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ABSTRACT

This thesis consists of essays on several aspects of the
problem of algebraic simplification by computer., Since simpli-
fication is at the core of most algebraic manipulations, effi-
cient and effective simplification procedures are essential to
building useful computer systems for non-numerical mathematics.
Efficiency is attained through carefully designed and engineered
algorithms, heuristics, and data types, while effectiveness is
assured through theoretical considerations,

Chapter 1 is an introduction to the field of algebraic ma-
nipulation, and serves to place the follewing chapters in per-
spective.

Chapter 2 reports on an original design for, and program-
ming implementation of, a pattern matching system intended to
recognize non-obvious occurrences of patterns within algebraic
expressions. A user of such a system can "teach" the computer

new simplification rules.

Chapter 3 reports on new applications of standard mathema-
tical algorithms used for canonical simplification of rational
expressions, These applications, in combinations, allow a
computer system to contaln a fair amount of expertise in several

areas of algebraic manipulation.



Chapter 4 reports on a new, practical, canonical simpli-
fication algorithm for radical expressions (i.e. algebraic ex-
pressions including roots of polynomials). The effectiveness of
the procedure is assured through proofs of appropriate properties

of these simplified expressions.

Chapter 5 is a brief summary and a discussion of potentlal

research areas.

Two appendices describe MACSYMA, a computer system for
symbolic manipulation, an effort of some dozen researchers

(including the author) which has served as the vehicle for this
work.,



PREFACE

This thesis describes a number of contributions to the art
and science of manipulating algebraic expressions by computer,
All the experiments were performed using MACSYMA, a computer
system for symbolic manipulation of algebraic expressions now
under development at the Massachusetts Institute of Technology's
Project MAC, The contributions to MACSYMA of some 12 people are
detailed in (31). My contributions are as follows.

| designed and programmed the rational function package,
the radical simplifier, the semantic matching subsystem, '"SOLVE",
the rational "substitution" and “"coefficient" routines, and
portions of the supervisor and top-level simplifier. | also
designed and implemented a major revision of the polvnomial
package incorporating the fast modular greatest common divisor
algorithm (3). This revision makes possible the implementation of

the much improved factorization algorithm now in progress (2).

Previous theses vwhich describe parts of MACSYMA or its
logical predecessors ((3N), (35)) have included LISP (33)

-

listings of the programs used., At this point it Is becoming

impractical to include such listings, constituting several

hundred printed pages. Furthermore, such publication is of

doubtful usefulness since listings and an operational system will

be available in the near future to a community of users through the ARPA

computer network. The system presently occupies some 110,000 36-

bit computer words and will undoubtedly continue to grow,
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Chapter 1 - Introduction
Many persons who are not conversant with mathematical
studies imagine that because the business of
[Babbage's Analytical Engine] is to give its results
in numerical notation, the nature of its processes
must consequently be arithmetical and numerical,
rather than algebraical and analytical. This is an
error., JThe engine can arrange and combine its
numerical quantities exactly as if they were letters
or any other general symbols; and in fact it might
bring ocut its results in algebraic notation, were
provisions made accordingly.

--Ada Augusta, Countess of Lovelace
(1844) ((26), p. 1)

During the past decade, developments in computer hardware
and software have started to accomplish what Lady Lovelace
envisioned over a century ago. By dealing with algebraic
expressions, equations, and functions in terms of their symbolic
representations, without reference to specific numerical values,
computers are aiding working scientists and engineers facing a
variety of non-numeric mathematical tasks. Some of the problems
and potentials of algebraic manipulation by computer, and its
most central process, simplification, are the topics of this
thesis.

1.1. Algebraic Manipulation

To illustrate the difference between numeric and symbolic
processing, consider a FORTRAN program which, given A, & and C,
can apply the guadratic formula to approximate the roots of

2
Ax +Bx+C = 0. A, B and C must, of course, have numerical values



at run-time. This is strictlv numerical processing. If A had as
its run-time value the expression "Q," B had value "(-pxQ-1) "
ana C had value "P," the FUKTRAN prograim would be useless.
Nevertheless, by applying the quadratic formula symbolically, the
two roots,

4 i3
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can be represented. By further efforts, this expression can be

reduced to

(1 +PQ £(1-PQ

e

or the two values P and 1/Q. Une computer system for algebraic
manipulation system, MACSYMA, which is now under development at
M.l.T"'s Project MAC (31) and is the test-bed for most of the work
described in this thesis, can be coaxed into performing this cal-
culativn through the following dialogue. The lines labelled Ci
are typed by the user, those labelled Di and Ei by the MACSYMA
system. (This, along with most of the other examples in this
thesis consists of a file produced directly hy MACSYMA which was

later merzed with the remainder of the text.)



(Cl) EXP:Quex**x2-(1+P=xQ)*X+P=0y

P
(D1) QX =-(PQ+ 1) X+ P=20

(C2) SOLVE(EXP,X)&

SULUTIUN

(E2) A= E
Q

(E3) =P

(D3) (E2,E3)

It should be emphasized that all of the work described here
is wedded to MACSYMA by convenience, not necessityv. The tech-
niques which are considered are of interest because of their
relevance to mathematical problem solving in general, and to
algebraic manipulation by computer most particularly. Although
details of implementation will differ, the algorithms presented
here should be useful in a number of computer systems now under
development (l1). Since it serves as a concrete base for
comparing our techniques with those of other systems, we wil)
make frequent references to MACSYMA; however, the philosophy and
algorithms, rather than the programs themselves are really the

topics of interest. Uetails of the implementation have been
included when they serve to illustrate particular points in

dealing with problems of algebraic manipulation.




1.2, Algebraic Manipulation by Computer:
Prospects and Realities

| fully agree with R. W. Hamming that "the purpose of
computing is insight, not numbers." ((38), p. viii).
Mathematical analysis has traditionally been preferable to
nunerical approximation techniques because the resulting exact
symbolic answers often represent a more direct path to insight
than sets of approximate numbers. In the search for insight into
mathematical and physical problems, difficult analytical and
algebraic tasks should be delegated to computers just as diffi-
cult numerical tasks have been delegated in the past. | believe
that computers can serve an important function in analysis analo-
gous to the role they have come to serve both in bringing
numerical analysis to its present state of refinement, and in
producing answers to real problems.

An algebraic manipulation system is able to rapidly and
reliably "massage" expressions orders of magnitude larger than
ones comfortably handled by humans. For example, computers have
demonstrated their facility in handling numbers, hundreds of
digits in length, and equations requiring several pages for
display.

These advantages are fairly obvious. Unfortunately,
attempts to harness these advantages have often ignored a number
of major problems (detailed below) which must be tackled in order
to provide useful services to working mathematicians. Most of

the early "systems" and "languages" for algebraic manipulation,



having Tailed to consider these problems, disappeared shortly
after their introduction, In many cases, the relevant problems
were not vyvet recognized, much less solved. An unfortunately
large number of newer efforts in algebraic manipulation systems
have fallen into the same traps (e. g., (32)) and have not recog-
nized the significant contributions of many of the researchers of
tne past ten or so years. Some have taken the attitude that a
slightly more flexible programing language is all that is needed
to suddenly open up the realin of algebraic manipulation capa-
bilities. These researchers (most often programming language
designers) should examine their claims in the light of the
Formula Algol (37) experience; namely, that language features
alone, regardless of their variety, do not make a useful
algebraic manipulation system. Algorithms (23) and data
structures are most important, and unless these are carefully
considered, researchers entering the field will continue to
repeat the mistakes of others; they will stand on the feet,
rather than the shoulders, of the earlier contributers.

We do not wish to embark on a survey of algebraic
manipulation systems since there are severzl easily accessible
references. One is the exhaustive annotated bibliography of the
field begun by Jean Sammet and continued by John llyman (L2),.
since many of the listed papers are of historical interest only
(even many recent ones, for the reasons given above), a more

selective source on recent work is a better introduction to the
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field. wW.A, Martin, in (30), critically surveys the progress In
algebraic manipulation systems up to 1967, Max Engeli, In (11),
gives his views on achievements and problems in the field to
146d. It is an indication of the rapidity of change in the field
that some of the break-throughs mentioned by Engeli have been
eclipsed by more recent developments. (Specifically, calculating
Tactorizations and greatest common divisors can now be done much
faster than by using methods mentioned by Engeli.) Perhaps the
most useful index to the field to this time Is the "Proceedings
of the Second Symposium on Symbolic and Algebraic Manipulation"
(March, 1971) (1). It is a collection of tutorial and research
papers describing important current work in most areas of the
field., Chapters 2 and 3 of this thesis were presented at this

symposium in slightly different forms (14) (31).

1.3. Problems and Goals

To some extent the major problems in algebraic manipulation
depend on one's viewpoint, The broad view Is to look at
algebraic manipulation as a problem in artificial intelligence,
the eventual goal being the construction of an expert
mathematician (e.g. see (31)). The view taken here is much more
limited, but can be considered as a preliminary to the broader
problem, We wish to provide a tool capable of performing a wide
range of services for a mathematician or engineer. These can

perhaps best be envisioned as a spectrum of facilities ranging



from a fancy desk=-calculator, to (in some specific areas) an
expert problem sclver.

The system has facilities for indefinite precision integer
and rational number arithmetic and finite field (modular (9))
arithmetic, in addition to the usual floating=point facilities of
a modern digital computer. It has the ability to perform all
elementary operations on multivariate polynomials and rational
functions. It is capable of factoring polynomials, finding their
greatest common divisors, calculating partial fraction
expansions, derivatives and integrals of rational funetions. |t
can perform routine substitutions, transpositicons, etc. It
incorporates the most efficient algorithms available, and may
have several methods for performing a task, providing difrerent
types of efficiency, or efficiency over a wider domain than is
possible with a single method.

As we understand larger classes of functions and oper-
ations, the practical power of the system will be expanded.
Radical expressions (e.g. roots of polynomials) constitute one
class which has been added to MACSYMA by this author., Recent
additions include inequalities, polynomial arithmetic over finite
fields, and power series generation and manipulation.

Further along the spectrum toward an expert imathematician,
we can envision an ideal system as follows. It understands
scientific notations and can be taught special notations. It is

clever at presenting results in easily readable form. It can



understand instructions (e.g. an algorithm presented as an Algol
procedurel) and follow them precisely. |t can learn new riethods
for solving problems, but it already knows how to apply a large
number of procedures (algorithmic and heuristic) which are useful
for solving differential equations or sets of linear equations,
finding indefinite or (improper) definite integrals, limits, etc.
It has large amounts of data (e.g. tables, textbooks, simpli-
fication rules) at its disposal, and can be told to modify them
for particular purposes, It will (if required) save all its
calculations, and keep track of generated data for future
references. It will (if required) provide additional information
(e.g. timing data, intermediate results, procedures used) about
the methods applied to solve the problem. It will work
interactively with the user, or perform long calculations
(correctly) in its "master's" absence. |t understands enough
about the problem domain to detect inconsistencies in its
instructions and will balk at meaningless expressions or
operations (e.g. divison by zero). It can numerically evaluate
expressions and produce plots of functions.

We do not pretend that this view is, in fact, a listing of
sufficient components of a modern algebraic manipulation system,
nor do we claim that any implementation of such features will
model the internal structure of a mathematician., Ile do feel,
however, that the facilities noted above are important goals for

a system like MACSYMA, Furthermore, a reasonable number of these



goals have either been achieved, or are being approached.

MACSYMA is a large hierarchical computer system run in an
interactive, time-shared environment, The real-time response of
such a system is, we believe, necessary if a computer is to
assume the role of a mathematical assistant. The user interacts
with MACSYMA through its supervisor, a program which accepts
character strings In a language resembling Algol=-60. These
character strings are parsed into LISP (33) s-expressions and
passed to the programming language evaluator. This, along with
the general simplifier, forms the heart of the systei. The
supervisor calls upon the rest of the resources of the system In
carrying out the requests of the user,

tiost commands invoke specific command programs which In
turn draw upon the lower level routines to evaluate, process,
simplify, and otherwise produce an answer, which is then returned
to the supervisor, The supervisor displays the answer in a two-
dimensional textbook-like format, and waits for the next user
command, Generally some side effects will also occur, corres-
ponding to the assignment of values to variables, the definition
of programs, the setting of switches affecting future systern
behavior, etc, Uther available side-effects include additional
displays of expressions of interest and X-Y plots of numerical
values. The commands draw on a2 wide range of facilities oriented
about the several data types within MACSYMA. These facilities

include algorithms for setting up and manipulating variable-



dimensioned arrays of symbolic elements, algorithms for
performing definite and indefinite integration, algorithms for
calculating limits of functions of a real variable, algorithms
for the efficient manipulation of power series, polynomials, and
rational functions. Additionally, a subsystem for the intro-
duction of pattern-directed transformations on algebraic expres-
sions is included. Appendix |, The Language and Commands of
MACSYlA, offers specific examples of the forms in which these
facilities are available. At present, the desk-calculator end of
the spectrum is approximated by the facilities in MACSYMA while
the more esoteric components are approximated only in some guite
specific areas. Figure 1,1 indicates, In basic outline, the
present components of MACSYMA and their interdependencies. The

rectangles indicate subsvstems which are still under development.

1.4, Specific Goals of the Thesis

This thesis is primarily a discussion of several
facilities, designed and implemented by the author, which augment
the abilities of [MACsYiMA, and in several cases, provide capabil-
ities unique among current algebraic manipulation systems.
Chapters 2 and 3 are concerned with the engineering of better
algebraic manipulation systems, while chapter b presents the
theoretical basis for some of the slgorithms.

Chapter 2 discusses a user-level semantic matching

capability, as implemented in MACSYMA, This subsystem consti-



compiler. Through this facility a user can specify new infor-
mation and algorithms to the system in a manner which is concise,
general, and straightforward. By simple top-level cormands to
the semantic matching subsysteri, new programs are compiled and
adjoined to the basic structure of the systen,

By taking advantage of the semantic properties of algebraic
expressions, diverse expressions are recognized as occurrences of
the same pattern. For example, a semantic pattern for 'quadratic
in x" matches both 3#x#=*2+L and (x+1)*(x+06).

Patterns are created hy declaring variables to satisfy
predicates, and then coriposing, out of these variables, expres-
sions which serve as templates for the pattern matching process,
Efficiency is achieved by compiling programs corresponding to
each pattern.

Specific examples show how this recognition capability is
used in augimenting simplification rules and in writing algorithms
for the solution of differential equations.

Uther systems with related capabhilities are compared with
regard to their implementations and matching strategies.

Chapter 3 is concerned with expanding the usefulness of
algebraic manipulation svstems by taking advantage of canonical
simplification programs. |In this case we refer specifically to
the rational function and radical canonical form facilities.

First the data types and basic facilities are descrihed, and then

a number of new results are presented. The ease with which these



can be used is a result of a critical design decision that algo-

rithms (regardless of their origin) should be able to interact
easily with the special data types available in MACSYMA. The new
facilities include a routine to solve for a variable in an
equation which is more powerful (in a practical sense) than that
of any other system; programs which are more sophisticated in
their ability to substitute values for sub-expressions which
occur implicitly in a larger expression; and programs, used
extensively for pattern matching, capable of finding "coef-
ficients" (suitably defined) in an expression,

Chapter 4 describes our radical canonical simplification
algorithm. With this, many algorithms can be successfully applied
to larger classes of expressions than had previously been
possible, The theoretical results behind the approach are
developed, and compared to the work of Caviness (5) and others.
The simplification procedure itself is shown to be quite
practical (in contrast to Caviness'), and for many purposes, at
least as useful, Extensions to exponential and logarithmic
situations are pointed out and those which can be implemented at
reasonable cost have been added to the algorithm.

Chapter 5> summarizes the current capabilities, both
theoretical and practical, of computer aids to non-numerical
mathematics, and then discusses research problems which appear at

this moment to be both interesting and important from our point

of view.



The two main appendices serve as documentation for parts of
the MACSYMA system., They are not intended to be complete, since
MACSYMA will be in a continual state of development for at least
several years. Appendix | describes the outward view of some of
the MACSYMA commands. Appendix |l describes the MACSYMA rational
function package in sufficient detail to make its transfer to
other LISP systems simple, The rational function package is of
narticular interest in that it is self-contained, and sufficient
for many polvnomial "erunching'" tasks. |t Includes a number of
particularly efficient algorithms, and may be of interest to
mathematicians who prefer to dispense with the amenities provided

by a total system in order to make more core storage available.
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Chapter 2
The User=Level Semantic llatching Capablility in MACSYMA

2.0 Introduction and Overview

When complex algorithms are coded in an algebraic manipula=-
tion language, it is sometimes advantageous to supplement the
conmand language with a pattern recognition capability. In
effect, a pattern recognition facility simulates the action of a
human mathematician who, by examining the structure of a fornula,
decides on his next step. It is to our advantage to make this
recognition capability relatively independent of the particular
style in which the formula is expressed. In particular, such
details as whether products are distributed over sums or not,
should, in some cases, be irrelevant to the matching process.

Consider the problem of solving linear differential equa-
tions with constant coefficients. Cefore we can apply our
knowledge in any generally useful manner, we must be able to
recognize when a given expression is an equation, a differential
equation, a linear differential equation, and a linear
differential equation with constant coefficients, Because pattern
matching can perform this type of decision-making which might
otherwise require human intervention, it is an important adjunct
to a computer=-aided mathematical laboratory. Often, only when the
computer can recugnize a given pattern and its components, can it

proceed to the next step in processing. Furthermore, pattern-



matching capabilities are essential to building useful additions
to a mathematical laboratory. Through pattern matching, new sim-
plification rules can bhe described, non-standard transformations
can be made, and algorithms extended.

This chapter describes pattern matching facilities desigzned
and implemented by the author for NACSYMA. Comparisons with
other systems with regard to both implementation and strategy are

included, as are many examples.

Patterns can be considered lexical entities, as in SNOBOL
(12). Inside an algebraic manipulation system, such arbitrary
strings of characters, e.g. /A+)(=X*, are rarely useful, The
input=1line editor of MACSYMA and the parser's lexical routines
are the only portions of the system concerned with more-or-less

arbitrary strings of characters.

Patterns can be considered syntactic entities, as in FAMOUS

(16) or AMBIT/S (8). Although syntactic correctness 15 necessary,

it is not sufficient for algebraic expressions to be meaningful,
For example, 0+**0 (using FORTRAN notation) is syntactically
correct, but semantically unclear. A syntactic pattern for
"quadratic in x" would match expressions of the form

axx**2 + bh*x + ¢, but might fail to match the expressions x#=*2
and (x + 1)*(x + B), which are, however, quadratic functions of

K.



Fatterns can be considered semantic entities, given a
suitable context. we will be concerned primarily with the context
and semantics of algebraic expressions., A semantic pattern for
"gquadratic in x" should match 3#+x%+2 + U4 or (x + 1)+(x + Ff), but
should not match a*x**2 + bxx + sin(x), which is not a guadratic

function of x.

The notion of using the semantics of an algebraic expres-
sion requires explanation., Some properties of ordinarv addition
and multiplication can be usefully included in the design of a
program intended to recognize algebraic expressions as instances
of more general patterns, For example, knowledge of the fact
that addition is commutative and has identity 0 and the fact that
multiplication is commutative and has identity 1, clearly
iliproves the probability of finding a mapping between parts of a
pattern and instances of that pattern in an expression.

In addition to these elementary properties, it is particu=
larly useful for us to work with the fact that for any poly-
nomial, P, a unigue form can be derived such that the coefficient
of any variable in P to some integer power can be found. Over a
larger class of expressions, a simplified form will often display
this characteristic of having "obvious" coefficients with respect
to sub-parts of the expression.

We will refer to these, and similar properties of algebraic

expressions as semantic properties. By the use of the semantic



notions already mentioned, a pattern A*X+B might be matched to
the expression X, with A matching 1, and B matching 0.

Additional semantic notions become riore difficult to choose
(and implement in a systemnatic fashion). For example, interpre-
tations involving exponents nust be carefully restricted to avoid
conflict. Thus, if the pattern A*xB is to natch the expression
1, either A is 1 and B is undetermined or 8 is 0 and A is non-
ZBrO. some (somewhat arbitrary) decisions concerning acceptable
values for A and B are necessary. [ACSYMA makes such a decision,
which is described in the first appendix to this chapter.

lie have chosen to implement the arithmetic interpretations
of our matching programs using basically these semantic notions.

A less elaborate interpretation would prevent us from
matching a pattern A*i+B to the expression X, with A matching 1
and B natching 0.

A rore expansive interpretation of the possibilities leads
into difficulties: allowing the coefficient of X**3 in the
expression X**2 to be 1/%Z; allowing 2#*n to match the expression
0 with n matching negative infinity, etec.

The exact limits chosen for any gziven implernentation's
ability to enlarge upon the elemental syntactic statement of a
pattern has been, and will, no doubt, continue to be largely
pragmatic. Furthermore, it is our belief that any attempt to
prodiuce a concise formalism for a pattern matching interpreter is

bound to unnecessarily 1imit the power of the implementation.



Those matching formalisms cannot take advantage of the many
useful, but non-systematic "tricks" which can be cleanly added to
a pattern matching program. Therefore we will continue to take a
pragmatic approach to semantic pattern matching, and try to
reveal the reasoning behind our design features, and the methods
used to implement them.

We will refer to those pattern matching programs with
facilities which take into zccount at least the basic properties
of addition and rultiplication, as semantic.

Historically, Slagle's SAINT (43) and lioses' SIN (35) were
the first demonstrations of a significant application of semantic
pattern matching: Jlarge classes of expressions were mapped into
forms with known integrals. Other, more general applications,
some of which are detailed below, range from adding new opera-
tions and simplifications to an algebraic manipulation systen, to
recognizing and solving special cases of differential equations.

The facilities used for pattern matching by Slagle and
rioses were not user-oriented, By contrast, the programs described
here give the HACSYMA user a powerful and sophisticated semantic
matching capability, and the tools by which he can introduce
these capabilities into the command level of the system and into
his own programs. Of the other algebraic manipulation systems
currently in use, it appears that only Hearn's REDUCE (19) has a
user-level matching facility. REDUCE gives the user (through the

LET command) a limited matching facility which is considerably



restricted in its power hy its emphasis on efficiency. For
example, patterns which are sums are not permitted., FANQUS (16)
and Formula Algol (37), neither of which is currently in use,
provided matching facilities, which (as we shall see in section
8), were syntactic, rather than semantic in approach.

In sections 1 to 4, methods for defining patterns in
MACSYMA are described, largely through examples. Sectlion 5
discusses MACSYHMA's Markov algorithm-style (pattern-replacement)
programming facility. Section 6 considers the problem of
introducing new simplification rules into MACSYMA efficiently and
effectively, Section 7 demonstrates how these techniques can be
used to introduce rules for non-commutative nultiplication. Sec-
tion 8 critically examines the pattern-matching facilities of
SCHATCHEN, REDUCE, FANMOUS, and Formula Algel, and compares them
to MACSYMA's facility. Questions of strategy and implementation
are considered., Section 9 considers applications of pattern
matching to solving differential equations. Section 10 suggests
other areas of usefulness in mathematics and man-machine

communication, These sections are supplemented by appendices to

this chapter: Appendix | contains precise, extended definitions
of the matching procedures; Appendix |l includes an example of a
match progzram as compiled by the system; Appendix 11| considers

the problem of defining classes of expressions over which
matching procedures can he considered effective -- that is, under
what circumstances a pattern match can determine membership in

formally defined classes of algebraic expressions,
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2.1. Predicates and Declarations

An intuitive pattern for a quadratic In x is
A*x*x7 + B*x + C where A, B, and C are pattern variahles which
can match numbers or other expressions free uf the variable x. In
addition, A must not match zero, otherwise linear expressions
would be included in the domain of the pattern.

Clearly we must be able to insist that variables in a pat-
tern have certain characteristics (e.g. are nonzero or are free
of x); that is we nust be able to make the success of g match
dependent on the matched values satisfving predicates.
Predicates (for our purposes) are programs which return either
TRUE or FALSE. In practice, we consider anything other than FALSE
as TRUE. Patterns themselves are predicates since they return
FALSE if applied to a non=matching expression. Predicates can
take any number of arguments (usually at least one) and can be
defined in LISP, (in which MACSYMA itself is written) or In the
HACSYIA programning language, which resembles Algel 60,

FREEUF(X,Y) is a predicate with two arguments, X and Y,
which answers the question, "Does the expression Y depend expli-
citly on the variable R?" Thus FREEOF(A,A**2+B) is FALSE;
FREEUF(A,C+5IN(D)) is TRUE., TRUE(X) is a predicate which is
always TRUE. This is useful because it is convenient to allow
some variables to match anything. |[INT(X) is TRUE when X is an

integzer.



FREEOF, TRUE, and INT are already defined in the standard
MACSYMA system., We might define NONZERO by the program:
NONZERU(X):= IF X=0 THEN FALSE ELSE TRUEU.

The function SIGHUM(X) returns -1, 0 or +1 respectively If
A <0, =0, or X > 0. S5IGNUM, we should note, expands its
argumnent using MACSYMA's rational function routines (see Chapter
3). This produces a form which is canonical over rational func=-
tions (up to the order of the variables) and allows us to
uniquely deternine a sign for the coefficient of the highest
power of the main variable (in the numerator). Thus it knows that
the following expressions are negative: =4, =X, =X =Y, =(1 + X).
Whether X = Y is negative or not depends on which variable (X or
¥Y) the rational function package has been told is the main
variable., It will choose a main variable itself [If necessarvy.

The only expression whose SIGHUM is 0 is 0. Using SIGNUM we
can define:

NEGATIVEPREU(R):= IF SIGNUM(X)=-1 THEN TRUE ELSE FALSECG.

A few more predicates which are used In examples to follow
are:

INRANGE(LOW,HI,VAR) := |F (LOW < VAR) AND (VAR < HI) THEN TRUE
ELSE FALSEG

NONZERUANDFREEOF(X,Y) := IF HONZERO(Y) THEN FREEOF(X,Y) ELSE
FALSEG.
To associate a pattern variable with a predicate, we have

the DECLARE command. It has the form:

UECLARE{name,predicatetgrgl, — ;LEH}}E. (n 2 G)
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For example,
DECLARECA,FREEOF(X)) (s
DECLARECA, INRANGE(H, M) )L
DECLARE(A, TRUE) @

Hote that the last argument of each predicate is missing
from the declaration. The value matching the declared variable
will serve as the final actual argument. Thus if A were declared
WUNLZERU and an attempt were made to match A with X#*2 + 3, then
WUNZERO(X#*+*2 + 3) would be evaluated., Since the result would be
TRUE, the match would be successful, and A would be assigned the
value A**2 + 3,

The binding times of the arguments to DECLARE must be
clarified. The first argument is not evaluated; thus
DECLARE(A,..) affects the declaration of A, even if the value of
A is B+ 2, The second (predicate) argument to DECLARE is
treated as an undefined function: if we were to change the
definition of INRANGE to some other function of three argurients,
it would not be necessary to redeclare A, The extra arzuments to
the predicate {gggl, «+s, 2rg,) are bound at the time the
predicate is applied. Thus if A were declared to be FREEOF(X),
and the value of X at some later time were I, an attempt to match
A current with that assignment would invoke a test to see if the

potential match for A vere dependent on Z.




