manner by

The rout at the hsart of the

operates rpothe

FORM. FORM check

local cluea In thoe inGe nid lf order Co

Ak Wi In-;n..l,hn gis rogar=

is likely to be applicabl ntly FORM camn

Lty of all but three of

decide on the

g lecal <l slon

ample, Lf FORM notos the

x)a

FOBM willl c

which handles trigonomet funct lons.

Ehode

supp

ca vorify che egis thar fr is able to perform a transfor-

ylve the proble

which will ei

which

ia applicable to then Lt will

ehe valus FALSEE toe POHM, I that case FOHM g

entort i

hypot Otherwise ¢l thod will ¢ to work on the pro .
Mora generally we think of hypothes formation as a three 8 ep

. Fl £t one

problem In order to obtainm an hypoct

the soluci Then the

im I8 verifled

or to attempting sclucion of any

. Finally,

cthod apperacs appl

in on attempt to solwve

cthe problem. nat app

+ a4 new hypot

be generaced.

think of hypothesis formation a8 a model for a

planning v

A Wil

ike inte the

B o incorpor

s

a great deal of knowlad hie capabllities of the rest




of the program. One aspect of the understa:r chat FOBM ham of SIN's

roucines is Iincorporated Iin {ce ability o "make the problem fit the

mochod " By this phrase we mean that FORM o climinate cercain

in the prob smbigult when certain beac=

pressions In the scate of

the problem |

ler the recognlitiom of the

true nature of the problem. For example, the analyvais char FORM

a4 problem allews LE B gpact that an expression is a quadracic in

x even though SCHATC (see Chaprer 3) did not

atch the expressicon to

dratic. This occ

1 FORM is examining a squarc-root of a

rational function. Lot us suppose that none of the methods that FORM

has available in this case decide chat they are applicable. TFORM wi

now attempt a further

alysis becauss such s aubexpresslon u

senta a block to a solution. FORM considers twoe éxcuses for the

EOF

fact that the methods did noc seem to be app able. Both relate to

SCHATCHEN'a matching capabilities. The first is that the rational §

tion inzide the sgquare-root was not expanded (e-g.. ®{(1l + x)})}; che second

that the rational functix

1
was not completely rationalized (e.g., x + ;:I.

FORM will therefore deter

iine 1f these Cwo transformations are applicable

to the rational fune

they are , i will reanalyvze the prob

termine IF ics

g are applicable. Thus FORM's analysis cnableos

culties in a problem, and its understcanding of

it eo localize Ethe

the roeat of SIN allews Lt to find excuaeca for certain events and helps

it to ovorcome Ethe o cultics In a problem. In so

cases |
congidered SAINT would have perforsed the same cransformation (.;:111:.- axpan=-
sion, chough). Yer chesc cransformationa would be applied to che whole

integrand and not to selected poartiomns of {e.







CHAPT

R 3

CHING PROGRAM FOR ALGEBRAIC

EXPHESS IONS

Introduct ion
Cur aim i this apter i Eo deavels L EE regqulrems
language 1 « in descr € [ ind preciselsy
algorath Far b nig L P 'E algebra x K Llon S A
& 1 We wou ld
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A command-oriented language is desirable for man-machine
lhteracetlon because the human is able to perform the desired pattern
recognition by himaelf most of the time (dee Marcin [37], Engel-
man [15}3. It is alsc useful in those situations in which cthe
algoricthms being coded are straight-forward, chat is, nothing
unusual i likely o happen. An example of such a situation i8 a
program which solves & saystem of linear equations with variable
coefficiente {(sea ALPAK [ 6 1).

When the algorithms being coded beceme incressingly complex,
the pactern recognition requirements of the algebraic mandpulation
language are increased. Teo moet these requirements, highly command-
oriented languages, such as FPORMAC [ 5 ]. include some pattern recog-
nitien focilitles (e.g.. the PART cosmand). However, these facilicies
are woofully [nadeguate for many purposes (e.g., slmplificacion, in-
tegration) and the nesd for a pattern-directed subset of an al-
gebraic manipulation language has become clearly established.

In this chapter we shall be concerned solely with the pattern-
directad spproach. At firsc, we shall rely principally on the
reader's intuicion and understanding of algebralc expressions. Our
discussion will become more and more precise as we proceed.

We sholl figst examine the requirements of the pattern-
match. The requirements of the replacement part, which are simpler,
are cxamined lates, An application to simplification of the SCHATCHER

program which fulfills these requirements will chen be discussed. The
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assigning & value to € since no term in the expression correszponds
to the € cerm in the pattern. Obviously € sheuld be macched with O.

We generalize the exasple to conclude chat EoEms fo a s#um in the

pactern which are missing in the expression are to be matched wich O.

Likewise, factors in a product in the pactern which are missing In

the expression are to he matched with 1. We should note though

that extra arguments in the expression might lead to failure as In

expression E33

(E3) ij + 3::2 + Ix + 5

Express lon B4 presants us with & degencrate inatance of
pactern Pl. SNote that the operators PLUS and TIMES which are ex-

plicicly predentc Ln Pl

(E&Y "

are missing in E4. We can Intreduce these operators by rewuriting

E4 as E&'.

(ES') 1ix® +0

Let us proceed now with mactching Pl and E4°. The value 1 for A is
assily obtained. The 0 term in B&' will match Bx and will resslt in
Ay, (This process will be clarified below.) Finally, due to the
requirement stated above regarding missing terms Ln a sum, C will

be matchad with 0. Then in ordar te match PL with E3 we required that

the match must recognize missing or implicic opsrators.
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In some cases such an expresslon could paps for & gquadratic. In
other cases (for example, in applying the gquadratic formula) such
an axprosslon is not admissible as & gquadratic. MNoce thae the
match as described above will resulc in the value 0 for &; 1 for B,
and O for C for expression E5. We need to be able to describe to
the match that the value 0 for A is proscribed. In facc, wa would
like a more general facility allowing one to delimit the range of
values that the variables in the match may have. We shall require

that tho varjable must be allowed o aacisfy a predicate. We

shall indicate such a facility with a slash (f) an in pactern P2.

In F2 we require A to sacisfy che predicate NONZERD:

F23 A ronzERD * +8x 40

In examining expression E6 we sce that we will need more
predicates to limit the values of A, B, C, since E6 is corcainly

not & guadratic in x:
{E6) *2 + sin{x) = + 1

Let us consider pactern P3 which takes care of the difficulcy

in E&.
# !2 +B b2
(B3} SHONZERD-AND-NUMRER JHITMBER JSEUMBER

Pactern Fl, however, may be a too restrictive condicion. It reguires
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ia both a4 bleas
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in the term involwi % , the product of all che other factors is &

candidate for A. To show this we shall use the indicacor COEFET

[(eoefficient In TIMES) as a modi

LR 4 =U= A s is shown Ly .Frl:
(BG) A COEFFT, NONZERD-AND-FREEOFX © '°/COEFFT, FREEOEK

H‘..I’I_‘OE:-'J-'?  FREEOFX

In P6 we used the indicator COEFFP (coefficlient in PLUS) co modify C

Tt means thact C will match the sum of the remaining terms in the

expresasions. The result of macching P& wich is : A=3y, Bwz, C=l,
In sxpression Ell we see another phenomenon which will necessi-

tate the addition of a new moda. In EL1

o
ocour Ewo Eorms involving X . Ll wa &8 #use that &

the ch eerm in
the pactern should maceh exacecly one term in the expression, chaen

2 = =
the ngle torm Ax in the patcern will fail co account Ffor rha two
terms in ELD. We need a facllity for specif to che maceh chat

4 pagcicular wariable in che pattorn {5 to be considered a co-

efffclent in both a product and This is done Iin paccern P7

a_sum

by weing the indicactor COEFFPT (coelfick im PLUS and TIMES) to

A Lfy A and B.

; A z 3
' »Z 48
P7) D COEFFPT,NONZERD -AND- FREBOEX TR COEFFPT, FREEOFX &

machineey wi ve developed we can now match pattern

*C tCOEFFP, FREEOFX
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the expression El2:

(E12)} o amly + el Sy -1

The result of this mateh should be A=lny + &, B=0, C-yj +5y +1.

In the above examples we were attempting to determine whether
the expresaion was a quadracic In x. Suppose we wanted Co genesalize
the problem in order to determine whether the expresslion was a
quadracic in somé acom, but where the atom was not fixed, but may

itself change. More precisely, we desire a function JUADRATIC of

two arguments EXP and ARG. This function is expected to determine

whecther EXP wos a gquadratiec im ARG. P8 can be used as a pattern in

QUADRATIC.

(PE) A COEPEPT  NONZERD-AND- FREEOFARG ("‘Aﬁjm,\umlﬁz +
HICGEP‘F‘E‘T « FREEQFARG r“ﬁRIEQUhMRGj +

b fCOEFFP, FREEOFARC

In P8 we introduced cthe predicacte FREEOFARG which has the
ebvicus relaced funccion to FREEQFX in pactern P7. The predicace
EJUALARG tests the value that the match assigned te VAR lor equallicy
to ARG

Let us now conaider the problem of extracting a perfect zquare
from a sum. More precisely lec us consider che sicuacion in which a

2

sum has three Eerms which are Individually of the [arm AMWAR™ , B"WAR

2 ;
and €, and whose relation is defined by B =-4AC=D. This differs from
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the situation described in pattern P3 in that the expression may

now hawve more

rma and In thar the value of VAR is

eriginally unknown and depends on cthe axpressi

matched. OQOur

firsc accempe Lls co describe this situvacion with P9

§ 4 ..
(B9 A ruonzeao-axo-sosaer 0 B anmeer YA nmueer-anp- (87 -cac=0)
*0 reoerep

It turns ouft that patternm P9 doesd not satisfy our requirsmencs

because there Ls some an

iguity regarding VAR. In predicate PB,
VAR was determined uniquely by the predicace EQUALARG. In the
current situation no such a priori predicate exists. The first

value of VAR can be essentially anyching. To indicacte chis wa ¢

Wwrite I""Fh‘-l"'.lll'.li}: instead of VAR, where TRUE (s a predicate which ia
true on any Loput However, the second occurrence of VAR in the
patcern (L.e., in BymuMBEER YAR) ia intended to be fixed. That

ocgurrence of VAR must be the same as the previous v

lue acttached

to VAR. To make this point clear; let us consider expression E13J :

(E13) }'2 +Zx + 1 + S5z + 2w

This expression will match pattern P9 with Awl, Bem2, Cwl, DmSz+ldy,

and with the first value of VAR equal to ¥

reond equal to x.

To avoid this situacion we could write the irrence of VAR
as I'I!‘H'IEQJ.!.LV“H This is a fairly clumsy mechanism (even though a

similar device was wsed in PFB). What we shall do instead is co
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define

Flrac OCCUT Tafes of Che

fable {e.g., VAR) will sacisfy the predicate (e.g., THUE}

the expreEfEicon mAtc

during the

wErgnes F weE ak ?l0. (The CONY mode 1in

e of converl [ 23].)

ralated to the PAY (pattern W

+ B VAR +

& f 1
FRONZERD-AND-HIMBER § s T INUMBER

JoonRv

THEER-AND= (B2 -4Ac=0) 'O /COEFFP

Pattern PLD will macch

1 with A=l, B=2, 6 C=l D=2 x4+5x, and VAR=Y.

Let us consider PLO with expression ELG ¢

The t will be to mactch WAR with y This attempt will
fall will fail even though & pesliect squars oxis L
WA %. What [s reguired hesa is a facility for direct-
to search for furthes pessibiliclea. [t is assumesd,
o f ya@, Cthat Ehe sisor of auch a facllicy 1s aware that it may
Auss A in the cost of & =aLcn. L L ingro-
duce such a licy with which indicateas a loop ever the

gxpression. Such a facility may be used wh

variables (8 as A, B, C) in pactern P10 which are micually Intar-

-
related (a.g., B -&AC=0). Thisa fmclility will direct che matech to con-

tinue making trial guesses for the variables unclil

ger ila found

which im satisfied or until all possibilities have been exhaus tad .
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¥ Iin the problem of pattesn Pl

will ask for a 3-level leop in which all possible f A

values for A, B, ©

that VAR L& determined along with A) are examined uncil one se

found which sacisfies B =&4AC=0, The = far the Litw
iz given in patteen PLL:
PLLY A = 2
g SLOOP (A, B RO-AND-NUMBER | ““Froonv, raug) -

B

famMBER EFC

-H-I."'I OEFFF

Although In the above we have concentrated encirely on

doscribing patteens for quadratclices, ourf intentilior

been to

describe o set of requiresents for a ge which can handle a

far richer seac of casks To Lndicate the power of the machinery we

13 dave lopad, we Ll give below a pattern which tests for che

] :-'-||:=_1 + cos B in a 8 a1m Patto P12 will mactch ax-
pressic ELlS5 and resul: Tly) w1, Belx, CeZ, and n-:-.+e-.;;1'.'_,_J.

gin®

(P12) EFFFT, LOOP (A ,C) . NONZBRO JTRUE) +
- 2 4o
©rcoerrer noxzero S0 (B * D orrrp
“ 4 2 ]
{EL5Y 3y + Zsin” (x¥ + 5a n” Zxjoos” (¥} + 2cos” (Zx) + sin® (2=

The implicit rels bactween A and € in pattern PL2

falely eErivial -- that ls, both A and C must be nonzero.



ELS shows that the loop I

i of pactecns whic i Wa hava et in-
tultion guilde us chrg xponentiation did occur
in che patterns above As before a cor r exproasion in the patcter
= A - B
he form A° (& (%)) must match itself. Otherwise, if A
to be match a t oxXpradas 0, we Ll agsume thate it ILs
necassacy and sufficient for A to match © {(The difficulcy thar
arises if B likewise were to match O is I asrad. )
r 1] ¥ .
If A~ ia t ygainst 1, eicher B t macteh O or A

st match L. Noce that this can lead to a difficuley Lf both A and

e variables, since

¥ ane value will be determined If A

matched against

, then B must matc A h E| ox

Ez

B omust mateh | and A must h Bp .
In paccern PLl] we are testing for an expression of the form

(£ ] :.'I.IHF"I:’KJ

rn will macch the expression sin(x)

H=1, H=0,

(P11 "/ INTEGER M INTEGER
(P13 ain {x) coa {x)

bl

acttern Pla is

Eo indicatce

of the ambiguicty chat

is inherent in

B M/ INTEGER

M
1 F - f INTEGEF X
(Fla) | FHONZERD =AKD = FREEOFX /IRTEGER /FREEOFX }
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X " 1
Pl&s corresponds to the intuiltive pattern (ax +=_-\.;|"' When PLlG is

. 2. ..
tched agalnst (x +1) ie wi

1L yvield Awl, Y. When it

=]
ched against x° it wil

wield Aw=l,

N=l, M=8, although

« B=, H=Z, M=3 scrve aqually well as a set of solutions. e

FETS

this pateces: o indicate some of the limitacions of the matcch-

ing program we have been defining. 1In the case of the oxpression

& i
%= , wa obtain via patterm PLl4

implicit relacion HM=6. Thi

means that wa have given

program inaufficient informatlon Ta-

the choice of values for M and M in this

e, The macch

cannot be expectod to do very well in chis insEance.

A second difficulcy wich pattern Pld which has already bean
mentioned occurs when it is matched againsc 1. tn Ehild caxe: our

1ll resulc is

sequirements for the match im ate that all thar sh

=0. We could

ned A=, B=l if the = ents regarding

rsed. Neithers ia wholl

the matching of 1 had bean rev

sacisfactory. However, Lt (s hard te foresee & compromise solutlon

ich will be wholly sacisfaccory.

The lesson that is learned from pattern Pl4 (s that it is up

sufficiencl

ka his patter

scriccive a0 as not

to y¥iold ione in those cases in wh

h they are llkely

te be applied.

The impression that Ls likely co be in of mome

readers s that £y L yet £o be described. We do not in-

T 1-

F
"
3

tend to do t some strong scnse che doslgn

good algebraic
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is then used te generate the right-hand-side expressions by ra-
placing the variable names by the values which were aasigned to them
during the mactch. 1f we consider the exprossion nz*ﬂx*'l. the match
should resulp im A=1, B=2, C=l and the rule should yield the ex-

52
preasion I.yzua f-i . Since this expression Ils unaightly we shall

regquire that the ceplacement step should simplify the expression.

Thus . Bl would resule in the express bon :rza {(Mote that Rl performs
the operation of completing a square.)

Suppose we werg given rule RE:

{R2) Ccos (ﬂx}-l-:ni“ {=h= L;}m:mn'z (x)a l.1-|2 {n}-r{:}n:n:"_:' {x}a tnr' (€3]

! computes the firat 3 terms in the expansion of cos(nx) in terms
of cosx and sinx. If we had matched the expression cos (4x) with
rule Rl, we would result in an expression involving che combina-
tarial cerms {;}I and l;:}. in order to have an expression amenable
to further computacion :.;!1 and E:J should be evaluated to yield &

and 1, respectively. Thus ., we require o facilicy fovr evaluating

selocced portions of the esxpression. With this facillecy RZ can be

written as RI.

(n-2}

(B33 cominx} = cos' (x)-EVAL(())ces (%) in® GRIHEVALCC D)

cos P4 e in® ()




&0

rep lacen

routineg will i

e right-hae

a value, If no such

that 1a, it will be

ar which are noc rap lac

of a rule using such a

Eorma l A with e

I g{v)
(RAD £{x) - f(x} EVAL (DIFF (g (v}, (JuUO

Although for expository pur we used onl i writEen
£ t 5 Ehe = 2, 1t should lear that in
pcbical situatlions laft-hand-sides of the rules would be re-

Lorm
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Exiscing pactern-directed lanzusees

The requirements given above for a matching and a replacement
program are satisfied by the SCHATCHEN* and REPLACE routines used
in S5IN. We would like to place these programs in thelr historical
context. SCHATCHEN has been most influenced by ELINST (ELamentary
INSTance), a set of routines included in Slagle’'s SAINT for the
purpose of matching algebrale expressions to forms. ELINST
sacisfice many of the algebraic propercics of SCHATCHEN such as
variable srguments £o PLUS and TIMES, missing operators. and
commutative oparators. It differs im that it does mot give the
user explicit control mechanisms of the scan of cthe expression.
ELINST will gencrate all possible secs of values for the
variable and only then will Lt apply the silde relactions to
determine those which satisfy the pacttarn. Besides this weakneas,
ELINST suffers moar by being essentially undescribed. I suspect
chat had Slagle described ELINST in 1961, then some of the
proposals for algebraic manipulation languages which were made
since 1961 would hawve had a different chavaccer. ELINST had to
he as general as 4t {2 because the problem that Slagle was trying
o solve required such generalicty. Furthermore Slagle encounteraed
grave problems im fitting his program inte the memory (32K) of the
7094 and thus chose to make use of the sconomy of calls cto ELINST
in many situations in which it would othervise have beon wiser to
write special purpose matches. Thus he claimed chac one half of

the time that was spent usefully by SAINT (i.e., excluding

*match=-maker in ¥Yiddish
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ns) was spant in patte

he IToatures of Ehe ai-oriented patterr

eha Eaducaed In the past six L - .
FORMULA ¢ F-ji. Fenichel's FAMO 'I":L'.], PANON=
s lu])-'- appear te have a great deal in ec O . PLUS and TIMES
re locted to At most twd . Operactors that appear in
he pattern must explicit appear in the Somet i
ITHES are not recognized as Operator

18 mean thae the patgerng are highly

and that several rules are nece

that can Int The ndvancas

ing roucines have over a mo

iz that each of the ™ is quite readable and

b 4 &. Howsver the effect of o aer of
e a single SCHATCHEN rule is probably harder toe e than
5 ATCHEN rule itaslf execution cime of a of rule

longs exacution time of a LA TCHEN

3]

£ rule set chat we

Hierae

languages in order to recognize a quadratic ip x:

e ax”
y a
+ bx 1% + b
. = X ax” + x
(RS} 5
+ bx + ¢ e+ -
- 'l o & le- + b -
o .
LI - ax" + c

arder t accomplish a

lacively ef!

gonéral one such as SCHAT

x5 which is equiwval

in such

aATE

cifie

task
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ing algebraic

twelve rules wo

clivicty in PLAL
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distinct operacor one

che rule set
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dade

be present by requiring chat A cannot be 0 and that

C cannot maceh

L. However such a iz clumsy at be

a facilicy for

sxplicit oporatops provided. With such a facilicy for

plicit operators in the early versions of SCHATCHEN,

e dropped bec

se of lack of use),a user of the algabraic mani-

pulaction avetem will be e

pable of programming in a wide variety

of peyles. These will ra

ge from the

rigid and inflexible
tules of the rule set RS to the type of rule exemplified by pattern

Fll.

ghall also mencion a slight con

rding the number

of arithmecic operaters which should be

NEEET

gebraic manipulat BYELe Some poople appear

ber of operators in

long unary minus,

guocienc, and difference

a good ides. Experience has shown,

however, that such systems, expecially wher bined with an

inflexible pattern-mactch, require an increase In the uasec’ aAwaTonegs

whic tends to downgrade his problem solving

licy. The less a

be conce with what is actually happening. the more

te salve hard problem Of course, Lf the details

are hidden Ln thé system involve cxponential

wih or the

Like, hiding =su

:h decai can be disastrous.

is not,; however,

indicate the degrec

an Ec

lntain in

sictuation.
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tation of SCHATCHEN

SCHATCHEN is currently implemented as a sct of LISP programs
Saveral poople have sugpestod that one should embed it Iin a more

general language. CONVERT [23 ] scems to be the rognant choice

such a language. CONVERT is a generval pattern directed language with

much machinery for the tr formacion of ligt

im CONY

were Introdug

in the past year (L.e.,

et variable -

= unordered me

were [ntrodu

and McIntosh, ¢

designors of CONVERT, with the intenti

embadding. Interestingly encugh, the i sufficientcly

fiital that 1t has replaced other CONVERT m idvantage of

allow the usér Eo o

ploy other

impressive. The

y ra e t efficip Cada 0 & Emtend o Y o o
8 are due to Inecfficlencies Iin a straighe-forward

In order Lo discuss these (acffliciencies we will have

Eo descoribe the manner in which SCHATCH

wa have a pattern of form I,
{1y Pl + P2 + P3

and an expression of

(II) E1 + E2 + E3 + E4

The scan procecds by attd ng to mateh Pl wit Falls
afi attempt will bo made with P11 ond Pl Pl




E3, then EIl will be

and cthe scan prococeds

by P+ P + EZ2 + E&. on is done by

TER t of LISE. In N unsaf
eihod. Lt mear = forences ¢ £ the

v with E3 i b di i ¥ gEreat

re 18 wused inside

intain po

to les eriginal shape once the matck

i Eha i E falls i K : of oducing an expression en-
- Ly a match of a subpaccern with a subexpr i
to be quite expensive A il ering tr forema

i D i 1 such as CONVE
lexcept for face EChi y boecouse che
slong both che atid  Ehe is 1 E=C@a=§

ighe of E3,
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E3 W r: with E1 P2 wich E2 P2 wich b LK
i commuEtabivity ¢ wh ich it in of
the expreds Lon.
An alternative to the SCHATCHEN scan is to scan left-to-righe
along the pattern with sach subexpression. Thu Lf El does not
ma « Ehan a el # attemptod batwaan El and F2 With this

el Lato

processing ac the = scan in order t letermine whether the
variablas of che aclaly cholr predicates @ praperly
. This alcas fi jactad b toe unwleldy.
Another aspect of the implementatfion of Eurng out
' it propercios. Inte ilace resultn in
*HEN are stored in a special lise call ANE
alse find the excision nation meacion
to indicate levels of ope of variable bi ing= A successful
technigue in using Ep use predi are the
selves calls to which inprc @ faw varlable bindings
1 the ANS lisct. inable & may be regquired to be of the
ne, where B and C© t match cerca T B By ealling
e predicate for A, values of B
c if one calls a xactly one level
low SCHATCHEN (nu M1y, then one can prosd the values of B
c L the [L Ed E as well as obtain the full power of SCHATCHEN




The Lack that ANS

ingercous since the predicates could asc

lana £ i OIE i Honat i ch an
tation device far overrides t difi The ANS mechani

10 E b jifferen

low direct acces s

'ERT, however, perform sSome

chat FLIP [62] an

Ehe uBser FL1FP,. howavar, Llacki much

thus apps

cription c

IATCHEN has ©Twi it and o
e will be denoted e p: respectcively. VvVarisbles ian the

(VAR

N are written In Che

ATEn)

cilated with che w

rough (A+l) of pred.

umed to be the ewpression that the

maten Co
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Lf a variable has a

HMEER) =),

Thiis , A.I“:ﬂHPFP."..""'H E'r'hx becomes

P, EJUAL 5 Dec

s for the ag ity of the variable & with 5.3

2, the mode Lls weitten in prefix form.

= (COEFFF (VAR A EQUAL 5)) (This poccermn



SCHATC L & g )
If e equals p, the match succeods
If p 1 £ the form (VAR name pred argl ey A
then pred (& argl arg?, . . argn) is svaluated
té Ehatc argl P argn are replaced using ANS,
TCHEN's internal push dewn lise. 1f they
names of ariabli ofn ANS the most T ent DE P
3 lue EEE L t LISP ir

pred Le TRUE, the

appended ¢ Orherwis h y 1
Ifp 1 o r {op pl L] i el

TIMES or then & must be of the § (op' el ’
T T pl £ L T op' Othee
wise the 1 fa

LE &l patEs [ LS L p2), chan 1)
(EXPT el e¢2) and pl matches =1 and I 4

or £ 1} 1 L h J

3T 3 © l Y 22 matchs 3 T ¥ MAT eg 1




LE the pacttern I £ the f {ap p2
ep = PLUS I IMES if e - f the form
{fop el, . @ i8 Lrans [ &} In this
isé an actempt i Et L sch pi Lch [ 0
S Carn : Wit a Eched ith = 1f that fail pl
macche o e L1 i it . I i de X
from e che s with pi+
& TAL emaining in =. 1
can M Ls
rtchad w p = PLUS of | Lf op = TI t
al ftail 1 Eai - Lf Eh have boe
il uc L 1] 1 - " I A O L sa
Exceprions £ & LT 1 iE i o o Lf of 5
i v T form a | i . arpen)
pk}, then the re r L tlie L
(COEFFT ¢ na ed E s ATED Y - 1
i on cf thi is deleted fr proxslon T
o I f the sca 1 =5 I
g e and is appended If mc o ld ehus
hed 4 argn} i L € Ii
the = h fail
1f © PLUS and pn & ferm e pre .
t E e = 2] of the (a] BT “n
d the -




i {anme . a)) is appended ce ANS. Lf no subexpressions remain in e
then pred (0 argl, ..., argn) is accempted. If Lt succaads,

{ {nama . 03) is appended to ANS. Elae the match falls.

1f op = PLUS and pl is of the form

(COEFFT (VAR name pred argl, ..., argndpl, .... pk)., then
(TIMES pl, ..., pk) ls matched with a. If the match succocds and

@ remaine of the for

(TDMES el, ..., en) then pred (e arglk...,azgn)
im mttempted. If it fails, the wmacch fails. If no subexpressions

cemained in e, then pred{l argl, ...

s AEgN) l& acctempted. If this
succeeds ({ names, 1) is appended to ANS. Else the match fails.

All other matches fall.
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tesm mabtching steps. The canonical order scheme requires only on
the order of n steps. Hovever, some time must be spent in deter-
mining the cancnical description and keeping Lts value arcund.
Furthermore, the routines that generate the canonical arder are
usually very space consuming. Thus, the use of a canonical order
is only worchwhile if the expressions are to be heavily manipu-
laced.

A8 has been lmplied ln the above, much of che program effort
and exccution time in a standard simpliflcation program is spenc
in cellecting terms in suma. Related effort L8 spent in collecting
exponents In products, In SCHVUOS the collection of terms in a
gum 8 handled by calling SCHATCHEK and asking it to decérmine the
coefficlent of the firsec rersm in the sum.

Suppose we had the expression ELS,

2

{El8) 2:u.+_‘lx1,'+ﬂ+1¢4-:ﬂ¢z

then SCAVUOE will strip the first term of the sum of ics coefficient

and genscate the pattern PLli:

®x + B

(F15) A FCOREFPT , NUMBER JCOEFFP

SCHATCHEN will yield A=3, Be3x"y+ztyx>. MNext che pattern PL& is
Benerated on the expresslon B. Now SCHATCHEN will resulc in As=d,

B,

3
(Ple) A rooErreT, wumser”™ ¥ T Brcoerrn




ISP cods
and na
SCHVUOS

4

% AT o
-
Y+ At 3
£ oRTa
] : 1
) ch rog

power, | ¥
L 1. 1 h
L f (T
re
In
|
Lus e al




57

ttitudes rd 5imsl ieatd

There seema Eo be a wide range of attitudes of people in the
field of algebraic manipulation regording the role that an alge=
braic manipulacicn syscem should play in simplificaclon. One view,
let me call Lt the conservative view (held by Fenichel, for example
maintains that cthe system should not aimplify expressions uneil
specifically told to do so. In this point of view thare Is to be n
fixed syscem's simplifier and ne fixed cenonical order of expressio
The conservative view negaces the view of thoss whom we ahall call
che liberals (exemplified by the FORMAC design) who believe in a
canonical order, in o fixed pimplifier and In fmplicic mimplifi-
catien. One might even define a third viewpoint, a radical one, in
which the syscem will represent expressilons incernally in a form
quite different from their external form. Rational funceclon progra
(ALFAE [ &]. PM[12]. and MATHLAB'® rational function package [38])
adept this approach. A radical system is prone te use the discri-
butive law indiscriminantly and to transform trigonomecric Function
into chair *xpnﬂqﬂ:lal form In order to cake advantage of the powas
ful simplification algorichms which are then available.

Two consfiderations should guide one In designing am approach
to simplification within a given system., The first is the genaral-
ity of the system, that is the range of problems which could be
reasonably solved by it. The second is the efficlency of the svate

in the solution of its problem. It appears to be an axiom that the
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great deal of rational function manipulacion ar relacively litrle

Cidr ona

| adopt a radical attitude #When the

is mOLC SARLLY

as a ratlional funcoi problem or

where the computational effort is light, but where the patcern

reca

adopt a ibaral titude.

Finall

fiar will L

to difficuley

with

rational fur

=

one could control the

21 the

would bg interesting to ase Iif one cow

formulace

i language in whic iU

n indicators

F oauch

C b Le
An ex of the E f h a ei=mpli f i Lm nted &
4] 3 o o — 3 Howy
in general this ru o R | ma ], E
c=hand-side yie ¥ =Ly a 2tandard
retacion of 3 root} If one suspuackts that cthis
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CHAPTER &

S5IN - THE SYMBOLIC INTEGRATOR

Lntroduckion

In this chapter we degeribe the operati of BIN. At first SIMN's

flow of control fis analyzed. Then cach of thée methods used is d serit

in detnil. Finally. the performance of SIN on two cxamples is ahown.

st this chapter the

g nErast between SIN's and SAINT's approach

and msethods will be made clear.

e of Control and Subproblems in SIH

A problem given to SIN may be said hrough the thres stagos
of Figura 1.
Scage 1

Problem is

gimple problem? [T e s cuzn -Iotegenl

o

Scage 2

Problem canm be Eicher

crans formed or

¥ 5IN to a Lrans-
ind

SN

— Yes L.
solved by spe-
cial mothodsa? formed proble
raturn value o

Ho
Solve proble:

internal meck
roturn result as

mevy g

Stage 3

Froblem can
solved by me

al meghods?

integral

e— i {2

Mo
Recurn notice of fallure

Figure 1 = The 3 Scages of SIN




A figure 1 indicates,

cthe first sctage solves simple i

Ian the

we deters

neé whether one of about €

specialized methods

s i= licable to cthe problem. Thias determing
a routine called FORM and is fasat. If a method i found

applicable the

d to integrate the

or the problem will be ince-

rmal to gthe methods. If no mothod L (il
method will be calle

In thig ehapter w shal deme

scage consiacing of a simple Incegracion-by

routine. In Chapter

we shall describe the

heuriscic wi

£ will be che

stage in the futur

are expected to be ar

i, g e | descril Eh TEaf atlem of these stag
£ mathods wsed L Cage ! I8 mpocific to
e i ribed
Wi noba that th methoda of sEage 2 can call SIN to galve
problems. When this occurs the flow of control and subproblems iz given

——

(%)
—{d)

roblem| Tfh.lul:cx:
'.‘-ﬂ'_,-lcr.';; Ti‘r:-!- fesn
G

2 = Usual Fl

: probl
Problem

Terms
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If a subproblem is a Bum, then each term in the sgum will bée inte=
grated separately, and the flow is given by Filgure 3.

It should be noted that if a method in stage 2 can transform a
proeblem, the problesm is not passed to another method in stcage 2 or stage
3, aven though the transformed problem cannot be integrated by SIN. For

example ,
r
i
Jein(e™)dx is cransformed to I%Y‘i‘f afrer substituting y=e™
in stage Z. T_M; dy
n

x
chat ginfe" )dx L8 not imtegrable by It and will not pass it to srage 3.

cannot be integrated by S5IM. Thus, SIN concludes

In stricely enforcing such a decision we are depending upon the
methode £ employ tight pregress requirementcs. If the progress rogquire-
ments are made too tighe, then few problems would be integrated by the
methods of SIN's smeccond stage. If, however, they are made too loose,
then cthe methods of stage 2 would verify the hypothesis that they are
applicable in problems in which they, in fact, are noc appropriate, and
thug 3IN would fail to solve these problems. The experiments wich SIN
which are described (n Appendices C; D; and E indicate the degree to
whiich we succeeded in finding good progress requiremsnts. We wizh to
point out that once such & discipline iz successfully imposed on tha
methods, one is8 in a position to relax the requirement agalinst backeracking,
and chereby obtain somewvhat greagor powar. We have not yet done so in
SIN's sccond stage.