2.2, Hatch Definitions

The DEFMATCH command defines a new program (a predicate)
which will succeed only if a particular semantic pattern is

matched., The DEFMATCH command has the forr:

UEFMATCH(programname, pattern, gatteruvgrl, e Datternvarn}g
{n 2> D),

For example,
DEFMATCH(LINEAR, AxX + B , X))
DEFMATCH(F3, X+ 3 + F(X,Y,5), Y)i
DEFMATCH(CUSS P, COS(N=PI) )@

These examples will have different interpretations
depending on the declarations (or lack of declarations) for
A,B,A,N, and F, The result in each case will be a program with
name programngme (e.g. LINEAR, F3, COSSI11P) which will test to
see if the pattern pattern (i.e, A*X + B, etc.) can be applied to
its first argument. The program will have n additional arguments,
corresponding to the patternvars,

During the execution of these resulting programs,
undeclared variables (i.e,, those variables not appearing as the
first argument in a DECLARE command) in the pattern are lambda-
bound to the values in the program invocation if their names are
amongz those variables listed in the DEFMATCH cormand. Variables
not listed among the pagtternvar 's are bound to their values in

i
the environment at execution time. At the successful conclusion



- 33 -

of a match, declared variables will be assigned the values that
they match, and a list of the associations of variables and their
values is returned.

An extended example should clarify this. The lines labelled
Ci are typed by the user, the lines labelled Ui are typed by the
computer, Lines terminated by a $ suppress printing of the
result. Lines terminated by an € result in a computer generated
display of the answer.
(C1) DECLARE(A, NONZERUANDFREEOF(X))S$

(C2) DECLARE(B,FREECF(X))$
(C3) DEFMATCH(LINEAR,A*x+B,X)C

(D3) LINEAR

(C4) LINEAR(3*Y+4,Y)@

(DL) (B = 4,A=3,%=Y)
(C5) LINEAR(Z#*Y+L+X,Y)@

(D5) (B = X + 4,A =12, X =Y)

i

At this point the value of A is Z, the value of B is ¥ + 4,
|f the value of X previous to line C5 had been 4, the answer
would have been (B = 8,A =2, %X = Y).

The X on line U4 is a completely separate entity from the X
on line €5, in that the first [s like a formal parameter to a
subroutine, and the latter is a global variable with the same
haiie. This distinction should be apparent on line D5,

The patternvar's may appear in the declarations also.

Thus:

(C6) DECLAREC(A, INRAHNGE(N,HM) )%
(C7) DEFMATCH(BETWEEN,A,N, M)
A
15

THE PATTERN

(C8) BETWEEN(5,1,6)U
(D8) (A = 5,H = 1,M = 6)
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The message following line C7 is from the UEFMATCH
compiler, indicating that it had evaluated A to see if perhaps
A's value was the intended pattern, In this case, the value of A
was A, thus the message, "A |15 THE PATTERN" is printed. The
pattern in the DEFMATCH command is generally not evaluated, since
this (with its substitution of values for variables) tends to
imiake patterns disappear. However, if (as in this example) the

attern is an "atom," or single variable, then it is evaluated.
This allows a user to corpose an elaborate pattern, sav as a
result of a computation, and then give its name to the DEFMATCH
comriand, rather than having to type it in all at once, If A had
had the value 5 + b4, the essage "B + L4 |5 THE PATTERN" would
have been printed.

iow that we have shown how pattern prograns are defined, we
can clarify the use of the predicate TRUE. Recall that declaring
A to be TRUE means that A in a pattern will match anything
occupying the appropriate position in the expression. Thus
(C9) UECLARE(A,TRUE)S
(C10) DECLAKE(B,TRUE)}S
(C11l) DEFMATCH(G,A*X+B*Y)s3
(C12) G(3*x+1*Y+d*X)

(D12) (6 = 1,A=dJ + 3)

This illustrates another principle in matching patterns.

1f A is undeclared and pnot a pattern variable, A In g pattern

will match only A's current value. (If A has no value, then

MACSYMA provides "A" for the value of A. As a special case,

constants match only themselves.)




2.3, Selectors

Sometimes it is not sufficient to find out whether or not a
predicate succeeds on a given argument. Sometimes we wish to not
only test, but separate components of a pattern which in ordinary
circumstances would remain indivisible. \le wish to permit a
special form of predicate which (1) confirms that a subexpression
satisfies a predicate, and then (2) hands back to the pattern
program rore information than just "the predicate succeeded." \le
will call such programs, when used in the place of predicates,
seleciors. The selectors that are of the greatest interest to us
here always "succeed" in one form or another, hut in so doing,
return @ particular part of the expression which is being
matched. Aiding us in this venture is the convention that any
result which is not "FALSE" is true,

Consider the predicate INTEGER. It returns TRUE when
applied to an integer. A corresponding predefined selector,
WHULE, returns only the integer part of a number. Another
selector, FRACTIUNPART, might be defined:

FRACTIONPART(X)

]

A = WHOLE(X)S
It would then have to be designated a selector by:

SELECTOR(CFRACTIONPART) S.
A dialogue would look like this:

FRACTIGHPART(X) := X = WHOLE(X)S
SELECTOR(FRACTIONPART) S
DECLARE(A,WHOLE) S

DECLARE(G ,FRACTICNPART)S

B g
o000
Ry
[T N



(C5) DEFHATCH(SEPARATE, A + B)S$

B
MATCHES ALL IH
B + A

(CB)SEPARATE(5/2)¢

(DG) (A= 2,B==)

= 1 -

The rnessage following line C5 would normally indicate an
error. Here it signifies that B's predicate (or selector) will be
applied to what is left after A's predicate (or selector) is
applied, Here, this is what is intended, but note that if both A
and 8 had only predicates, SEPARATE would match one of them to 0
in every case. The following caution should be observed: if a
selector is used, a complementary selector should generally be
used with it, since, for exanple,

(C7) DEFMATCH(F3,A)S

?5 THE PATTERH

(C8) F3(5/2)C

(D8) (A = 2)

results. The "fractionpart" has (perhaps unintentionally) been
discarded.

Another selector provided by MACSYMA is NUMFACTOR, which
selects the numerical factor from a product (or 1, otherwise). A

complementary selector, OTHERFACTOR might be defined by

OTHERFACTOR(X) := X/HUMFACTOR(X)S



_3?_
Other selectors provide facilities for picking out items in
a sum or product one by one. The notion of "extractor" in Formula
Algol is weaker than this, in that extractors can only he used to
attach labels to syntactically distinguishable subexpressions,
Thus the numerator of a fraction can be labelled through
"extraction" but the "whole part" of a ratio of two numbers

cannot be labelled through Formula Algol,.

2.4, More lMatch Details

(wh ]

Patterns can be more complicated. For example, with A and

declared TRUE, the pattern 3%*A + Bx*L will match

we*l + JZexz with A=z , B =w
wr*l + 1] with A=0, B =w
Fxxyz with A=2z, 0 =20
3 with A=1, 06 =20
1 with A=0, B = 0.

The expression 10, (which is 3##%2 + 1**4) will not match.
The exact limitations of the exponentiation treatment are

described in this chapter's Appendix |.

Anvy rn, or part of a ttern, P which is entirely free
of variables which are declared and as vet unmatched will match

any expression E such that (when all free variables are given
their assigned values) E - P = 0. To some extent this type of
match depends on what algorithm is used to simplify the result of

the subtraction. Ordinarily the MACSYHA simplifier is used, but
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rational simplification (see Chapter 3) is used when coefficients
are being picked off, since expansion is often needed to produce
proper results. We feel this is very important if we are to abide
by our belief that the semantics of the expression, rather than

the syntax, is the important aspect to nodael in pattern matching.

Thus the following dialogue is possible:

(Cl) UECLARE(A,NONZEROANDFREEOF(X))s

(C2) UECLARE(B,FREEOF(®))s

(C3) UVECLARE(C,FREEOF(X))S

(Ch) DEFMATCH(QUAD,A*X=+2 + B*X + C , n)%
(C5) UUAD(C(Z+1)=(Z+2),Z).

(D5) (C = 2,B = 3,A=1,%=Z)

Rational simplification tust be used to compute (Z+1)*(Z+2) -
(Z#%2+3x7+2), to convince ((UAD that the match has succeeded. This
is the only effective method at our disposal if we wish to
implement such matches as C5, The additional rational simpli-
fication is not particularly inefficient, since the coefficient
routines described in Chapter 3 have already converted the
expression to a canonical rational form.

DEFMATCH has produced in QUAD a program which operates ss
follows. QUAD(E,X)

a. Picks out the coefficient of X#**2 in E, and if the coefficient
is free of X and non-zero, assigns it to A, otherwise returns
FALSE.

b. Sets E to E = AxXxx]

c. Picks out the coefficient of X in E, and if the coefficient is
free of X, assigns it to b, otherwise returns FALSE.

d. Sets E to E = BxX

e. |If E is free of X, assigns E to C and returns a list of the
values A, L, and C, otherwise returns FALSE.
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Implicit in this algorithm are several basic principles of

seniantic pattern matching. For example, line (C5) above demon-

strates that coefficients in an expression should be extracted
se i ly (i.e. the coefficient of Z rmust be extracted using

the semantics of the operators + and =),

(C6) QUAD(3*X**2+4,X)@
(D6) (C=3,B6=0,A=3)

Line (C6) demonstrates that summands in the pattern which
gre missing in the expression are matched with 0. This is what
happened to the term B*X in the WAD pattern. Furthermore, 1f a
product is matched with 0, one of its factors must match 0. Thus
for B*A to match 0, B must mateh 0.

(C7) QUAD(X**2+3xX+4,X)(

(D7) (C= 4B = 3, A= 1)
That is, factors in the pattern which are missing in the expres-

sion gre matghed with 1. This assigns to A the value 1,

Since DEFHATCH actually produces short programs (e.g.
WUAD), the matching programs may be compiled by a LISP compiler
into machine code for Increased speed. The program, QUAD, pro-
duced above, is shown in this chapter's Appendix 11,

To help prevent the user from asking for ambiguous matches
(where they can be detected), the match compiler used by DEFMATCH
has a number of warning messages., Generally they indicate points
where there is a likelihood that the user has submitted a pattern

which is ambiguous, or could be more suitably constructed for
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optimal matching. In general, patterns should be expanded so that
the full freedom of commutative operators can be exploited. The
pattern x**2-y**2 will match a wider range of expressions than
the pattern (x+y)*(x-y)., The latter will match only expressions
which are the product of two sums of the specific syntactic form
used., This asymiaetry with respect to patterns and expressions
{the expressions x*=:i-y**2 and (x+vy)*(x=-y) will be treated
identically by most pattern programs) is a consequence of the
fact that it is far easier to multiply out sums and pick out
coefficients, than It Is to factor polynomials., We allow either
pattern however, since it is possible that the latter, strictly
syntactic match (like those available in Formula Algol or FANMOUS)
might be of some use anvway.

Since backing up (i.e.,, abandoning assignments of values
and trying new ones) is not done in the matching process, the
user should consider whether his intentions will be properly
represented. While a back=-up algorithm could have been adopted,
the potentially great increase in cost, combined with no
assurance that the user would be happy anyway, make such an
approach somewhat unattractive., (It should ve said, however,
that in cases where heuristics and back-up are part of the
processing itself, as in early stages of SIN (35) it may be
convenient to use the pattern matching program for the basis of
heuristics.) There is the further argument that pattern-rmatch

problems can be easily constructed which are undecidable (in the
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Turing-Church sense), so back-up will not solve all our prohlems,
SCHATCHEN uses back-up; back-up is expensive, and as is demon-
strated by the examples in this paper, the lack of back-up is

often not even noticed., This is discussed further In section g.

An example which demonstrates how backing-up might be
implied by a pattern follows:
(C1l) DECLARE(A,TRUE)S
(C2) DECLARE(B,FREEOF(Y))3
(C3) DEFMATCH(NEEDBACKUF, SIN(AI+SIN(B))S
(C4) NEEDBACKUP(SIN(X)+SIN(Y))s

The final line may match with (A =Y, B = X); but, if A =X
is tried first (succeeding), and then B = Y is attempted, the
pattern will fail.

Une method of circumventing this difficulty is as follows:
(RETLIST returns its argument list as a sequence of equations,
"." is the assignment operator, and [] is used to enclose a list

consisting of local (i.e., "dummy") variables within a BLOCK.)

(C1l) DECLARE(A,TRUE)S
(C2) DECLARE(B,TRUE)S
(C3) DEFMATCH(PAT,SINCA)+SIN(B))S
(CL4) DOESBACKUP(Z):=IF PAT(Z)=FALSE THEN FALSE
ELSE |F FREEUF(Y,B) THEN RETLIST(A,B)
ELSE BLOCK ([TEMP],
TEMP: A,
A:B,
B: TEMP,
RETLIST(A,B))S

The purpose of the fancy ELSF clause in Ck is to reverse the
assignment of values to A and B in the returned list. Thus, while

a cunscious design decision was made to prevent back-up, the
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possibility of simulating it, when necessary, is available.

The fact that we insist on completely directed or
"anchored" (12) searches in a pattern is both a strength and a
weakness., Sore patterns are inherently ambiguous, and all
possible types of matches must be explored, This is the case in
symbolic integration, |f such ambiguous patterns are the rule,
rather than the exception, we would be seriously inconvenienced

by having to simulate back-up (as above), in every case.

Arbitrary n-ary functions may be used in a pattern, as iIs
illustrated below:
(Cl) UDECLARE(F,TRUE)s
(C2) DECLARE(X,TRUE)s
{(C3) DECLARE(Y,TRUE)3
(C4) DEFMATCH(F2,F(X,Y))s
(C5) F2(POINT(3,4))¢
{D5) (Y = 4,X = 3,F = POINT)
It is also possible to execute
(CG) F2(W+4)
(DG) (Y = W, = 4,F = MPLUS)
This gives a facility for explicitly matching operators,
if, for example, F is declared to match only IPLUS. This facility

could be used to simulate simpler styles of pattern matching

which are completely syntax based.
2.5. Markov Algorithms

Users of a mathematical laboratory may find that certain
algorithins lend themselves to an organization based on the llarkov

algorithm formalism: a 1ist of rules, each consisting of a
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pattern=-replacement pair is applied to an expression. FAMOUS
(16), PANON=IB (7), AMBIT/S (8), Formula Algol (37), and SNOBOL
(12), among others, are based on such a formalism. In order to
allow MACSYMA algorithms to be written in such a style, a command
to define rules, DEFRULE, is provided, along with sequencing

algorithms. The form of the DEFRULE command is:
DEFRULE(rulename,pattern,replgcement)@.

If the rule named rulename is applied to an expression (by
one of the APPLY programs below), every suhexpression matching
the pattern will be replaced by the replacement. A1l variables in
the replacement which have heen assigned values by the pattern
match are assigned those values In the replacement which is then
simplified. The rules themselves can be treated as programs which
will transform an expression by one operation of pattern-match
and replacement. |If the pattern fails, the value of the rule Is

FALSE.

2.5.1 Applying Rules

Each of the programs described in this section applies its
rules to the expression indicated by its first argument,
recursively on that expression and its subexpressions, from the
top down.

APPLY1(e,r,, Lzrlillznj applies the first rule, r,, to the
expression g until it fails, and then recursivelv applies the

same rule to the subexpressions of that expression, left-to-
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right, until the first rule has failed on all subexpressions.
Then the second rule is applied in the same fashion. When the
final rule fails on the final subexpression, the application is
finished.

APPLY2(e, L1‘£z"“’£h} differs from APPLY1l in that if the
first rule, r fails on a given subexpression, then the second is
applied, etc. Unly If they all fail on a given subexpression is
the whole set of rules applied to the next subexpression. |f one
of the rules succeeds, then the same subexpression is repro-
cessed, starting with the first rule.

APPLY1 corresponds to Formula Algol's (23), (37) one=by=one
sequencing mode, and APPLY2 corresponds to its parallel
sequencing mode (with the inessential difference that Formula
Algol processes from right to left).

Thus if R1, R2, R3, and R4 are rules defined by DEFRULE, a
program might be written using them as follows:

PROGRAM(X) :=APPLY1(APPLY2(X,R3,R4),R1,R2)%
and the Markov=style algorithm represented by PROGRAM could be
executed on the expression Y by

Z: PROGRAM(Y) @

2.5.2 An Example

Here is an example of using rules to alter an expression.
The symbol S is used as an abbreviation for ez, RATSIMP (see
Chapter 3) expands an expression into a ratio of polvnomials and

cancels common factors, and the symbol % always denotes the most
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recently displaved expression.

(Cl) DEFRULE(R1,SECH(Z),1/COSH(Z))S$

(C2) DEFRULE(R2,TANH(Z),SINH(Z)/COSH(Z))$
(C3) DEFRULE(R3,SINH(Z),(S-1/58)/2)s

(CL) DEFRULE(RL,CUSH(Z),(5+1/5)/2)%

(C5) SECH(Z)**2+TANH(Z)*=*2(

2 2

(D5) TANH(Z) + SECH(Z)

(C6) APPLY1(%,R1,R2,R3,RL)C

2

1

(S5 = =)

I 3
(DB) mmmmmee- $ mmmmm—ee
2 2

1 1

(s + =) (S + =)

3 3

(C7) RATSIMP(%)E
(D7) 1

2.6, Advising the Simplifier

When the user of a system like MACSYMA introduces new func-
tions or uses old functions in a way that is unfamiliar to the
system, he may find himself battling certain "built-in" aspects
of MACSYMA.

On one hand, he may find that the SIMPLIFY program does not
simplify expressions the way he wants it to. While he can work at
odds with the simplifier to some extent by using Markov-style
algorithms on his data, the global and all=pervasive influence of
the simplifier must sometimes be modified. Although the user

could just turn off the simplifier, this solution is probably not



very useful., The chances are that he still wants the simplifier
to work on most of the expression under consideration, but not on
some particular part in some particular fashion.

Un the other hand, he may find that the SIMPLIFY program is
just ignorant of functions of interest to him. For example, a
user may wish to see SINH(0) replaced by 0 whenever it occurs,
especially if it occurs inside a calculation. He may also wish
to tell the simplifier that X**N is 0 for N greater than some
number M, This, in effect, allows one to truncate while doing
arithmetic on power series.

For these reasons, an advising facility, similar in certain
respects to Teitelman's ADVISE (4b4) has been implemented. There
are two commands to advise the simplifier: TELLSIMP, and

TELLSIMPAFTER. They have the following forms:

TELLS IMP( rn, replacement)@
TELLSIMPAFTER(pattern, replacement)

The arguments are similar to those of DEFRULE, but the
pattern must conform to certain restrictions described below.

TELLSIMP analyzes the pattern, and if it is either a sum, a
product, or an atom (i.e. a single variable name or a number) it
will complain. Sums and products are excluded by TELLSIMP because
of the interdependence of the simplifier and the matching pro-
grams in this implementation. TELLSIMPAFTER, discussed at the

end of this section, has no such restriction.
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The exception for atomic variables is necessary because the
advice is stored on the property list of operators, where
SIMPLIFY looks for it. SIMPLIFY does not look on the property
list of variables for simplification advice. This restriction,
however, is hardly important, since setting a variable to its
"simplified" form will give the same effect.

The simplification of sums and products should probably be
attacked in ways other than through TELLSIMP gor TELLSIMPAFTER.

It is simple (but somewhat naive) to suggest that (sin x)#*#2 +
(cos x)**2 == 1 be told to the simplifier as TELLSIMP
(SIN(X)**2,1-COS(X)**2); what is really needed is a facility that
demands the presence of both sines and cosines, and removes them
in appropriate circumstances. All the above rule does is remove
sines in favor of cosines, sometimes.
TELLSIMPAFTER(SIN(X)**2+C0S(X)**2,1), although a legal command,
does far less that the user mavy think., For example, it leaves out
the possibility of a third term in the sum (e.g..,
5+sin(y)**2+cos(y)*+*2), it does not back up (e.g.,
sin(y)**2+cos(2*y)**2+sin(2%y)#**2) and it does not detect
instances of the pattern implicit in such constructions as
sin(y)**4+2xsin(y)**2+cos(y)**2+cos(y)**4, While patterns may be
constructed for some of these expressions, it is our opinion that
such substitutions as sin(x)**2+cos(x)**2 ==> 1 require much
stronger methods than pattern matching. Methods for doing such

simplifications effectively are available in the rational



substitution facility of MACSYMA described in chapter 3. In it
the approach used by REDUCE to handle products (17, p. 8), is
implemented, but is extended to deal with sums also.

TELLSIMP piles new advice on top of old advice, but old
advice is still accessible if the new advice is not appropriate
(il.e. the pattern fails). This is exhibited in the following
example,

(Cl) cos(Pl)@
(D1) COS(PI)
(C2) TELLSIMP(COS(PI),=-1)0@

-1

IS THE REPLACEMENT

{D2) COS
{(C3) CUS(PI)U

{0D3) N
{CL) COS(=Pl)d

(D4) cos( - PI)
(C5) MPRED(X):=IF (SIGNUNM(X)==1)THEN TRUE ELSE FALSES
(C6) DECLARE(M,MPRED)S

(C7) TELLSIMP(COS(M),COS(=H))s
(C8) COsS(=Pl)A

({D8) e 23
{(C9) COS(5+PI1)d

(D9) cos(s Pl

(C10) DECLARE(N, INTEGER)S

(C11) TELLSIMP(COS(N=P1), (=1)%=xN)S
(C1l2) COS(S5*Pl)id

(D12) -3

(C13) CcCOsS(=-6)0
(D13) cos(6)



The dialogue above shows (D1) that the simplifier (at that
time) did not know the rules about pi (=3,1415+). If we tell It
that the cosine of pi is =1, it can (D3) simplify COS(Pl) to -1.
Line (D4) demonstrates that the simplifier did not know about
cosine being symmetric about 0., Lines (C5)-(C7) add this bit of
information, as evidenced by line (D8). Line (Cll), which makes
superfluous the advice of (C2), but not of (C7), adds the capa-
bilities shown in (D12). (C13) shows that the old advice is still
accessible.

One of these rules happens to coincide with a "built=in"
simplification COS(8) = 1, since N*Pl for N=0 matches 0;
however, since the answer will be (=1)**0, the ordinary operation
of the simplifier underneath will not be affected. (System-
defined simplifications will be tried, but only if none of the
advice is applicable. Note that if any of the advice is
applicable, the replacement part of the advice will have already
triggered a further simplication, if such is possible.)

TELLS IMPAFTER is similar to TELLSIMP except that new rules
are placed after old rules and "built=in" simplifications.
Because of this, TELLSIMPAFTER cannot be used to drastically
alter the action of the simplifer, whose "built-in" simplifica=-
tions take precedence. On the other hand, these restrictions make
it possible to apply TELLSIMPAFTER to sums and products.

TELLSIMPAFTER should be used on "built-in" operators

whenever possible, since such rules will be applied only if the



same operator is still the lead operator after the previous sjim-
plification has been performed. If the lead operator has been
changed, all "after" rules are bypassed, producing faster opera-
tion.

2.7, Hon-Commutative Multiplication

At this time, a standard non=-commutative multiplication
simplification program is not generally included in MACSYMA.
There are several different programs available, but it may be the
case that none of them does exactly what is required in a given
problem area. This section describes how one might add a fairly
extensive hand-tailored facility by using the TELLSIMP commands.
The group operation, represented by a period (.), is allowed by
the parser in anticipation of the time when an efficient non-
comautative multiplication scheme is programmed in LISP, (Since
the same symbol is used to denote the decimal point of a floating
point number, extra parentheses may sometimes be regquired to
avoid misinterpretation.)

Telling the simplifier about non=-commutative multiplication
requires a bit of knowledge of the internal representation. The
input A.B is parsed to ((MCTIMES) $A $B), that is, a prefix
representation (although with certain peculiarities of no
importance to this discussion), The fact that MCTIMES is a binary
operator rather than a "vari-ary" operator will complicate mat-

ters somewhat. We will abbreviate ({(MCTIMES) $A $B) as (. A B).



The input A.B.C or (A.B).C Is parsed to (. (. A B) C), but
A.(B.C) is parsed to (. A(, B C)). Clearly one of the first jobs
of the "MCTIMES" simplifier is to transform the second structure
into the first. To do this (in effect, telling the simplifier
about the associative law), we
DECLARE(A,TRUE)S
DECLARE(B,TRUE)S
DECLARE(C, TRUE)S
TELLSIMPCA.(B.C),(A.B).C)S

As an example of how this operates, consider (A.B).(C.D).
This is parsed to (. (. A B)(. C D)) which is then simplified to
(.(.(. AB) C) D). Since the simplifier is recursive, any depth
of forced nesting is untangled.

Any time two identical elements are adjacent, we want to
combine them. That is, A.A = A ; more generally, A .A = A
Since our pattern matcher is clever enough to recognize A as an
occurrence of A , this one pattern would suffice, but for one
difficulty: although A.A is parsed to (. A A), B.A.A is parsed to
(. (. B A) A). These two situations differ sufficiently with
respect to adjacency of the A's so as to require the two patterns
below,

DECLARE(N,TRUE) S

DECLARE(M, TRUE) S
TELLSIMPC(A*=11) , (A**N) , A*=(M+N))$§
TELLSIMP(B.(A**1), (A*x*N) ,B.A*=x(M+N))$

Let us dencote the inverse of A by INV(A), and the identity

by 1. We might then have



TELLSIMPCINV(1),1)$
TELLSIMPCINVCINVIA))

JANS
TELLSIMPCIHV(A.B), INV(B)

INV(A))S

Recall that these pieces of advice are placed on the pro-
perty list of the function INV, and so are independent of the
previous bits of advice, which are on the property list of ".".

Another piece of advice which will be needed goes on the
property list of "#=x" -- this time, after other simplifications
have been made:
TELLSIMPAFTERCINV(A)=*N, INV{Ax*N))S

The major fact concerning inverses is their "cancellation"

property., That is, A.INV(A) = INV(A).A = 1. To automate this, let

us consider the more general situation, {ﬁn).lﬂvtﬁmj - AJ *!NV(Ak}
where at least one of j or k is 0.

Let us define MONUS(N,M), which will compute i and k:
MONUS(N,M):= IF N>M THEN N-M ELSE 0%
and INVPROG(A,H,M) which will compute the right hand side of the

above reduction formula.