SAINT ., in contrast to SIN's stages 1l and 2, will allew a problem to

generate more than one subproblem. However, only one of the subproblems

generated from any given problem must be solved i

order to integrate the

given problem. In general,; the subproblems generated by SAINT duriag cthe
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1l form a tree sEructure. Figure

course of solution wil % ig a simplifiad

descripeion of the flow of contrel

and subproblems inm SAINT.

M Looo

_ I ubproblem Tree
pg=:1} -—'—q\-—

Ay subpoblems i 7

_/; ._.)\
— A —,
I__ Is .;-w_:ur-'.'f'-.' { e sdorrro Lo '\-"'{_':I \"—'} g
applicable fo subproblern 7 FARRY -L
3 = S, = P
Irarnsformm :u_-!E_:'TL?H.lC.r.." (2 \ \,—&
A | /|
A SN S S

,tr?rcr trorsforrredd vl (a)
| | Mo subproblem  bres

|Is original problem solved 7

s
Feturn Answer _]

& - Simplificd F
{single arrow) and sub-
ms {(double arzow) in SATNT

If a probles

SAINT generates more chan ofe subproblem, the node

in the Lres correspondlng ir isa considered £o be an OB node. Thus

only one of the subproblems must be solved. If che problem is a sum,

lar complicaction te the

one In SIN

mado. The node generated

for such a preblem is called an AND nodo. Each of the terms in the

sum becomes a subproblem, and eust be integrated. ANRND nodes are indi-
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cated by an arc across the branches from chat node Thus, In gencral,

a goal trec in SAINT has the form of Figure 5.

{ ;
s
S

--“J) \.__

@ (

/g Y . SN

% r:j) {' . ﬁ 'D (\-.)
Figure 5

SAINT whae
the subproblema

in

among

All subproblems Ln SAINT are given co IMSLN.

includes che

original problem and this fact is not shown

Flgure 4. IMSLN chus

acts like SIH's firasc

BET . IMSLN has its ownm

thods of soluti

If it fails to solve the subproblem or s

mple traneformacion of i,
the subproblem will be put on the subproblem Cree.

The routine LOOP (ae

@ Figure &) has access to a list of subprabl

e be tried called PLH. This Llist is ordered so chat the first meomber

of the list roprosents & aubproblem which has the lowest depth of n

operators (e.g., PLUS, TIMES, CO8) ia the intermal represzentatieon of

problem. LOOF will select the firsc subproblem on the list. It wil




thods of SAINT called the k

ipistic trangformac

if chey can transform the subproblem. Thesc

thods

willl be guided by Information about the subproblem called the chagacter of
the subproblem. The character contalne informat ion such an wheather the
subproblem represents a racional function, anm elementary function of ex=

ntials or ¢

o}

teic funcLions, afc. This Iinformation is used Eo
limit the number of heuristic cransformacions applicable to a problem. Yet

even with the uvae of the charactor mechanisem as many as 11 out of the 17

heuristic transformations may be applied to a 1gle subproblem.
The flow of control and information in SIN is called hieravchical.
In a hierarchical organization,; subproblems vhich are communicated between

one routine and a second are private to these routines and are not knowm

to the rest of the program. SAINT's organ

zation can be called data base

griented. In auch an organization the' goal is to ctransform the data base
fl.e.,s the goal tree in SAINT) to a doslred state. In SAINT the desired
state i® a tree which hans a path from the top node (the osriginal problem)
to a bottom node in which sach node represents a solved problem. In a
data bagke oriented organization control is relingquished ro routines which
manipulate the daca base. In SAINT, all the heuristic transformations
relinquizsh control e the IMSLN program.

SAINT's datn base oriented approach allows and, in fact, may be said
to encourage the program to backtrack, that {a to leave one path of che
tree and start on anocther. SIN's approach is to discourage backtracks

at the first two stagos. Backtracking is allowed in gtage 3. However,

in stage 3 backtracking iz only of a limited nature.
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Conventions

In describing SIN we shall use the usual convention that the

variable of integracion is ®. SIN is actually a ction of two argu-

mants. The firat Is the expression to be integrated and the socend is

the variable of incegraction.

iall mean that

Below when we use the rasne "i& a cor

the expression contains no occurrence of che able of integration.

. r
Thus, zin x 4+ coa X is not a constant when x {8 the variable of Ea=

ion.

We shall not concern ourselves hove with difficulties which mav

of the conscant or

itching problem for

arise due to the unsolvab

mentary functions. For a discussicn

Appendix B.

tha sec of expre

By the flementacy cxpressions of x we

composcd of

snometric functd ons

l) constants, 2) X, 3) Erig

cEions of = {(&.

coe(x})),: &) logarithmic and arctrigonometric

log »x, aresin =), and closed under the ocperatio of addiction, multi=
-
plication; exponentiation, and subscicution.

cegsion in £ix)

mean an expression obtained in che manner above, but wvhere £{x)

ated elem(f(x)), we

x in the definition. Thus, for sxampl

" ®
tary expt slon of . The expression xe™ , on

Lem of x, but not of e .

elementary oxpre

Wi mean &

y a problem jintegrable in finite

inc iz represontable by an elementary expre
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*irst Stape of SIH

Tha [irst atage of SIN uses the [ollowing three methods:

If the integrand le & sum, ecach Cerm is incegrated scparately

by calling SIN iteratively snd the results are added.

If the integrand Lz of the form

|-"u[ 1",

ere Nt is o small posicive integer, expand the

cxpression and apply Mechod T.

If the Devivative-divides routine is applicable, return ics
resulbs.

The first Cwo

Ehe

tione are made so that the rest o

PrOgTam can assume integrand is a product {(though possibly

trivial product as im % or In &°). The third mothod [n this stage is
the method which has led us to call this stage the scage that solves
simple problems.

We shall now

these methods in some detail.

Ly HMHethod I is an

used method in practice. L]

sing this mechod

one Aavolds thi

af integrsting disaimilar expresslions

x i
gin = =+ & . Integral ta s LB will bBe noted, shun entries whi

sums. Howewver, this is not a gafe rule to follow, in gpeneral. For

example, Lot 1 s ide

of the Carms in
this sum is complecely integrable in terms of elementary funccions.

Howevar , Ehe sum

the derivative of X A Hence , breaking up the terms

in the sum and inteograting

can disguise cthe ince

separato

di

Y was known throu the course of this Te-

search, and a heuristic for overcoming it n some cases was des

*

Thae heuristic chat
Suppose we have & pro
vative is freguently
Thi

en considerss of the following
of terms of the form f{x)g{x)h(x). =
form E'(xIg(xihix)+E0x) g (xIh{x)+L(xglx)h’ (x).

one finds an incegrand which i® a sum such that ©wo Eorma in
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However, no extension te this method has as yet been i{mplemente

Slagle consfidered this method te be suffici

safe so that he
invariably followed £t alaso.

-
= x
Jein x + a Ydx = J‘L’-ill x dx + J‘r el

IT} The reason for method IT can be

itldering Ehe problaes

2
(% + e ) dx. STIH has no mechinery which deals

this problem in {ts
P

present form. How ="+ 2xe’ + ¥y e |

oblem is gi

then the problem

egrated.

method ig ch

of this stage in SIHN.

ses many problems are integraced by ic

gquite guickly.

this mech at place in PE has an imporcant
-1 dological basis. It is d char in many ter problem
e ara solution which soclve mOsSE oo anily
relacivel If these methodas are cmployed

svatem then A will ba d

first by a problem solwv

ispensed

Thus; the proble n will boe able to

machinery in fits later scagom.

The Derivative-divides routine chocks to see if the probls

e LOofeat

sum are related by having two facto
respectively, and with 1
the eriginal produse
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j: epluf=)iu’ (x)d=,
where & i8 o constant, uw(x) is an elementary expression im 3, u'(x) is
its derivative, and gp is an elementary operstor. Op may be one of the
following operators: a) identity b) sin <) cos d) can @) cot ) sec
g} 8o h) arsin 1) artan }) arsec k) log. Three more possibilicies
for op involve the expenentiation operation. These presume that the ex-
ponential function has only one nonconstant argument. Thus, we get the
cases 1) u(x.)-l ) u(xﬁd. d AL, m) du(“). where d is &4 constant. The
final case is when the integrand ls a conatant and then u{x) fs ecivial.
In that easne the integral is simply ex.

The mechod of solution, once the problem has been determined to
posses the form above, is to look up ©p In o table and substictute wix)
for ecach occurrence of x in the expression given in the table.” 1In
octher words., the method performs an implicic aubstitwcion ¥y = u(x), and
sbrains the integral ]-E op(y)dy by a table look up.

Using this method the following exsmples can be integrated.

13 sin % cos x d% —lniﬂ?'x. op = [dentity, w{x) = sin{x). " {x) = con{x),
2

c =]
2 2
2) _[x-u % dx —%1:: ¢ GOp = duh“. wlx) = xz. u'fx) = 3x, < -%
3 JTT ax =20 45532, ap = w0, uio) =143, w0 = 2,
v
e =3
®

4 .T_Hl Ey dx = log(l + ¢, op mu(0) . u@x) =1 +e®, w0 ="
=

-1

See Appendix A for a description of integral cable look-up mothods.



3 =

53 = lIrzl.'lx = %‘:'”rz. op = ufx)rd, wix) = x, wu
A few more examples will indicace cortain
[ 1

6) Jeom(2x 4+ I)dx = in{2x 4+ 3}, op = coa,

c

B [

The Derivative-divides method performs an

tution in thia ¢ . SAINT would have performe

substitution and would have required two calls

problem.

il ] -E:.'rn'.:x-'ix = }’tugx. op - dtl(ﬂ}. ufx) = Zx,
This method handles constants sasily. Con

or can be present im the integrand. SAINT

sSCants

explicltly.

2

8} Jees (e™irin(e™yedx = —wos’e™), ul

op

c = =]

This example domonstrates that the incegra

and the method will scill

apply.

which was made

O

of the exporimenCs wiek

86 problems attempted by SAINT (see Appondix C). Interestingly encughs
this d of Derivative-divides was able to solve fully &5 out of
problems. Tha Elme on the 7094 wag 0.6 scconds.

It Ls hoped the above examples convincir zly demonstrate che
TET lness of this method at an early stage Lin an ifpcegration program.
The mechod 1s Eo by for those who desire an Iintegraticon
capabilicy, buc who are unable or unwilling to avall themselves of a
mare genoral program.

As was mentioned earlicr, SAINT'a IMSLN routine performs soms

would

(%) =1, e =1
aspects of this

ufx) = 2x 4 I, u'(x)
implicic linear subaci=

d an explicie linear

co IMSLN to solwve che
u'fx) =2, o= yz

stants can be generpted

removed che

d
1", uix) = cosfa™)

1 be fairly complex
SIN was to attempc tche

o




functions which are similar cto SIN's first scage. IMSLN employs a
table similar t© that in cthe Dearivative-divides routine but somawhat
larger. It also performs eight transformations called algorithmic
cransformations by Slagle. These cransformacions are attempted one at
a tlme. If onc of them is successful the transformed problem is used
and the original problem is not considered again. Two of these trans-
formations are the sase as method I and II in this stage of 5IN. Thy
others factor a constant or a negation operater fvom the integral;
empléy half angle identicies; make a linear substicucion; and perform
certain simplificacions on the integrand. As has been pointed ouc
above ; TMSIN also tends to the troe of pubproblems and can determine
if the original problem has been solved. TMSLN doesn't actually solve
many problems =o much as ic is able to cransform o great number of
problems into a form which is more easily solved by the rest of SAINT.
It would appear that SIN's Derivative-divides method solves more problems

immedintely than does IMSLN. SAINT's Deriwvativ

=divides houriscic Lrans-

formacion, which fis quicte powerful,; is nor applied co a problem until

mich later in the course of the solution.

The Second Stame of SIN
If a problem fails to be solved by SIN's firsct stage, then it is

determined whether one of oloven additional methods 1s applicable to

. In order to det

iine which method is to be applied clues are ob=

tained from the expressicn. Weo have called the cechnique by which these

clues are used hypothesis formation (sea Chapter 2). The routine that

obtains chese clucs and condugccs the formarion of an hypothesis is called

FORM. Assoclated with most of the methods are patterns in SCHATCHENW




which serve to differentiate the problems which are solvable by ench
methed from those solvable by other methods. It turns our chat few

problema have more than one method applicable to them. In Ehe camea
whete a conflict does exisc (e.g., in solving problems with algebraic
integrands) che actual method chosen appears to have litele offect on

the cost of obtaining a solution.

In this stage of SIN, a single mechod (Mothod &) handles problems

which involve crigonometric expregsions. When FORM soes a subexpres-
sgion of an integrand which is a trigonometrics funccion of a linear
argument in the variable of integracion. this subexpression will ace
as a clue, and FORM will eall Method & to validate the hypothesis char

A substituclion can be made for the trigonometrie functions. If Merhod

degides that such a substitution is noc app

x
cable (e.g.. Iuln ® oo dx),

chen it will roturn the wvalue NIL (FALSE). In =

B oa case, FORM might
entertain another hypothesis but simce there are none for crigonometric
functionsg, FORM will alse return the values NIL. If Method & Einds that
a cransformation is applicabla, it will hand SIN the transformed pro-
blem. The value of SIN, wicth a proper substitution to account for che
transformation that wss made will boe returned as the value of Hechod &
and of FORM.
Examples of problems integrated by thiz scage of SIN:
{It is probable that none of chese could be integrated by SAINT.)
["aT 5 BTzinix

LY sin = ax

- -

23 Jer + 253 va™ dx

L]
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5% & £ 137
r— idx
Bolo ¢ de ribs ac f = Eheek i & A EeE .
seriprion contains the lue which FPORM uses co detet r Ek

cthod might be

le whenewer

b, +
F % P ¥ the a b ., o L -
Py P
x e *
¥ e F -
L0 b 1 W -




bz (b, x+c Ylog a
| i | i

HMethod - a, ig transformed into a al in order

Eo convert all bases £E0 a common base a Here a, Lla che first basa

L
cncountered Iin the integrand.

bade
iy

traonsformation te be made.,

- This facilitates

e bx
where ¢ ¥ 0 s converted to ;:l;.1

M 5 t
The substitution y = ay is made. Thus, each _.I'“ is replaced by
B
and the resulting expressicon is divided by ¥ log  al.
e

Hotes = What 1is conce

ftal about thisw mechod {2 chat in comver

bases to a single base which In not necessari Iy &. Thia may lead co

the erediuction of unnecessarily clumsy constants (e.g.. log,3).
5

<5

SAINT's method in this case was somowhat different. SATINT 44

not handle different bases, nor all ¢

paes where conscante (L.e., o)
i

were prasent in che exponenc. It did, che » find the greatest common

‘ : . =
divigor of the I:-L. k, say., and made the substitution y = &, . In SIN

this will be handled by algorithm 2 which will make the substiturion

2ade by the current method. The method that pez-

®
after y = a; is

lon ¢ = ¥ was not prosent in SAINT although it was

forms the substitu
suggecsted as an extension

¢ 2) SBubesritution

This machod fis applicable whenever the

% Elem(x"t}, vhers e, k, are integers and
k”Hr.r.'{:..n.'d-l.l'..'r......Jfl,:.cf]

Elues = Instead of obtaining a clue which determines whethor this

which determinea

transformation Ls applicable, PORM obtains a

Ll note that this

whether this transformacion fa not possible. FORM

srmation Is notb ﬂ;‘;"l.:.l:.l'.'ﬁli' whean it CL i "-'ull!"-u-;-{':jr._-_;_l;;-\.ln of che

cCTar
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form e or s#in(x). If none of the other motheds is applicable, and

no guch glue has boen found, this tronsformation will be called.

Exgmples =
J-:M-3 llﬂflz}dt B Com 5 ‘]-'%)r sin ¥y dy, y = xz
j'—l}-—— dx boc ones ]} "'—?—3 dy, ¥y = x*
x + 1 ¥ o+ 1

HMechod - Substitute y = :u'.k

Boteg - This method was suggested but noc implemenced by Slagle
who embedded it in a larger method which was (mplemented in SIHN in Ewo
soparate methods (2 and 3).

Thig mecthoed ig currencly restricted te integer exponents. Lt
should be extended to handle exponents such as 3a, Za in

I:n.h sinixs Sydz

Method 3% Suybseitucion for a gagional root of 8 linear froctiom of x.
This method is applicable when the integrand is of the form

Eum(x.(ﬂﬁﬁ*. r\w\&%. PR |

cx + d

where the n, amd @, dre relacively prime integers with some in‘lxl 1,

i i
and with a, b, €, d constants and ad - be # 0.
Clue = A subexpression of the form
{Hﬁ a, b, c, d constants; n, m, relacively prime intogers, |m| # 1
Exampleg -
_rcdi % dx bocomes IZ;r cos ¥ dy. ¥ =/



by SATNT .

Li5
*®

an extenaion 1 i tion = e it re linesas
h d ba 5 parts. Omia i
I d t Cax -+ e Ehae 3T
M rmier i3 neoded L machinery for
an 1 tex, whie mOTY |
A weakness f thi rouk i . LEa i b - deal with i £ i
s ¥ Thise . d mia 11w in the if 4 ped E
8 opposcd 1 tegr EEat f an int 1
table ower SIN <u: el the prosence of the reduction formail

roduction f
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BUt ROt many AL present. {0r course, an instance of a variable exponent
should result In & soluclion in SIND)

Mechod &3 Bino=ial = Chebyschey

This method is applicable whenever the incegrand is net A rational

functiom and possessces the Eorm
Lo qy P

A f"l + c,x*)", wheee A, €.+ Ty ATe constancs, p, q, T are ratlo-

nal numbers and rlﬂ.‘rlip ¢ 0.

Clue = & subexpression which isa & nonintegral power of a racional
function. This is followed in PORM by a match of the integrand and the

form abowve.

Examples
Fog 4 [ =1 ST = xt
w L. = 1-:2}_5‘!2:1:-: besoss s [ ] d g o= »
J ' . dgtir + ) ¥e ¥
[ Lz 5/2 ) [ -2¥ i %+ 1
J= {1 4+ =) dx bacomes JW dy, ¥ n
Mechod = Binomial conversion to Chebyschev form (substitute v = x"}.
Thus AXASq, and 5 * By T, © i—ﬁ—l -1

Maka the first applicable tranaformation

al} rl integer, :2 > 0
Substitute = = l:.I - Sa ¥
b :|.'2 integer, 1': a rational nmnumber with denominator o
1/d1

Subacicute = = ¥

c) r.l integer, :1 < O, r, racional number with Jdenominmtor -_12
1
Substicute =z = (n:l + :2}'} fdz
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d) ©, + r, is an inceger
A 2 J14d;

r
[ b Eay
Substitute =z = —!y—l"-‘-

Dctherwise, return notice of fallure to integrate problem.

tes = This method was salse suggested but not

implomented by Slagle.

Ic has the advantage of being a declsion procedure. That is, if an Inte-

grand has the form given above, then either the method yields the integral

or the problem cannot be integrated in finive terms. This was proved by

Chebyschev (mee Rite [ 534 J. p. 27).

The acrgument used is voughly as follows: If Tye Tys OF ¥y + r, d= an

integer, then the substictutions above reaulr in ratiocnal funcelioma and thus

be integraced. Ocherwise wve know from Abel's Theorem (see Chapte

]
et

that the integral,; if it (s expressible in finite Eerms, ls & sum of an

alpebrale funcbion and logarithmic terms. The residie of & Chabyschewv

function is everywh

0. Hence the integral cannot contaln logarich=ic

Cerms. Further analysis shows that the assumption that the integeal 1

algebraic lends to a contradicrion.
In chigs case also the integral tables contain many entries which

are reduction formulas for the cases when p, §, © are

parameters .,

such capabilitcy should be present in SIN also.

Meshed 53 Arctrigonometric substitutions

This mochod ig applicable whenever the

Rix, fx* 4 bx + a) where a

sgral 48 of the farm
+ b, ¢ are conatants and R i3 o rationnal
function of

IMES .

Clu

i

tha form

5
2 n
(ex. + bx + where n 18 an odd integer.
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liminag

the




done by assuming that all ters are Teal valued and by o

Ehe

fact that sums of numbers are Eive. Thus

.
2d

is ed to be posicive, wheroas
iz « = A SCHATCHEN rule is used in
this

leionte are parampters, It is possible £

veral tiews and answer q

run the prograr

SAINT had cwo Eransfors

tions which pecf

Ehod «

ated the middle term from all quadraties, another

ticucions In all indratics witeh mi

The arccrigonometric substitutions are normally made for

] quadracice as SATHT

of gquadratice as wo have d

that the coefficient

ittempied to do. alse impliciely

re. The kind of raction betweon the user

n the gquadratic bae

rod whe ofiniumorlcal cogfFicients

rram which is £«

troducead.

hecame practical when iring sysber

cion of functig

en the inte is an

applicabla

the crigonometric functions applied co lincar arg

oo, ascl




Examplon
13 Iﬂnzn dx bucomss J-c% * é'nu. Zw)d=
fAT + Blain¥s AT TR = 2S
Z}I sin x dx - becomers Jr"+ar1=‘lj dys: ¥ = com %
L=y
el Il-v-nlta-p; L L] Idr-y-uu-}_u
Hechod

1) In problema where the arguments of the trigonometric funsbione
are noc the ssme chroughout the lntegrond. the following cases are

examinad.

al Illnmn:olnxﬁ-mgH#- Zl‘.l:hj
= -

b) J-Itnm:“.uuudn- T T iim + m)

= in
2= = n) 2im + m)
Orherwiae, the method returns notlee of [alluse o integrate the problem.

&) _ritdn m N COE NN odx = * W, N, CORACANES @ P en
I1) If the arguswents ate the same but are not identically =, a
Limear substitucion ¥ = a + bx in performed and the procedurs continues
with the revised probles.
III} 1If cthe problem is of che form
J-lluh(y)col“(y]d)ll: _m. 0 lotegers
a) @ . n, tranaform toj{%lll-n 131“{‘12' + 'éﬂ'.‘ﬂl 2:”!]_;_! dy

b} = * n, tranaform to II-;H!-H ty}“(% - i‘:ﬁl 2%y ; dy

IV} ALl trigonometric functlons are Cesnpformed into sines and

cosines (e.g., camn w ~* 3 in order to tear Lf the resulting expres-

ain y
COR ¥
slon i of the [ote & or b,
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g L ano

and V ig per=

thods appli-

of extranaoc

nt and

actions; Nor, in fTact, Oof € oW1 Aachio

iter

Argumonts Lo

in thlis area in

nt {e.g:;

h are Lir

Edmund Berkeley. but

e have been

Ll is not applicable.
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—— dxi not lntegrabla
o o L

Hethod - This method once again is a decislen procedure, That

method can Le

wihi

a problem cs

egrated in finice

*F POk . The b

improvement of the doct

n procodure

fce [ 28 Ji{p. &8% wi

ad the case by solwving & eyaCem of

linear equations. The procedure is on application of the Licuville

theary for integraci which more will

rund in Chapter 5

procedure is simil

n flavor to Ris

eent theoretical

ilea in

Lot Wix) 5.+ @ are polynomials

¥

is a polynomi of

degree =

€, is & conar £, G, # 0.
Lle @ rry that b i ral I
P "
be & af & £ }. (See Ritt [ 56 i i )
Ehe (ncegral {8 represented
Ay (=) + by txdde’ 0, Chen

= L+ 4+ B {x)
n e " + B'{xth bl = Rix) »

F {::'I..I rL 'II__ + " Rix) Tixd




ow continue che process Indicated above

ia 0. This teed to occur since che

da & of % decreaning If at that time ¢ corresponding 1
i
\ . Fix) .
[ S 1Y I.pr is als i 5 i Ri{xje is integrable and
i is a la not 0, then cthe problem ia

u_ » then = b, = 1! = 0,
ol
L 1 L on, {x) - i W btain the relat
I i
P'a+a' =R
& F F P
Plae” + a'ae R
fac™y" .:__.D
& WG afer Lo Rite. Al y note tho 4i n

the ax

rts® method of

waus wnable tg ALoErat e dx beocauge Lt found phat @Bo

 after appreximately one

blem does

in finice

ils I8 due to the
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an inctegral then we know that the problem (s integrable. When soch a
program does net yield an integral then ope still dogs not know whether

che problem can be integrated or nob. A somi-dogcision prog

dure for

integration would, im finite time, rvesult in an infegral or In Che state-
ment that che problem cannot be integrated in finite terms. Richardson's
result (soe Appendix B) shows that for the integration problem as he
defines ft; no docision proccdure exists. Yet decision procedures exist
for many interesting subcases and especially when one avoids considering
the matching problems that Richardson shows are inherent Lln his charac-
cerizacion of the slemontary functions. SIN embodies somé decision pro-
eediures. Future programs are likely te contain more (see Chaprer 5).

One must be quite careful about the cosputational methods involwved In

order to avold the explosion which is apparently Inherent in many decision

procedures in algebraic manipulation (sce Hosd [ &2 1). Wo would prefor

co see axpensive decision methods Lo be atts as o last rosert. such

as stage 3 lm SIN. A final gonsideration regarding methods for incegration
is that they should net be too radical or else the result will bacome less
mpeaningful to the human user.

This mothod was ioplemented uweing che rational function package of

MATHLAR [ 36 ]. SIN communicates with the rational Eunceion package by
a process called chaining. HMore will be said about chaining when we dis-
cuss the incegration of rational functions.

1 fFuncblong

Method BY Barior

This method iz applicable whonever the integrand ias a raticonal function.

Clug - FORM generatos no local clue for ratlonml functlons. The

applicabilicy of this method is determined separately. Sometimes this




® + 1) + L 1TC Ean lr{'." -.—
1y =+ g (T = = 13
2 3 LB,
{ %+ 1) = 37y arct -I
3. - P e - —— 5 1 : = log, (X = &)
I = -+ i 280 A A
- is sathod was programmed for th ¥
it B cho direccion of Engels 5 o - Ce i .
ntegration procedurs nd dosczsik n | Tt
§ m facto 1t t ine izl 1l T ssentially foll
cakar' el o  Warn ! i | l. p 'T-7T8 T
pProgr 1l s ittt LISF and E [ i 1 Fumnc=

ng of rest a
e sal 2 6

1 tios of pol;
iffered thereby h

can b sttributed to

te Linte
5 omi f %
t g 2 and 4) could not
PE W s # Ih .
r up the deca quch n
red ir r




0

Zlagle realized that the unavailability of a racional Funet{on
integration program was 4 basie defeet in SATNT. Howewer his proposal
for the manner in which such a routine should be written was not the
beat. MHe proposed solving linear equiations o obtaln & parcial foction
expangion of the racional function. The method in MATHLAB is suparior
computationally,

As was mentioned carlier cthe experimental work {e.g., debugging
and testing) was done using Project MAC's time sharing system CTSS5. One
valuable feature of this system is the power to use programs written by
others. In @ur case It wne valuable to have acceas to the rational func=
tlom package of the MATHLAR

To be sure, conventional “bacch"

Procesging one can employ lacge packagea deslgned by others by using
incermediate tapaes- In CTSE one can conveniently make use of a program

congurrently under development by another group, providing one is pro=

pared to spond gome time for the process LI'I'\-'I\."].U!'IJ.*

The raticonal function program which SIN uses ism available in CTSS
as FULMAN SAVED. It i2 a separate core image from SIN and {2 called
using the chaining process given below.

8) SIR writes the problem to be intograted on file MANOVE LISP,

b} SIN saves iftself an MOSES SAVED.

%
The widespread avallability of Eime sharir consoles has allowed SIN

to be used by soveral people other than the auther. "Bugs in the pro-
gram have been pointed out by Michael Levin of Information Internationail .
Inc., Carl Hewite and Pecer Samson of Project MAC, md Busaol Eirsch of
the Hational Bureau of Standards. We would hereby like Co eoxpress ocur
appreciation of thelr effores.
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€) SIN directs CTSE to exccute FULMAN SAVED.

d) FULMAN reads HANOVE LISF.

e) FULMAK generates a solution to the problem.

£) FULMAN writes the solutiom on file MANOVE ANS.

g) FULHMAM directs CT55 to resume MOSES SAVED.

h} MOSES (i.o0., SIN) reads HMANOVE ANS.

Exporimontally the minimum time for this process has been determined
Eo be about 4.5 seconds of machine time. Most of the time ig spent in
gteps £ and g in which 32k programs arc leaded into core.

There ave, at present, certain differsnces in the interpal repro-
gentation used in SIN and FULMAN. These differences are eliminated,
whenever possible, by two interface routines present (n SIN. The dif-
ferences consist of the following:

a) log has two arguments in SIN, one in FULMAN.

b) FLUS, TIMES have variable number or arguments in S3IN and only
two in FULMAN.

€} Mo floating point nusbers are allowed in FULMAN. Whenever
pessible thege are converted to rational numbers (i.e.. {a*b) whore a,b
are integers). Otherwise an error indication is given in SIN.

th bl 1 arctri Eric £ mn
ratio enk .
This method is sapplicable whenever che integrand is of the form
R{xIF(5(x}) whore F is log, arcsin, or arctan
R{x) and S{x) are rational functions

and where Ill'.x}dx fs also rational.




Clug = F{S{x)) where F is log, arcain or arctan and S{x) iLs a

rational functionm.

Exomples
T 2
1) J= 1agpx dx becomeos _:_2«:_'__

23 J|x"arcsin = dx becomes

1) 1]—1-\-|ka: + 2x) becomas —_:I"I_'In:;.{_:\:';' + 2x) = |.+l i:f'”“"'—‘:'- dx
x4 In + 1 * * i
HMgthod = TLet T{x) = JR{x)dx
al F = lag

Solution is T(x)log(S{x) = |T{x) 'I:—';L:;‘; dix
s
b} F = arccan
I a
Solution is T{x)arctanS{x)- JT(x} :—:{'if]ﬂm el
e} F = aresin
I. 5 fah
Solution is T{x)larcsinS{x)- _IT['J'L} __’__E.A,,_,_. i

Hotes - This routine handles three gpecial cases of the mathoed of
Integration-by-parta. The utilicy of these special cases Ls that they

direct the solution process quite clearly, whereas the more general sal-

ution mechods may mnke False starts or require more extonded analyals.

SAINT would have attempted to solve most of the problems that fall

under this category with fts Integration-by

parts method. If we pre
chat SIN had only the ratiomal functien capability of SAINT, then this

method would allow ST to be more powerful on these problems teo which

this mathod applies. im due to the fact SAINT could not tell

how much effort Lt o«

id reasonably expend on its Integration-by-parts

methed and it chose to spend lesa than would ba required Eo

integrate cthe third problem avove,



23

Method 10) PBational function Eimes gn fungcion of

logesCa

This mothod is applicable the integrand is of the fo:

R{x)ELem{log- {8 + bx)}) where R{x) is a rational function and a, b, c,

Raf =

A mubexp on of che form 1 {a + bx}). This method is

method 9 fails to be applicable.

problem co the exponen-

method

i

be applicable. E

tial case where the powerful

as much a chance of

iz not applicable, cransformed problem acs

blem

integrated by s current methods as did che original

in the logarichmic form.

2 integra

This method is applicable whenever the integrand can be

ligscributing sums over products.

Clug This method (8 used whenever all of the previous methads
[} ¢ LLiec to b TP cablc i [: L I Ehad n ahillcy | S = l

method (a8 found by FOBRM.
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Exgmples
1: ¥{cos ¥ + sin x)dx becomes _| (x sin = + x con x)dx
- y " =
= - dx becomes | (%o + 13d=:
=
[ . 2, 2 x Zx
4 ®(l + e ) dx becomes (% = Z2xe” + wme” Jdx
Botes - SAINT had two heurlstic transformations which together peor-

formod the job of chis method. The first diascributed nonconstant sums in
producte, the seéecond expanded poaicive integer powers of nonconstant sums.
In both cases, where Slagle conmidered the methods inappropriate, SIN
wiould hawve already applied one of the previous methods and solved the
problem. As a matter of fact, that is also true of the two problems

for which he considered the methods te boe appropriate.

The Third Stage of SIK

This stage, the last stage of SIN, L8 the appropriate place for
methods of a eather genecal nature.

Twoe methods which properly bolong in this stage have been programmed .

The first ie cthe Incegration-by-parts method. This mothod im used in
the expariment in Appendix € in which BEIN was asked to solve the 86 problems
-

atfemptod by SAINT. Only two of those problems (f{.¢., !x cos = dx and
|eos /% dx} required this method. The second method Ls based on che Ed g
heuristic described in Chapter 5. A third mechod, a powerful Derivacive-
divides mecthed, has not been implemented, but will be discussed here.

In the leng run it I8 oxpected that only ane of these methods will

be used here--thac i the method based on the Edge heuristic or some wari-




S5

ant of 1IC.

The Integration=by=-F

Examples -

s
1) Jj= cos x dx bece % gin x = Jjain x dx
4 ] Log-x d% bocomes —Hh*-..-"l't - |x log x dx
3 %= B, omes 5 Llogys i Lag 2
Method - Lec Maxparcs bo twice cthe maxis valus of a
[- e exponent of any nonconstant factor

ntegrand. Thus

2
ig 2 for x cos(x) and & for » cos x.

Congider any partition of the integrand inte a product of nonco
P
fFactors g and h, where H{x) = l'h dx can be obtained by SIN without calling

the Intagration-by-parts method.

MHow ¢

ider 1;"'1-i-|!:-:. We require that this integral be found by

51N by calling the Integration-by-parts method fewer than Maxparts tims

If borh integrals are obtained, the solution is
Jgh dx = gu - |

U N
g'H dx.

jotes = The crucial aspece of this merhod is embodicd in the phrase
amm gt R fed L sthod Ia thus willing 1 savoral
congider any particion. This method fs thus willing to atbtempt sevorsa
partitions of the integrand. It i thus gearching for a solution, and
searching very blindly indeecd.