INVPROG(A, N, M) 2= A*+«MONUS(N,M)*INV(A*+*MONUS(M,N) )5
Thus:

TELLSIMPL(A==N) [NV {A*==[1), INVPROG(CA, N, M))S
TELLSIMPCINV(A**M) , (A**i), INVPROG(A,N,M))$
TELLSIMP(B. (A*x*N) , INV(A**M) ,B, INVPROG(A,N,I4))
TELLSIMP(B. INV(A*=M), (A==N) ,B, INVPROG(A, N, M) )

Finally,
DECLARE(N, INTEGER) $

TELLSIMP(N.A,N*A)S
TELLSIMP(ALN,N*A)S



zives us such useful notions as left and right zeros, identities,
and nultiplication by scalars. |t may appear that we have left
out some items, for example,

TELLSIMP(A*=*0,1)%

TELLSIMPCINV(A)Y*=0,1)%

TELLSIMPCL.A,A)S

but this is not so, Since 1.A will be converted to 1*A, which
will be simplified to A, the last rule is unnecessary. Since A*=*Q
will (unless we tell the simplifier otherwise) always result In
1, the other two are also unneeded,

As examples of how this new simplifier operates,
X.lWV({X)**x2 is simplified to INV(X), and A.B.(B**3).C.INV(C) is
simplified to A.B**4, This last example used about .7 seconds of
machine time when the simplification rules were in uncompiled
LISP (on a PUP-10 computer using 2.75 microsecond cvecle tine
memory), and when compiled by the LISP compiler, about .05 sec,.

2.8. Comparisons with SCHATCHEN, FAMOUS,
REDUCE, Formula Algol

SCHATCHEN (35), Moses' natching program is similar to our
matching program in many respects. However, there are significant
differences, both in implementation and in philosophy, between
the two systems,

SCHATCHEN demands patterns in a form resembling the
internal form for expressions. It uses controls (called rnodes) on
the pattern match to direct its highly recursive matching pro-

cesses. Uur "straight-1ine" matching programs preserve some, but



not all, of the aspects of the mode facility.
A SCHATCHEN pattern corresponding to the intuitive notion

of "quadratic in x'" discussed in section 4 ls:

(QUOTE
(PLUS
(COEFFPT
(A
(FUNCTION
(LAMBDA (Y) (AND (FREE Y (QUOTE X))
(NOT CEQUAL Y n))))))
(EXPT X 2))

(COEFFPT
(B (FUNCTION (LAMBDA (Y)

(FREE Y (QUOTE X)))))
X)

(COEFFP
(C
(FUNCTION (LAMBDA (Y)
CEREE Y
(QUOTE X))

This is not in the best possible form for SCHATCHEN, but it
serves to illustrate several points., First, the pattern is

written as a LISP S-expression which, upon close examination, has

most of the components of a prefix representation of the

"
dlgebraic expression AX +BX+C. Second, there are a nurmber of

extra notations in the pattern, some of which clearly depend on
LISP's version of the lambda-calculus. A less obvious point is
that the pattern implies an ordering on the subtasks required to
matech it to an expression.

There are two modes, COEFFPT and COEFFP, used in this
pattern. They stand for "coefficient in plus and times'" and

"coefficient in plus" respectively, and their uses are best



described through an example.

2 2
Consider the quadratic, Q = 2X + ¥YX + 3 + Z., There are

2 2
two terms involving X . For the pattern AX + BX + C to match Q,

A must match 2 + Y, This is indicated to SCHATCHEN by using the
indicator COEFFPT. This modifies the action taken to match A by

2
causing SCHATCHEN to traverse Q looking for coefficients of

and assigning to A the simplified sum of those cocefficients,
Similarly, by matching B with mode COEFFPT, B is assigned the
simplified sum of the coefficients of X (or is assigned zero if

there are no coefficients, as is the case for Q).

SCHATCHEN requires that C in the quadratic pattern be
matched using the mode COEFFP (that is, '"coefficient in plus") so
that in Q, C will match Z + 3, and not just one term (e.g. Z or

2
-5 Since AX and BX have been previously deleted from the ex-

pression by the matching procedure, C (by virtue of its being
indicated a COEFFP) will match what is left in the sum, namely Z
t 5.

SCHATCHEN also provides opportunities to apply predicates
to A, B, and C; in this case they each are checked to make sure
they are free of X. A is also checked to assure it is nonzero.

Compared to the relatively casual definition of QUADRATIC
in section L4, using these controls requires a high level of
awareness on the part of the user, both of the representation of

data, and the operation of SCHATCHEN. This burden of awareness is



considerable. However, SCHATCHEN matches differ from the matches
done here in a more fundamental sense, We find a particular
subexpression and apply a predicate., |f the predicate fails, the
match fails, In a similar situation, SCHATCHEN will try to find
another subexpression which matches the subpattern, which might
satisfy the predicate. The match fails only if this exhaustive
search fails to find any subexpression matching (and satisfving)
the subpattern,

This difference, which would seem to indicate that
SCHATCHEW is more powerful, is somewhat deceptive. We use more
powerful tools to find an appropriate place to apply a predicate,
and then apply it only once. (The coefficient-finding routine we

2
use can find that the coefficient in (2x)(3x+1) of x 1Is B6;

SCHATCHEN would fail to notice this.) There is an increase in ef-
ficiency since the programs produced by the match compiler are
"straight-line" code, and apply predicates (assuming success)
only as many times as there are distinct variables in the pat-
tern. In case the pattern fails, fewer predicates are applied.
The number of times SCHATCHEN applies its predicates is much rore
dependent on the expression. While SCHATCHEN has certain tvpes of
iterative facilities within a single pattern, the prograrmming
language facility in MACSYMA can supply sorie of the same
iterative machinery, as in section 5,

There are some instances where SCHATCHEN is undeniably more

thorough (within the scope of a single pattern): iIf the pattern



B
is A and the expression is 1, elther B matching 0 or (B's

predicate failing) A matching 1 will cause the pattern to
succeed. We insist that A match 1 and B match 0.

TELLSIMP gives essentially all the power of FAMOUS for
flexibly altering an algebraic simplifier, vet allows one to have
a quite competent ''fall-back" facility. While using TELLSIMP
excessively on commonly used operators might make the system run
as slowly as did FAMOUS, it is unlikely that that point will be
reached either frequently or quickly. Using TELLSIMP on new func-
tions (e.g. SINH) does not affect the speed of the simplifier on
old functions. The technigue of compiling rules achieves a modest
level of efficiency; using the LISP compiler further speeds up
processing., Of course, advice requiring much computation {(e.g.,
replace INV(A) where A is a2 square matrix, by its computed
inverse) will slow up the simplifier In direct proportion to the
length of the computation, and how often it is done, Easy advice,
in this user's experience, has not caused a noticeable change in
system response. More precise measurements can be made, of
course, but very little unnecessary system degradation Is
introduced by the particular techniques used., (Some timing data
appeared at the end of section 7). Furthermore, the TELLSIMPAFTER
facility, potentially far more efficient than a last-in first-out
rule organization, is available,

It is clear that flexible pattern matching results in an

enormous decrease in the number of rules required to achieve a3
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given match, Consider the rules that would be required to define
""quadratic in x" in a purely syntactic manner, as in FAMOUS or

Formula Algol:

xEk* 7 EES €

xexd + x gExe*I + x

xkx? + hwx axxx*? + hww
Xx*x? + ¢ a*x*%x2 + ¢

XKx®7 + % + arx**7 + x +
Xxx%2 4+ h*x + arx**? 4+ hxx + ¢

This also assumes

(1) + and * are commutative with respect to the match;
(2) a, b, and ¢ may be declared free of x;

(3) a, b, and ¢ may each match more than one term;

and (k) the minus sign is not a separate operator,

This is not meant to imply, however, that restricted stvles
of matching are never appropriate. By using restricted matches,
Fenichel was able to justify his contention that arbitrary and
precisely specified algorithms could be constructed in FAMOUS .
ltturiaga (23) used similar techniques in Formula Algol to pro-
duce somewhat more practical results, but the syntactic {rather
than semantic) nature of Formula Algol pattern matching prevented
the tackling of difficult problems in a natural fashion. FAMGUS
and Formula Aigol insist that expressions look very nearly 1ike
the pattern which is used to match against them., Fenichel's
"super-match" proposal, implemented in (32), changes each single
pattern into a large humber of similar patterns by trans-

formations of commutative operators (etc.i. This is scarcely an
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improvement in efficiency, and appears to be useful only as a
shorthand in writing out long rule sets. By contrast, our
semantic approach can match quadratics which do not resemble any
of the above twelve forms.

Dependence on local syntactic transformations, another
major thread in FAMOUS, has serious implications relative to ef-
ficiency. For example, the ad hoc treatment of "logsum" ((16)
page 42) was necessary because local information, in some cases,
has to be propagated outside of its immediate vicinity. (The
logsum device separated sums into logarithmic terms and non=
logarithmic terms., |f the sum occurred in an exponent, the log

(x+logly)) ®
term became 2 coefficient of the base. Thus e ==3y @

| f the sum was not in an exponent, a great deal of time

has been wasted.) Waste of this sort is avoided by MACSYMA (and
no doubt in other algebraic manipulation systems not tied down to
local syntactic transformations) by considering such analyses in

a top-down fashion. This provides sufficient global context to
distinguish sums occurring In exponents from sums cccurring
outside exponents.

To the concept of spatial or syntactic adjacency must be
added the concept of adjacency along semantic dimensions. For
example, if the properties of an exponent are adjacent to its
base, then an efficient local "logsum" device might be
constructed, In the expression f + g + h, it is clear that f and

h should be considered just as adjacent as f and g. What is less
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clear is how one might note that f and g, being integer-valued
functions, make them adjacent along a semantic dimension,

MACSYMA allows information to be stored at operator nodes
in the internal tree representation of expressions (e.g. "this
expression and all its subexpressions are simplified") which has
some aspects of this semantic dimension. This "property list" of
operators has turned out to be an extremely useful design
decision, one with applications to many difficult implementation
problems. The types of information stored on these nodes will no
doubt bpecome more varieda as MACSYMA cuntinues to grow.

Another thread in FAMOUS is reliance on the Markov
algorithm formalism. It is clear that some algorithms, (e.g.
synthetic division of polynomials) are difficult to program in
such a formalism. These algorithms benefit not only from a
difrerent style of program organization, but also from a
radically different data representation. Fenichel, by not
modeling any sophisticated polynomial manipulation capabilities,
implicitly recognized this limitation.

In summary, FAMOUS ana Formula Algol cannot compete with
MACSYMA with regard to efriciency or ease of use in algebraic
manipulation on several grounds:

(1) the lack of a competent base simplifier (FAMUUS assumes
nothing about the characteristics of its data, and cannot assume,
therefore, that any particular simplifications wouid always be
valia; Formula Algol nas only trivial ouilt=-in simplifications.),

(2) the inflexibility of the rules (a2 consequence of their
syntactic, rather than semantic, nature),

(3) inefficient rule-sequencing techniques (they have no
equivalent to TELLSIMPAFTER),



FAMUUS has additional problems because of:

(L) its requirement that the Markov algorithm formalism, and
darva types appropriate to it be used for a2ll manipulations,

{5) the absence of facilities for global communication,

REDUCE has, in addition to objection (2) above, another
problem. |t considers the user-supplied rules only after it has
done its own simplifications. Therefore a rule X#*| ==> 0 for all
| will not prevent X#*(0 ==» 1, the action taken by the simpli-
fier. Furthermore, HEDUCE does not allow sums in rules at the
top level., HEUWUCE, although probably more efficient within its
domain (19), would require considerable programming to extend it
to the realm of non-rational funections, a domain treated
routinely here.

Finally, It is not certain that a closer model of
SCHATCHEN, including back=up, but (of necessity) closely tied to
the Internal representation, would greatly aid a user (except
perhaps a system programmer), considering the burden it would
impose., The benefits of our implementation are clear: we give a
user error and warning messages, the selector facility, and easy-
to-use methods for declaring variables and defining patterns. For
the most part, he can remain ignorant of the subtleties of LISP
and the data representation (a sharp contrast with SCHATCHEN),

and vet define powerful, flexible patterns.



2.9, Differential Equations
The following example of a dialogue with MACSYMA
illustrates the usefulness of pattern matching in constructing
more useful programs. We wish to program the solution of ordinary
linear Tirst-order differential equations. j.e,.

DY
F(X) (==) + G(X)*Y + H(X) =0
LA

where F, G, and H are functions of X, but not of Y. The solution
can be written in terms of integrals, as demonstrated by the pro-
gram defined on line C6, below., (letails of the programming
syntax are adescribea in AppendixXx | to this thesis.) nNote that Usa
is correct, although in a somewhat unusual form.

(Cl) DECLARE(F,NONZEROANDFREEOF(Y))s
(C2) DECLARE(G,FREEUF(Y))S

(C5) DECLARE(H,FREEOF(Y))s

(C4) P : F*DERIVATIVE(Y,X)+G*Y+HS
(C5) DEFMATCH(PAT,P,Y, X)d

DY
F (== + GY + H
DX

IS THE PATTERN
(05) PAT

(C6) LINDEP(EQ,Y,X) :=BLOCK([F,G,H,P,u,S0L],
IF PAT(EQ,Y,X)=FALSE THEN FALSE
ELSE
P : ZE**( INTEGRATE(G/F, X)),
0 : H/F,
SOL:Y*P+INTEGRATE(U=*P,X),
EXPAND(SUOLVE(SOL=CONST,Y)))s



(C7) DERIVATIVE(Y,X)+3%Y+bg
DY

(D7) ~—- + 3 Y+ 4
DX

(C8) LINDEP(%,Y,X)$

{D8&) Y = ==mme=- - -

The program on line Cb could easily be altered to account
for other types of equations. |f the PAT pattern fails, other
patterns could bpe tried, each with its own method of solution. If

none of the patterns succeed, other analvtic or numerical methods

could be tried.
2.10. Other Applications

Une of the major problems of algebraic manipulation systems
has been the lack of substantial tools to aid in human
comprehension of large expressions, Hearn, in (20), explores this
problem. He displays an expression with a large number of
dependent variables, and by properly choosing substitutions of
expressions for variables, produces a new expression reduced in
size and complexity. This requires a high degree of human
experimentation and interaction with the computer. In chapter 3
we describe more sophisticated substitution methods which relieve
the user of some of his headaches, but still require explicit

"substiture A for B" type commands., By contrast, the Markov



algorithm processing of expressions, combined with semantic pat-
tern matching, can lead to more general styles of substitution:
e.g. For any Z, substitute Y(Z) for COS(wxt+Z),

Another approach toward improving comprehension has been
the automatic "breaking-up" of expressions at (computer-chosen)
positions., The parts are then easier to display (30), or
manipulate further (10), (20), (34). Unfortunately, except for
special cases, the computer-chosen break points tend to obscure
the underlying structure. By breaking an expression up at points
suggested by user-supplied patterns, and renaming the pieces (say
by allocating coefficients of certain types and locations to a
matrix), inherently bulky expressions can be reduced to more
tractaoclie sizes, As a simple example, the pattern A + B*%|, for
A and B declared free of %| serves to separate real and imaginary
parts of an expression.

2,11, Conclusions

Although a pattern-directed interpreter (along the lines of
SCHATCHEN or FAMOUS) could have been written to implement this
algorithm, a compiler, wnich produces a LISP program from the
pattern, was written instead. There are several advantages to
this approach:

1. Elaborate checking is done at compile-time, to help Insure
that patterns make sense. An interpreter can provide this only
at considerable cost at execution time. This makes interpreta-
tion unattractive to a user who needs as much error-checking

as possible,



2. When the match compiler is no longer needed, it can he removed
from core memory, and the space it occupies reclaimed. Only
the pattern programs themselves are regquirea at executlon
time. An Interpreter must be present any time a pattern is
matched. |t is possible that a large number of pattern
programs could collectively take more space than some other
pattern represention, so that this aavantage is not clear cut,.
However, judging from the size of the match compiler, we
suspect chat an interpreter performing the same tasks is
jikely to be sufficientiy large so as to be more space
consuming than perhaps 40 pattern programs.

3, Wwith the exception of calls to the simplifier, the coefficient
routines, and calls to subroutines to find exponents, bases,
and unknown functions, the program produced by the DEFMATCH
{or DEFRULE, TELLSiMP, etc.) command is self-contained, The
application of predicates, the assignment of values, and
sequencing of operations is rapid and efficient. Furthermore,

each pactern program can be compiled into machine language by

a LISP compiler, which (on the PuP-10) decreases the buik of

the program and may increase the speed by & factor of ten. It

may appear that this possibility is Independent of the
guestion of compilation vs. interpretation, since the pattern-
directed interpreter could also be compiled into machine code.

This is not the point we are making. The patterns for the

interpreter cannot be compiled since they are, of necessity,

LISP data. On the other hand, the pattern programs of our

system can be compiled completely into machine code,



The advantages of semantic (as uvpposed to syntactic)
matching are clear. Semantic matching as implemented in MACSYMA
allows the user to introduce new information relyving on a wide
range of previously developed information and simplification
rules. Syntactic methods would require considerably more
efforts (since all information would have to be encoded in syntax

only) and result in a less powerful extenslon.

Chapter 2 - Appendix |

Detailed description of the MATCH processor.

Up to this point we have tried to show mainly by examples,
what kinds of patterns can be compiled. By describing the
algorithm used to compile patterns into programs, this appendix
explicates the nature of the semantic matching done by the
resulting programs. Some details which are concerned only with
"code optimization'" are omitted -- as an example, the predicate
"TRUE" is never actually called, since the result is known to the
match compiler. However, the operation would be unaffected if a
call to "TRUE" were actually used.

Pefinition: An unmatched variable in a pattern is a variable
which is declared and for which no value has yet been assigned
during this matching process. A variable may be assigned a value

either by being in the 1ist of patternvar's, or by being

successftully compared to an expression. A pattern p ls compared

Lo an expression g by attempting a match between p and e, If the




match succeeds, all unmatched variables in p will be assigned
values. |f the match fails, the value FALSE is

returned,

Definition: If a pattern p has no unmatched variables in it, it

is called a fixed pattern, or is said to be fixed.

Remark: Any number is a fixed pattern. Any undeclared "atomic"
name is a fixed pattern, A sum, product, (etc.) of fixed patterns

is a fixed pattern.

Definition: A pattern is anchored if after all fixed parts have
been subtracted, divided out, or otherwise removed from an
expression instance of the pattern
(1) The remaining pattern consists of an |solated unmatched

variable not in a sum or product,

or (2) There is at least one fixed subpart of the pattern
such that any expression instance may be separated into at least
two parts, each part, furthermore, corresponding to an anchored
sub-pattern of the original pattern.

The pattern compiler in MACSYMA seeks out anchors, and
successively compiles program segments to remove those parts
which can be unequivocally identified. |If the remalning parts
provide no anchor, or if several not distinet anchors are
provided, the compiler will not be able to take advantage of its
built=in knowledge. In some cases, warning messages will be

produced,
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Une of the basic design decisions concerning the internal
format of MACSYMA expressions pervades this algorithm. MACSYMA
removes inessential operators such as division and negation: A/o
is represented internally by A*Bx*(=-1), and =-A is represented by
(-1)*A, Reducing all arithmetic operators to +, #*, and ** has the
disadvantage of causing a moderate increase in the size of
internal representations, but has the overriding advantage of
erasing small differences in appearance which might tend to
complicate the matching process. (The MACSYMA input and output
routines, in order to improve readability, reintroduce quotients,
differences, and unary minuses.) Markov algorithms written in
Formula Algol seem to be largely concerned with juggling these
redundant internal notations, a confirmation of the suitability
of our design decision, (see (23) pp. 172-174)

The remainder of this appendix describes in detail the
methods used to seek out anchors. These methods vary depending
on the context, so that an anchor within a sum is different from
an anchor within a product, Although we have tried to make this
description as clear as possible, it is not our intention that a
user of MACSYMA read this as a preregquisite to using the pattern
matching system. A user should compose patterns in the inter-
active MACSYMA environment, and by viewing the explicit actions
of the patterns themselves, he should judge their suitability.
This is similar to the philosophy of other parts of MACSYMA: =&

user will rarely know a priori whether or not an integration can



be performed by the system, or whether an indicated command is

[

powerful enough to accomplish his task. Although it is desirable
to describe capabilities in a clear manner, it is unreasonable to
restrict the capabilities to that which can be so described.

With these preliminaries, we can define precisely what is

meant when & pattern p matches an expression g.

. If a pattern p is fixed, then it matches an expression g If
and only if p - e, when simplified, is 0. Of the simplification
routines in MACSYMA, the general ("advisabie'") one is usually
used., When coefficients have been picked out of an expression in
the previous step, canonical rational simplifiecation, which
expands expressions and combines similar terms, is used., MNote
the heavy dependence on the power of the simplifier. |f the user
has (presumably by mistake) told the simplifier to replace an
expression A by a larger expression which has A as a
subexpression, this definition may become circular. We assume
that no such errors have been committed.
1. If p is a2 sum, Z a , then all fixed a are subtracted from
i i

e, and then the rest of the a are examined as follows:
i

A. If a 1Is a product with more than one unmatched variable,
i

it is ambiguous. Any of the variables might match the whole
expression. Processing such a pattern will cause a warning to

be printed, and the pattern will be treated as in E below, as
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an occurrence of the specific function "MTIMES" with a fixed

number of arguments,

B, If a is @ product of a declared variable v and a fixed

i
pattern £ then ¥'s predicate is applied to the coefficient of
f in e. (The definition of "coefficient" used here may be
found in Chapter 3, in the description of the RATCOEF
command.) If It fails, the match fails, otherwise it proceeds,

(That is, ¥ is compared to the coefficient of f in e.)

C. If a s an unmatched variable, then it should be the only
i

unmatched a8 , since it will match the rest of the expression.
i

If selectors are used, there might be more than one remaining

a , in which case they might correctly separate ocut the rest
i

of the expression into several parts. A warning is printed in
this situation.

D. If a 1is an exponentiation, one of three possibilities
i

exists, Either the base is fixed, the exponent is fixed, or
neither is fixed. (If both were fizxed, 3 would be fixed, and
thus be treated under |.,) |

1. The base is fixed: A search is made for an exponential

operator with the given base. |If the search succeeds, the

pattern for the exponent is compared to a 's exponent.
i

Here, as elsewhere, if the comparisons of subexpressions



fail, the match fails. If the search fails, the base may
occur to the first power, |f the base is found in &, then
the pattern for the exponent is compared to the number 1.
If the base is a sum itself, it is subtracted from e, and
the pattern for the exponent compared to 1.

2. The exponent is fixed: A search is made for an
exponential operator with the given exponent. |If it
succeeds, the pattern for the base is compared to a 's
base. |If the search fails and the exponent is a negative
integer, 1 is subtracted from g and the pattern for the
base is compared with 1 (the case of a missing
denominator). Utherwise, (the exponent is not a negative
integer) the pattern for the base is compared with 0. This
means that the pattern a+l/b (with a and b declared TRUE)
will match the expression X+1 with a=X, b=1, and will match
the expression X with a=X-1, b=1. The pattern a+b#*2 will
match the expression X with b=0, a=X.

5. Neither is fixed: Any exponentiation is searched for.
Exponentiation is treated as a two-argument function with
name "MEXPT" as in E below.

4, If an exponentiation being searched for in a sum is
actually the only item left in the sum {(e.g. y**x + A after
A has been matched and removed) then other special cases
are considered. |f the base B is fixed, then b*+E matches 1

if B# 0 and £ matches 0. |If the exponent E is fixed, then



E
B matches 0 if E Is a number greater than 0 and B

matches 0.

E. If a 1Is a specific function (e.g. SIN) then the first
i

occurrence of that function is searched for, The arguments of
the pattern are compared with the corresponding arguments in
the expression, and a check is made to a5suUre that the same

number of arguments appears in the pattern and in the expres-

sion. |If all the component matches succeed, a , the pattern,

|
(now fixed) is subtracted from e.

F. If a is a function whose name is an unmatched variable,
i

then any function, (possibly +, =, or #*) s searched for, and

treated as in E,

111, If p is @ product, Il a then the sum operations (except for
i

I1-A and |1-B) are duplicated, with "divide" replacing "subtract"

and "product" replacing "sum." Since products within products are

not possible with the MACSYMA simplifier, the action taken in 1=

A or |I1-B has a correlate in Il only if the simplifier is turned

off; in such situations, semantic pattern matches will not

succeed anyway,

IV. If B is an exponentiation, then p is treated as in I1-D, 1,

2, and 4. If neither the base nor the exponent |s fixed, (the
situation of 11-D-3), e is treated as follows:
A. If & is 1, p is compared to 1*x0Q,

B. If & is 0, p is cormpared to Qex],



C. If & is not an exponentiation, p Is compared to g=*],

D. If & Is an exponentiation, the respective bases and

exponents of p and & are compared.,
V. If o is some specific function, it Is treated as follows: The
function name in p (e.g. SIN) must match the leading operator in
e, The respective arguments of the pattern and expression are
then compared and a check is made that the same number of
arguments appears in the pattern and in the expression. |If all
Lhe component matches succeed, the pattern succeeds.
Vi. If p is an unspecified function whose name is unmatched, it
is treated as in V, except that the unmatched function name of p
is compared to the leading operator of e.

Vil. If p is an atomic unmatched variable, it is compared to g.

These operations may be nested to an arbitrary depth, since
comparing a pattern and an expression may invoke comparisons of
subexpressions. Furthermore, this algorithm is exhaustive, in the
sense that given any syntactically valid MACSYMA expression, a

pattern matching process will be defined for it.
Appendix ||

The following LISP listing of QUAD uses several system conven-
tions which can be briefly summarized as follows:

All user variable-names have a dollar sign prefixed to
them, The *KAR(ERRSET(...)) construction serves only to catch

illegal operations or ERR()'s and return NIL in such instances.



MATCOEF(X,Y)

returns the coefficient of ¥

_?4_

RATCUEF of chapter 3. MEVAL(X) is the MACSYMA evaluator.

substitutes values for variables in the expression X,
the result, and returns a simplified expression as an

RATSIMP(X) rationally simplifies X. RETLIST returns a list of

arguments and thelir values,

The GOOn names are symbols produced to meet the

unigue new variable names.

(DEFUN SQUAD
(GOOL2 sX)
(*KAR

(ERRSET (PROG (GOOL3 GOO4L)

(SETQ GOOL3
(MATCOEF GOOL2
(MEVAL (QUOTE ((MEXPT SIMP)

SX
2)1)))
(COND ((MEVAL (QUOTE ((SNONZEROANDFREEOF)
SX
GOOL3)))
(SETQ $A GOOL33})
((ERR)))
(SETQ GOO42 (MEVAL (QUOTE (($SRATSIMP)
((MPLUS)
GOO42
{(MTIMES)
=1
GOOL3
((MEXPT SIMP)
K

2)3)2)))
(SETQ GOO4L (MATCOEF GOOL2 $X))

(COND ((SFREEOF $X GOOLL) (SETQ $B GOOLL))

((ERR)))
(SETQ GOOL4LZ2 (MEVAL (QUOTE (($RATSIMP)
({MPLUS)
Goou2
{{MTIMES)
-1
GOOLL
§X))))))
(COND ((S$FREEOF $X GOOL2) (SETQ sC GoO4zY)
¢((ERR)))

(RETURN (RETLIST $C $B SA $X))))))

in % as found by the

It

answer .,

need for

evaluates

its



Appendix 111

This appendix considers the question of pattern matching
from a more theoretical standpoint., It answers some questions
about the formal power of pattern matching in determining
membership of an expression in a class, and the ability of the
pattern match to uniquely determine the values of the variables
in the pattern. Many of these results may seem trivial or
gbvious; nevertheless, they are not expressed elsewhere, Some
especially trivial results are (1) Any expressions E, synthesized
by MACSYMA can be matched by a pattern, namely, the pattern E.
and (2} Any expression in MACSYMA can be completely decomposed by
some pattern: By using explicit matches for operators (as in
section 4, line C6), every single component of any expression can
be given a name. (Since we usually seek to define general
patterns, such expllcit matches are rarely of great use.)
pefinition: A pattern match program (PMP) is a program produced

by the implementation of the algorithm described in Appendix
l, given a valid MACSYMA expression.

Theorem 2.111.1, A PMP for a finite pattern Is finite in speci-
fication.

Proof., A finite pattern, written as a tree, has a finite number
of nodes. The algorithm of Appendix | traverses the tree
once, emitting a finite number of finite steps at each node
(in practice, fewer than 3 LISP "S-expressions" per node),

The algorithm terminates when the tree has been traversed. (A



more rigorous proof is possible, but would require a detailed
analysis of the correctness of our programming implemen-=-
tation. This could be done by case analysis, as described in
(28).)
We will assume, for the remainder of this appendix that
all PMPs are defined for finite patterns, and are therefore

finite in size,

Theorem 2,111.2. A PMP always terminates given finite expressions
for each of its arguments if its predicates always terminate, and
the evaluator (MEVAL) always terminates (with a finite result) on
finite expressions,
Proof. A PMP is a finite non-looping sequence of steps. Each step
terminates, since it is either an application of a predicate, an
evaluation of an expression, or the extraction of the ith
argument of an n-ary function. The last of these clearly
terminates since | and n are finite by hypothesis, and the first
two terminate by hypothesis,

$ince patterns are themselves predicates, it is possible
{and often useful) to use them recursively., In such cases
termination will be difficult to guarantee by this theorem.
Although this theorem states sufficient conditions for termina-
tion, these conditions are not necessary, since, for example,
non=terminating predicates may be present in a pattern, but may

never be applied if the pattern fails first,



For the remainder of this appendix, all PMP's are assumed
to be terminating. Thus a PMP divides the set of finite algebraic
expressions into two classes, P, the expressions which satisfy
the pattern, and N, those which do not,

Now, & result which determines a theoretical limit (but not

necessarily the best 1limit) on the power of pattern matching:

Theorem 2,111.3. Unless N or P is empty, there is a MACSYMA ex-
pression p in P which is functionally equivalent to a MACSYMA
expression n in N,

Proof. Let us assume for the moment that the MACSYMA simplifier
is unaware of special angle simplifications, and let a PMP
program pass only expressions which match zero (0). Neither P
nor N is empty, so this theorem asserts there is an element
in N equivalent to zero. We can show there are many. One of
them is COS(PI/2)., To see if COS(P1/2) matches 0, (see the
first line of the algorithm, Appendix 1} we simplify
COS(P|1/2)-0. The result, COS(PI/2), is not identically the

expression "0" and therefore is in N.

One might blame the MACSYMA simplifier for this
inadequacy, except for the following lemma, which proves that

the simplifier cannot be made sufficiently adequate,
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Lemma. (Richardson, (3B6), see (6) also) Let R be the set of
gxpressions generated by

(i) the rational numbers, and the real numbers pi and
log 2,

{(ii) the variable x,

(

ii) the sine, exponential and absolute value func-
ons,

I~
Then if E is an expression in R, the predicate "E is
equivalent to 0" Is recursively unsolvable.

Since all of these operations and constants are permlssible
in MACSYMA, there is no computation which can exclude 0-
valued functieons from N. Furthermore, since "0" can be added
to any pattern whatsoever, the same analysis holds for any
PMP.

This concludes the proof of theorem 2,111,3,

Qur only hope is that some sub-domains within R have less
disastrous consequences for pattern matching. Such is the case.
Let us use the convention that A,,...,A, are MACSYMA variables
which have been declared TRUE, and X, ,...,X, are constants. (This
convention may seem odd, but consider that AX+B as a pattern has
variables A and B and constant X,)

Since we are restricting the domain of expressions handed
to PMP's, we will be affected by the power of the simplifier.
Thus while E = X + COS(PI/2)*SIN(X) does not loock like a
polynomial in X, a suitable simplifier will transform E into the
equivalent expression X, which is a polynomial in ¥X. All expres-

sions mapped into a domain D by a simplifier s, are members of



the class Ds. No rigorous definition of Ds's will be attempted,
since the simplifier in MACSYMA defies simple analyses, and in

any case, |t can be altered by the user.

Theorem 2,111.4. Let D be the domain of polynomials In any finite
number of variables {X:} with integer or symbolic coef-
ficients. A pattern consisting of any (expanded) member of D
with variable coefficients {A} will match uniquely any
member of Ds,

Pr ) An expanded member of D will Jook like

My | M
ZA X w e lx ™
A PMP for this pattern will consist of a finite set of calls
to the coefficient-finding routine, which will assign to each
A, the coefficient of Kri' *...*X:ﬂ” . These coefficients
|
can be extracted because this representation of polynomials
is canonical, and the coefficients are obviously unique in

any expression (regardless of its original form) which can be

transformed into an equivalent polvnomial in Ky ooansXp.

Theorem 2.111.5. Let D be the domain of rational expressions
(i.e., ratios of polynomials as in thecrem 4). A pattern
consisting of the ratio of two expanded polynomials with

variable coefficients will match uniquely any member of Ds,



Proof. The numerator is matched as in theorem 4, and the
denominator, which appears as a polynomial raised to the -1
power, s matched as in theorem 4. The absence of a
denominator will cause the pattern for the denominator to be

matched agalinst 1.

These results can be extended in various directions, but

results become more specialized and less illuminating. For
example,
Thecorem 2.111.6. Let f be an n-ary function with no simplifica-

tion rules in the simplifier s. Let Ds be the Ds of the
previous theorem, and {d.} elements of Ds. Let Df be the set
of expressions
dy afbdaunadsYedol o
Then an expression in Df with variable coefficients will
match uniguely any member of Dfs,
Proof. The single occurrence of f can he found, and its "coef-

ficient" d, and "constant term" d , can be matched as in

theorem 5,

Typical of statements which are true, but are of cnly
lJimited interest is: Let Us be the Dfs of the previous theorem,
and let{d} be in Ds. Let E be the set of expressions dgm . The
pattern matches uniquely any member of Es, but the unigueness is

imposed by the match algorithm. Thus 1 is a member of Es, as

1#*(, but the possibilities l*x1l or x=+( are not considered.



When we restrict ourselves to matching expressions composed
over classes for which canonical forms exist, as in theorem k,
quite neat results can be obtained if the simplifier is able to
compute these canonical forms. For many areas of interest,
canonical form algorithms do not exist, yet being able to
recognize members of particular classes within the confines ef a
simplifier can still be useful., For example, recognizing the
parameters of a differential equation, even if it can be done
cnly in seme standard form, is useful, even if some other, rarely
encountered, but equivalent form Is not reccgnized at all.

In comparing various systems in this context, the principal
point is that fcr the same domain D, the ability of the
simplifier, s, to reduce an expression to essential components,
strongly influences the size of the set Ds. MACSYMA's simplifiers
(the "ordinary" one which can be modified by the user, the
RATSIMP rational simplifier, and the RADCAN radical canonical
simplifier of Chapters 3 and 5), provide a range of possibilities
larger than that of any other existing system. While any system
which is in theory equivalent to a Turing machine could in theory
do as well (eventually) as MACSYMA, or even better, theorem 3

provides a bound on their theoretical capabilities just the same,.
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Chapter 3 - Extending the Power of the Rational
Function Facilities

This chapter concerns the practical implications of what |
believe to be the most significant design decision in MACSYMA,
MACSYMA was designed with the intention of not necessarily
restricting its components to the same data representation. The
rational function package embodies the essentials of a special
data type which, by suitable treatment, has vielded a number of
new results. These results jnclude particularly powerful tech-
niques for extracting coefficients (section 3.3), for substi-
tution (section 3.5), and for solving for a variable in an
expression (section 3.6),

Since a number of other current systems (e.g. REDUCE (19))
also include analogous special rational function representations,
the new ideas and techniques discussed here could, no doubt, be

implemented elsewhere with relatijve ease,

By using the rational function representation (as opposed
to the general representation), extremely fast processing is
possible. For typical caleculations which can be done either way,
the rational function representation can easily reduce the time
requirements by a factor of five or ten, becoming far more
efficient as the problem increases in size. This in itself can be
a significant asset. In order to make this point more cencrete,
and to demonstrate how MACSYMA compares to similar efforts else-

where, some timing information has been compiled. Only the



crudest efforts at making the cross-system comparlisons truly
comparable have been attempted; no doubt an extensive study could
be conducted in balancing the differences of word-length, CPU
cycle time, memory access time, size of storage, CPU instruction
set, etc. The timings in table 3.1 are for the calculation of
the first 10 polynomials in the "f and g" series, the details of
which may be found in (11) or (31). The calculation is of two
sets of polynomials in sigma, mu and epsilon, defined recursively
in terms of each other and derivatives of lower order terms. The
calculation can be indicated in MACSYMA's rational function
representation through the following input:
X1: RAT(-SIGMA*(MU + Z*EPS))s
X2: RAT(EPS-2+5|GMA*=2)%
X3: RAT(-3+MU*S|GMA)S
FIO] : RAT(1)S
G[O0] : RAT(O0)S
F[I] := =MU*G[1-1] + X1*DIFF(F[I-1],EPS)

+ X2+«DIFF(F[I1-1],51GMA

+ X3+DIFFCF[1=1],MU)3
G[I] := F[I-1] + X1+DIFF(G|I-1|,EPS)

+ X2#DIFF{G[I1-1],S5S1GMA)
+ X3*DIFF(G[I-1],MU)s

Timings for systems other than MACSYMA are interpolated from (11)
or from conversations with the authors of varjous systems

presented at SYMSAM/2 (1),
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1BM 7094 119.0 L75

PDP=-10 76, 152

Notes

(1)
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Notes for Table 3.1
*For a direct comparison, we have used the following somewhat
controversial speed factors: CDC 1604 = 1, PDP-10 (with 2.8
microsecond memory) = 2, ATLAS=-2 = 2, I1BM 7094 = L4, PDP=10 {(with
1l microsecond memory) = 5, I1BM 360/67 = 10, CDC 6600 = 15, 1In
addition, the notes must be taken into account in computing the
adjusted time. REDUCEZ, Korswvold's System, and MACSYMA are all
written in LISP, and are subject to variations depending on the
efficiency of the underlying language implementation.
(1) A particularly rough interpolation; the actual time was 7.k
seconds for F and G to index 189. CAMAL uses a representation
which packs a great deal of information in a single node; it thus
uses less space, and less pointer-following time than the other
systems listed here,.
(2) Using Stanford University LISP.
(3) Using IBM's Scratchpad LISP which is slower than Stanford
LISP, since it packs two addresses in a 32-bit word, thus
requiring shifts to adjust the addresses.

(4) Using 1 microsecond memory.

(5) Using 1 microsecond memory. |AM is written in AMBIT/L, and
is interpreted, rather than compiled.

(6), (7) Using 2.8 microsecond memory.

These times (and, no doubt, other LISP times) can be
decreased by some 40 percent by methods unrelated to the
algorithms: By using a larger core allocation, LISP garbage
collection time can be reduced; also, a cleverer LISP arithmetic

statement compiler (now being implemented) would reduce

calculation time further.




3.0 An Introduction and a "Political"® Digression

Moses, in (34), describes a spectrum of attitudes towards
algebraic manipulation ranging from the "radical" to the
"conservative.," According to this classification, a radical
system will transform a user-supplied expression into an internal
format which consists of an encoding of the expression in a
special unique simplified form., This drastic transformation
generally destroys superficial resemblances between the input and
cutput. The only attribute necessarily preserved is the
functional value of the expression. Polynomial and rational func-
tion systems generally fall in the "radical" category. The
contrasting "conservative" approach does almost nothing but that
which is specified by the user; it keeps the internal form as
nearly the same as the external form as is pessible, and
generally accepts a wide variety of expressions (wider than poly-
nomials and rational functions).

The top-level ("liberal" in Moses' terminology) "general"
simplifier and evaluator in MACSYMA takes a stance in the middle,
It has some bujlt~in rules (e.g. concerning zero and one,
collecting terms) and by ordering terms in sums and products,
does a fair job of simplifying a large class of expressions. l ts
importance lies in the fact that it allows certain subsystems to
explore the far reaches of the "political" spectrum. Because of
the conjunction of different approaches, radical simplification

algorithms can be applied to expressions which would not



ordinarily be considered proper inputs. For example, the ability

2% X
to manipulate e + 2 + 1 as a quadratic in ex (and apply poly-

nomial "radical" processing) is quite useful, even though the ex-
pression is not quite fair game for ordinary polvnomial systems.
MACS5YMA is capable of factoring the above expression Into

A
(e +1) , and treating it as a polynomial for various purposes;

however, it is also capable of noticing that e" can reduce to y
when x=logl(y). Polynomial or rational function systems are rarely
aware of such possibilities in their data.

This chapter discusses the "radical" data handling
facilities of MACSYMA, and their relation to the MACSYMA command
level., In one particular instance (the SOLVE command) we show how
radical and conservative handling of different parts of the same
expression can lead to an end result which could be produced with
either approach alone only with great difficulty, Other commands
where rational simplification or other radical approaches are
essential to programming effective algorithms are also discussed.

By an unfeortunate coincidence in terminology, we will use
the word "radical” in two senses. In one case, we will discuss a
class consisting of algebraic extensions adjoined to the field of
rational functions. This class is generally called the class of
radical expressions (in the sense that a square root is a2
radical). In the second case, our approach to simplifying
radical expressions is, in Moses' terminology, radical (i.e.

drastic).
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In this and later chapters, the algorithm and the command
used for invoking the algorithm used to simplify radical expres-
sions will be referred to as RADCAN. RADCAN and the two commands
to be described in section 3.1, RATSIMP and FULLRATSIMP are all

classified as radical (i.e. drastic) simplifiers.

3.1 Basic Rational Function Commands

In order to clarify the discussion, it is necessary to dis-
tinguish between the two major internal forms for expressions in
MACSYMA. Ordinary MACSYMA form is a delimiter prefix form which
is typical of many list-processing implementations of algebraic
manipulation systems. For example, 3x2 would be represented
(glossing over inessential details) as (times 3 (expt x 2)), and
x+y as (plus x y). By contrast, the canonical rational expression
(CRE) form In MACSYMA is an internal form especially suitable for
rapid manipulation of sparse polynomials and rational functions.

2
In CRE form, 3x is represented, (again, glossing over details)

as (x 2 3). The first element of the list is the variable, the
second is its highest exponent, and the third, the coefficient of

2
the just preceeding exponent. Thus 6x +4 Is represented as (x 2 6

0 L), and, allowing coefficients themselves to be polynomials,

2
XKytixz 1s (x 2 {y11) 1€z 17)). Since (v 1 ¢x21)YD0i(x1l =z

17))) is an equivalent CRE representation, it should be clear

that the ordering of variables must be specified to insure that



equivalent CRE's are identical, that is, they are In cancnical
form,

CRE's in general represent rational expressions, that is,
ratios of polynomials, where the numerator and denominator have
no common factors, and the denominator is positive., Thus a CRE
has three essential parts: a2 variable 1ist (VARLIST), specifving
the ordering of the variables, and two polynomial parts.

With these preliminaries, we can describe the actions of
the rational function commands.

RATVARS(a,b,...) orders the variables listed In its argu-
ment list on a global variable 1ist (VARLIST) so that the
rightmost element of the 1ist a,b,... will be the main variable

of

future rational expressions in which it occurs, and the other
variables will follow in sequence. |If a variable is missing from
the RATVARS list, it will be given lower pricrity than the
leftmost element, |If several variables are missing, they will be
ordered by the MACSYMA function GREAT, which uses an implementa-
tion of the ordering algorithm desecribed in (34). The arguments
to RATVARS can be either variables or non-rational functions
(e.g. SIN(X)).

RATSIMP(EXP) rationally simplifies the expression EXP.
That is, EXP is converted into a single fraction, whose numerator
and denominator are polynomials over the integers, with no common

factors. EXP is written in a recursive form: a polynomial in the

main variable whose coefficients are polynomials In the next-
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higher-order variable, ..., whose coefficlents are integers. This
is accomplished by converting EXP into CRE, and then converting
back to ordinary MACSYMA form for display.

For example:;

(Cl) (Xwx2-Yxak2)x(Z#%2+2xZ)/((X+Y)*W)E

(Bl = A mesescssesmcssasceas
W (Y + X)

(C2) RATSIMP(D1)@

(X = Y)Y Z + (2 X-=12¥vY72
(D2) = eemmmmmmccmncmdmaccmacaoa-
{C3) RATVARS(X)S

(C4) RATSIMP(D1)@E

(Dh)  mmmmmmmmmmmmmmmeee

FACTOR(EXP) factors the expression EXP into factors
irreducible over the integers. If EXP is a rational expression
(with a denominator not 1) both numerator and denominator are
factored. |f FACTORFLAG is set to TRUE, the integer multiplier,
if any, is factored also., The algorithm can be used to factor
polynomials in any number of variables. GFACTOR(EXP) factors
polynomials over the Gaussian integers.

For example,

(C5) FACTOR(X#**g+1)(

2 L 2
(D3) (A o+ 1) (X =X +1)
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SQFR(EXP) is similar to FACTOR except that the polvnomial
factors are '"square-free" that is, have no multiple roocts. This
algorithm, which is also used by the first stage of FACTOR,
utilizes the fact that a polynomial has in common with its nth
derivative all its factors of degree > n. Thus by taking
derivatives with respect to each variable in the polynomial, all
factors of degree > 1 can be found. Several speclal cases are
also factored, including the removal of polynomial contents.

PARTFRAC(EXP,VAR) expands the expression EXP In partial
fractions with respect to the main variable, VAR. The algorithm
employed is based on the fact that the denominators of the
partial fraction expansion {(the factors of the original
denominator) are relatively prime. The numerators can be wrltten
as linear combinations of denominators, and the expansion falls
out,

(C6) PARTFRAC(X/(X#+=%2-1),X)@

(De) =mmmm-- oty At

3.2. Contagious CRE Commands
The above commands represent no new capabilities; MATHLAB
(29) has almost identical facilities, although its internal
equivalent of our CRE's is less efficient for sparse polynomials.
Other systems, by limiting their universe of discourse to
canonical representations, make the explicit RATSIMP commands

unecessary. Nevertheless, an algorithm equivalent to RATSIMP




must be present in order to maintain the canonical represen-
tations during a computation.

The commands in this and the follewing sections represent
significant departures from the usual use of rational function

routines,

RAT(EXP) is indistinguishable on command level from
RATSIMP; however, RAT leaves its Internal result In rational
function (CRE) form, sc that operations used by the rational
function commands described here can be more rapidly performed on
it. Furthermore, any time the user adds to or multiplies by a
CRE, the result is a CRE. That Is, the CRE form is "contagious."
This enables a user to easily force his entire calculation to be
done in CRE form by converting one of his inputs into CRE by
simply multiplying by RAT(l). Some problems require excessive
amounts of storage and/or time if intermediate results are
converted back into prefix form at each step of the calculation.
The RAT facility, by being integrated into the simplifier,
permits a user to compose a program and try [t out (without any
changes) on ordinary prefix form arguments or on CRE arguments,
In this manner it is simple to compare the timing of "general”
versus CRE methods on the same task., This very often demonstrates

that CRE methods, when appropriate, are much faster.

RATDISREP(EXP), which appears to do nothing on the command

level, changes its argument from rational function form (CRE) to



—.93_

ordinary MACSYMA form. This is sometimes necessary in order to
use some of the other MACSYMA commands. |f RATDISREP |s not

given a CRE for an argument, It does nothing.

3.3. The Rational Coefficent Program

RATCOEF(EXP, PART) returns the coefficient, C, of the ex-
pression PART in the expression EXP. C will be free (except
possibly in a non-rational sense) of the variables in PART. |f
no coefficient of this type exists, zero will be returned.
RATCOEF will give reascnable answers to reasonable requests, and
will often produce reasonable answers to pcorly stated requests.
Generally, when PART includes a "+" or a "/M", results may seem
odd. (see lines D7, D&, D10, and D11 in the examples to follow).
Since EXP is rationally simplified before it is examined, coef-
ficients may not appear quite the way they were envisioned. The
effect of RATCOEF should be clarified by the following examples.
(Cl) S:A*B#X#%2+B*X+2%X+5(
(D1} A B Kz + B X+ 2 X+ 5

(C2) RATCOEF(S,X)

(D2) B + 2
(C3) RATCOEF(S,A*B)@
2
(D3} X
(C4) RATCOEF(S,B)E
2
(DL A X+ ¥
(C5) RATCOEF(S,2+X)E
B + 2
(B5Y @ 000 smees
2



(C6) RATCOEF(S,B/2)E

2
(D6) 2 A% + 2 X%
{C7) RATCOEF(A*X+B*X+C,6 A+B)E
(D7) X
{(C8) RATCOEF(3=A+2=B,A+B)
(D8) 2
(C9) RATCOEF(S,-A)E

2

(D9) - B X

(C10) RATCOEF((A*B+C)/D, B/D)E
(D10) A

{C1ll) RATCOEF(3*A/D+A/D=*%2, A/D**2)[
(D11) 0
Let us first define RATCOEF(EXP,PART) where EXP is a

k
polynemial and PART has the form vy for v a variable, k a number,

This case is clear: we expand EXP as a CRE, and pick off the

K 3
coefficent of v . |f there is no occurrence of v , the

coefficent is 0. I1f EXP is not a polynomial, but & ratio of
polynomials, then we must make a decision about how to treat
cccurrences of v in the denominator.

Let EXP =num/denom, where num = zia v . |If the coefficient

i
i
of v , namely a , is zero or if a /denom depends on any variable
i I

in the original PART, then the response is zero. Otherwise the

response is a /denom.
i
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RATCOEF of a product can be defined recursively as

follows., Consider RATCOEF(EXP,PART). |f PART =

n n n
1 2 k
v * * L. Ky » then RATCOEF(EXP,PART) =
1 2 k
n n n
k 1 k=1
RATCOEF(RATCOEF(EXP,v Y.V L 3V 1.
k 1 k-1
I¥f PART = A/B then RATCOEF(EXP,PART) = RATCOEF(EXP*B,A).
If PART = -A, RATCOEF(EXP,PART) = RATCOEF(-EXP,PART).
If PART =

E; A (possibly after removing multipliers, as
P
above), then EXP is divided by PART with respect to the main
variable in PART. If the quotient depends on any variable In the
original PART, the response is zero. Otherwise the answer is the
guotient.

The coefficient produced in this manner may depend, in the

last case, on the ordering of the variables within EXP. For

2. 2
example, the coefficient of (Y+Z)X in Z X +(Y+Z)X+A Is clearly 1.

The similar problem of finding the coefficient of XZ+XY in

2 2 2 2
A L +XI+XY+A yields the answer 0, since X Z +XY+XZ+A divided by

2
XZ+XY 1is XI+1, with remainder -X YZ+A. The gquotient depends on X,

and thus the coefficient is taken to be zero.
This illustrates both the ability of the user to ask for

coefficients of sums, and the ability of RATCOEF to sometimes



answer correctly. We could have defined RATCOEF only for
products, but it seems more in keeping with the spirit of an
interactive system to avoid such restrictions on the user. Note
that if the user were disappointed with the answer 0 to the above

request, first executing RATVARS(X) would correct the situation.

In summary, RATCOEF will find the coefficient of PART when
PART is a factor of the expression, or of some part of the ex-
pression such that the other factor has none of the same
variables.

The returned value Is in CRE form,

An alternative to RATCOEF Is available in situations where
its generality Is not needed. The COEFF command can ocperate on
CRE forms or on ordinary MACSYMA forms which have been expanded,
COEFF(EXP, VAR, POWER) will extract the coefficient of VAR**POWER
{where POWER may be () from EXP. COEFF returns a CRE form if and

only if it is given a CRE form,

3.4, Simple Extensions to Rational Simplification

FULLRATSIMP(EXP) is an expanded version of RATSIMP which
is recursive on the arguments of non-rational functions. It also
removes zero exponents, and converts forms like (x**xy)*x*z to
x**(y»xz). Although these last two operations are generally
performed by the simplification program, FULLRATSIMP must
repeatedly simplify the results of such transformations until no

more rational simplifications ecan be made. FULLRATSIMP is no more



time-consuming than RATSIMP if EXP is an algebralc expression
with no non-rational functions. FULLRAT(EXP) is a program which
cperates similarly, but allows the user to specify a varlist
as does RAT.

A more extensive expansion of the concept of global simpli-
fication is embodied in RADCAN. While FULLRATSIMP does not apply
any identities concerning logs, radicals, and non-numeric

exponents, RADCAN does.

RADCAN(EXP) converts the expression EXP into a form which
is canonical over a large class of expressions and a given
ordering of variables; that is, all functionally equivalent forms
are mapped into a unique form., For a somewhat larger class of ex-
pressions, RADCAN produces a normal form; that is, all forms
equivalent to zero are mapped into zero. For purely rational ex-
pressions, RADCAN is no more time-consuming than RATSIMP or
FULLRATSIMP; however, for more general expressions including
radicals, logs, and non-integer exponents, RADCAN can be quite
expensive. This is the cost of exploring certain relationships
among the components of the expression for simplifications based
on factoring and partial-fraction expansions of exponents,

A description of the method, and proofs of the cancnical
properties of the RADCAN algorithm are discussed In chapter 4.
Examples should, however, give a rough feel for the capabilities
of RADCAN. (% always refers to the just-previously displayed ex-

pression, %E Is the base of the natural logarithms):



(Cl) SQRT(98)E
(D1) SQRT(98)

(C2) RADCAN(%Z)E
(D2) 7 SQRT(2)

(C3) (SQRT(X#%2-1))/(SQRT(X-1))E

SQRT(X =~ 1)

kD3 =000 eesscsamesss
SQRT(X - 1)
(CL) RADCAN(Z)E
(DY) SQRT(X + 1)
(C5) (LOG(Ax#(2%X)+2*A»*X+1))/(LOG(A**X+1))(
2 X A
LOG(A + 2 A + 1)
(D) W eeedsescdGRecsecidasda
A
LOG(A + 1)
{C6) RADCAN({%)E
(D&) 2
(C7) (BE**X-1)/(ZE**(X/2)+1)E
X
23 -1
gury e
X/2
%E ¥ 3
(C8) RADCAN(%)E
X/2
(D8) %E ™ X

3.5. The RATSUBST (rational substitution) Commands

RATSUBST, or RATSUBSTn(A,B,C) where n =1, 2, 3, 4 Is a set
of similar commands to substitute A for each occurrence of B in
the expression C. In those cases where it is clear where B
pccurs, the result will correspond to the intuitive notion of

substitution,



IT B is an atom, occurrences of B are obviocus, The action
taken is simply substitution followed by simplification.