In order to avold secarching tee large a space, we require chat H{x)

e Found with

using nls méethod, BAINT, whi also had an Ince-

ation-by-parts method required that Hix) be found by THSLN, which L=

a spronger reactricel

Likoewiae the Maxparts device avoids an infinice

search for the sccond integral. SAINT , which 4id nort use such a device




appears vulnorable co difficulties such as

Consider h = gin x; g = ‘i—. Thus _[:—: «

|aln =

problem el

o
» = -Cof x and _j_l_-_'ll ey =

LO8 X
J 7 dx.
x “
3 cos x | -
One subproblem generated by r 7 4= i ) dx. This process:
x
can continue Indefinitely unless measures are taken to curtafl fp.
fag
12in x " %1 .
(Accually JT . dx is not integrable in finice terms.)
Zhe Decivative-Divides MHaethad
The method of Integration-by-parts and the Derivative-divides method

are the Ewo goneral moethods that a freshman calculus dent fg likelwy eo
learn. Let us recall that SIN's firstc stage employed a Derivative=

Ehod . Howevor, that macthod is8 not ns gencral as it might be. The
Derivative=-divides m od attempts to datermife whether the {integ
be put into the form Cxdiu’(x). If this is case then the -
tution ¥ = ufx) ctransformz the problem Into _. glvidy. In sta g wvas
required to be a single operator. Howewer, in a more goneral method g

would not be so limited a che following problems would be transformed
by this method. (Let us note again that this hod 18 not available in
S5IN at present.)
. | 3
Ly Joos {1l 4+ ain"x)dx . v = gin x
.] [
z i T o ¥y = log ¥
} . % 1l 4+ log x L
¥ ol
] — iy | bacom ! Arcal
3 N 2 e = dx D3O O v | W o ain =
¥ vl = x 1 + arcain<x R | g
The fireC two of thesec problems can ba solved by SIN's second T
by mmcthode & and 10). The third problem is one of che
st oxamples of a problem which cannot be d by SIN'sg first cwo
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stages along with the Integration-by-parts thod. Howewver, Che Edge

heurisctie will correctly guess the integral arctanf{aresin ®) .

SAINT had a Derivacive=divides method which was more powerful than

satio

in some cAsSes.

EIM's. However, 1t suggested many bad cransfoz

{ & search for a subexpression such that

method sesentially

the number of facters in the guotient ©f the expression and the deriva-

tive of the subexpression was smaller than the nus af factors im the

original integrand. This is too strong a restriction sometimes.

r implemented

A Derivative=divides swethod was deslgned

in SIN.

The kind of analy a we consglidercd was as followa: Suppose the

of it 1s uix), then iLif

integrand is £{x) and a nonlinear subexprec

£
—.:—’;-L:l can bo reprosented as glulx)),; the method would proposc substituting
u® .

y = yfx) and accempeing |gly)dy. We ahould, though, restrict the kind of

. . . sin x
functlons g that we would allow. For gxample, inm T mighe

aricucion ¥ = gcos % ir introduces the alge=-

wish to disallow the

braic term ¢ 1 denominator. If we e Ehe conditcions on

the g's sufficlently vestriccive (e.g.,; rational, algebralic) chen the num=-

ber of substituticons per preblem that this method would propose would be

ibgtitutions would be guitce

ore significantly. ecach of the

reasonable .

g MMescussion of FORM

We would like now to discuss some ©of the aspocts related to the
FORM routine in greater detall. We note that of the eleven methods

avallable in scage I of 53IN, eight possess local clues which immediacely

jdencify them to FORM. Method 2, subscitution for an inteager power,
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possesses ¢lues which allow FOEM to reject the method in some cases .

Mathods 8 (Rational) and L1 (Expansion) do noc currently possess local

clues in FOBM and are actempted vhenever FORM fatlas to find an applicable
method .,
As may be recalled from Chapter 2, one of the advantages of hypo-

thesis formation (s that one can attempt to fit the preblem to the method

at hand. Since FORM is quite aware of the thods which are available to
q

it. some such "ficcing" could be attempted. This was done in the case of

algebraic integrands. If an expression ig of the form YR{x), where B is
rational in x, then FORM will attempt to see If metheds 3, &, or % are
applicable. If they are not, then this problem i{2 going to cause some

difficuley since It would appear that nothing elae excopt stage 3 methods
wlill be available to solwe the problem. ©On the other hand it ta poasible
that Methods 3, &, or 5 are applicable, but chat SCHATCHEN was unable to

make the mateh. Two excuses can be made for SCHATCHEN in this evenc. One

is thact SCHATCHEN failcd because the rational funcrion B({x) wis not exe

panded (e.g..+ 1 + x{l - x}), or that the racional function was not eom-

" + =
pletely racionalized (c.g. .. x 2 s FORM will thus determine if

E

the whole integrand).

these two transformations are applicable to &

If they are, the problem iz transformed to account for these changes and

an attempt will be made to consider Metheds 3, &, and 5 again. Hypothosis

formation Ils thus shown ©o be able to lecalize the difficulty in a problem.

An Example of STH's Performance

Wo aball now coneider in some dercail how STHN performs on the problem
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This problesm strotches

capabilitics of 5IN a good deal. Thus

ir can be used o Iindicate some of the seEre

gtha and particular

woeaknesses in the prog

as it now stands. Qur description

concrate on the role that FORM plays in obtaining a solution.
This problem is not a simple one. 8o it will pass to stage I, where

FORM will ecxamine {it. It turne out that FORM will arrive at tl

sSame

hypothesis regardless of whether it examines the numerator or denominator

. bBut 1t will be more Iinstructive co see how (o operates on the numers
ator., First, PORM will note the square-root {more precisely, the exponont
»f ). Bince the baseée is not rational, which would indicate that Hethods
3, &4, or 5 mighe be applicable; the root is ignored and attoncion is

A . 2 2 .
focuasoed on thoe base A + B sin ®. In chis sum, the constant term A is

encountered, and it yvields no clue. The factor B is llkewise a constankt

and yields no clue. This leaves the factor sin~x. Tha exponent of 2 ip
not interesting. However, the base sin{x) does yield a clue gince 1t is
a trigonometric function with a lingar argumont. FORM will, therefors,
gall Method & in order to test the hpyothesis that the expression is an

glementary function of trigonometric functions of x. Method & deter

that the hypothesis is walid and will call SIN after making the substitution
y = ¢o8 ¥. The subproblem thus gengrated for SIN Ls

E/AZ T el = o2
J—.ﬂ. +'Il.|-_vf.-’2 dy

As before,; this is not a simple problem and again FORM ls called in

order to generate an hypothesis. Interest will quickly focus on the




roatb in the numerator. Though the base is a rational fumetion, none of
the elues in FORM appear to apply. A8 described in the discussion abovae,
FORM will attemprt to determine whether an expansion of the base Ls posaible
Expansion is, of course, possible and yields the base _.\2 + 52 - '52:,-‘1 which
matches the pattern used as a clue for Method 5. Methoed 5 is now called

in erder to determine whother an arctrigonometric substitution is posaible
in the reéevised problem which ia

r— SALT & BE = Reyd

dg
1 =¥

Hothed 5 firat validates the hypothesis. In order to determine which

2
substitution is appropriate,. the routine decides that .q;" + B” ias positive
and that —32 is negacive in the manner describod in che discussion of

this method above. Mothod 5 will now malkes che subseitouelion
By

E = in
arcs A = Bl

which is followed by & call to S8IN with the subproblem

"_L AL + E_z [e) 22_ die
B RS - e b

Once again the subproblem is not simple and FORM ip asked to examine

it . In the integrand only two factors are interesting, cugzz. and
AZ + @82 2 3
{1 = Ty sin z) . Whichever FORM will be asked to examine firat,

che conclusion will be the same==n hiypothesis that che integrand fa an
elementary function of trigonometric functions.

Hethod & will wverify the hypothesis that only trigonometric functions
ate present and will make the substitution w = tan{z). This will result

in yet another eall to S5IN with the subproblem
1 AZ 4+ BE

B {1+ w3 1 -—SE—E-'W}

Ry
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This is a rational function and FOBM

Since FORM also did noct £ind

thod 2 (aubstitution for an integer powe

called next. Method 2 canncet make

a
Mathod B (rational) te solve this problem.

The rational funcrion package will

the

transform it by ratiomalization inte a pro

"~ -mea® + 5%y

any clues to reject

chaining process describod above under Methoed B,

will find no clue in this case.
the possibilicy chat
r) is applicable, that method
aubscicucion, but will €all

obtain cthis subproblem through

Firat, 1f will

blem of the form given below

J 2 Fl I T
(L =+ w (B = ATw)
Then factorizaction and partial fraction decomposition will result in
g B i, L i i L B i
J R 2 aw = B :r“n:.—*r-l”“
Scraight forward integratlion will now ¥ield cthe integral
L 1
=B arctan w + SA log (Aw - B} - 5A log (Aw + B)
3 S 2 L&
This result will be sent back to SIN for the arduous backward sub-
gcitution: The first substlitution i w = tan =z which yields
1
=B x * Lr‘. lag (A tan £ - B) = ©A log (A tan = <+ B)
2 o 2 B E
The second substitution is z = arcein ,F —a9 ¥- This results in
KT
3 1 fAL + BE
- B arcsin f - S e 1'“-";;'. = 1:_ 3 B
SAE + BE = T ¥
AT + B
- B \
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c
Hote that can arcsin € is transformed into 1 - of

The final substitution is ¥ = com x: this in turn yields

3 3
[ - 1
"B arcein | /Ay ead co8 x4+ 74 log
B cos =

A T vy
-—l-l'-l'-"gv SAS + B +B\

2 | 52 3
?ﬁ = AT + pictes x !

Thiz is the result that S5IN returns for the original proble

« SBIN
does not simplify ics resulcs by ratieomalizing them or by combining log-

arithmic terms. This I8 certainly s dravback in t}

problem. Such

eimplifying transformations would result fn the answer

’ —_
e - T Fs L, 3 (A cos »x + /AT + BE sints )

- & P ST - ") e e -_.'-—’—.l:ﬂ,-gﬁ:!!é—.

« AT + B 2 ubl.- A cog M - VAL + BS sindx

This resuclt is to be compared with the answer in the table (Pecic

Bois, p. 138). That result is
B

[ — L T A
B arceos | .-'-\: v ]'sE ) - A log (A cot x + r;‘nz cHEc x 4+ B}
=
In more fmmiliar terms, the table's answer is
B 7 Y R B e s
A .r _— . A cos x + /A ¢ B mindx
B arcain h .-"J'd_z_'r.. + B2 con x“,l - ].1{,L_ \ Y

This answer differs by a constant from the answer derived by SIH.

Although we can only guess at the method that the table's compiler
used, we can arrive at some conclusions rogacrding weaknesses in STH"s
method of soluclon.

Lot uwe consider the first subproblem after the modification made Eao

(- /AT 8% — 35t

I




LO3

Rowrite thia as

The transafc

cion made above is a

in dealing with

algebraic intogrands.

integral above,

siom, bec

A
(L -

Hultiplying throt

obtain two subproblems which together are
simpler o solve than the combined problem. SIN. by not bringing

square-root to the

minator, unnecessar

plicates the work

the rational func

weakne

with algebraic

egrands.

pf the same preblem

Ag a further cc on of SAINT and STM, shall (ndicate

both cperate on the

In SIM, after determ

(1 - 2y (3/2)

that the problem is not

acts as a clue in FORM and generates
whiich validates the hypothesis that an arccri

possible. This methoed generates the subproblem

after making the sub:

cuction ¥ = arcsin x.

Again, this L{s not a simple problem and this time

l act



L 4y

as a clue for the hypothesis
Mothod 6

that
validat

only crigonoe

tric
his hypothesi

[unctions are present.
=g the subproblem

and gencrat

L -+
after making the

el
subsricucl

= tan ¥.
Thia subproblem iz rational and FORM
is called and 1

finds

no local clue. Method 2
ctive. Method B (racional) is called and the racional
function package g the expression

= = 4+ arctan I
as the integral.
Backward ibetitution yiclds
]
£y ¥
Bl = AT ¥+ ¥
and finally we obtain the Integral
2y=3F2 =1 /2
o K] 1
3" = - — + prosin x
X X
In SAINT, the on of
. %
e s
procaeds roughly as Eollows.
In chis problem ¥ = aresin x is subscictuted yielding
ain
3 | By
= deoaty -
as in STH.
Subprobl I E formed into
I &
II}) |tan ¥ dy
and inco
[eoe®
IT1) Jcot 3
both of which will now be added to the subproblem tree. Finally, = = can
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vy I3z o5 ~ Iy OF

which is transformed by IMSIN into

vy 3z .:(_: : I_—_'ﬁ_ ‘—}.'.— d=

Mo more transformations are possible on subproblem I, se transfor=

mation will be attempted on subproblems IT, III, and V.
Subproblem II is transformed by =z = can v into
3 -
[

VL) -T.-;z da

IMSEIN chen performs the polynomial division and obtains

VII) Jf{=1 + =z —ﬁj el

¥III) |=d=z,

LX) 2 d=; and

) Jyo—ord

Subprobleme VIII and IX are solved by the table leock up in IMSLY
This laaves II, III, Vv and X.
III can be cransformed by =z = gob v, into

XI) &5 7 d=

and IHESLN will <

" 2
XI1) -Iﬁ!—} dzx

By now only subproblema V, X, and XIT remain

o be considered. The

transformation w = arctan =z on subproblem X vields

XIIL) J.m
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which TMSLIN solves by the table look up. Now IMSIN realiges that sub-

problem ¥VII has been completoly solwved and by backward substitution

ocbtain the [inal resule

1 3
RCAN ArcaEifn ¥ - CaAfR aresin X + aresin =
|

We should mote in the solucion methods how SAINT keaps
options te the particular path to be followed inm obtaining the answer.
This is particularly nociccable in subproblom I which gemnerates IT, IIT,

and IV. Only one of thoseo throe subproblems need be solved. SIN will

gonerate only one subproblem, and will commitc it f to using Le. OF

these subproblems only IV can truly be fauleed. The tan % x transformation

iz generally to be ecachowed if any other in possible. How-

ever, the lack of commmication between SAINT's heuristics make such a
principle diffieuvlt to implement.

Furthermore, it appears that subproblem XIII zshould legically follow
X However; the cost of obtaining the character of subproblem X {in SAINT
like

forced the particular order of events o be followed. A mechani

FORM would have simplified this situacion Eres
5




CHAPTER 35

THE EDGE HEURISTIC

In this chaprer we prfesent the concepts underlying the Edge
heuristic. The heuriscle guesses the form of the integral and then
arcemptes to obtailn values for undetermined coefficients L thatc
form. & program called Edge, which implesents some of the ideas
behind the Edge heuristic is described. The theorecical resulcs
relaced to chia approach to integration are discussed.

Let us suppose that we are gilven an incegrand which s in
the form of a product. Then we can usually determine gquite casily

which factor in che product is a singular or curscending facter

in the sense that Lt la not contained in the other facktors or their
derivatives, nor can it be derived from the othar factors or thelr
derivacives chrough racional operations. In m"u. the factor e

is putstanding since % is contained in che derivacive of this facter.
The outstanding factor in x* /132 is the factor J-w2. Henever,
there may be several such outstanding faoctors as in sinxe™ where
boch sinx and o™ are not derivable from one another. 1In such a

case we shall say thatr the first factor in a right to left scan of
the expression is the outstanding factor. Moreover, in cases of
funccions such as sin(x)ecos(x) no factor is outstanding. MHers we

shall choose the first factor on the right.
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Given that we

EXP T ed in finic
H factor of che
J'.'-.yl_:;.l..-"u
¢ Elx) [ d " LX)
i x)e + bi{x) = fix)dx hix)e d 5t
where alx), bi{x) ar ned funceicons of R
aix) 1 Laovel -
1w [E 2 Lk Eix)
Ly E m mtaln o jince e cannoet other-
wise obtaln such a Function el tiation " {x)dx
El=)
vas & nonllinaar occurrance of o then o wi les dorivative
this nonlinear occu e Wwill not al in

ven the ab

| £E{x})dx, then by

BxD

{x)} + a

afx) can be

that 5 f on af s to Ehe
f ] chis g x
o £ imy b}
nix) g (%), B (x)
B
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The value of bi{x) is obtained in a subprobl

bix)} = a' (x)e®

0 above w

aetemination

integration prab 1€
o Lax € a nplo o
o
Eiy = ma
af{xle + b{x) {xyd=
£S i = W x
FLERT + o' (x)e + = Hi
wa®
a(x) — X
1 () 1
®
0] L™ dn ' "
Theo L fic is cercainl 5 t the
T e wil I LE & to conside e @ machod out
ad above will | = e bow we
ignore ¢ i ie i (= bBi{x)
x s b b
1, g
1,6 4+ al : i =




W
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The first of the two problems above is usuwally solved by In-
tegration—-by-parts. However, that mothod rn-q_ui.:q-_: an integration
scep (i.8., In"dﬁ which we did not perform. Purthermore, the
inctegration by parts method is inapplicable In the second problem
above., The latter problem is handled by the Derivative-divides
mecthod such as Ls used in SIN's first scage. So the analysis per-
formed by the Edge heuristic and im particular the analysis of
Edge that we have been presenting is different from either of these
two genaral mechods of incegraclon.

An analysiz which is similar, but more complex than the one
made by Edge (8 employved by MHethod 7 of SIN's second stage. Lec
us consider the manner in which the mechod proceeds inm light of che
digcuss lon above.

We recall that Method 7 deals with integrands of the form

Bixd

Rix}e where R Ls ratlonal and P Is a polynomial In =.

An example solved by this method is
Z
£0) = @a"41)a®
Edge would in this case guesas
2
agx)e™ 4b(x) = [£ixddx

ard

-2 2
2 1
a(x) = :x-l-) i E;u'l-'i




afr) =

It turns os

w
H

Mecthod 7 woule

TLLE

x
Sl (" #13"
The su ok ates
vl o+ W —
(x+1
ie let
§
PP SR ¢ 2
o LBy v T2
LB R (% +1)



Finally, the result is

5 2 .
2 - T @ b ox ok E wd

2

{:z-rl.j

or
!:3 # Fx & 1 'x2
2 G HLY

Thus, wi see that although the hewurlecic of gueselng tho form
of the integral Ls correct in the two examples above, the particu-
lar mechanism for guessing the values of the undetermined coefficlencs
whiich is employed in Edge Iea not sulfilciently powerful. wWe shall
now indlesace two other difficulties with the analysis of Edge
degcribad above.
Let us recall that Method 1| of SIN's second stage hondles inte-
grands of the form Elem(e™ ). This meched substicuces y=e™. In
the ease of rational functions of exponentials this substitution yields
a rational functien. Thus, for example,
£(x) = (e 413"
becomes
(y+ldy
after making the substitwtion. The ratlonal function poackage will
expand this integrand mnd incegrate the resulting quadratlie in w.
Edge would gusss che [orm of the incegral wirhout making a corres-

ponding expansion. This leads to an incorrect gueas of the form
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in f{x)} are closaly relaced.

irated the cerms

have easily ¢ ilncagral of Edix).

Another di

mannayr 1o

ge guesses the

of an 1int

Ef{n) = ————

i

mthod 1 of etage would 1d a ratio

Eian

which would be fac

ored and @ il wel

al fractions by the

TR

ractional funcetion package

ere agaln the two f

vs f{{x) aro

chies

gucss of integral

Edge and the resulting gues iones will

inil yisld che incogral. A parcial expans ion is re-

quired 1f the incog a racional - of related cerms.
ile keeping wonknessos of Edge ILn s wg sahall cons

tinue to consider how the guessing heuristic operates on outstondir

fa diffore i
Lot us suppose t
£{x) = hix) log(gix))
d that che factor is the outs factor im E£{x):
cas che fe I':.q_m.!y_ if ic exis .

clog’ CGgix)) + afx)l

Bln(x)) + bix) = [£{x)dx

a(x) does noc fnvol

log (g (=)).
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1 '-c:l i (.5 Fix)= 1/x lo ]
o lent is omly a consts DiLherwi Ehe i tvat af Ehwe
e a @ wrioru el ety s a 1 .'I TR ‘] ancel in
fix).
ciatin i t 1
2 Loy + + a'log g{x) + b' = hi{x)log g{x)
R " {xy i
s ') gl{x) + + () g (xh
i)
In the above we grouped the terws ir g the
fac tor W L r [ £
F st chat i che O E CANT C t ack be
he c sl £he ¢ corm ia a' 1 tead f a We can & Lya
a{x) by using th relat dp

a - I"'llx_l.:n - 2¢ log

log g{=) in

hasg A4 Term in-

is chosets 80 a8 CO

Ocherwise, we chose cw=d The value of b'




Let cons Ld T X
Fex) = [x % (&5
log = + a 1 E (x4l /2 log = dx
{2 fx + a'ylo + afw 1 fx 4+ 1S} %
3 (= = Sz 2 Ll L ] a B - 2 1
2g w1, & Fg g = 1 2 x*
b -mfx = f2 =
b o= =L/G =
J = 4 fedlog ® ax = log™ x + L/2 x B e
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T 5 18
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In order to contrast the Edge heuristic appre

An

An

in Scage 2 of SIN,

ach with that

der functionsg of the f

E(x) = —A

educated

form of the integral of Fix) is

+ b = JEfx)dx, unless

we Ehall also consider the

ni{g(x}) term, where ¢ is a conatcant.

example we¢ considered in Chapter 4 is

£(x) = ) . 29372
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by =

% 4 B xz)l'”
In this case we shall guess
uz(l - ::21”2 + ¢ arcein x = I{l - xz)'lrzd,;
a, {12} (-2x) = 1
+ =
1 - SZ}IIZ (L = x5z - :z]f?i
=iy, + g =]
[T §
a, = o]

The final result i=
fy 3
.r“—_-:m it = g_ {1 - *2:‘_1‘(2 - =l - “2)4!2 + aresin x
We should like to mention how Edge handles trigonometric funecions.
For outstanding factors of the form sin{g(x)) it gucsses cos(g(x)) and
it gucsses cos{g{x)) for vutstanding factors of tha Fform sinlg{x)).
However, this manner of dealing with trigonometric funceions is nog
necessarily the best one. Edge should in some cases consider the com~
pPlex exponential form of the crigomometric funcrions. Tn this way
-
:Iiinnx dx can be found easily for integranl values of n after expanding
the complex exponential form of the integrand. By keeping the erigo-
nometric form Edge is forced te deal with methods such as "solution by
transposition" which occurs in [sin x e dx when one of the subproblems
is I-uin = ol

We have indicated above some examples inm which Edge fails rco




make a good guess for the form of the int 3Tt Ehe valuea of the

undetermined coefficiencs In the [orm. Thus, Lif is necessary to

detearmine whether Edge is progressing toward a solutiom. If the

outstanding term invol lute wvalue of the

an exponent and the

e 1Ia decres ine chi

axp ing, the ro kg that Lt is making progress.

The same is Erue if another factor In the integrar is exponentiated
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of the integral. Hecently, and lndependently of our work on Edge,
Risch [ 53] has strengthened the Licuville theorem by showing that
the conacants € nead only be algebrale ever the Fleld of constancs
generated by the constancs in fix) with the ground field of the
rational numbers. Risch has also given a decislon procedure for
choss funcclons obrained without using any algebralc operactions
other than rational operations. His method is similar to the
ene amployed in Edge in that it relies on knowing the possible form
af the integral, However, it is superior ©o Edge in cthe manner in
whiich L[t obtaing the undetermined coefficients and Iin its use of
partial fraction decomposition with respect co the principal
funceion In the integrand. When algebraic operations are allewed
in the integral, Risch believes that the integracion problem may
in general be recursively unsolvable. (See Appendix B where the
integration problem is shown to be unsolvable using a differenc
formulntion than Risch's.) However, he ia optimistic about integrands
which are algebraic funcrions of level 0 in our hiervavechy.

We believe that mecthods which rely on guessing the form of
the integral such as Edge or ones based on Risch's algorithm will im
the near future provide us with wery powerful integration programs.
However, the amount of machinery that they call intoc play and their
uge of radical transformatlona such as the complex exponential ferm
of the trigonometrlc funcclons Indicate that those sechods are not
o be applied when more specific and presumably more efficlent

mwthods are available.




SOLUTION OF ORDINARY DIFFEHRENTIAL EQUATIONS

As a firat approximacion one might attempt to treat the pro-

blem of solving ordinarcy d

crentinl equations By using a similar
strategy to the one used in 3IN lfor integration problems. Let us
recall that SIH used a three stage approach. Firest it attempted
to golve the problem using simple methods. Wext the FORM routine
actempted to use local clues to determine which one of & mpecific
sot of mechods was applicable o the problem. Finally the Edge
routine smployed a more gencral method of zelution. In thia
chapter we shall consider how such a strategy would fare Iin che
problem domain of first order, firstc degree erdinary Jdifferencial
equations (i.e. P{x.,y)y'+Q(x.v)=0}). Wa shall indicate the approach
that was finally taken and describe the mechods of solution which
were prograsmed.

There appears to be general agreement in the texts of ordin-
ary differential equationas regarding the elementary forms of dif-
ferential equactions. Linear, exact amnd separable cquations scem
to constitucte the universal cholce as elemencary forms. They are,

roepactively, of the form :l::t]y'%-_-';{:-:,'lv%‘lli_:ﬂl'l:, Pix ,v)du-+Q {5 ¥ )dy=0

where 2P 80, and A{x)B(y)du+C(x)D{y)dy=0. These forms are relative=-
By ox
ly easy to recognize, and immediately reduce to integration problems.

We shall adopt the usual «

vantion that & reduction of a differ-
enctial equation te one or more integration problems constitutes a
solution of the equation even 1f the expressions to be integratced

cannot be Integtrated in finite Eermn. Functlons which can bs ex-




1}

2}

3

4)

5)
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preassed in terss of elementary functions and integrals of elemen-
tary function are called Liouyille functions. Due teo the above-
stated properties of linear, exact, and separable equations, the
sot of methods which determine whether the equation matches one
of the forme constlitute a reaszonable analogue to SIK's first scage.

When we consider finding an analogue to the FORM routine of
518, we immedfacely arrive at difficuwlicies. 1t is rare that one
can make n mlight change to a differentinl equation and scill be
able to use the same method of solution, let alone obtain a sim=
ilar solution. Lot us consider how che mechod of solution changes
ag we modify the five eguations below. The methods of solution
wsed (i.e., linear, exact, homogeneous, Bermoulli, and linear co-
efficiencs) will be described lacer.

Zuy '+ yutl=l
linear

2y ' Hy (¥l =0
Barnouwlll

(249 )y "y o laml

linear coefficience

® {4y )y Ty (y+2u) =0
homogoneous

w{xe2y )y " +¥(y+Ix}+l=0
aMRCT

Tt ghould be noted that none of the methods mencioned above

is applicable to any of the other four problems. The sicuation is



ovien more sSeriods whén we noce chae equation & |

Ecrm of Licouville functions, but equacion 7,
Erom equation 6 by only the addition of the cons
possecss a Liouville solut (=oe Ritt [3%4) p. 7

2
x 2=0

£ 4
Ty =1)-

x y' 1hz{y?-..]-l":.;

Since the equacions above appear guite similar,
on local ¢lues only is going to fare guicte ba
sibilicy of Iimplementing an analogue te SIN's
noC appear very promising. ne could of course,
fouch o the number of occurrances of x and v in

FORM

5 integrable

not

which wvari
cant 1, doea
3}

E based

Thus tho pos-

routine does
clues

UEe

#lobal

the cosfficicnt

of ¥') to conclude thac cercain methods ace inapplicab {for ex-
the linear method 4= inapplicable 1f AT@® ADy DCCur-
rences of ¥ in the coefficient of ¥'). However, this approach
not 1 ely to give us &4 great iner in
om the diffficulty just noted, one would suppose
that a practical general method for solving firat order, flrst
doegrec ardinary differentc I equations ia norc likely to exist.
Surprisingly, a 1 method doecs exisc. It is known as the
multiplier mathod. It ¢ shown that if a Liouville solution
exists, then there alao exists a Liouvi ¢ function ulx,v¥), which
can be uded Co multip bBoth sides of the equation and obtain an
exact differential oquacion and thus an imsediate solution. ‘That

e Biven Plx,y)de-+Q(x,y)dy=0, then uPdx+uldy=0

There isa, however, a slight catch in che muletipl

very hard te find an appro ate multiplier exce

sactisfies B (uP)=

v

ar method iE is

PE in special




CREES . In fact, sewveral texts caution their readers against crying
to consider finding muleipliers te differential equations. The
Liouvilla theory (see Chapter 5) yields a form that an elemencary
solution to a firs: order differential equation sust sacisfy. How
ever it doos not appear likely that one could write a method like
Edge which would exploit chiz informatcion, except in special cases.
Hegative results such as those in Appendix B appear to dampen the
hope that one c¢ould find a general method for solving differencial
equations.

Wi thus conclude that f[inding an analogue to SIHN's scrategy
in the domain of differential equatioms is guite difficole if nor
impossible. We can, however, docrease our oxpoctations and follow
the traditional technique given Iin ctexts on differential equations.
That iz we can determine Lf che problem Ls solvable by one of o
set of special methods by examining the applicability of the methods
one at a time. It is this approach which was implemented. We were
reduced o a search for a sechod because of cur (nabilicy to either
localizme the problem of to find & simple model for it. The crTu=
cial role of constancs in decermining a scluclon fruscraces aven
the most primicive simplifying comsiderations. There s one con-
solacion in the approach caken, and that {s chac ence we [ind a
method which is applicable it is either immediately reducible to
integration probloms or reduces to simple problems (i.e., lincar,
exact, or separable) in one or at most Ewo steps. Furthermore,
these steps are knmm in advancee In most cases.

Eight methods of solution L[or firse order, first degres

differential equations were coded. These include most of the



methods for solving first order equations taught in an introduccory

course on ordinary differencial equatioms. As staced above, the

methods are examined in turn in order to determine if they are

applicable. The simple mechods are attempted firat

e will
all call FIN whenever they apply in order to solve some integra-

tion problems. The five other methods will ge

srate aubproblems

whic are usudlly either linear, exact or separable.

The comvent

ng for stating the problem o che machine ars

the ones used in the text books or the

s. When t

pendent

variable I8 x, and the independent wvariable is y, the proble

¥ L

be stated in sicher form I or II:

I Pix,¥)y"+Q(x, y)
11 Fix;y)daet(x, v)idy

It is asgsuméed that the expression given la te be equated to

D. The result, 1if found, will be scaved in the fore

[{x,v)=Co ,

where Co is &4 conscant of LOTEETALCLOm. As will be EoEn, T

ALCompE

ls currentcly made

salve for y or to perfors other simplifications

such as eliminating logs in the resulting expres

Elon .,

Top level comtroel 18 in a routine called SOLDIER (SOLution

0f DIfferential Eguation Routi

2). SOLDIER will translate the pro-

blem statement into the form (either I or II} desired by the

ticular

:thod , It will be noted that books tan

state a probl

licable to a given method in only one of

two for

linear eguatci

nE afe usuvally Iin form T, and sxact in form 1IV.

L=

ctempt was made To use Chis face a clue to 8 selucion.

We now shall proceed im describing the methods.



Method 1 LINEAKR

E{x)y "+gl{x)yrhix)=

Frogedurs

Let P{x})

The soluticn L

Jrdx o [ Je(yax

ye

af tl form is done by a pattern.
Sinc oL & . Ll not be
rocognlesd as inear by SCHA

glven above,

d as a4 heuristic aid te recognizing Eorms.

iln, however, ted only when a

gle occurrence of

appears in the equation.

flx)y '+g{x)y+h(x) [y+k{x)}]=0 iz not

expanded and L8 not reco

ized as a linear differential oquacion.

Alx)B(yiderC (x)D{y)dy=0




The solution is

" Alx A 4 F Dy i .
_,||r F"?:]L ix __|" = :_\-_.n:: dy = o

Eo recognize this form «

cthrough

. Thus no fact tlion of the

the factor st be expliclt

involve just v

13 = 1jds = fx =13 0
C omes
o F-
| - dx |
! 5 |
x =1 o

Thus the solution is

[= 1k 1 LEE:
Z)
b
The e dx; form Ls

porformed by SOLDIER.

Plx,;vidx + Qix,v)dy=0
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The mecthod is applicable whenever

2° _ 3\

ay ax

The mnswer iz

I jl"dx -+f[ - A :frdxj] dy=to

oy
Since this mwthod is closely Telated in fors Tequirasencs

and solution method to certalin speclal cases of the multiplier

methed, thesa cases are consldered here.

2F -
a) iE py  gm = hi{x), i.e. the quotient is just a Functlion of

) -
=, then the muleciplier is Ejh(x)dx

Procedure Let P (=, %)= Pix,¥)"multiplier, a[x_,}']— Qix, ¥y mileciplier

P and §@ are guarantesd to satisfy

The solutien is obtmined using the procedure of equation I
above with P,Q replaced by T and Q, respectively.

b3 IE 3G AR & that is the quotient is & function of ¥ only,
: kiy)

then
ejk{y”y is & multiplier. Preoceed as in step a).
i 2F _ .29 .4 3F_ 20
@I Sy T ax M ATy
1
then the multiplier 48 —5—% . Proceed as in stop a)
P+

Hotes
SCHATCHEM iz used to perform the matching required inm testing

to determine Lf aPF equals 30. Clearly a matching program such asg
o -

Martin's [37] would be preferable in this case since no pattern

matching is necessary, but only a match for equivalence.




The division steps employ only SCHVUDS's limited simpli-
fication methods for quotiencts. Thos no factorizatcion is

AL present there exlsts no simplification program

well,. For exampla

which can simplify g

x "
to & +1 by any reported simplific

ion program,

Ancther approach to deote intne the apolicabilicy of tha

rae multiplier cases is to differentisce the guotient with respoct

cond case.

cte ¥ in the first case and with respect to x In tha

This reduces the e itlon problem to a macch for equivalence to

Q. In chis mammer we aveid placing comstralnts on the sisplifica-

tiom program for deter

ever this technique does not yield the desired of che gquotients.

There exist many other special cases for the multiplier, In

fact the origin of Lie Groups was motivarted by consideracions

garding the families of differential equations which are solved

by particular mulcipliers.