If B is a guotient, say b /b , then RATSUBSTn(A,B,C) is
1 2

entirely equivalent to RATSUBSTn(A*b ,b ,C).
r N ¢

If B is a product, all coefficients of powers of B can be
detected in C by a technique similar to that used by RATCOEF.
Hearn in (20) suggests this approach.,) |If B is a sum, we must
define what we mean by an occurrence of an expression B In a
polynomial expression C. (If C is not a polynomial, we can
consider its numerator and denominator separately.)

3 i
If C = Z_S_B , then B is said to occur in C with coef-
[ [

"o

ficient S and exponent 1, coefficient § and exponent 2,
1 2

and remainder S ., |If B occurs in such a fashion we wish to
0

*

|
replace C by 2§ A . Unfortunately, finite power series

i
expansions for an expression in terms of a non-atomic

2 2
subexpression are not unigue. For example, C = x +3xy+y has

(among others) the following expansions in (x+vy):

2 1 0
1. 1x(x+y) + 0#%(x+y) + xwyx(x+y)

2 1 0
2, 1x({x+y) + x=x(x+y) - x *(x+y)

2 1 C
5. 1#(x+y) + yx(x+y) = y #(x+y)



What s needed is & set of restrictions on the coefficients

S spo that the expansion is unique and appropriate to the problem
i

at hand. This Is the basiec problem in substitution for simpli-
fication, and this solution is based on a set of heuristics for
achieving what appear to be, in some instances, more desirable
results than have been possible in the past. We will separate out

only the highest power of B, and discuss at each stage

{recursively on lower powers of B} the situation C = SB + r,
where r contains the lower order terms.

As we have pointed ocut earlier in our discussion of
RATCUEF, the ordering of variables is sometimes quite critical.
"Sum"-hood, which is a property of a form, not of a function,
somet imes depends on ordering. For example, xz+yx Is a sum, but
{z+y)x is {(for purposes of RATSUBST) not a sum, but a product,
although the two expressions are functionally equivalent.

Let B be a polvynomial containing variables v v ,....¥
L: & k

F

where the highest power of each v is m . For all but condition 2
i i

below, the only restriction on r, the remainder consisting of
lower order terms, is that it has lower degree than C does in
some particular variable (namely, the most important on the
varlist that is alsoc in B), The conditions below are embodied in
the commands RATSUBST1,2,3, and L4, respectively. Their effects

can best be gauged by frequent reference to the examples in



figure 3.2 following. RATSUBST (without a number) is a quicker
program than the numbered ones, which short-cuts many of the
(rarely needed) conversions and re-conversions required for

strictly following all the conditions.

Conditions

l. The highest power of some v in S that appears in B is less
i

than the corresponding m .
i

2. The highest power of geach v in § that appears in B is less
i

than the corresponding m , and the highest power of each v in r
i i

that appears in B is less than the corresponding m .

|
3, 5 is a polynomial,

L., S contains no sum.

The value of n ranges from the highest possible (the ratio

of the highest coefficient of some v in C which is also present
i

in B, to the corresponding maximum coefficient of that v in B,
i

namely m ) to the lowest possible (when some v in B is no longer
[ i

present in C to a power as high as it is in B, or 1.). To avoid
the possibility of looping, occurrences of B in C are replaced,
as found, by a special dummy variable, which is subsequently
replaced by A. Cases in which B occurs in A (probably an error on

the user's part) or where simplification of C results in new
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occurrences of B can be treated with repeated calls to RATSUBST.
This can be easily programmed in MACSYMA.

If C contains non-rational functions, substitution proceeds
on the arguments of the non-rational functions, recursively. Thus
A, B, and C need not be rational expressions.

*

By noting when B has non-rational components (e. g., e , or
xlfz}, RADCAN can be called on B and C, and they can be left in a
special expanded format, which tends to reflect more clearly the
similarities of the two expressions. Thus
RATSUBST(A,E**X E**(2%X)) is A**2,

An example of an extension to the RATSUBST framework might
serve to jllustrate its generality. |If there is a canonical
ordering on all expressions submitted to RATSUBST, and on all
intermediate expressions, then a RATSUBSTS could be nrogrammed
with the following condition:

n n
5. SA + r has a lower canonical order ("is simpler") than SB +

s

By using the RATSUBST commands selectively, such substitu-
i 2
tions as sin (x) + cos (x)-=> 1 can be performed more nearly in
the sense in which they are intended. If one RATSUBST command

does not do the job, perhaps another will.
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3.6, The SOLVE Program
The S0LVE command in MACSYMA uses several techniques for
solving for a given variable in an equation., Each of these
techniques is open to extension in a straightforward manner. The
roots and their multiplicities are available to other programs,
and are used as building blocks for more complicated facilities,

such as contour integration,

The format of the SOLVE command js:
SULVE(gguation, variableld
where the ggyation may also be an expression (which is assumed to
be set equal to zero), or a set of polynomial equaticns linear in
some set of variables. This last case is a straight-forward
problem in Gaussian elimination, and will not be discussed
further here.

SOLVECE,X) puts its first argument E, in radical canonical
form, and attempts to factor it with respect to the variable X,
and all non-rational functions in E contalning X. Each factor Is
examined for being linear, quadratic, cubic, or bigquadratic with
respect to A and the non=-rational functions containing it. 1If the
factor is of degree five or more, then it is considered

n
unsolvable unless it is of the form a(F{(X)) + b in which case

the n nth roots of a/b are generated, and the n equations F{xi=-

1/n
{a/b) = (0 are solved. Any remaining unsolved factors and their

multiplicities are put on a list which is returned along with the

roots.



Linear terms of the form F(A)-C are examined to see if C,
the cocnstant term, is actually free of elements containing X; if
so, USOLVE is called. Otherwise the term is added to the list of
unsolved factors. USOLVE knows the inverses of SIM, COS, ASIN,
ACOS, TAN, ATAM, LOG, etc. and powers of e. It could be extended
to other functions. UOnce the inverse has been applied, a new
equation results. It may be of the form A = FINVERSE(C), in which
case the term has been sclved, or it may be of the form G(X) =
FINVERSE(C), in which case SULVE is called again. This recursive
algorithm allows for solution of, for example, SIN{COS(X)) = 0O
for X.

The quadratic (cubic, biaquadratic) formula is applied to
guadratic (etc.) factors, and the same sort of recursive
treatment as described above is used if the equation is, for
example, guadratic in SIN(X) instead of X.

The simplitTication done by the quadratic {(etc.) routines is
of some interest, in that the roots in the formulae are simpli-
fied by a special program (SIMPNRT) which takes out perfect n*k
powers of a kth root. (i.e. even powers in a square root,
multiples-of=-three powers in a cube root, etc.) Thus SQRT({E) is
simplified to 2*SQRT(2). SIMPNRT calculates a square-free
factorization of the radicand, and takes appropriate multiple
factors, if any, outside the radical.

The following examples illustrate the capabilities of
SOLVE:



(C1l) SULVE(Y=*#*(2%X)-3+Y*%X+2=0,X%)C

SULUTIOUN
(El) X =
L
(E2) X = =
L
(D) (E
(C3) A:A**2-12xX+3(
2
(D3) £ =12
(CL4) SULVE(SIN(A)**2=-5%5|N(
SOLUTION
(EGL) L=
5
CES) X = SURT(ARCSIN(=- -
(EG) A = 6 - SQRTCARCS | NM(
SART
(E7) X = SQRT(ARCSIN(=----
2
(D7) (EL4,E5,EG,E

X + 3

A)+3,X)(

oh

5  SQRT(13)
5 = SQRTCARCSIN(= = ======un)

2 2

SQRT(13)
-------- )

SQRT(13)

(13)

-——— %

7)

L¥Y ]
L
L]

33)
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(C8) SOLVE(ARCSIN(COS(3*X))*(F(X)-1),X)Q

SOLUTION
ARCCOS (0)
(ES) X = ===m-mmm-
3
THE ROUTS OF
(E9) F(X) = 1
(D9) (E8,E9)

(C10) SULVE(5%+*X=125,X)(

(D10) X=3

Note that SOLVE has taken advantage of radical approaches
but is still able to step back and treat fairly general expres=-
sions. In order to use the "radical" polynomial factoring pro=-
gram, it uses RADCAN to expand unlikely-looking expressions into

2K X
polynomials. Thus the expression Y =3Y +2 in Cl is expanded into

X Xlog(Y)
a polynomial in Z, where Z=Y (actually Z=e Y, which is

then factored into (Z-1)*(Z-2). By setting each of these factors

equal to zero, the following sequence of steps is followed:

Alog(yY)

= =1 = 0 is converted by USOLVE to

Xlog(Y) = log(l) which the simplifier changes to
Xloegl¥Y) = (.

SOLVE is called recursively, and factors this: SOLVE

throws out the log(Y) factor since it does not depend on X, and
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the factor "X" is recognized as a linear expression of the form
a‘x+b where a=1 and b=0, which has sclution X=-a/b, or in this

case, A=0, The other roct is handled in an analeogous fashion,

3.7 Conclusions

By using several distinct approaches to attack different
phases of the same problem, particularly peowerful algorithms can
be cbtained. Although ad hoc procedures can, in some
circumstances, yield similar results in other systems for alge-
braic manipulation, MACSYMA's SOLVE, RATSUBST, RATCOEF, and FULL-
RATSIHMP commands provide a generality and power not available
elsewhere,

These foundation blocks allaow the building of new
facilities. SOLVE is used by programs which find 1imits, compute
definite integrals, and expand functions in power serijes.
RATCOEF is used by the semantic pattern matching subsystem.
FULLRATSIMP is used by RADCAN, and RADCAN, in turn is used by
SOLVE. RADCAN, furthermore, can be used as the basis for

implementing the Risch (41) integration algorithm.
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Chapter 4 - Simplification of Radical Expresslons

L.1l. Introduction

The simplification of algebraic expressions is a many-
faceted problem. On one hand, all of the work in simplification
(and algebraic manipulation in general) is circumscribed by the
work of Richardson (39), which shows that for a sufficiently
large class of expressions the question of zero-equivalence is
undecidable. Furthermore, some researchers (e.g. Fenichel (16),
Moses (34), (35)) argue that (regardless of computability) the
concept of simplicity has no generally acceptable meaning. On the
other hand, Brown (3), Caviness (5), (6) and others show that
within certain classes of expressions the rigorous notions of
canonical forms and zero-equivalence tests can serve as useful
measures of simplicity. For a survey of these and other atti-
tudes and achievements in algebraic simplification, see Moses
(3L4).

The importance of the simplification problem in algebraic
manipulation is quite basic: A "simplified" expression generally
exhibits its most significant properties in a systematic fashion.
This can make mechanical (or human) processing of the expression
much easier,

This chapter discusses simplification algorithms for the
class of radical expressions. These are, roughly speaking, ratios
of multivariate polynomials, some of whose "variables" are nth

roots of polynomials. These expressions commonly occur in
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representing roots of algebralc equations in several variables,
and are rarely treated adequately in algebraic manipulation
systems. The only current alternative to the treatment we
provide in MACSYMA (and describe here) is a computationally
impractical procedure suggested by Caviness in (5).

In the following sections we will proceed to define the
problem of simplification of radical expressions in more exact
terms and contrast our appreach with that of others wheo have had
similar goals. |In sections 4.2 and 4.3 we discuss basic concepts
and define the class of radical expressions more precisely. In
section b.L4 we survey previous algebraic approaches to radical
simplification and a promising alternative, zero-eguivalence
testing.

Sections k.5 and L.B discuss the specific methods we
developed for MACSYMA. Section 4.7 proves some properties of the
simplified form; 4.8 discusses the canonical form implications of
this work; 4.9 points to other related efforts in MACSYMA, and

L,1lU summarizes its usefulness.

4.2, Basic Concepts
Following Caviness (6), to be given a glass of expressions
E means to be given rules, such as a Backus-Naur Form (BNF}
grammar, for determining the well-formed expressions in the
class. The expressions must be formed from a finite set of

atomic symbols, a subset of which must be designated as var-

jables. A member of € not containing any variables is a constant.
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cxpressions are interpreted as functions over the domain &F of

ccnstants.

r +

f R and S are members of an expression class fi R is said
to be identical to § if R and S are the same string of atomic
symbols. This relation is denoted by R = S, R and S are said to
be functionally equivalent aor simply eaguivalent, if for all
assignments of values in € to their variables for which they are
defined, they are equal. This relation is denoted by R = §, Of
course R = 5 implies R = §.

One concept related to simplicity which is of particular

usefulness is that of a canonical form.

Definition 4.2-1 A canonical form algorithm f for a class of
expressions € is a mapping from g into € such that for all R, S
in &,

(i) f(R) = R

(ii)y R =58 ==» f(R) = f(5)

Definition 4.2-2 A zero-equivalence test algorithm f for a class
of expressions € is a function from £ into € such that for all R,
S ine,

f(R) =0 <==> R =10

The constant problem consists of determining the zero-equivalence

of an expression containing no variables.
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A third concept, that of a normal ferm, is used by Caviness,

Definition 4.2-3 A normal form algorithm f has the same strong

property of the zero equivalence test algorithm, but has the
additional properties
{1}y f(R) = R (whether or not R = 0)

(ii) f(R) fits a "pattern."

This pattern concept is not generally defined but can be
clarified in a particular situation. For example, Brown's
"simplified" form for rational exponential expressions (3) is
normal.

A more useful concept than the normal form is that of a
regular elementary (or just regular) form as introduced by Rlsch
(u0).

.F
Definition 4.2-4 |If 8 = e or log(f) for fe & and is transcen-

dental over B, 8 is said to be a monomial over €, If 8 1Is a root
of a polynomial with coefficents in & irreducible over € and of

degree d(B) at least 2, then 8 is said to be non-trivial

- I = - =
algebralc over E. Let ¥=&(8 , ... ,8 ), that is, 2 with n
1 n

normal algebraic extensions. ® is regular elementary over & [ff

each Eh is a monomial or is non-trivial algebraic over

E{E # wwa 5B Y. An expression g ¢ ", is regular elementary if
1 k=1

the degree of g in any algebraic 8 is less than the defining

degree of B8, d(8).
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Clearly if g contains 8 to some higher degree than d(8),
reductions can be made to remove this condition. Any g ¢# fits
the implied "pattern" of a rational function (ratio of two poly-
nomials) because any expression is rational once a regular field
description is found. Thus the vagueness of the normal form is
removed,

Section 4.8 returns to exponential and logarithmic
monomials briefly, but for the bulk of this chapter we will be
concerned only with the non-trivial algebraic extensions.

A class of expressions is called a canonical (normal,
regular) class or is said to possess a canonical (normal,
regular) form if there exists a canonical (normal, regular) form
algorithm for it. 1t is conventional to assume that if R = 0,

then f(R) = 0.
L.3, Radical Polynomials and Expressions

Radical polynomials, ?, are formed from
(i) the integers

(1i) the variables x , x , ..., x (collectively called X)
1 2 N

(ii1i) the operations of addition, subtraction, multiplication

(iv) the un-nested operation of exponentiation to a
pesitive rational number,

Radical expressions ﬁ7 are formed from radical polvnomials with

the added operation of division.
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Examples of radical expressions are

The expression

142 1/32
(x + 3 )

is not in the class K because of the nested exponents.

This definition is a slight generalization of one given
by Caviness (5) in that it allows more than one variable.

The interpretation given to radical expressions [s one
which we believe corresponds, in its implications, to the most
common valld usage. As does Caviness, we interpret radical ex-
pressions as algebraic functions: For each expression E« & ,
there must exist an irreducible polvnomial P(z,X) such that
P(E,X) = 0. Caviness notes the necessity of simplifying

1/2 1/2 2 1/2
(x+1) (x=1) « {x = 1) to 0 in spite of the following

situation;

2
IT we let v be a root of v = x+1
1
2
y be a root of v = x-1
2
2 2
y be a root of v = x -1
2
2 1/2
then vy ¥ = v can just as easily be *2 (x =-1) as 0. Perhaps a

1l 2 3
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complete answer would include 211 these possibilities. Any
interpretation "consistent”™ (but unspecified by Caviness) should
produce 0, since admitting the other possibilities Is tantamount
to declaring all algebraic extensions transcendental over the
base field (and therefore subject to no simplifications at all).
Caviness requires that some branch of multiple valued roots be

2 1/2
chosen., Thus {x } is either x or =x, depending on the

branch of the square root chosen. We differ from Caviness on
this point: a particular branch, the pgsitive real branch, to be
defined shortly, will be automatically chosen as the interpreta-
tion of the radical.

In general, single-valued branches of radicals are not
analytic everywhere, and hence their domains must be suitably
restricted in either Caviness' or our interpretation.

We now define the particular interpretation of radicals

which we use,

Definition 4.3-1 A polynomial p(X) is said to be positive if Its
leading (integer) coefficient is positive, when p is written in

some canonical form. In such a8 case we shall write p > 0.

Definition 4.3-2 A polynomial or integer p is said to be sguare-

free if it has no repeated factors (or roots).

If p is @ positive square-free polyvnomial and m is a

1,1'r|'.'|
positive integer, then p has a positive real interpretation
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(BRI). A1l other instances of radicals will be reduced to this

case in defining their interpretations.

Definition 4.3-3 If p is a positive square-free polynomial and m

1/m
is a positive integer, then p has the positive real interpre-

tation (PRl) defined as follows:

1/m
case 1: p is a positive square-free integer. p is Interpreted

as the positive real mth root of p.

case 2: p is a polynomial in one variable, say x. The coefficient
of the leading term in p(x) is a positive integer, so that
there exists a real number L such that for all §> L, p(%) is a

1/m
positive real number. By case 1, for each %, (p(%)) has a

1/m
PRI. The PRI for (p(x)) is then this branch of the solution

m
to z -p(x) = 0 which has positive real values for x > L.

case 3: M-variable polynomial (M > 1). Assume a recursive poly-
nomial representation as in chapter 3. It is possible to fix
values for all but the main variable, say x, such that the

coefficient of the leading term in x iIs positive.

Then a PRI
for p(x) is defined as in case 2. For example, consider the 3-

variable polynomial

p 2
plx,v,2) = (y -f{z + 1) y) x =3 x vy + 2
choose z = 0 (arbitrary)
2
choose y = 2 tomake v - (z + 1) v positive (namely 2)

then for x > 2, p has a PR].



Now let us define interpretations for more complicated
radicals. We can assume that any radicand is at worst a rational
expression p(X)/g(X) where p(X) and g(X) are relatively prime
polynomials in canonical form, and q(x) is positive and nonzero.

n/fm
(p(X)/aq(X)) is interpreted as the ratio of the Interpre-

n/m n/m
tations of p(R) and q(X) . Thus all radicandscan be assumed

to be polvnomials.

n/m
If p{X) is not positive, p(X) is interpreted through the
it/ m n
use of a primitive root of unity ¢ = e as (w ) times the
Zm 2m
n/m
interpretation of (-p(X)) . Thus all radicands can be assumed

to be positive.
I¥f p(X) is positive but not square-free, it is easy to
prove that p(X) may be factored into positive square-free

factors, Thus if

k i
p{X) = T (p (X)) .,
i=1 i
n/m
the interpretation of p(X) is the product of the interpreta-
tions of
in/m
(p (X))
i
for 1 = 1, ..., ke Thus all radicands can be assumed to be
square-free,
n/m
If n 2 m, then for n = gam+ r, for 0 £ r < m, p(X) is
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q
interpreted as the product of p(X) and the interpretation of

r/m
plXR) . Thus we can assume n < m.

If n/m is not in lowest terms, it can be converted to
lowest terms. Thus we may assume the greatest common divisor of

n and m is 1.

n/m
If n =0, p(X) is Tnterpreted as 1.
n/m
I£f n > 1, ptX) Is interpreted as the nth power of the
1/m
interpretation of p(X) . Thus all interpretations are based on
definition L4.3-3.
2 1/2
According to the PR| interpretation, (x ) means % and
1/2 1/2
(20) means 2 & , 2 positive number, We believe this

corresponds to the most common usage.

We should point out that some of the transformations used
for the algorithms to follow are the basis for innumerable false
"proofs" These proofs are generally based on inconsistent inter-
pretation of radicals, and will not occur in our usage. For
example, using

b B e © g C
a = a a and (ab) = a b

we can "prove"

1 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1=1 =1 1 = 1 ¢=1) (=1) = (~-1) (=1)
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Since MACSYMA will impose positive real interpretations on
radicals, it will not factor 1 inte (-1){-1) and fallacies of

this sort will not occur.

It is interesting to compare our interpretation of radicals

with one which is, some would argue, most common, namely, that

2 1/2
the expression (x ) means |x|. For example, the modulus of c =
2 i B B
a+tbi is written as |c] = (a + b ) ; if b =0, we are left with
2 1/2
the convention that |a] = (a ) . Since this holds only when a

assumes real values, and the square is computed befgre the square
root, the usage is, in fact, consistent with a positive real

1/12 /2
interpretation, In general x meaning |x | Ts restricted to

the domain of non-negative real x.

In summary, there are (at least) three interpretations for
radicals,
1. Caviness', which does not choose a branch of the algebraic
function;
2. Qurs, which chooses the PRI;
5. The "common" square root which implies absolute value with
restricted domain.
The last two are equivalent on a restricted domain, and the
first two are equivalent up to the choice of a branch.

Computationally, interpretation (2) has a distinct advantage over

either of the others in that it is consistent over a larger



= 120 =

domain than (3), and does not unnecessarily involve arbitrary

roots of unity as in (1).

L.4. Comparisons with Previous Work on Radical Expressions

4.4.1 Algebraic approaches

Caviness proves in (5) that for an expression E = R , "E =
0" is decidable. Unfortunately, the appiication of his
constructive proof relies on an impractical (and largely
unnecessary) computation. The problem lies in the difficult task
of factoring over algebraic extensions of a polynomial ring.
Caviness points out that the need for factoring is a result of
the lack of irreducibility criteria for the radical expressions.
He develops a few; we extend his results and show that satis-
factory results can generally be obtained without any factoring.

The results here appear to conform more closely to intu-
itive notions of simplification than does Caviness'. More
important, they are far more easily computable, since the only
calculation needed is that of the greatest common divisor (gcd)
of multivariate polynomials with integer coefficients.

The difficulty in Caviness' approach, from a practical
standpoint, is his interpretation of radicals as written in an
expression. His approach can be most easily seen in Van der
Waerden (L47), section 36. Briefly, given any finite number of
radicals, an algebraic extension to the field of rational

expressions may be constructed to which all the radicals belong.



Each expression in this field will have a unigue representation
within the field. The construction of this field takes a finite
number of steps. Given a radical expression E, it is only
necessary to explicitly construct a suitable field which contains
E, and find the unique representation of E in that field. This
representation can always be found in a finite (but possibly
large} number of steps. This does not produce a canonical form
since there are an infinite number of fields which will contain
E, and the representation of E in the different fields may
differ. However, given two non-identical equivalent expressions,
a field may be constructed which contains them both, and in which
they are identically represented.

An unpublished report by S. L. Kleiman (25) proposes a
canonical form for rational expressions in several algebraically

2
dependent variables (e.g. f(x,y) where y +x=1). The procedures he

suggests have never been implemented, nor would thev be computa-
tionally efficient; nevertheless, his discussion of the
problems involved is quite thorough. He avoids the gquestion of
interpretation of radicals by introducing new variables which

satisfy certain polynomial egquations.

By contrast, our approach (by applying irreducibility
criteria and simplifications) is to produce a field which allows
all permissible simplification to be performed. Many, but not
all expressions are mapped into canonical forms by this approach.
Those not in canonical form are easily distinguishable from the

others by the presence of roots of -1,
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L.4,2 Zero-equivalence tests

|t has been shown by Richardson (39) and Johnson (24) that
zero-equivalence tests for the class of expressions treated here
(and other, larger classes) can be reduced to the "constant"
problem; that is, all references to variables can be removed in
determining zero-equivalence, assuming the expressions are
totally defined over the domain of Interest. The constant

problem is non-trivial, since very 1ittle is known about such

e 1/4
specific constants as e+ or e @ also if (-1) stands for a
it/ b
primitive fourth root of -1, for example, e
1/4 3/4 1/2
(4.4,.2-1) (=1} = =] - 2

is a constant which Is 0, but not cbviously so., The constant
problem does not concern uUs here because it is decidable for
radical constants by methods used by Caviness, while using our
interpretation of radicals it only crops up with roots of =-1.
We discuss zero-equivalence tests in some detail because
they serve, in some instances, as a potentially very powerful
tooel in simplification. In some cases decisions as to zero-
equivalence may be all that is needed. Secondly, given a zero-
equivalence test, we can produce a cancnical form algorithm in
the following way: Assume we wish to find a8 canonical form
algorithm for a class of expressions but only have a zero-

equivalence test over that class. We can produce, in lexico-
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graphic order, all legal members of the class (say, In size
place, up to and including the length of the expression T under
consideration). The first generated expression g, such that f-g
is 0, is the canonical form. Although this is clearly unsatis-
factory as a practical computational approach, [t does provide
some theoretical unity to the concepts. Furthermore, research
along the lines of the approach illustrated below promises to
provide especially useful insight into the ways expressions can
combine. This is particularly relevant for classes of expression
much larger than &.

Let us illustrate the approach of Johnson's (24) zero-

B
equivalence test. Let § consist of expressions of the form A , A

a rational function in one variable, x, and B a ratiocnal number.

Let & consist of products of elements of ¥. Radical polynomials

are sums of elements of &, Define the function L{u) = (du/dx)/u
for ued . Any element u of £ is called an eigenvector (of the
derivative operator) whose elgenvalue Is L{u). Eigenvalues are

always rational functions of x, since

L(A*B) = L(A) + L(B)
LCA/B) = L(A) - L(B)
B
LCA ) = BxL(A) B a raticnal number
Lix) = 1/x
L(B) =0 B 2 rational number
LCA+B) = (dA/dx + dB/dx)/(A + B) A, B rational

functions of x.



Since we can always decide whether or not a rational func=-
tion of x is zero, we can always tell whether or not L{u) for
ued is zero. The basis for the algorithm Is the fact that for
u equivalent to a constant, L(u) = 0.

Suppose we can decide if a constant is zero. Assume we

have a set of eigenvectors u , i= 1,

++s, n (and have calculated

their eigenvalues by the above rules). We may decide if

A
5 = e i
I=1l. i
is zero as follows:
STEP 1: If n =1 and L{u ) is not zero, S # 0. Otherwise S is a
1

constant. By assumption we can decide if the constant is
Zero. Return.

STEP 2: |f n > 1 then consider
n
T 2. u fu .

i=1 1 n

T is a sum of eigenvectors (whose eigenvalues are known) and
whose last term is 1. Test T for being equivalent to zero
{see below).

STEP 3: If T # 0, S # 0. Return.

STEP 4: If T

0, then K - S/u Is a constant. By assumption we
n

can test if a constant s zero, If K # 0, then S # 0. | £

K =0, % = 0. Return.

We must now explain step 2. Conslder

n=-1
T = > u Ju + 1
i=1 i n
If any of the eigenvalues of u fu , i =1, ..., n-1 are zero,

I n
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delete them from T. (The eigenvalue of 1 is 0, and so 1 is
deleted.) |If all the eigenvalues are zero, T = 0. Otherwise
T is a sum of at most n-1 eigenvectors (with known eigen=
values) so this algorithm can be applied recursively to

determine whether or not T = (.

An Example;

Consider
1/2 ! T
§ = 2 x - (b4x)
1/2 1/2
The eigenvalues for 2 x and -(4x) are the same, namely
1/(2x). In step 2 of the algorithm we set
1/2
2 x
T & =ecan== + 1
1/2
(4 x)
1/2 1/2
The eigenvalue for (2 x 1/ (hx) is 1/(2x) - 1/(2x) = 0. This

implies that T (and thus S/u ) is a constant. The particular
n

constant value of S/u must be determined by other means. Such
n

means should reveal that S/u is in fact 0.
n

Several important facts should be noted. First, the
problem of deciding when a constant is zero is not solved.
Second, if an expression is pot zero, a "simplified" equivaluent
expression is not generally produced. Third, the class of eigen-

A
vectors can be extended to other expressions (e.g, e , for A

rational in x).
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Richardson's (39) scheme, which is somewhat more compli-
cated, does, however, allow for composition of functions. His
method has been extended to a large class of functions defined by
first order non-linear differential equations by Moses,
Rothschild, and Schroeppel (36).

lero-equivalence tests, although an area of theoretical
importance, cannot at present be considered as useful as some
other notions of simplification, especially cancnical forms,
within the context of algebraic manipulation systems. We are
hopeful however, that research in this direction will produce
useful information for algebraic manipulation system designs, and

have for this reason included this section.

b.5. Simplified Radical Polynomials
In this section we present two closely related simplified
forms for a radical polynomial. Each looks 1ike a multivariate
polynomial, some of whose variables are radicals.
Let v , k=1, ... , N be a set of radicals of the form
‘ 1/m
(hia5-1) v = (p)

Defipition 4.5-1, In form (1), each m is an integer > 1 and each
k

p is a positive square-free integer or polynomial with no
k

(integer or polynomial) factors in common with any p , j # k.
J
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Definition 4.5-2. In form (2), the p are distinct positive prime
K

numbers or positive, primitive, irreducible (over the integers)

poclynomials. Form (2) is & special case of form (1).

With this definition of {v }, a simplified radical poly-

4

nomial has the form:

m =1

k

: ! ]
(4.5-2) Qv ) = J a v

k A i,k k

i=0

where each a is an integer, a polynomial, or a simplified
i,k

radical polynomial in other radicals v , < kK.

o

-

For example,

1/2 1/4 1/2 1/2
2 + 3 + B + (% )
1 2

can be represented as a form (1) simplified radical polynomial

1/2 1/4 B i 1/4 2 1/2
2 + 3 + 2 (3 ) + (x ® )
1 2

and as a form (2) simplified radical polynomial by:
1/2 1/4 172 1/4 2 1/2 1/2
2 + 3 + 2 (3 bl noelll - (x )
1 2
lhere are some radical polynomials which cannot be

represented in either of the above simplified forms, e.g.



=13 1f? To allow for representing such expressions, we define

forms (1') and (2'). In these, a single primitive nth root of

unity, W,, may be adjoined to the set {v }. With this addition,
l/2 k

(-1) = W, .

We initially excluded *1 from the set {p } because
expressions involving roots of unity cannot bekhandied as
authoritatively (by the methods we use) as other expressions. By
agreeing that any root of +1 is 1, we are left only excluding
roots of =1. By writing these roots in terms of other expres-
sions, even these symbols may be effectively removed. For
example, the expression (L4L.4,2-1) mentioned earlier will not be

reduced to zero automatically. On the other hand, MACSYMA allows

inm/b 1/2 1/4
e or 2 (1+i)/2 to be substituted for (-1) , and would then

simplify the resulting expression to 0.
Since many expressions can be represented in the forms (1)

and (2), it is significant that each of these is the basis for a
canonical form. Furthermore, algorithms for

(a) Converting any radical expression into a ratio of radical
polynomials

and (b) converting a radical polynomial Into forms (1) or (2)
are relatively straightforward, given programs for factoring
polynomials and computing polynomial greatest common divisors.

Details of such algorithms are contained in the next section,
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L.6 Algorithms

4L.6.1 Removing quotients from radicals

Let us first consider the radicands in a given radical
expression., A radiecand, 1f not already in the form of the ratio
of two polynomials with integer coefficients whose gecd is 1 may
be straightforwardly transformed into such a form by rational
simplification. Chapter 3 describes how this can be done by the
RATSIMP program.

A and B below are relatively prime polynomials cver X, with
integer coefficients, and r 1s a ratienal number.

If r > 1, say r =5 + g, for 0 £ g < 1, then

r 5 q
A A &
(re=) = meses s
B 5 _q
B o
Otherwise,
= T
A A
eatal B B e b
B r
B

L.B.2 Producing a ratio of radical polynomials

To transform the expression into a ratio of radical
polynomials reguires one further step. The expression must be
expanded over a common denominator Into the ratio of two

polynomials, RATSIMP can be used for this purpose.

L.6.3 Simplifying radical polynomials
The algorithm below produces a simplified form for the

radical expression by treating its numerator and denominator as



radical polynomials., Strictly speaking, if the result jncludes

powers of roots of unity, we do not consider It truly simplified,

STEP 1: Make a list of all radicands in the expression S 1.,
i
Fom il vwny N
STEP 2; For i =1, ..., N, factor S into a product of positive

i

prime numbers and a polynomial in canonical form (such as
that produced by RATSIMP). |If the polynomial has a negative
leading coefficient, add -1 to the list of factors, and
multiply the polynomial by -1,

If form (2) is required, factor the polvnomial into
irreducible factors.

¥ form (1) is required, factor the polynomial into
square-free factors (the S5QFR command of Chapter 3). This
uses the operations of differentiation and polynomial GCD
only, and is much faster than full factorization.

STEP 3: Now for each g = gcd(3 ,% ) i » k such that
i,k i k

£ # 1, "factor" both § and § into g and another
i,k i k i,k

factor which is computed by polynomial division.

STEP 4: Reduce powers of a common base to powers of the base to

3

the lowest common degree of the radical powers. That is, if

2/12 1/2
2 and 2 are the only occcurrences of the base 2,

1/6 1/6 3
replace them by 2 and (2 )] respectively. For some
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expressions, one of the bases will be "W" In order to
n

represent roots of -1 as powers of w.
STEP 5: Raticnally simplify the expression, considering each
distinct radical as a "variable." Thus

1/6 3 1/6 1/6 1/6 2
({2 y o+ {2 YY/(2 ) would be simplified to (2 I A

STEP 6: Simplify the resulting expression by the transformation
b c be 1/6 7 e
(a ) =--2» 2 for be » 1. Thus (2 ) would be simplified
1/7
to 2 2 -
STEP 7: If step 6 has caused any changes, go to step 5.
b ¢ Bec
STEP 8: Simplify (a ) to a , bc a proper fraction in lowest
5 1/2
terms: e, g. (2 )} is simplified to 2
STEP 89: (optional) Raticnalize the denominatur. (see section
r-i-uﬁ.'u- bE]D'ﬁ':I
STEP 10: (optional) Combine products of radicals. E. g.
1435 23 1/3

(2 3 )-=> (18) ‘

This algorithm terminates for any finite radical
expression. Clearly all the individual steps can be done in &
finite time. The only loop depends on step 6 causing & change in
the expression. |f we consider a recursive polynomial repre-
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sentation of either the numerator or denominator of the
expression, step 6 can be applied once and only once for each of

the different v in the polynomial. Thus the loop of steps 5,
k

-

6, and 7 will also terminate,

L.G6.4% Rationalizing denominators

A radical polynomial, Q(v ), is a root of a polynomial §(z)
k

with rational (in fact, integral) coefficients. f W is a

primitive (m )th root of unity, the other (m - 1) conjugate roots

k k
of § are
]! ‘1
k
Rl v ), ave Q€ E&o: ) e B
m k m k.
k k
The product of these other m - 1 roots, R, is a rationalizing
k k
multiplier in that Q(v ) R is free of the radical v . That is,
k k k

radicals inveolving roots of p have been eliminated. This proce-
k

H, ..., 1, and all

s
1]

dure can be repeated for each of the v ,

|_.-
=

of the radicals can be eliminated.

Multiplying the numerator by

-

R= I1II R
i=1 i

completes the procedure in theory, but an additional task

remains, A simple example illustrates the problem. Let us



rationalize the denominator of

2/3 1/3
(L.B.4=-2) 1/Q = 1/(X + X Ja

Pruceeding as above, we see that there Is just onc radical,

b o g 1/3
namely X in the expression. Thus k = 1, and v = x . Then
1

the denominator, Q, in terms of v has the form
1
2 5 2
Qly ) = (v ) + v . The conjugate roots, o v and w v , when
1 1 1 ¥ i 3 1

substituted in Q, produce two other polvnomials. R, the product

3
of these three polynoemials (noting the simplification (& ) = 1)
3

becomes;

1/3 2 2/3
(L.6.4-3) * ®x 0+ (W + (g Jx + ¥ .

3 3

This is not satisfactory because the fact that

2
(4.6, 4-4) = - =1

3 3

must be used to effect a furcther simplification. Equation

(4.6.4-4) can be deduced from the cyclotomic polynomial (see (47)

p. 113):

-

(L.6.L4=5) D (x) = x + x + 1
3

whose roots are cube roots of unity.
We can generate any cyclotomic polynomial by a procedure
described in (47) as follows. Define the "Mobius function" H{u)

oy



£l 1F ns 1
M(n) = {U if for some integer p, Pln
L
"(-1) ifn=p ... p (i.e. n Is square-free)
1 L
Then
_ d H4{h/d)
o (x) = Il (x - 1)
h dlh

O (x) is easily calculated in MACSYMA. Now with the added step
h

of simplifying roots of unity in R according to the gcyeclotomic
equation, and resimplifying the result, the procedure i|s almost
complete. For even roots, there Is an additional step of

L

eliminating symmetric values. (e.g. W = -W) Although this does
8 8

not guarantee a canonical form for the numerator because of such
relations as (4.4.2-1), it will result in the simplification of
the denominator. |In our example, we find that

1/3 2/3 2
R = x B and R Q

1}
x
o+
-

Thus

4.7 The Properties of tne Simplified Form
4.7.1 Overview and History
Qur object is to prove that any radical polynomial which
may be written in form (2) is in canonical form. Let Z be the

ring of integers. Basically we wish to show that sufficient
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irreducibility criteria may be obtained tc show that each v is
k

non-trivial algebraic over Z[X]J(v ,...,V ), and that we have a
1 k-1

regular form for radical polynomials. It is clear that roots of
-1 will have to be dealt with in another manner. With suitable
restrictions to the class of representatives of the extensions,
the regular form can be strengthened to a canonical form.
Caviness in (5) stated and proved several irreducibility
criteria which, for his approach to the problem, seemed quite
reasonable. That they are not strong enough is primarily due to
his interpretation of radicals, which caused him to first extend
the base field by a primitive nth root of unity. This Is not
necessary in many instances, and much stronger results can be

obtained without this first extension.

L.7.2 The theorem

Theorem 4.7.2-1

Let n > 1 be any integer, X = {X , ..., x } be a set of
1 N

indeterminates, and p, ..., p be a set of (distinct) positive
1 k

prime numbers or primitive polynomials over X, irreducible over

1/n
the integers. Let Q denote the rationals, and p denote the
i

positive (or any fixed) nth root of p . Then the field
i
1l/n 1/n
gixyip i EE P ) is of degree n over Q(X).
1 k
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k
Equivalently, Let E = {e} denote the set of n
k i
elements
m /n m /n 0L£m ¢<n
1 k h

p * .se ¥ D

1 k 1<£h LK

Then the set E is linearly independent over Q(X).
k

The p which are polynomials may be square=-free and
1

relatively prime in pairs instead of irreducible without altering

the result, Also, n need not be fixed over the p : then the n
i

of the theorem can be the least common multiple of any number of
distinct n's. (Thus if fifth and cube roots appear, we deal with
fifteenth roots.) MNote that roots of unity are pot included in
this theorem; 1 is not a prime number.

Proof

STEP 1: Reduction to the case n is a power of a prime number.

1/n 1/n
Let F = Q(x){(p g snag P ) form= 1, soe Clearly
1 k
k k
F 2 F and F . Hence if F is of degreen and F is of degree m
mn n m n m
k e

the degree of F is divisible by (mn) , hence equal to (mn)

mn
since it is obviously not greater, Thus it suffices to consider

n a power of a prime number.
1/n
Let E = Q(X), F = F (p ), etc., so that F of the
n;{] ﬂ,l n;ﬁ n
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previous paragraph is F . We must show that the degree of the
n,k
extension F /F isnfori =1, ,.., ki or Iin other words,
n,1 n,1=1
n
we must show that the equation y = p 1is irreducible in F .
I n,i=1

STEP 2: Proof for n the power of a prime q.

2 and q an odd prime, We can

There are two cases, g

summarize some useful theorems ({(L46) pp. 291-293, Satz 7,8) as
follows:

Let g be a prime number, ¥ a natural number, and < a member
of a field F.
Except for g = 2 and v 3> 1,
q” , 4 ;
y =9 is reducible over F iff & =2 where £ is in F.
For q = 2 and V' > 1,
27

2 2 4
y -% is reducible over F iff ol =p or o= =44

where ﬁ is in F,

Note that within our context,,ﬁ is either a positive prime
number (pot 1) or an irreducible (or square-free) primitive

polynomial over X. What will be shown here is that the degree of

F [F = M,
n,i n,i=1
n
Consider the case i=1l. For y - p to be reducible, p
1 1
a2 M 5
must be 2, £ or -4f for 2 inF = 0(X). Any of these possi-
n,0

bilities would imply that the polynomial p has multiple roots in
1



F . Since p has real integer coefficients, complex roots of
n,0 1

y =p = 0 would occur only in conjugate pairs, and real
i |

{integer) roots cannot occur since p 1Is irreducible over the
1

integers. (If p is only square-free, any real roots could not
1
n
be multiple.) Thus the polynomial v = p 1is irreducible over
1
F
n,Q0

The rest of the proof is by induction on i, the index of p,
fDr T L 2} e w g ko
Assume that previous polynomial extensions have been

successfully adjoined., We must show the impossibility of

q HE g
P = 5 ,p,0or =4p
i+1 7
where £ is inF , i =2, ..., k-1.
Ml
In fact, we will even allow 2 to be in G = F (w ) without

n, 1 n.,i n
changing the results, Clearly, if a polvynomial is irreducible in

2
G, it is irreducible in the corresponding F. The proofs for £

o q
and -4~ are essentially similar to the proof below for 72

1]
5

Let us assume the falsity of the theorem. Then p
i+1

where 2 is in G . Then we can express 2 in this form:
n,i
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i

B n
(4.7.2=1) Bo= T c e c e B
. /’ " ) - D
e J J My
i=1
q g
If all but one of the ¢ is zero, p =c - e which
J i+l J J
contradicts the hypothesis that p is irreducible over the
i+l

integers. It even contradicts the weaker hypothesis that p is

i+l

square-free and relatively prime to each of the other poly-

o
nomials. The contradiction is cobtained as follows: e must be
J
® 3 - - 3 q -
rational, since it is the ratio of p and ¢ , both rational.
i+l B
q q
But then p has factors ¢ and e . Even ifec is 1, p and
i+l J J ] i+l
q

e must have a non=-trivial GCD, since their ratio is then 1.
J
Finally, the square-free condition on p eliminates the
i+l

q
possibility that e itself is (somehow) rational.
J

Assume there are at least two terms, c¢c , ¢ #¥ 0. By the
J h
induction hypothesis, the Galeis group of G : G is
n,i n,i+l

transitive, so there is an automorphism ¥ of @ over G
n, i n,i+1

where Y(e )/¥(e ) # e /e . For some set of integers {r 3}, this
J h ih m



automorphism maps e into W e , Since £¢€ F , the g gqth roots
m m n, 0

g I,
all look like w'Z , and any automorphism will just inter-

A

of o

change the roots. Applying ¥ to equation (4.7.2-1) yields

r r
0 < j
N w B -
(4.7.2=2) ro=/, c.LL e
J 3
Since Wis in G , equations (4.7.2-1,2) contradict the assumed
n,i
linear independence of the e over G . The same result holds
k n,i
for F
n,l
2 L

-~ -~

Since the argument for £ and -4 5 is quite similar, this

concludes the proof.
4L.8 Canonical Forms

Recall that Caviness does not provide a canonical form for
radical polynomials. Two equivalent expressions may be non-
identical because each is expressed in a different algebraic
extension of Q(x). In our simplified form (2) we are dealing with
the same field representatives so that we are always dealing with
the same extensions for those expressions which can be put into
form (2). Thus, except for minor points dealing with such
questions as the ordering of terms in a sum or product, form (2)
is a canonical form for that subset of £ which can be represented
in form (2). With suitable recombinations of square=-free

factors, form (1) can alsoc be made canonical.



One of the consequences of this canonical form is that we
can define a content and primitive part for a simplified radical
polynomial, Let F = Z(X), where Z is the ring of integers. Then

E, a simplified member of F is in F[v , «sss V1. The content ¢
1 k

of E is a polynomial in G such that E = ¢.P where P, the
primitive part, is a member of G whose coefficients in G are
relatively prime polynomials (or integers). This ¢ Is unique up
to a unit multiple. (see, e.g. (27), p. 366)

Now we may draw a few conclusions about the canonical
properties of the radical expressions with rationalized
denominators, Basically, we wish to show that the denominator

is unique, regardless of the order in which the v are removed.
i

In fact, the value of the denominator is not unique, but It can
be made unique,

With the use of this concept of content, we can transform a
radical expression with a rational denominator into a reduced
radical expression; one such that the content of the numerator
has no factor in common with the denominator. Any such expres-
sion can then be written as c.N/D where ¢ and D are relatively
prime polynomials, and N is a radical polynomial in simplified

form.

JTheorem 4.8-1
If P and P' are reduced radical expressions with numerators

in form (2) such that P' = P, then P = P',



- 142 -

Proof

Let P = c:N/D and P' = ¢'.N'"/D' as above. Cross multiply
to get c-N-D' = ¢'.-N'-D., The primitive part of two equivalent
radical polynomials must be the same, so N = N'. But then ¢/D

and ¢'/D', both rational expressions, are clearly identical also.
L.9, Additional Radical Proposals

An extension to variable exponents has been made in the
simplification algorithm described Iin section 4.6. In order to

*
make more apparent the relationships between, for example, e and

x/2
e , non-numeric exponents of the base e are collected and

examined for common factors. Bases different from e are con-

x x logly)
verted: v ==> e ; the same convention of positivity

defined in section 4.3 is used to choose a unique branch for the
log. |f common factors are discovered, they result in re-repre-

x/2 ®
sentation of the elements. Thus in the presence of e , e s

x/2 2
represented by (e } « In the terminology of section L.2, we

wish to establish a regular field description for the expression
in terms of monomials. One consegquence of this would be that

x x/2 x/2
e + 2 e + 1 simplifies to e + 1,

Since the conditions requiring this form of processing are

disjoint from those of the radical expressions (i.e. variable
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exponents are not allowed in ), this aspect of simplification
does not interfere with the algorithm of section 4.6: This part
of the extended algorithm is completely bypassed unless there is
a variable exponent.

To outline some detalls of the algorithm, let p and q be

q qg log(p)

polynomials. Then p is written as e , then as

(q * sose +q ) log o o P )
1 n 1 m

q log(p )
i J

and then as a product of terms of the form e
If @ is a rational (rather than polynomial) expression, it

can be written in a partial fraction expansion form (15) as a

q log(p)
sum, Some of these terms e will be recognizable as mul-

a/k log(p)
tiples of others, say e A They are rewritten to reflect

this fact, and the expression is rationally simplified with
respect to this new set of variables. Further efforts in this
direction are described in (15). Exponentials are of particular
interest because when extended to complex arguments, they can be

used to express sines, cosines, etc.

4.10, Conclusions
A simplification procedure for radical expressions which
involves only gcd calculations has been presented., While

Caviness' version of a similar algorithm "is so encumbered by
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combinatorial difficulties that it cannot be considered a
practical routine," (p. 72 (5)) the algorithm presented here is
easily applied.

This result is an improvement of Caviness' results in
several ways, although it is not as general as his approach.

l. Factoring over arbitrary algebraic extensions of the
rational field is unnecessary; in fact, only greatest common
divisor calculations (of polynomials with integer coefficients)
is required.

2. It demonstrates that the only cases requiring Caviness'
approach are expressions which contain roots of =1,

3. The inessential restriction to one variable is deleted.

In terms of theoretical advances, the PRI formulation of
the interpretation of radicals allows a new and more useful
theorem (4.7.2-1) concerned with the canonical properties of this
simplified form to be proved,

Extensions of the algorithm of section 4.6 are discussed in
terms of their usefulness and practicality: several seem useful
enough to suggest that they be made available as programs in
MACSYMA or similar systems, A description of several uses of just
such a simplification capability have been described in Chapter
3. The RADCAN routine in MACSYMA uses the easily computed form
1" of section 4.5, but does not ordinarily use the denominator
rationalization technique. RADCAN alsc incorporates the addi-
tional ideas in section 4.9, except for partial fraction decom=-

position of exponents.



One of the important consequences of this simplification
approach is that new integration methods developed by Risch (40),
(41) which rely on the regularity {in the sense of L4.2) of

integrands, can be implemented with relative ease.
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Chapter 5 - Summary and Prospects for the Future
5.1 Summary

In Chapter 2, The User-level Semantic Matching Facility in
MACSYMA, we have described a project both in man-machine commu=-
nication, and in analyzing the concept of an occurrence of an
instance of an algebraic pattern. While this pattern recognition
capability has great appeal in the initial approach to solving a
new problem, it often yields to more efficlent methods when the
problem is better formulated. HNevertheless, we feel it Is an
important tool to place in the hands of a user of an algebraic
manipulation system: it gives a handle on problems difficult to
formulate in other modes and allows a user to mold a system to
conform to his set of expressions and operations. We tried to
clarify what we feel to be important In terms of semantic pattern
recognition; merely syntactic patterns leave much to be desired
in terms of ease of use and flexibility. We have demonstrated
several types of applications of pattern matching extensions to
MACSYMA: writing programs, writing Markov-algorithm rule-sets,
and modifying the simplifer.

In Chapter 3, the rational function representation of
MACSYMA serves as a vehicle for several algorithms which, we
believe, correspond to notions often used informally and
imprecisely in referring to cperations on mathematical expres-
sions. For example, the notion of coefficient, as embodied in

RATCOEF allows a mathematician to "collect terms" in a single
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command. This would be quite difficult to phrase in terms of
traditional programming languages, or for that matter, formal
mathematical definitions. This imprecision is even more apparent
in the problem of substitution, where the most obvious aspect of
the problem is its inherent ambiguity. By defining the RATSUBST
algorithms for substitution, while drawing on the power of the
rational function programs to perform global transformations on
an expression, several varieties of ypnambiguous substitutions may
be performed. Another use of the rational function repre-
sentation, in the SOLVE programs, has had consequences in many
other parts of MACSYMA. Being able to solve for roots of poly-
nomials (by factoring, or through radicals) while at the same
time solving for transcendental roots (by inverting functions),
has saved other programs considerable efforts., SO0OLVE forms an
effective tool for finding poles and singularities, an important
task for limit calculations, definite integration (using contour
integration and residue calculation) and series expansions.

In chapter 4 we have described new simplification
algorithms for radical expressions, one of which uses only poly-
nomial greatest-common-divisor operations for its effectiveness.
The major consequence is that we can produce a canonical form
over the class of radical expressions not requiring roots of -1.
The importance of the simplification algorithm lies in two areas:
in general, simplification to a canonical form is valuable,
especially if it is inexpensive; secondly, the Risch integration

algorithm depends strongly on such results,
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5.2 Prospects for the future

The research described in this thesis, and similar work is
directed toward the goal of making man more creative and
computers more useful, No doubt many areas of computer science
will benefit from a better understanding of how knowledge can be
incorporated into a programming system for mathematics.,

The goal of a computer system for the future which 1) Is a
drudge-work slave capable of doing massive calculations,
correctly and rapidly, 2) Is a mathematical co-worker, capable
of conversing in natural notations about many problems from a
wide range of disciplines; and 3) Is an encyclopedic mentor,
being an organized collection of pertinent facts and algorithms
drawn from all of mathematical analysis, is a tempting challenge.

Reference 1, the proceedings of SYMSAM/2, is a detailed
description of the present state of the art in algebraic manipu-
lation, Of the papers in that volume, 11 are concerned with
applications of computers to group theorv, a branch of symbol
manipulation which is of limited interest to us here. Some 7
papers deal with applications of computers to problems of
interest to workers in celestial mechanics, relativity, high-
energy physics, and other areas where massive problems in algebra
occur. Some 7 papers discuss the present state of new or revised
computer systems for algebraic manipulation., About a dozen are

concerned with basically peripheral issues: specifying the syntax
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for a language for communicating with an on-line system for
algebraic manipulation, hand-written input, transportability of
such systems, etc. A significant number of papers (8) describe
developments which may actually benefit all, or most, algebraic
manipulation systems of the future, in that they introduce new
algorithms for standard operations of mathematics. Often these
algerithms represent improvements, in terms of computation time,
of many orders of magnitude, Furthermore, the thecretical tools
used for analyzing the times taken for execution of algorithms
have been considerably refined. A major factor in the success of
these algorithms has been the use of modular arithmetic. Four
papers on simplification, and three on limits and integration
completed the program.

Many of these techniques and manipulatory algorithms
described at SYMSAM/2 are present, or are being implemented in
MACSYMA, and for that matter, in several other current algebraic
manipulation systems. By Jjoining together as many of these
advances as possible, in forms which are easier to approach than
the original implementations, we hope to produce a system which
is useful both in applications, and in exploring the problems of
algebraic manipulation in general.