2 2 3 ;
+hx )y "hr Ty - By T4+ L0y Ay= 0

in i
L) (ha y=12%"y

Selucion is

. 2
2) 2y Sxtliv' +v =0

Solution is

2 =5y -y
xy o + e "ll'-..'.- Co

Method & Bernoulli
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FOBRM E(x)y'+p{x)y + h{x}y“—n, where n i & constant, n « 1
Zroceduro

l-m
Substitute alx)=y in order te obtain the linear egua-

cion

£{x} u's{l-n) g(x)uw+ (l-n)h(x)=0
obes

The form of the equaticn is tested by SCHATCHEN. As in the
lincar case expansion will be acttempted to aid the pactern match,

but only when there are exsctly twe occurrences of y in the equation.

laa
F " 2
1) ¥ (e=1ldy"' = ¥y = n(x-Z)y=0
transformed into the linear equation
¥4+ (x=d) ¥+ 1 -0
x (x=1) .‘2 (x-13
ES Juy' = 3>¢y¢lng‘_‘x -y =0

is transformed inte

¥ 4+ x4+ 3 I.ag'x- ]
x

HMothod 5 Homogeneous
EoRH F (w,y)dx + Q(x,y)dy = O
vhere P and @ arc hesogensous functions in x and v of some

degres, n, say.

Procodure The substitution ulx) = E iz made,. After factoring

x" from the equation, ¢me obtains an egquation with the variablea

separable (Method 2).

Hotes

This is a common form for a differential equation., It is




a subcase of mothod B, but ¢ glven apecial treatment here because

of this I

froquency and case of recognitbic

R = 3 T
The factorization of x f£1

» Afn genazal,

the equation

e have cthe result recognized as separable.

porformod in o

The recognition of homogeneity and factorization are performed by

thus are not unusually powerful, For

HEW and SCHVUOS ar

IO .

e N
x 4xy y'¥+y=0 is not recognized

X
3 z 5
L} Ix ' = ¥ o= dxy-x =0
solution Ls
lag *n i - W
% oe T < =Co
. 3 2 3 2
2) 2y H5x") vy —x"y =0

solution s

log = -+
e

& Almost Linear

Fix)giy) ¥

where

hix,¥) ke{x)1{y)+4m(x)

mrydd.

gl LT

zgulting in uation

stitute wx) L{¥)

Fla)u" + k(x) wmix)l=0

This is a method which s rarely (ndicated in the texEs.



LY xyy! + Iy +il=0
. . . 2
substitution is u(x)=y

vieldling

_—Ivzu' 4 Zaurtl=0

23 x'?.'u.\}' ¥' 4+ siny +
substitution u siny

yields

2 %
3% 1 + =+ = 0
Mothed 7 Linear coefficients.
e ER S :|3:-_-1.h}-:-.- :".I o wvhere .:,Iir,a_..l. Y-
Ll a'xtb ybc ') arc comstants ar
ab* - a'b o O
Procedure
Substitute
' " "
Ble =« Ba' ¥ ac' = a'e
e - e e e y' - B L%
- x g = Sh' = a'b = ab

and obtain a homog

problem (methed 5).
Hobes

Recognlecion iz b

:d on matching

hl:_'l.:-c-l-h:.'-l-a_";l“ (a"x=tb yHc' ) repeatcadly

in Fi{x,v), where a,b,c,a",b",c" are as

d to remain

E(a, %)

Examples

13 (hyt+lln=113w"-25v=Bxt62=0
answer is

log (x = T. j = Tl: "“'F'u Q+: Il' E
\
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Z) (ybu=1% w'=y+2xck3=0

aEnswaer Ls

1 L=t = Arct -'-'2 ¥ = 2
oF,, 3 arctan =3 :
ot

wlr

a5

2
; [ o=
+ 152 '.-:u_:l__ (.‘. +'|. !_.,' Co
x 4+ =
3

n
thed 8 Substitution for x ¥

FORM y'+L({x,y)=

where Lix,y)= ';-: H {3\-":.' "

Hera H ia

function of a gingle argument,

A n is a comstant to be determined.

Procaedure Substitute ulx) iong in the separable equation

du dx
vin=H{wu) » =

The method cmployed to recognize this form uses tha

function theorem to yield an sgquation in mn.

Consider
X
- . E Lifw,
G{x,¥) 3 i)
1

We wish to determine Lf G{x,¥%) H(:\I ¥l H{ul=, %% .

licic function theo

will hold

states that thisz relacl

Lf and only if

VLl ] 4]
A Oy AN =

e that this equation represents the Jacoblan in the two

variable case. Since o=, ¥ ¥, wo obtain

el g

relacionships:
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or

¥ aw
1f n is known, we can determine whether the above relationships
helds. However we can also use this relationship to generace a
walue for n. If the right hand side of the last equacion is a
constant than & substitution with n as thac value is possible, If

ir is not a eonstant, the method iz ilnapplicable,

Hotes

This method ie & generalization of the homogeneous casa
(HMethod 5). The method is rarely deseribed although it accounts
for many of the substitutions im the first 367 aquations in
Kamke [3}. In some of these cages Kamke profers to glwve other
methods of solution. For example, in (1 293}3{y“-—3x};¢'+2y3-5x_\~10.

&
Kamke suggests dividing by x2? yl instead of substituting

- 172
ufx,y) = = ¥a

In this method we resorted te & ppecial purpose macching
rule instead of using SCHATCHEM. The use of the Lmplicit function
theorem was suggested by Engelman. In this case the theorem
fics the sitvation beavtifully. However one will probably have
to make some assusptions to recognize forms such as

£(x"y) (bxy'-a) 2% fayt o+ ey)

In order toe perform the integration, ¥ In Gix.¥) is veplaced

[T}

by 5 It is then hoped that SCHVDOS can rid the resulting




expression of all oceurrences of x.

Examnples (sco appendix E for further discussion of these examples)

L) (x—:s'.z'\.'} y'ay = 0

= % log y = ¥ 0

u I:—.' = {log 'I—:}}

In Appondix E we describe an exporiment in whiszh SOLDIER was

asked to solve 76 diffc ial equations selected from a colloge

text, SOLDIER was able to completely solve 67 of

g problo

with an average time o order of 5 rec: An analysis of

the problems {t failed

vir and ateps co fmprove SOLDI
performance on some of these problems {s also given Ln Appendix E.

He would also like to ntion the exis

e of & program

which solves linear differencial squations of any rder with con-
stant coofficicnts (see 1 [36]). It was written by Ernst
: the MATHLAB ayacem. It utilizes the Laplace Transform meth

for solving such equations., The program makes use of the rational

on package of ¢

ATHLAB System.

Soma mothods ware not described above should be poinced

out, There are which

casecs of integracing factors

can be considered, In particular, one thod guesses the form
‘ ’ a b
of the intagracing factor to be x ¥ s sSubstitutea that form
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COQUEATLONn and solves the linear CqQuUaCiIo in the parameters

el ik L

sult after setting up the

for exactr

uk))y. IE

equations can bo satiafied,

e

hod 3 (Exact) is If the differential eguation con=

tains a subexpres isirractional in both a and ¥ (e.g..

]
(= + % )), then Lt mi be useful te subscitute for some part

o
subexpress (Bafe, u ® ¥ ). One can also attempt Co

the independent and dependent warl h & change would

= ) ¥y + & Q

since it leads to the Bermnoulli differential equacion

¥ (]

e ®' + omy o+ B V]

There is a

dge regarding Meattl and Abelian

ations (L.e., ¥

+ gi{xiy+ hix), and y's |-:s-"|y1+-.-,fx]u2+

(11

hi{x)yk{y)d. Thes

ods, however, a1y on koowi

particular solucions to the differential equation.

ation regarding methods applicable ke Ric i and Abalian

Lons and o more gral differential equations can be found

s . Eamks aloo a cabla of

0 sgquations

whose solucion ism fregue

glven in some det:

L of the inform

As is pointed

a great

akbo differential be stored in yloea and

scarched by computers. LE we
di he progra 1 ' e a
rools for solving t ¢ problems.




CHAFTER

SIORS AND SUGGESTIONS F

TRTHER WORK

rrormanca

We believe chat SIN i capable of solving incegration problem

In the largest tables. The principal weak

of SIN in relation co th which ci

8 ls in cascs of incegra

ta variable expon 8 and which usually result in solutions {eh are
- rd integrals. Edge can mo some of these integrale (« "

g i . 4
® com x dx) sinece i1t ns #pecial checks for variable exponents.

However in stage 2 are to obtain a

. Tha experl

D also showed SIN's

rted dn Ap

5. On the ocher k

vonkness in handling certain algebraie (ntuge:

ing that SIN

the power of MATHLAB's ratfiocnal functeion

iCegrate many proble not present In Decision p

the Chebyechey in

s for o S5IN a capabilicy

:h i& net present In most tables.

v powerful than SAINT.

S8TH appears to us to be faster ar

friotnial methods thate SIN

fon of SAINT and by the use of cighter progress requirements. In

-

Appendix C we pointed ouvt that though SIN can solwve problee golved by

cthrea faster than

twio orders

= maa g

SAINT:, that this figure Is deceptive. It probable that under opti
e for SA ifid SIN these fligurcs wil reduce dramatically so

that the goain in spoed will average to about a factor of throe. In
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cases where tho Derivacive-divides routine i3 sugccessful in solwving a
problem (about half the time),. the ratio should be msueh higher. The
average will be lowered by che increascd effort apont on algebraic mani-
pulation on the other problems. S5IN's simplifier SCHVUOS, is probably
a good deal slower (but more powerful) than SAINT's hand-coded aimpli-
fier. This factor affects the coat of most of the other processes such

ag differentiacion and matching.

8] Y =

Instead of describing the organizatlion of SIN at this point, we
would like to indicate certain aspects of this organization which arise
out of the discussion in Chapter &. The reader is refepred back to
Chapter 2 for an outline of SIN's organization.

Oone of the difficulcies thact AT programs will increasingly face
involves communication (see Newell [ 46 ]1}. If a subroutine performs
an analyasis of o problem then ite analysis muet be communicated to ics
parent routine in such a manner that the parent routine can easlily
understand the information. IFf twa subroutines are working in parallel,
one may need to know what the other one is deing in order to perform
efficiently. An example of the usefulness of the latter type of commi=
nication wae pointed cut in Chapter & in the section in which we described
SAINT's solution of ‘t—i‘_—i:Tny dx. Here it was noted that in cne of
the subproblems SAINT ahould not have porfopmed the substitutiom
y o= :tné'x since another trigonomeccie substitution on che problem had
already boen made which was undoubtedly superfior. In this case SAINT

did not seek out thoe necessary informatiom. A similar difficulty arose




SAINT's mecthods

of tha provio
necd for explicit

want to point

in certain situac

of its subroutine

= €
proat deal of

infor

probably occurred with |

Es moth

tranalormat Ll ons

CL1E comminicHact

the methods are not aware

= 1
attempt the tamsx t

mation ias poasible since

arks hold for the co:

examples appear to
crol In a routine which

munication

We noted

hter progress constra

sufficient machinery for

that SAl

will attempt

Epace.) We are not parcic

be some problema whic

Eion ;

&

Eo

have performed tranal

isoful
a paren
i it

sCours

oive cCce

iz cholee was

tric

suffic

che

s than

SIN wil

solvae

since

SATE

While e a

in complex

E roult ing

is not

when
rtain
tuat

identicy ¢

nEce

built int

at when n  able

fent underat

pPEOETS

does SAINT. This

1 noc

ing them.

itly worried

are markedly

lrl"':\lpl'. Eo hondle the

{On che ather

b

£

o= polving pre

o minic

about

FORM is.

to centrali

Ciommun i

Ehe

program.

Lon. What

a taak,

reduced,

hand , woe

T

until 4 tuns eut of

neos .,

opar=

1.1
& fend 1
simila
th

then ehe

by

i

It

Lie

appears



stam have a good

ratanding of it have a me

ocre understanding and be able to solve more probles If one desirod

to increase the pow ¥ we would wish th

Eha offort on

rovlifg the analveis Jdone by FORM racher

he spend Lt

We understa

Tasing the secarch im

v, Chat it La not

ways posgible to cake this

proasch. The domain of nonlir

af

ntial equations

On the Orpanlization of SOLDIER

We noted in the Introduction Ehat did t expect to find a con-

copt am powerful am hoewristic in the domain of Eirat=ordew,

first-dagree Thus we wete AOC surprised

ial equati

similar to E

it the =

that we carried over was

¢ en cight pre co wE that human anal

of this problem d

88 constralinta In chi

ter 6 that S0LDIER « glpht solution

ILf a method decides

atcempted one at & ci

Lifving tra

on to lntegr n or a4 reduction to &8 known and

slor dif fare

acfon form), chen it will accempe it, and

mation will be €

value of SOLDIER. Otherwi

dered.

In Appendix E we teatcd SOLDIER on

ntial equations text. SOLDIER was able to solve &7 out of 76 of thesc

emE . We do =ve that one sho



Lad

© En

xd from being as powerful a

SOLDIER i# far

juation Bolver as e

and extensions ce SOLDIER that we suggest in + &
then SOLDIER will ed We were disappe ced
when wo reed this to be « The oa for | e " -

Applications of LISP

Unforcunacely, and

a language with very low execution speed

hsmecic in mose LISP

for che 190 is an exceptich.)

for LISF co aXi ITLE Eic = s L s
It is the ecom 1€ 3 iwad ¢ L ring

a4 minor consideration. T
k Bohrow [ Ld

net nawve boon written as doe

in the




which

LISP's roc:

Sk

INT s

pEc

Wi oo
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mentary function rather than leave such a statement withowt proof., The

relatlonshlp of the Edge heuristic and the problem solving technique of

guessing could reasonably be emphasizcd In coursecs alesed aE a more prac=

tlieal foundatcion.

Impro @nts and Extensions co SIN and SOLDIER

All che pr

digcussed in chis thesis would profic by being

ricten for the LISP svstem of the MAC PDP=6, The PDP-6 LISPE systom

executes about three cimes as fasc as cthe 70954 LISP system on o«

function and even faster on interpreted ones This Is dus to the i{m-

proved instruction set of the PDP=6& and to {mproved system's progracmi

rather than an increase in cthe machine speed. The MAC PDP-6 nlse has

256 K of memory which would mean that all the reutinss could certalnly

be loaded ar one time. This would allew greater interchange bebwe

SIN and SOLDIER and the &

ivnal function packa It would allow

SIN

SOLDIER to be used as gubroutines to the MATHLAB svstem af

man. The excel lont scopd wmtput rvoutines of

on the PDP=-6 as are tolet

oubtput routines Millen for the

MATHLABR Swyastem | &0 which accepe FORTRAM-1ike (i.e., infix)
netation for algebraic cxpressions are avallable and should be im=

stead of the LISP (f.0.. prefix) notatlon

i3 now used ig [nputa Lo

5IK and SOLDIER. Anderson of Harvard University (s currently

a program which pd e hand written input of

3ic exproasions [rom

a Rand Tablet [ 1 |-

h a program could be used in the future as wel

SCHATCHEN should be rewritten msc

can be defined by

the user without reprogra relevant s«

ne of SCHATCHEN. The

r SCHVIDOS served us woll while we

lred a

However o neow, more

poweriul and efficient
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¢ Indicated in Chapter 3 should be use

ar from Chapte

and Appendix E this simplifiecr should have factoring and division capabi-

not curcently

lable in general purpose simplifiers. The task

am such

cching oxpos for idencicy sh be performed by a pro

as Martin's matching am racther than by SCHATCHENW [ 37]).

SIN'"a mccond et a better handlin

ild pr

it [

ef algebraic

incegrands.

is clear from Appendix D. Ancther lesson Tl

t appendix s the usefulness of an capability whereby the user can c

ike with FORM and s«

e of the methods o

iii BIN in order to intro-

duce mew func - A table pf integrals invol-

ving the error funecion wh

was computed Maurer

| 38 }J. Such a cakle should be computabls

SIN as woll.

It ia elear that

more work needs to be done on the Edge heuris=

eic as T} ag Integration problems and as & possi
tool sy toaching freahmo caleulus studenca. We understand

tunbly prog his muthod of (ntegration using the

rram could be

function package. Such luded in SIN'"s

ing SOLDT

in Chapter & ws At number

thods are known ich have not yet been

inte

fag particular solutions to differentianl egqua-

ans can be used to Eind

salutions to Ricatcdl

antial snE . Lo Appendix E we no

d that the output of

wicth the fo

rarely confo

of Ehe text

DULR Another

be te deviac a routine whieh translatea SOLDIER'rR output £o

with the implicilt

ln cext books.
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limics performed by Fenichel |l 12 J. Ho work has been done ta our knows
ledge, on finding sums of infinite geries. Jolley provides a table of
such seriea [ 29 ]. XNor has any significant work been done on definice
integration; Bierens de Haan'sa monumental work on this area can b
consulted [ 24 ]. In both of thegse cases one might ac firse utlilize a
table look up as described in Appondix A.

Leaving aside the arva of onalysis we note thac Haurver | 39 | and
Mclncoah | 57 | reported om syscems which deal with findte groups. Some
routines have also been writton for aplving spociallized Easks Lln copology.
In [sct a new theorvesm In Copology was proved as a result of oxperiments
parformed by such programs | 50 ]. Likewise specinlized programs im com=-
binatorics have been written [ L6 ]. Such programs should be expanded
upon,; syatematired,; and made available as part of a larger symbol ic mani-
pulacion systom in pure mathematics.