During the development of MACSYMA, a number of applications
came to our attention through colleagues at M.!.T. and Harvard.
As a rule, we have avoided the so-called "naive user," but have

attempted to attack problems with a combination team of a pro-
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grammer familiar with MACSYMA (the author) and an application
specialist,. This approach has sufficed to explore several
problems. With Prof. Eytan Barouch of M.1.T's Department of
Applied Mathematics, several problems arising in statistical
mechanics were attempted, with only moderate success: each
problem was reduced to a solvable one whose answer was, in
retrospect, not sufficiently accurate to be interesting; the full
problem was (at least without new insights) demonstrated to be
Eeyond present machine capacity. With Mr. Francis Heile, an
M.l.T physics graduate student, a masters' thesis (25)
calculation was completed; the hand calculation of the same
result had been abandoned because of its complexity. This
involved the computation of traces, utilizing symmetry properties
for simplification.

With Mr. Henry Mok, another M.!.T., graduate student, the
arithmetic statements in a large computational program for use in
plasma physics research, were checked (and an error found in the
previous hand calculations).

Other members of the programming group have tried MACSYMA
on problems that have come to their attention; that few produce
directly publishable results is not surprising -- the ratio of
good ideas to bad in mathematics is probably quite small,
although the bad ideas often require just as much investigation
as the good. It appears that systems such as MACSYMA can perform

a useful service if they only weed out untenable computational
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approaches more rapidly than hand computations. They are only
occasionally called upon to solve problems to completion by long
and complex computation,

Where can we go from here? |In the first place, the study
of particular applications is a necessity. In this way, further
developments of systems like MACSYMA can proceed in the most
useful direction, rather than towards the unnecessarily overgrown
syntactical and semantic prospects that seem to threaten
developing algebraic manipulation systems.

Of course, since applications are presumably the
justification for all this work, efforts in making such systems
more readily available for applications may be of major
importance. These efforts should include hardware development
(especially well-designed terminals, cheaper, faster, list-
processing computers, larger memories), and system development
{especially systems for management of large programs and data-
bases, the sharing of resources, and the facilitation of man-
machine interaction).

There is clearly more work to be done in understanding the
methods of mathematical analysis, and studying alternative
algorithms for common tasks, Large strides in this direction
have already been taken, but more is needed in understanding such
"simple" questions as "What is the fastest method for raising a
polynomial to an integer power?" (recent work by L. Heindel, (22)
and separately, W. M. Gentleman (17) draw some conclusions; my

own work in this area may be found in (13))
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In terms of making a more versatile mathematical system, we
might explore the construction of a deductive mathematical system
with a more varied data base. We should be able to use such
facts as "the second derivative of F with respect to X is 0" or
"the absolute value of Y is less than or equal to 5." No current
system goes very far toward the difficult task of welding
mathematical facts into a coherent data-base,

We should seek to extend the present boundaries of the
functions which we can handle through rigorous methods. Zero-
equivalence tests for handling large classes of functions appear
to be possible. Stronger results concerned with nested radicals
may also be possible,

Better algorithms for factoring polynomials, computing
solutions to sets of linear equations, may also be valuable
goals, but it may be that heuristic approaches will begin to
dominate parts of the currently algorithmic problem domain. By
rearranging the ordering of variables, enormous speed factors can
be gained in, for example, computing polynomial greatest common
divisors. Certainly a human mathematician would explore these
other methods before embarking on a lengthy calculation =- why
not a computer?

Just how realistic these goals are, remains to be seen.

The research of the last decade has revealed both unexpected
successes, and surprisingly basic difficulties. lle expect that,

as in the past, research in the field of algebraic manipulation



will continue to have Important implications in our understanding

of mathematical algorithms, the nature of computation and

artificial intelligence, programming languages and systems, and

problems of man-machine communication.
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Appendix |

MACSYMA Users' Manual

Commands to MACSYMA are strings of characters representing
mathematical expressions, equations, arrays, functions, and pro-
grams. Extra spaces and carriage returns are lgnored. Commands
are terminated by € or $. @ causes the command to be evaluated
and the result displayed. § causes the command to be evaluated
but the display of the result is suppressed. When typing com-
mands, "rubout" or "delete" deletes (and echoes back at the
console) the previous character; 7?7 deletes the whole command,
and causes the line number to be redisplaved.

A potential user who is interested primarily in the
""commands'" available should peruse the following page,

summarizing the input syntax of MACSYMA, and then may skip ahead
to section 1.7,



Figure A.l1 Syntax of MACSYMA Expressions.
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Examples of the legal

input expressicns and their meanings are shown below. W, X, Y,

and Z stand for any expressiocns: U and \ for variables.

Some of

these forms can be extended to take an arbitrary number of
arguments in the obvinus manner.

INPUT
AB
TAB
1
L2
FLEX,Y]
FCX, YD
FIA,Y)(W,Z)
h g
X*¥*xY or XAtY
XY
-X
X+Y
x=-Y
L
n=Y

X<Y, X>Y, X>=Y,
X<=Y

X AND Y

X OR ¥

b ¢

[X,Y]

IF X THEN Y

IF X THEN Y ELSE W

FOR 1:1 STEP 1
UNTIL 1>3 DO X

A X

Ve X

AlV):i=X

ACV):Y FOR ALL W

Fia ¥

A FOR INTEGER 3<X<10

A FOR 3<X<10
BLOCK(X,Y,Z)
P i 4

MEANI NG

variable

gquoted variable

integer

floating point number
subscripted variable

function invocation

subscripted function inveocation
factorial

exponentiation

guctient

negation

sum

difference

product

equality predicate or equation
less than, greater than, less than or equal

to,

greater than or equal to predicate or inequall

logical AND or Boolean operator
logical OR or Boolean operator
quoted expression

list of expressions

conditional

conditional

DO Toop

assign the value of X to A
assign the value of X to the value of V
define function A(V)
define function A(V)
non-commutative product
indexed set
real line segment
program block (X,Y,Z are statements)
EV(X,Y,Z): X is an expression,
Y,Z specify environment
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.1 The Input Stream Editor

At any point while he Is Inputting a comand, the MACSYMA
user can enter the Iinput-stream editor by typing #. The editor
is given the string of characters tvped so far in the current
command. In the case of a detected syntax error, the entire
previous command string will be given to the editor.

All the commands to the editor reference a cursor (an
underscore or back-arrow, depending on the console) which is dis=-
plaved within (or at either end of) the string of characters
under edit. In the description to follow, n stands for a
positive or negative integer. The default value of n is +1. If n
is positive, the commands operate toward the right of the cursor:
if n is negative, they operate toward the left.

nC moves the cursor n characters.

nk moves the cursor n characters in the reverse
direction{nR=-nC).

J (also T) moves the cursor to head (top) of string.

nlL moves the cursor to the right of the nth carriage return

(e.g. L moves to the next line)

Sstring# moves the cursor to the right of the first occurrence of
the string of characters "string" searching toward the
right. (-5 implies left)

nD deletes n characters.

nk deletes all the characters through the nth carriage
return. (e. g., K deletes the remainder of this 1ine)

Istring# inserts the characters "string"

# leaves the editor and returns to inputting from the
user's console.

.2 System Control

Lines are consecutively numbered, except that the input
line Ci will be following by an output line (if one is generated)
named Di. The next input-output pair will be labelled C(i+l) and
D(i+1l), respectively. |f one command produces several lines of
output, the labels will begin with an E, and the line number will
be incremented for each additional line. A user can refer to any
command or expression by its line label. The most recently
computed expression may be referred to as "%",

The system can be set to automatically write old expres-
sions onto secondary storage. The process is controlled by the
following variables which can be set by the user. (e.g.
FILESIZE:10% would set FILESIZE, or by the OPTIONS command.)



vari default purpose

DSKUSE FALSE If set to T, then expressions are
automatically filed away.

FILESIZE 10 Expressions are written ocut with
FILESIZE expressions in each file.

RETAINNUM § When the number of expressions in core
reaches FILESIZE + RETAINNUM, a file is
written.

FILENAME username The first name of the file written out.

The second names (our filing system
requires two names for a file) are

; (I S

INCHAR C The prefix character for inputted line
numbers,

CUTCHAR D The prefix character for outputted line
numbers.

LINECHAR

m

The prefix character for intermediate-
cutput line numbers.

When an expression is written out, the name of the file
containing it is attached to the expression name in core. Thus
when the expression is referenced in a later step, it can be
automatically retrieved from the file.

At the end of the session, the secondary storage files can
be deleted by the command FINISH(). The command FINISH{TRUE)
allows the user to retain some or all of the expressions on his
file, In order to specify the form and contents of the retained
file, he must answer a series of gquestions:

estion response meanlin

OUTPUT DEVICE?(file spec) The name of the file on which the
output will be saved,

EDIT? N Save the files as they are. This
response will cut off further guestions,
¥ Read the files back into memory, one ex-

pression at a time, so that selected ex-
pressions can be saved on the previously
specified file.

INTERNAL? ¥ Save the expressions in machine readable
form. In this form they may be read
back into a fresh system using RESUME,

N Save only the two dimensional display
forms.,

SAVE? ¥ (This s asked for each expression.)
Include the expression currently dis-
played.

N Do not Include it.
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RESUME(file specification) reads a file previously
putputted through FINISH, displaying the commands and recomputing
the results.

BATCH{file specification) reads an input text from the
designated file, command by command., When the end of the file is
reached, further commands may be supplied by the user at his
console. DEMONSTRATE is like BATCH except it pauses waiting for
the user to type a space between commands. Any other character
causes a return to the user conscle for further Input. Addi-
tional arguments may be supplied to cause some of the input 1ines
to be skipped.

|.3 Rules for Expression Evaluation

We have attempted to define a philosophy of expression
evaluation in MACSYMA so as to lead to the most natural

mathematical usage. In so doing, we necessarily become involved
In a2 complicated set of rules to (in part) replace explicit
quoting mechanisms, such as that in LISP. |f we have been

successful, a mathematician should rarely, If ever, have to refer
to the rules concerned with noun and verb forms, below.

A:X assigns A the value of X. This is the way & user would
typically assign a value to a variable. Values are alsc assigned
when the variables are used as labels for expressions on input
and output. This assignment is analogous to the FORTRAN "=", or
the LISP SETQ.

A variable which does not have a value stands for [tself.
Numbers always stand for themselves,

A built-in or user-defined function is either a noun-
function or a verb-function. A verb-function Is one which
attempts to effect an applicaton of the function to its arguments
and thereby remove |tself from the expressicn. For example,
INTEGRATE is a verb-function, and ordinarily will attempt to
perform an integration. On the other hand, SIN Is a2 noun-
function, and will not attempt to evaluate itself, although it
will evaluate its arguments. The EV command can be used to
evaluate an expression in a context which says that {(for example}
all SINs should be numerically evaluated. That is, selected noun
forms can be converted to verb forms. Similarly, if a8 normally
verb-type function is desired to operate as a noun-type function,
it may be so declared via the function NOUN. Thus |INTEGRATE,
when declared a noun, would normally return an Integral, even If

the integration could be performed, |If the function F is a verb,
'F can be used as the noun form for F. |If F is a noun, '"'F (not
"EF) can be used as the verb form. If 2@ verb-function cannot be
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evaluated, as, for example, an integral which cannot be computed,
it is simply returned as though it were a noun-function. If F is
already a noun, 'F is the same as F.

Transcendental functions are nouns. Other defined functions
are verbs unless their names are quoted. The arguments of
undefined functions are evaluated, but, obviously, the function
itself cannot be evaluated, and so is treated as a noun. As an
expression is evaluated, it is also simplified,

If a name is subscripted (a subscript Is enclosed in square
brackets on input), then its value is stored in an array. The
size of an array may be declared by the command ARRAYSIZE
(name,size)s. An array need not have its dimensions declared,
but if it has been declared, it will be permitted to have only
numerical subscripts., At the first attempt to store a value In
an undeclared array, a mechanism will be set up to describe the
entries and their values in terms of a hash-coded 1ist. The hash
code can be computed from the subsecripts whether or not they are
numerical, |If an array is subsequently declared, the values In
the hash table are transferred to the new (true array)
organization., The value of an array entry can be a number, ex-
Pression, equation (etc.) regardless of whether it is a hash
array or a true array. A hashed array is organized as follows:
It is initially allocated a hash table with four entries., Each
table entry contains a list of subscripts and values which hashes
into that entry., Whenever the number of entries with values is
equal to the size of the hash table, the size of the hash table
is doubled, Whenever the operation ":" is executed, a check is
made to see if the name is subsecripted. |f so, the appropriate
array entry is set.

A::X assigns the value of A the value of X. The value of A

must be a variable in this situation. This is analogous to a
LISP SET,

.4 Function Definitions and Arravs

MACSYMA incorporates a programming syntax resembling Algol-
60 for use on the top (command) level and in function defini-
tions. The parser is entirely syntax directed, so that
modifications to the grammar can be easily Included; also, an
exact definition of the acceptable forms (and their
interpretations in terms of LISP and MACSYMA functions) can (but
will not) be given. The syntax |s illustrated in figure 1.3,
Each of these constructions has fairly conventional interpreta-
tion, except when symbolic and traditional numeric notions con-
flict., One such instance is in inequalities, and is discussed in
the next section in more detail,
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The first argument to ":=" (the functlion definition
operator) may take one of three forms: f(x), f[i]l or f[iJ(x).
Let the second argument to ":=" (that is, the right hand side)
be v. ln the first case, the variable ¥ denotes a function,
with value Tambda(®)v. In the second case, a function definition
is being associated with an array. The name f is dencoted an
AEXPR with value lambda(i)y. An AEXPR is used as Tollows. I f a
particular value of an undeclared array (it is an array if the
variable is subscripted or 1f the name has previously been
subscripted and assigned a value) is not present in the
associated hash table, a check is made to see If the name also
denotes an AEXPR. |If so, this function is evaluated and the
resulting value is stored in the hash table and also returned.
|f no value is present and no AEXPR is present, the expression Is
handled as though it were an undefined function,

If the first argument of ":=" is f[iJ{x), the third case,
then f is denoted an AEXPR as above, but this AEXPR evaluates to
a function of x. For example, given fLiJ(x):=x#*#*i, evaluating
f[3](5) would cause the AEXPR to be evaluated to lambda(x)x*=*3
and this value would be stored as the value of f[3] and also
applied to 5 to yield 5#*3, A subsequent evaluation of f[3](7)
would cause the value lambda{x)x#**3 of f[3] to be retrieved and
applied to 7.

The second argument to ;= (the right hand side, or
procedure body) is ordinarily left unevaluated. This may be
altered by the use of the double quote ("), which causes
immediate evaluation. Thus F(X):="%E uses the most recently
computed expression as the procedure body.

If several expressions or commands are included in the
procedure body, and dummy variables are needed, the correct form
is, for example,

F(X):=BLOCK([Y] , Y:1, A, IF(Y>X) THEN RETURN(Y) ELSE
DISPLAY(Y), Y:Y+1, GO(A))

This is equivalent to
F(X):=FOR Y:1 STEP 1 UNTIL ¥Y>X DO DISPLAY(Y)
1.5 Predicates and Conditionals

The comparison operators "»", "¢",  and "=" are not evaluated
in ordinary contexts; that is, they are nouns. However, these
gperators, along with AND and OR are evaluated when they are in
the predicate position of the |F-THEN-ELSE construction; that is,
they are transformed into verbs. |f the predicate evaluates to
FALSE, the ELSE clause is evaluated and returned. Otherwise the
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THEN clause is evaluated and returned.

|.6 Special Constants

There are a great many special constants and functions in
mathematics which, if given their common names, would pre-empt
many of the letters of the alphabet. To avoid various types of
misunderstandings, we have chosen the symbol "%" as an "escape"
character for special symbols. Thus the base of the natural
logarithms, e, is typed into MACSYMA (and displayed by MACSYMA)
as %E. Other symbols in this category include %Pl (the ratioc of

the circumference to the diameter of a circle), and %!, the
square root of -1,

| .7 General Purpose Commands

INTEGRATE(exp,var) integrates exp with respect to var or returns
an integral expression if it cannot perform the integration.
INTEGRATE(exp,var,low,high) finds the definite integral of
exp with respect to yar from low to high. Several methods
are used, including direct substitution in the indefinite
integral and contour integration, Improper integrals may use
the names INF for positive infinity and MINF for negative
infinity. If an integral "form" is desired for manipulation
(for example, an integral which cannot be computed until some

numbers are substituted for some parameters), the noun form
"INTEGRATE may be used.

DIFF(exp,varl,nl,...,vark,nk) differentiates exp with respect to
vari ni times. |If k=1 and nl=1, nl may be omitted:
DIFF(exp,var). |f the derivative "forms" are required (as,

for example, when writing a differential equation), 'DIFF
should be used.

DEPENDENCIES(f1l,...,fn) declares functional dependencies used by
DIFF. Each fi (i=1,n) has the format f(xl,...,vm) where each
¥i (j=1,m) is a variable on which f depends. Thus DIFF(Y,X)
is 0, initially. Executing DEPENDENCIES(Y(X))$ causes future
differentiations of ¥ with respect to X to be displaved as

DY

DX

GRADEF(f(x1,...,xn0),g1(x1),...,gn{xn)) defines the derivatives of
the function f with respect to its n arguments. That Is,

df /dx1 = gl(x1), etc.
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LIMIT(exp,var,val,dir) finds the 1imit of exp as the real
variable var approaches the value val from the direction dir.
Dir may have the value PLUS for a 1imit from above, MINUS for
a limit from below, or may be cmitted (implying a two=-sided
limit is to be computed). LIMIT uses the following special

symbols: INF (positive infinity) and MINF (negative
infinity). On output it may also use UND (undefined) and IND
(indefinite but bounded). 'LIMIT may be used to simply

create a 1imit noun form.

RES|DUE(exp,var,val,order) computes the grderth residue in the
complex plane of the expression exp when the variable wvar
assumes the value val.

SUBSTITUTE(a,b,c) substitutes g for b ing. b must be an atom or
a function with arguments, rather than a function with only
some of its arguments, When b does not have these charac-
teristics, one may sometimes use SUBSTPART or RATSUBST.
SUBSTITUTE(eal,exp) or SUBSTITUTE([egl,...,eak],exp) are
other permissible forms. The eai are equations indicating
substitutions to be made. For each equation, the right side
will be substituted for the left In the expression exp (if
the left side is non-atomic, and the right side is, the
equation will be "f1ipped")

EXPAND(gxp) will cause an expansion of the argument. The MACSYMA
variables MAXNEGEX and MAXPOSEX (originally set to 6) control
the maximum negative and positive exponents, respectively,
which will expand. EXPAND(exp,p,n) expands exp, but uses p
for MAXPOSEX and n for MAXNEGEX.

SIMPLIFY(exp) simplifies its argument, thus overriding the value
of the MACSYMA variable SIMP which If set.to FALSE stops sim-
plification.

PART(exp,nl,...,nk) obtains a subexpression of exp which is
specified by the indices ni. The index nl which (like all
the indices is a non-negative integer) selects the argument
of the top level operator of exp corresponding to its value.
Thus PART(Z+Y,2) vyields Y. The index n2 (if specified)
picks up an argument of the result of PART(exp,nl). Thus
PART(Z+2+Y,2,1) yields 2. The operator is considered to be
argument 0.

In exponentiation, the base is considered argument 1,
and the exponent argument 2. In a gquotient, the numerator is
argument 1, and the denominator s argument 2. A minus sign
appearing in the display Is considered as an operator. For
example
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(C1l) X+Y/Z*%2(

¥
(D1) -+ X
2
L
(C2) PART(D1,1,2,2)E
(D2) 2

DPART(exp,nl,...,nk) selects the same subexpression as PART, but
instead of just returning that subexpression as Its value, it
returns the whole expression with the selected subexpression
displayed inside a box. The variable %PART is given the
value of the selected portion. Thus in the example above,

(C2) DPART(D1,1,2,1)@
(D2) === 4 ¥

PR
* 7 *®

"R w

SUBSTPART(x,exp,nl,...,nk) substitutes x for the subexpression
picked out by the rest of the arguments. |t returns the new
value of exp.

KILL (argl,...,argn) eliminates its arguments from the MACSYMA
system., If argi Is a variable, a function name, or an array
name, the designated item is removed from core and the

storage it occupies is reclaimed. argl = "HISTORY"
eliminates all input and output lines to date (but not other
named items). argi = a number, n, deletes the last n lines.

STORE(argl,...,argn) is similar to KILL in that It reclaims core
storage (but not quite as much). The values of the arguments
to STORE are removed from core and saved on a secondary stor-
age device., Special indicators left in core allow MACSYMA to
read back these items whenever referenced. The arguments can
be variables, function names, or array references. Numbers or
"HISTORY" are not acceptable, since storage of the input and
output lines is automatic and controlled by RETAINNUM.

SAVE (argl,...,argn) simply backs up expressions on disk, but
leaves them In core as well.

COEFF(exp,var,n) obtains the coefficient of var**n in exp. For
best results, exp should be expanded. N must be an integer



or a rational number. Ceoefficients of var**n which are
functions of yar are ignored. This command is less powerful
than RATCOEF, but is sometimes convenient in interactive
situations.

(C2) COEFF(Y+X*SE**+X+1,X,0)0@
(D2) Y % ]

SUM{exp,ind,lo,hi) performs a summation of the values of exp as
the index jnd varies from lo to hi. |f the summation cannot
be performed, or if '"SUM is used, the value is a sum noun
form which is a representation of the sigma notation used in
mathematics.

(C3) SUM(I=»*2,1,1,4)E
(D3) 30

FRODUCT (analogous to SUM above).

EV(exp,argl,...,argn) causes the expression exp to be evaluated
and simplified with switches set according to the values of
the argl.

EVAL reevaluates the expression so that variables in it
which have values will be evaluated,

SIMP overrides the setting of the SIMP switch.

EXPAND causes expansion. EXPAND(n,m) set the values of
MAXPOSEX and MAXNEGEX.

DIFF causes all differentiations indicated to be
performed. DIFF(xarl,...,vark) causes only differentiations
with respect to the indicated variables.

NUMER causes SIN, CO0S, LOG, and "#*+" with numerical
arguments to be evaluated.

v=exp causes the substitution of exp for .

Any other function names (e.g. SUM) cause evaluation of
occurrences of those names as though they were verbs.

The arguments following the first (exp) may be given in
any order, |t should be understood that EV performs a single
evaluation and simplification. Thus all of the functions are
performed in one scan. This is possible because the simpli-
fier is used to perform expansions, differentiation, and
numerical evaluations by the setting of switches. For
example;

(CL) SINCXI+COS(Y)+(W+1)**2+"'DIFF(SIN(W), W)E



D 2
(D4) COS(Y) + SIN(X) + =--SIN(W) + (W + 1)
DW

(C5) EV(%,NUMER,EXPAND,DIFF,X=2,Y=1)0C

2
{D5) COS(W) + W + 2 W + 1.425324

An alternate syntax has been provided for EV, whereby one may
just type In lts arguments, without the EV(). That is, one
may write simply exp,argl,...,argn.

WHEN conditicngl DO lidentifier = expression e.g., WHEN I=2 DO
K=%0@. The value of the identifier is determined by

evaluating the conditional. |If it evaluates to TRUE, then
the expression is evaluated and used for the value of that
use of the lidentifier. |f the conditignal evaluates to

FALSE, then the identifier's value is itself. |In effect, the
identifier becomes a function of no arguments which evaluates

the conditional, and if TRUE, returns the gxpression as its
value., Thus WHEN TRUE DO EXPAMND=EXPAND(%)® makes the atom
EXPAND always evaluate to the last computed expression,
expanded,

SOLVE(exp,var) solves the algebraic equation gxp for the variable
var. If exp is not an equation, it is assumed to be an
expression to be set equal to zero. Nar may be a function
{e.g. F(X)), or other non-atomic expression except a sum or
product. |t may be omitted if exp contains only one variable.
Exp may be a rational function, and may contain trigonometric
functions, exponentials, etc. |ts success may depend partly
on switches set by the user. (see OPTIONS)
SOLVE([1lhsl,...,lhsn],[¥1l,...,¥n)) solves a system of linear
algebraic equations, It takes two lists as arguments. The
first list (lhsi, i=1,n) represents the equations to be
solved; the second list is a list of the unknowns to be
determined. |f the total number of variables in the
equations is equal to the number of eguations, the second
argument-list may be omitted. |f the given equations are not
compatible, the message |NCONSISTENT will be displayed. | F
no unique solution exists, SINGULAR will be displayed., The
solutions are exact, asuming the user has not used floating-
peint numbers in his input, and may involve symbolic
variables. The solution set consists of a 1ist of numbered
equations and an index to the 1ist.

DISPLAY(gxpl,...,2xpn) prints equations whose left-hand-side is
the exp, and whose right-hand-side is the value of the
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expression. The value of DISPLAY is a 1ist of the labels of

the equations displaved.

(C7) DISPLAY(D3,1)@
(E7) D3 = X + Y
(EB) | = §
(D3) [E7,E8]

PLOT(exp) produces an asterisk-plot of the expression exp. Exp
may be of the form F(X) FOR 1<X<10, or F(X) FOR INTEGER
1<X<10, or [v¥l,...,vyn] or F(X,Y,Z). |In this last case, the
user will be asked to define the dependent and independent

variables, set the extra variables to constants, and provide

the domain for the independent variable. If the list of Y-

values is provided, the user wil] be asked for a list of the

corresponding X-values.

GRAPH(xvals,vvals,xlabel,ylabel) graphs the two sets of data
points, and labels the axes as indicated. The data points
can be lists or indexed sets. The height and width of the
display is affected by the parameters of the user-terminal,
or can be altered by the use of OPTIONS.

APPEND(x,¥) appends the two lists x and ¥ and returns a single
list of the elements of x followed by the elements of V.

CONS(x,¥) returns a new list constructed of the element X as its

first element, followed by the elements of v.