Along with the need [or practical work in algebraic manipulatciaon
there ia a4 need f[or parallel work onm theoretical rvesules. Callins" study
of the Greatest Commen Divisor algerithm led to a miajor imporvement of
the Euelidean GCD method | 13 }. Similar studies are needed of mechods
for factoring polyvnomials, sspecinlly over extensiona of the ring of In=
toegors. We neoed a study of the degree of growth of the sesults of cortain
algebraie transformations. We should have examples of very bad problems.
In [ %2 | we present such a problem in the domain of pelynomial oguations.
Recursively unsolvable resulcs such as cthose in Appendix B point outr cer-
tain difficulties in algebrale manipulatlion, Proofs of the decidabllicy
of cortaln subcases guch as in Richardsom [ 52), Caviness [ ? |« Browm [T].

BRigch | 53], and Tobey | &3] are useful alzo ond theass may Iin turn lead to
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151

If sctage 1 is not effeccive but Lf che program knows the methed of
solution (a linear equatien), then it should selve the equation. This
would be done at stage I of the program.

If neithor of these stages is appropriate, thon the program must
obtain an analyelas of this sitwatlion. Such an analysis Ls prescntly
beyond the capabilicies of AL programs, but not grossly beyond these
ceapabilicieos.

Pregumably ome of the methods available to this program is a rate
problem solver. The statement of the problem does not immediately imply
a rate problem but the knowledge that the minete hand and the houor hand
travel at differoent rates could lend weight te such an hypﬂthhuls. Lat
% ba the time In minutes past & o'clock at which the evont occura: Then
the minute hand travelled x minutes between & o'clock and the sccurrence
of the event. The hour hand crawvelled -i? minutes during that time. How-
aver the hour hand started with a 20 minute advantage and ended thirty
mitutes (one half a cevolucion) behind. Thus

x = 20 4+ 3o + -8

12

&00 &
= == = S&TT minuCes

The solution above required the use of information about clocks
and the relationship beCwoon clocks and circlas. It also requirad a
sophigscicated word problem solwer that was able £o utilize this infor-
mation to ot up the linear esquation. Anocther method of solving this
problem relies somewhat mere heavily on moking inferences abour diagzams.
In eicher case It appears that a good deal of machinery is required for
the analysisz of this preblem. Besides che word problem scelver a program

which makes infersnces based on diagrams of plane figures is also useful .

While such programs may not be sufficient in order to perform che analy=
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Besides belng relatively slow these approachos Are not

fact that an integral table usual prosents generalized forms
of Intogrands (2.g.. ax” +hx+e) and not just particular Lace ands .

toa the pr termined conscs

incegrand. These constants are u ap cocfficients as Ln
"

i n n
ax+bldx or expone as in I[y_ dx or = sinxdx. The exa
5! "
4 X ainxdx points out a further feature of jtal table, thas

the presence of iterated int grals in the table. A good integral

table look-up should be to make use of thess features
»

tables.

ble look-up, ealled ITALU, was programmed

table tioned. It had e

features of

relatively Easc by

ional property of ba

carefully ha=al

the expression to be incegrated

whi would <

can expect to obtain a nu

fow expressionms In H Furthersore can be

the table. The

ha scheme whic ented L constancs Ln
ind products. eln {ax+b) coded the samoc Y.
s i o, ) - The hash=code, t, was a floacing=-

v the codes of the
[} : o codg
] Hy [

the need for




a canonical form of an expression. One furcther foacture of this
coding scheme was that terms in a sum which had codes ldentical
with those of previous terms were ignored. Thus sin (xd+yx)

2
coded like sinx and x"+2xy+3x coded like (2y+3) = + 32 and

3}{2*"”‘4121

The coding scheme was obcained recurslively. The wvariable of
integration had a fixed code of D,95532. Any trigonometric,
arcerigonomecric or logarichmic Funccion had asscciaced with ic
a fixed floating=point comnstant which generally was exponentiated
by the code of its argument in order Co obrain cthe code of the
expression. Sums and products were treated as described above.,
Expononciscion wag a relacivoly eomplox oporacor for che coding
scheme. This is due to the fraquent occurrence of exponents
=2 =1, —%. %, 2 in the tables. When theas exponents. occurved the
code for the base was raised o the exponent and the result was the
code of the expression. Any other constant exponent was coded as
L 3762 and the value of the subseguent exponentiation became Cthe
code . Thus xn iz coded like 23 oF x. =13 xin'j. Fixed bases ware
all coded alike. Thus ch coded like 2“ oF yx.

At advantage of this coding scheme was that SCHATCHEN patterns
could be coded ecasily as if they were oxpressions. This was due to
the fact that the viariables In the pattEern were considered constants
with respect to the variable of integracion {(assumed to be =
throughout the Eable), and honce were ignored in sums and produces

and had a fixed wvalue in exponents. Entries in the tables had
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AFPFERDIE B

RECURS IVELY UNSOLVABLE RESULTS IK INTEGCRATION

showad chat the matching

problem for a class of fur

ntary is

unsalvable. This result is easily

ta

lemoncary funccio:

the guestion of deter=mining whethar Inte

ssess B-elemen (o

ikewise recursi unsolvabl

Januaey 5, is probably the F

abla proble in analysis and has

field of nlge

pulacion. Rofar=

ancaes Co LlC

1 [ 7], Caviness [ 9], Fenichel [19]

[42]. and Tobey [63].

is, feeling among some (e.g. i that
s uns result may be due to fact that
cion prob hae unsolvable is t well-posed. In this

vendlx wa sha son's unsolvs proof

tion has arisen. e

polnts in the p

gon's which

s present roesulcs of a

the domain of tha

avold these difficulties in the proof by ext

al equatic epe resulbts aro p

Lineac

wsing similar ctechnigues cto Richardson's and were originally proved,

interestingly encugh, a year before Richardsen announce
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1* Bae seee W d=d, where P is anvy

nce s i% an

TLicient

a x . is o (Loms
1
8|
ol ea g WKy &7 =Dy ol with aa . sy A
! ] i
integer?
Theors (Ba + Rebinsen) [14]
The exponencial dicpha e pro L& rs il v unsolvable
The wversion of the Davis=-Putnam-Ro asule ¢ el -
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possesses real-valued solutions for an integer value of ¥y, then the
x, must be integers, and if § possesses inreger solutiens, eguacion I
certainly has real solutions.

MNote that since each term in 1 18 real-valued, the "Sum of the

squargs' device forces each term toe be Eero. Since sinm w0, = Q- xy

is an integes, the ®, WUNE all be intugers. This illuscrates a con-

cept we shall call forcing. Forcing will be frequently used in this
2] 2

appendix. The term £ 0 sim™ 6 :i forces § to possess integer go lu-
f=1

ciong. The use of m and sin % in chis manner was foreshadowed hy
Tarski [ 6&1].

The next #tep 8 o show thao there exiscs and R-elemencary
function L(¥, %y, -o-, %) such that £0y, =y, ¢sse 2 Ja L for a glven

integer ¥y and for some real =y if and only &f Qiv, x¥, H%’, aatacy ?xt)-ﬂ‘

for some integer wvalues of the x%*, and for the same integer value of y.

Richardason shows that wo can toke £{v. Hys rrea x"} to be of
tha form
n ] "51.
Adn LEI. sin Ry Kt(r. Kis voes sc“J - er:y. Biv weale Hoa 2 ',l]

where & ls a large R-elementary functblon of o and each K’_ is a
suitably chosen lavrge R-eleémentary funcbion of IC8 Argumentcs. In chis

form f s an R-elementary functlon. The proof that F has the deslred
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|1|q_ - “lﬂgl:'l thus the absolute value funecion is R-elementary.

xy = E?ﬂz""-_-ﬂ-- this suberaction has value 0 Lf ye=x.

Min(¥.x) = y={y=x}, the minimum function restricted to non-
negative values.

Wow Lf G(y,x) £ 1 for some real x and inceger ¥, then
Gi{y.x} = & for seme real x by the ¢ case above, and for this =,
2:2G(y.x) > L . Thus, sin(l, 2228¢y,x)) = | for some raal x. ILf
Gly.x) = | for all real x, then for all real »,min{l,223G(y,x)) = 0.
By the continuity of G which is preserved either min{l, 2:2G(y,x)})®™1
for some interval of valués on the real nxis for x and for a
flmed Integer value of ¥y, or min{l, 242G{y.x)) ®* O for all real x.

How if we Ller M(y,x)} = min{l, 2:2G(y.x)), then the guestlon of
deciding whether M(y.x) L# ldentically O is equivalant to deciding
vhether @€y, %4 +ery %, 271) = 0 has integer solutions and is thus
recurslvely unsolvable. M{y,x), we note, is Re=glementary.

The above is & sketch of the proof of the recursive unsolvabilicy
of the matching problem. The recuraive unsolvabllity of the integra-
tion problem is obtained as follows:

Consilder

2
I mty.xde™ dx

If M = 0 for some integer value of ¥y, then the integrand is ©

and posseases a solutlon {e.g., 0). If M ® 1, on scme Lnterval then
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AFPFENDIX ©

SEIN'S PERFORMANCE ON SAINT'S PROBLEMS

As an exparimenc for cescing SIN's performance . we atcempted the

856 problems actempted by SAINT and reported in Slagle's thesis. SATNT

integrated B4 our of these 86 problems and announced failure e integrate

%1l *+ x and cos vx. Slagle reports that SAINT solved the 84 proble
with an average time of 2.5 minutes (L&4 seconds). 8IM aolved all 26

problems with an average time of 2.4 seconds.

avarage boco

gecondas when one discouncs the cost of q-h.'.;-.|||1,1. Chaining occurred on

22 our of the 86 problems. Chaining is congidered to take 4.5 seconds

im bound for the

in this accounting. ctime appears to ba a

operation. In order ta determine the time vequired by SIN to solve a

problem, we used the executlon time roported by CISS. The swap ti in
CTIS5S is ignored here.
Over half of the 586 probloms (more procisely 45) were completely

solyved by SIN's first stage. These problems were solved with an average

iy two required the

time of 0.6 scconds. Of the remaining problems oI
4

Integration=by-parts routine {(l.e., x cos x and

cof +x - the lacter g

races the subproblem |2y cos ¥ dy). Two routines were added e SIN in

and double integrals among the B6 probl

order to solve the

make

indicated

Theas rvoutines call perform the integracic

appropriate substitutions &t the upper and lower bounds.
Below we List problems for which SAINT results are available and

tha comparative results for BIN.



SATNT time EIN cime discount

Probl in seconds in se

chain

9.18 .
&
126 0.87 [ goals
SAINT, 3 {7
T et g 1
""_.__. I 102 . ) 3 3 ubg & BATINT

SO 4,68 2.2 14

5l TN S 120 .
2 Z

i " }° eos x dx 22 2 .48
10 0.2 ubgoals SAINT
¥ 65.23 1.

—_— ik 12 9.7 4

- x 4 B
an ¥ socc x dx 7. 1.4




SAINT ¢
Froblem in conds Hotes
log x dx 132 ¥,
in = coa = dx 156 0. 30 Largest
1
L ratio b
&SI and
376 L0 - lution
SAINI
¥ - 3.7 4 subgoals
I SIN
———rrery dx 660 8. 4.3 SAIKT
1 x<)
- s
dax 510 7.92 . SAINT
- 2.7 SALNT
last 3 5 were solved by 540, and 210 seconds
rospect cly an entty was added to Eable was uscd in
>lution of the p
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In order co fully account for the sffect of parbage collection che
problems wore run in large batches. Thus garbage colleetion time was
distributed over cthe set of problems. Garbage collection cime probably
accounts for less than 20F of the total time in SIN.

We should note gome of the reasons for the time difference in the
results of SAINT and SIN. SAIKT was rum on the 7090 and SIK on the 7094,
This accounts For about 40F of the gain {(2.18 va. 2.00 microscconds Iimn
the cycle time and overlappod instruction executicn in the 7094), The
single major difference in the time 18 due to the fact that SAINT ran
mostly Interpreted (a major exception being the simplifier), and SIN was
run mostly compiled. Compilation is usually considercd to goin a factor
eof 20-30 in tho speed of the program. We testod some problems wich SIN
being executed completely interpretively, We noted an average speed loss
of a facror of 15. However none of Che problems which were runm incer-
precively included problems which required chaining. Thus we were unable
te run gome of the more complex problems in the set intorpretively.

By taking these f[actors into acoount we noete that ST would only
runn about three times faster than SAINT on the average when both are
exccuted under optimal conditions. The reason for the relatively small
ratio in SIN's favor we believe is because most of the time spent in SIN
in solving the harder problems im the set is spenc in algebrale manipu-
lations (e.g., simplificationa). Algebraic manipulation in SIN is not
materially faster than it 1§ in SAINT. Though the analysis porformed in
S5IN yields a very direct solution, the total Eime spont to obtain the
solution is still significant. Hence the contrast wich SAINT in regard

Lo total solution time i8 not wvery great,
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pfoblems wWwotde not

all. An examination of the resulf re-

ted by SOLDIER for of

of the problems {(L.e., 31) indicated a
misprint in cthe book. Arn before, our timing information is based
on the report by CTSES of the sxecution cimé of che progrom.

Tho systes on which this experisonc was carrised ouc had the
Following characteristcicn: SCHATCHER, SCUvVUOS, FORM, REPLACE, SOLDIER,

and all cthe solucion sath

# for differential eguatlions wore com

piled. A few integration methods, especially the Derivative=divides

mached, were alse compiled. The rest of the integration metheds wara

run Interpretively. This accounted for a nociceable Incre Im

solution time when vne of the integration subproblems regquired a

solution meathod in scage

1 of SIN. AR wmS T

¢ case In the aex-

parim

nt reported Lo Appe

% €, the 76 problems were attempted in

large batches {about 15 at a time) 5o that the effects due to garbage

callecrion were fully considared.

Below we shall describe on the performance of SOLDIER on some

af the Bore interesting fully solved problems. We ahall then deassriba

sach of the % probles

o wlhileh Lt Ealled to solve fully.
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APPENDIX F
LISTINGS

The listings of S5IN and SOLDIER given below wers produced by a LISP
program written by Diffle of che HATHLAR projoct and modified by us.
Listings of LISP programs are frequantly printed by using the internal
representation of the program. The listings of programs written in most
other languages usually bear a close correspondence to the input form of
the program. This need not be the case for LISP programs. The routine
Edgo vhich was not listed using Diffie’s progras ls proseonted laat. The
Listing of chis routine may be used £o guage the effect of Diffie's pro-
pram.

The Listings of two Tecent LISPF programs (i.e., Martin [ 37 ], Nor=
ton [ 47 ]) are alao available. One can use these liscings to compare
different styles of LISPF programming. Noerton asaccentuates the use of che
PROG feacure and his programs thus have a FORTRAN-like appearance. HMar-
tin's style LIs richer and leaans toward greatetr use of “pure” LISP. Our

style is incermediate co these two ET¥les.
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[COMD (ICDEFFTT EE (CADAR T) NIL (DUDTE PLUSHH
(GO LOooOP) 1
(T IRETURN [(RESTORENI] )

L&S
(co TIDWLOE (CADR xX) (CAR X} MILY (CO LOGP))
IT (G0 LEXY BRRDID
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f fhullL [CDR EEN]
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L2131
ZX¥1 160D L2OKY 0

ESETQ AmS | % C(COMNS I ECOR IV AMSY]
(RPLACG I |
G0 L19)

L2Q
LSETC £ 1CO®R B3
&

tGo L1

LSETQ ¢
[IFINODIT (COND ((EC (CAADR Pl [QUDTE VAR=])



EFDM

ILAMBDA

LLAMBDA

£L
L PROG

EACHP

L&

198

FiNuLL
fRETUR

P ERuLL
iR U

uLL

L'}
a

L)
N

1COR

[Co

N

ESTHPPLUS

ITE

LTURMN I
(RE

S

{RF

TUR

TCOND

R

ETuAN
CAR E)

STORE

(H LEQ
LINOT [M1
LLNOT s
IRETURN [ RI
TUAN IRESTORELIN
WD LEAND [NOT (M1 O
[MOT ML 1
IHE TURM (RESTORE
L=l

tH]
[H]

E FE
1 el ]
O [Cabnr
FGg L1
GO LTH
[RRN

RN
P11y

11

|20

ESTOREZ) 931 1

ITESTA

[Capr &)
[Cam £}
HIL b§

EQUOTE COEFFPTI )

LRETUAN

TRET

TRETL

L]

ENGTH PI))

[RESTORE } ¥
IKESTORE) ¥

TRESTOREY11)




199

(LOOPF (LaMBDA [E LB

IrFROG (2 ¥ X)
ISETO ANS [CONS (QUOTE +LOOP) (CONS MIL AMSIY)
ISETQ x LM}

LS
15670 I E)

L&
[COND [FINULL ML (CaOR I) (CAR X))
[SETQ ¥ (COMS ILIST X £ ICOR Z)) ¥
[SETE aMS (CONS [CONS Z ICOR Z1) &
[RPLACD I {CODR E1)
[SET@ % ICOR X))
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COMD [LMNULL (COR ¥H) IRETURM TN
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