OPTIONS(arg) is a tree=-structured collection of option-describing
and option setting programs. The options concern the setting

of switches for disk usage, display, simplification, the

SOLVE program, etc. OPTIONS(CATEGORIES) lets the user in at

the top level. See figure A.2 below.
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Figure A.2 QPTIONS

CATEGORIES

A LIST OF CATEGORY NAMES EACH FOLLOWED BY THE OPTIONS IN THAT
CATEGORY

CURRENT VALUE IS

[BOOKKEEPING,
[DSKUSE,FILESIZE,RETAINNUM,FILENAME,DEV, UNAME, | NCHAR,

OUTCHAR, LINECHAR, TIME, CATEGORI ES,RSET, NOUUO],
SIMPLIFY,

[SJMP,MAKPDSEK,MﬂKNEGEK,%EMDDE,TRIGS!GN,SUESTFLAG,%ETGLOGFL%G],
DISPLAY,

[NOSTAR,DERIVATIVEABREV, LINEL, SCOPEHEIGHT, SQRTELAG,
EXPTDISPFLAG],

RATIONAL,
[FULLFLAG, NOREPEAT, INVERTFLAG, FACTORF LAG, RADSUBST, MODULUS,
BERLEFACT,GCDSWITCH, GCDOFF, RATEPS | LON]

SOLVE,
[SOLVEFACTORS,SOLVERADCAN, SOLVEHEURS] ]

x**BOOKKEEP | NG#**

DSKUSE
|F TRUE CAUSES OUTPUT FILE TO BE OPENED
CURRENT VALUE 1S FALSE

FILESIZE

THE NUMBER OF EXPRESSIONS WRITTEN TO SECONDARY STORAGE IN EACH
FILE
CURRENT VALUE IS 10

RETAINNUM

THE NUMBER OF EXPRESSIONS IN MEMORY JUST AFTER A SECONDARY
STORAGE FILE IS WRITTEN
CURRENT VALUE IS 8§

FILENAME

THE FIRST NAME OF FILES OF EXPRESSIONS WRITTEN TO SECONDARY
STORAGE

CURRENT VALUE IS usrxyz

(where USERNAME begins with usr, and where xyz is a random
number)

DEV
THE DEVICE USED FOR FILING
CURRENT VALUE 18 DSK
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UNAME
THE USERNAME USED FOR FILING
CURRENT VALUE 1§ usr

I NCHAR
THE FIRST LETTER OF THE NAMES OF EXPRESSIONS TYPED BY THE USER
CURRENT VALUE IS C

OUTCHAR
THE FIRST LETTER OF THE NAMES OF THE VALUES OF OUTPUT
EXPRESSIONS
CURRENT VALUE IS D

LINECHAR THE FIRST LETTER OF THE NAMES OF THE VALUES OF
INTERMEDIATE DISPLAY EXPRESSIONS
CURRENT VALUE 15 E

TIME
IF TRUE CAUSES THE TIME REQUIRED TO EVALUATE EACH INPUT COMMAND
(EXCLUDING DISPLAY TIME) TO BE PRINTED
CURRENT VALUE IS FALSE

RSET
IF TRUE INTRODUCES A SPECIAL DEBUGGING MODE
CURRENT VALUE IS FALSE

NOUUO
IF TRUE INHIBITS MODIFICATION OF CALL INSTRUCTIONS, A DEBUGGING
AlD
CURRENT VALUE IS FALSE

#%*S|MPLIFY*#=%

SIMP
IF TRUE CAUSES AUTOMATIC SIMPLIFICATION OF EVALUATED EXPRESSIONS
CURRENT VALUE IS TRUE

exxD | SPLAY #%=%

NOSTAR
|F TRUE CAUSES MULTIPLICATION TO BE DISPLAYED AS A SPACE
CURRENT VALUE 1S TRWVE

DERIVATIVEABREV
IF TRUE CAUSES DERIVATIVES TO BE DISPLAYED AS SUBSCRIPTS
CURRENT VALUE 15 FALSE

LINEL
THE LINELENGTH USED FOR QUTPUT AND DISPLAY
CURRENT VALUE IS 68



SCOPEHEIGHT
THE NUMBER OF LINES USED FOR PLOTTING
CURRENT VALUE [S 25

SQRTFLAG
IF TRUE, DISPLAYS SQRT AS SQRT. |IF FALSE, DISPLAYS SQRT AS
EXPONENT 1/2,
CURRENT VALUE IS TRUE

EXPTDISPFLAG
|F TRUE, DISPLAYS EXPRESSIONS WITH NEG. EXPONENTS USING
QUOTI ENTS.
CURRENT VALUE IS TRUE

w#xxRATIONAL** =

FULLFLAG
IF TRUE CAUSES RATSIMP TO MULTIPLY THROUGH AND REDUCE TO LOWEST
TERMS FORMS LIKE (AtB)1C
CURRENT VALUE IS FALSE

NOREPEAT
IF TRUE NO GCDS ARE PERFORMED WHEN RE-RATIONALLY REPRESENTING AN
EAPRESSION
CURRENT VALUE 1S TRUE

I NVERTF LAG
IF TRUE CAUSES RATSIMP TO REPRESENT A|(-B) AS (A|B)|(-1) THEREBY
FACILITATING SUBSTITUTIONS
CURRENT VALUE IS FALSE

FACTORFLAG
IF TRUE CAUSES INTEGERS TO BE FACTORED BY FACTOR COMMAND
CURRENT VALUE IS TRUE

RADSUBST
IF TRUE ALLOWS RADCAN TO BE CALLED BY RATSUBST
CURRENT VALUE 1S FALSE

MODULUS
IF MODULUS IS A POSITIVE |INTEGER P ALL ARITHMETIC IN THE
RATIONAL FUNCTION SYSTEM WILL BE DONE MOD P
CURRENT VALUE 1S FALSE

BERLEFACT
|[F TRUE THE BERLEKAMP FACTORING ALGORITHM WILL BE USED OTHERWISE
THE KRONECKER ALGORITHM
CURRENT VALUE IS TRUE
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GCDSWI|TCH
IF TRUE THE MODULAR GCD ALGORITHM IS USED OTHERWISE THE COLLINS
REDUCED PRS
CURRENT VALUE IS FALSE

GCDOFF
IF TRUE ALL GCDS ARE 1
CURRENT VALUE 1S FALSE

RATEPS | LON
VALUE OF ACCEPTABLE ERROR |N CONVERTING FLOATING POINT NUMBERS
TO RATIONAL NUMBERS I[N RAT
CURRENT VALUE 1S 1.0E-9

wxxSQLVE®*%x

SOLVEFACTORS
IF TRUE SOLVE TRIES TO FACTOR GIVEN EXPRESSIONRUE
CURRENT VALUE 1S5 TRUE

SOLVERADCAN
IF TRUE SOLVE SIMPLIFIES GIVEN EXPRESSION WITH RADCAN
CURRENT WALUE IS FALSE

SOLVEHEURS
|F TRUE SOLVE TRIES VARIOUS HEURISTICS
CURRENT VALUE IS FALSE
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Rational Function Commands

RATVARS(varl,...,varn) provides a method for specifying the
ordering of variables in CRE form. The most main variabie
will be varn, the least ("most constant") will be wvarl.

RAT(x,varl,...,varn) converts the expression % to CRE form. The
optional vari serve as an ordering (as in RATVARS) but only
within the scope of the single RAT command.

RATDISREP(x) converts a CRE x to a normal prefix expression.,

RATS IMP(x,varl,...,varn), FULLRATSIMP(x,varl,...,varn), and
RADCAN(X) are simplifiers. Currently, FULLRATSIMP and
RATSIMP are identical.

FACTOR(x) factors a polynomial or rational function x (numerator
and denominator).

SAFR(X) computes a square-free factorization of the expression x.
A number of special checks for content with respect to
several main variables occasionally factors poclynomials even
though the factors occur singly.

PARTFRAC(x,var) expands a rational function X in partial
fractions with main variable var.

RATCOEF(exp,x) picks out the coefficient of % (which may be a
power, product, sum, quotient, etc.) in exp.

RATSUBST(a,b,c) substitutes a for b in c. B may be a sum,
product, power, etc.

GCD(x,y) computes the greatest common divisor of % and y.

DIVIDE(x,y,var) computes the quotient and remainder of % divided
by ¥, as rational functions in a main polynomial variable,
var.

RESULTANT(x,y,var) computes the resultant of the two polynomials
X and ¥, and eliminates the variable var,

MOD(x) converts the polynomial x to a modular representation (mod
MODULUS). X must be In only one variable.

GFACTOR(x) factors the polynomial X over the Gaussian integers
(i. e. with SQRT(-1) = %] adjoined)
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The Matching Subsystem

DECLARE{var,pred) declares var to match only expressions
satisfying the predicate pred, when var Is used in a pattern.

DEFMATCH( name, exp,varl,...,vark) defines a pattern matching
program with name name.

DEFRULE(name,exp,repl) defines a transformation rule with name
name which matehes the pattern exp and transforms It to the
replacement repl.

APPLY1(exp,rl,...,rk) (and similarly for APPLY2) applies the
rules rl,...,rk to the expression exp, and returns the
transformed expression. The difference between APPLY1l and
APPLYZ is in the sequencing through the expression and rules.

TELLSIMP (pat,repl) (and similarly for TELLSIMPAFTER) changes the
simplifier, so that in all subsequently simplified
expressions, an occurrence of the pattern pat will be
replaced by the expression repl.

Several additional predicates and testing programs are
provided for use in constructing patterns and their predicates.
SIGNUM(x) returns =-1,0, or +1, depending on whether the sign of X
is negative, zero, or positive. If x is a number, this question
is simple. |f x is not a number, its signum is computed from the
coefficient of the leading term in a rationally simplified
expression equivalent to X. FREEOF(x,y) returns TRUE if y does
not depend explicitly on x. This is accomplished by searching
through ¥ for an occurrence of X, and assumes that x Is not, for
example, used as a dummy variable of integration. INT(x) returns
TRUE if x is an integer. CONSTANT(x) returns TRUE if x I1s a
constant. REALNUM(x) returns TRUE if x is a floating point
number, RATNUM(x) returns TRUE if x is a rational number or an
integer. NUMBER(x) returns TRUE if x is an integer or a floating
point (real) number.

The Matrix Subsystem

The matrix subsystem currently is not completely integrated
into MACSYMA, since matrix data types are not autcomatically
handled by the simplifier. Furthermore, the ARRAY facility,
which allows more general data types (e.g. hash-coded Indices
need not be integers), is & separate facility. This wlll, we
hope, be remedied shortly.

For the moment, however, the following commands provide a
fairly thorough set of primitive operations on matrices.



MATRIX (rowl,...,rown) defines a rectangular matrix with the
indicated rows. Each row has the form of a list of
expressions, e.g. [a, x**2, y, 0] Is a list of L elements.

ENTERMATRIX(m,n) allows one to enter a matrix element by element
with the computer asking for values for each of the mbyn
entries,

EMATRIX(m,n,x,1,1) returns an m by n matrix with all entries Zero
except for the (i,i) entry, which Is X

DIAGMATRIX(n,x) returns a dliagonal matrix of slze n by n with the
diagonal elements all x. An ldentity matrix Is created by
DIAGMATRIX(n,1), or one may use the next command.

IDENT(n) produces an n by n Identity matrix,

SETELMX(x,1,i,m) creates a new matrix which is identical to the
matrix m except that its (I,i) element is x.

ROWX(m, 1) creates a new matrix which is the ith row of the matrix
m.

COLX(m,i) creates a new matrix which Is the dth column of the
matrix m.

TIMEX(ml,...,mn) multiplies two or more matrices (or scalars and
matrices).

ADDX(ml,...,mn) adds two or more matrices.

DIFFERENCEX(ml,m2) computes ml - m2.

POWERX(m,1i) computes the [th power of the matrix m

INVERX(m) inverts the matrix m.

TRANSX(m) produces the transpose of m.

ECHELON(m) produces the echelon form of m.

MINORX(m,1,i) computes the i,] minor of the matrix m
DETERMINANT(m) computes the determinant of m.

CHARPOLX(m,var) computes the characteristic polynomial for M.

That is, DETERMINANT(DIFFERENCEX(m,D|AGMATRIX(var,size of
m)J.



SUBMATRIX(ml,...,mn, M, nl,...,nn) creates a new matrix composed
of the matrix M with its mi rows deleted, and its ni columns
deleted.

The Power Series Subsystem

The power series subsystem is divided inte two parts.
The first handles truncated power series, and the second
manipulates summations in their general form. The code is
still being changed to accomodate different needs as they
appear in applications, so that the following description Is
liable to need revision. This subsystem is not, at the
moment, particularly well integrated intc the MACSYMA system,
in the sense that there are no calls from the simplifier to
these programs.

TAYLOR(exp,var,pt,pow) expands the expression exp in a truncated
Taylor series in the varliable var around the point pt. The
terms through (var-pt)**pow are generated.

PS(exp,var,pt,pow) resembles TAYLOR, except that the internal
form of the expression is a special form especially suitable
for manipulation as a truncated expression. Such expressions
can be manipulated with the programs PSPLUS, PSMINUS,
PSTIMES, PSEXPT, and PSDERIV (for adding, negating, multi-
plying, raising to a power, and differentiating,
respectively).

POWERSERIES(exp,var,pt) attempts to generate the general form of
the power series expansion for exp in the variable yar about
the point pt (which may be INF, for infinity).

A large table of general expansions is now on a MACSYM disk
file, including hyberbolic, hypergeometric, and various other
special functions.

Miscellaneous Utility Commands

This section includes a few miscellanecus controls that the
user has over the MACSYMA system., Some of these are not commands
in the strict sense, since they do not require a "2@" to take
effect.

Control-B (written B) "seizes" the lineprinter, if it is
available, and outputs future lines (in tandem with the conscle)
on the lineprinter. ¥ releases the lineprinter. K prints on the
next line the contents of the input buffer. This is useful when
several characters have been deleted, to clarify current input



line. f, on Cathode Ray Tube consoles, clears the screen and
resumes printing on the first line (as in ).

MACSYMA is loaded into a LISP system. |In the course of
running programs, it is occassionally useful to call some LISP
program directly, In order to read and evaluate one LISP s-
expression, one has the command EVAL{). One may "quit" out of a
loop and return to the supervisor by tvping ¥. H has the
effect of "breaking'" at a point in execution, and allowing a user
to examine the depth of program nesting, the values of internal
variables, etc. $P {space> resumes execution.

B causes an exit from MACSYMA to LISP., The LISP expression
(CONTINUE) returns to the MACSYMA supervisor.

When within MACSYMA, it is sometimes handy to read in files

of LISP programs. (Note that BATCH handles only MACSYMA Input,
not LISP files) The following command help one to do this.

LOADFILE(fnl,fn2,device,username) loads a file as described by
i1ts arguments.
The next few commands help file away MACSYMA results.
WRITEFILE(device,username) opens a file for writing.
CLOSEFILE(fnl,fn2) closes the file.

PLAYBACK() "plays back'" all the input and output lines since
(Cl). PLAYBACK(n) plays back the last n expressions (Ci, Di,
and Ei count as 1 each). Ordinarily this would be done
between a WRITEFILE and CLOSEFILE to store a neat set of
commands and responses or to refresh one's memory as to what
he has already done (especially at a CRT console).

Comments are welcome, and should be directed to Richard Fateman.
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Appendix 11
The Polynomial and Rational Function Package in MACSYMA
I1.1. Introduction

This appendix describes a series of LISP routines for ma=
nipulating sparse polynomials and rational functions In several
variables. This description is intended as a detailed guide to
the implementation and assumes some familiarity with LISP and the
concept of rational expressions. A user-oriented view of these
facilities may be found in the previous appendix.

The polynomial programs were originally written by W. A.
Martin. They were debugged, and in some cases, rewritten, by R.
Fateman; the rational function and conversion programs, the
modular greatest-common-divisor (gcd) algorithm (4), and the
lower level modular arithmetic routines were programmed by R.
Fateman. The Berlekamp factoring algorithm (2) was implemented
by L. Rothschild,

Because these routines are written entirely in LISP
they can be exported to other LISP systems very simply. |f they
are to interface with another LISP=based algebraic manipulation
system, the only programs that need to be altered are those which
convert to and from rational expression form. The programs are
written so as to allow complete symbolic algorithms to be
composed entirely within the rational function package.

It is well known that any rational function can be written
as the ratio of two polynomials with integer coefficients and
with no common polynomial divisors. With the added provisions
that the denominator be positive and that the polynomials be rep-
resented in a canonical form (such as recursive in the variables
in some fixed order), we can produce a canonical form for any
rational expression. MACSYMA has a special internal repre-
sentation for canonical rational expressions (CREs) which has
many useful properties, the most important of which Is that this
representation will map any set of functionally equivalent
rational expressions into a unique (canonical) representation.

11.2, Representation of Canonical Rational Expressions

A rational function in canonical rational expression (CRE)
form is represented at the top ("MEVAL") level of MACSYMA bv the
form

((MRAT SIMP varlist assoclist) polyforml . polyform2).
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Each polyform is a list of the form (mainvariable, highest-
exponent, coefficient, next-highest exponent, coefficient, ...).
Polyforml is the numerator, polyformZ is the denominator.

When the coefficient of a term is zero, the exponent-coef-
ficient pair is omitted. This makes the representation attrac-
tive for sparse polynomials. The coefficients may themselves be
polyforms in variables with a lower order, or may be numbers.
This recursive property makes this representation suitable for
polynomials in any number of variables, and makes programming
particularly simple in LISP., The leading coefficient in
polyform2 is positive, and the greatest common divisor of poly-
forml and polyform2 is 1. The ordering of variables on VARLIST
determines which is the main variable, and which (recursively)
are main variables of the coefficients of the main variable.

By altering the definitions of CPLUS, CMINUS, CTIMES,
CEXPT, CQUOTIENT, CDIFFERENCE, CFACTOR, CDERIVATIVE, CGCD, and
PCOEFP, the non-polyform coefficient arithmetic can be
reimplemented with a number of different domains. Currently, the
coefficient arithmetic is the domain of arbitrary precision
integers.

If the global variable MODULUS is set to a positive prime
number R, rather than its default value of NIL, all coefficlient
arithmetic is performed modulo R. In such a case, the repre-
sentatives of the field have values between -R/2 and R/2.

Alternate coefficient routines have been implemented by R.
Zippel which (along with minor changes in the rest of the
programs) allow the coefficients to be rational numbers, or
rational functions. Additionally, he has written programs which
automatically truncate their results.

A set of special coefficient routines which have "counters"
in them is also available. This is convenient for examining the
number of coefficient operations required for execution of a
program,

Among these coefficient routines, the only one whose
purpose is not obvious is PCOEFP, PCOEFP is a predicate which
returns T when applied to a member of the coefficient domain
(presently, LISP integers), NIL for a member of the polynomial
domain (i.e. polyforms).

Zero could consistently be treated as an empty polyvnomial
or as a zero coefficient., For our purposes it is most convenient
to express zero by 0.
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Returning to the generalized form for a CRE, we see that it
is to our advantage to have a rapid method for testing whether
"x" is more of a main-variable than "y" (etc.). |In order to
compare two variables on the VARLIST quickly, each variable is
associated with a generated symbol (they look like G001, GNO2,
...) and the generated symbols are ordered by thelr values.
POINTERGF is used as an order-testing predicate. The generated
symbols are used in the body of the polyforms, and the varlist
and assoclist are used only in conversion to and from CRE form.

Examples

Assume the POINTERGP ordering of 3 generated symbols G001,
G002, and GOO3 is in that order.

34
X/3

((MRAT SIMP NIL NIL)Y 3 ., 4)

((MRAT SIMP (X) (G001)) (G001 1 1) . 3)
3/X = ((MRAT SIMP (X) (GOO01)) 3 GOOl1l 1 1)
(X*+XY)/Z = ((MRAT SIMP (Z Y X)(G003 G002 G001))
(GoO1 2 1 1 (Go02 1 1))
G003 1 1)

Polynomials are written with polyformZz = 1
3 = ((MRAT SIMP NIL NIL) (3 . 1))
7X = ((MRAT SIMP (X)(G001)) ((Go0l1 1 7) . 1))
0 = ((MRAT SIMP NIL NIL) (0 . 1))

Note that both the assoclist and varlist may contain var-
jables not actually in the expression. Thus
3 = ((MRAT SIMP (X Y Z)(G0OO3 G002 GOO1) (3 . 1))
is valid.
I1.35. Polynomial Functions

In this section, X and Y are expressions with the same
ordering of variables.

PCOEFP(X) returns T if X is a member of the coefficient domain,
i.e. a number or NIL.
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PPLUS(X,Y) adds two polyforms to yield a polyform,
PTIMES(X,Y) multiples two polyforms to vield a polyform.

PQUOTIENT(X,Y) divides X by Y to yield a polyform; signals an
ERROR if the remainder is not zero.

PDIVIDE(X,Y) vields a list of two RATforms: the quotient and the
remainder, with respect to the main variable of X, of X
divided by Y.

PDIFFERENCE(X,Y) yields the value of X-Y.

PDERIVATIVE(X,VAR) yields the polyform equal to the formal deriv-
ative of X with respect to the variable VAR, which need not
be the main variable of X.

PEXPT(X,N) raises the polvform X to the rower N, which must be a
non-negative LISP integer. It uses a modified multinomial
expansion technique which is generally superior to other
methods (13),

OLDGCD(X,Y) yields the polynomial greatest common divisor of X
and Y. Collins' reduced PRS algorithm, described in (27}, p.
372 is used,

OLDCONTENT(X) yields a list of the (positive) content of X and
the primitive part of X, X is considered to be a polynomial
in one variable with coefficients that are polynomials In the
other variables. Thus the content of xyz+xy with x the main
variable is ged(yz,y) or v, while the primitive part is xz2+x.
This definition is used for the Collins algorithm.

PGCD(X,Y) vields the polynomial greatest common divisor of X and
Y. The modular algorithm described by Brown In (L4) is used.
It calls PGCDM, PGCDP, and PGCDU corresponding to algorithms
M, P, and U in (4).

PCONTENT(X) yields a list of the (positive) content of X and the
primitive part of X. X is considered to he a polynomial in
many variables with integer coefficients., The content is
always an integer. Thus the content of xyz+xy is 1, with
primitive part xyz+xy, This definition is used for the
modular GCD algorithm (PGCD).

PMODCONTENT(X) is a peculiar type of content calculation required
by the multvariate modular gcd. X is considered to he a
polynomial whose coefficients are polynomials with modular
coefficients in one variable (the main variable in X). Thus
the content of xyz+xy for main variable x, is x, with primi-
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tive part vz+y.
PMINUS(X) yields =X, 0 if X is 0.

PMINUSP(X) yields T if the leading coefficient of X is negative,
otherwise, NIL.

PINTERPOLATE(L,VAR) finds an interpolation poclynomial given a set
of points. L is a list of n values (integers or poly-
nomials) of a polynomial P to be found by interpoclation at
the points 0, 1, ..., n. VAR is the main variables of P.
PINTERPOLATE returns P only I1f P has integer coefficients,
and signals an ERROR otherwise. PINTERPOLATE is used by
FPFACTOR.

PCSUBST(X,VAL,VAR) substitutes the number VAL for the variable
VAR in the polyform X.

PFACTOR(X) returns a list of items consisting of positive (except
possibly -1) primitive, irreducible (over integers) factors
of X, followed in each case by the degree (multiplicity) of
that factor. Berlekamp's algorithm (2) is used, PFACTOR will
not factor with respect to variables whose generated symbol
is on the list SDONTFACTOR. |f SFACTORFLAG is set to NIL,
the integer part will not be factored. For example, with
$FACTORFLAG set to T:

PFACTOR ((X &4 2)) = (2 1 (X 1 1) &)

PFACTOR (0) = (0 1)
PFACTOR (1) = (1 1)
PFACTOR (=3) = (-1 13 1)
PFACTOR (-1) = (-1 1)

PFACTOR ((X & (Y 4 6))) = (31 21 (X 11) & (Y 11) 4.

PSQFR(X) is the same as PFACTOR except the polynomials are not
necessarily irreducible, just squarefree (22, p. 381l).

PMOD(X) returns the polynomial X with its coefficients reduced
mod MODULUS. |If MODULUS is HNIL, X is returned unchanged.

1.4, Rational Functions
Here X and Y denote ratforms. A ratform is a dotted pair

of polyforms, that is, the CDR of an MEVAL-level CRE. All
results are in lowest terms. The denominator is always positive.
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Division by zero will cause a LISP ERROR,

RATPLUS(X,Y) performs addition: X + Y.

RATTIMES(X,Y,SW) performs multiplication: X+Y. |If SW is NIL, it
will be assumed that if X=a/b and Y=c/d, that the greatest
commeon divisor of a*c and bxd is 1. In situations where an
expression is repeatedly converted to CRE form, a consi-
derable amount of time can be saved by not repeating the
E.c.d. calculations.

RATQUOTIENT(X,Y) performs division: X/Y.
RATINVERT(X) inverts X: 1/X.

RATMINUS(X) performs negation: =X,
RATDIF(X,Y) performs subtraction: X-Y.

RATEXPT(X,HN) raises X to the Nth power, where N Is a (possibly
negative) LISP integer.

RATREDUCE(P,Q) takes two POLYforms P and Q and reduces them to
lowest terms. RATREDUCE 1s used when needed by the other
rational functions, except as noted in RATTIMES. RATREDUCE
returns P/Q as a ratform,

RATFACT(X) factors the numerator and denominator of the ratform
X, and returns a list similar to that returned by PFACTOR,
except that the factors of the denominator will have negative
multiplicities.

RATABS(X) returns the absolute value of the ratform X.

RATDERIV(X,VAR) returns the formal derivative of the ratform X
with respect to VAR.

RATGCM(X,Y) returns the greatest common multiple of X and Y. |If
X = a/b and Y = ¢/d, then gem(X,Y) = gcd(a,c) »
gcd(b,d)/(b=d).

1.5, Conversion Functions

$RAT(M) uses HEWVAR, described below, to put non-rational
subepressions of M on a variable-list (VARLIST), and then
calls RATREP(M,VARLIST) as described below. Floating point
numbers are converted to rational numbers (within a relative
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error of SRATEPSILON, set by the user).

RATREP(M, VARLIST) given a non-CRE MACSYMA expression M creates
the appropriate CRE form, including the (MRAT SIMP wvarlist
assoclist) prefix., All the variables and non-rational ex-
pressions on VARLIST will be associated with generated
symbols, listed on assoclist. All the non-rational elements
and variables in M must be on the list VARLIST given to
RATREP. See the discussion of NEWVAR for how this may be
done,

SRATDISREP(X) converts the CRE X into a standard MACSYMA prefix
expression, A RATSIMP flag is put on each of the operators.
Extraneous parts of the expression (such as multiplication by
one, nested MPLUSs or MTIMESs, exponentiation by 0 or 1) are
edited out automatically.

Example:

2H2+3K¥+1 = ((MRAT SIMP (Z Y X)(GOO3 G002 GOO1))((GOO1 2 2 O
(GOO1 2 2 0 (G002 1 (GOO3 1 3 0 1)))) . 1)) is SRATDISREP'd
to

((MPLUS RATSIMP){(MTIMES RATSIMP) 2 ((MEXPT RATSIMP) X 2))
((MTIMES RATSIMP) 3 Z Y) 1)

NEWVAR(X) examines an expression M (a MACSYMA prefix form or a
CRE, or a sum, product, difference, or gquotient of the two),
and constructs a list L of non=-rational components and
variables which are not already on the global VARLIST. That
part of L collected from CREs is placed on the VARLIST in as
nearly the same order as in the CREs as possible. The rest
of L is sorted on the function GREAT (by the fumction SORT)
and NCONC'd to the front of VARLIST. A subsequent call to
RATREP with arguments M and the global VARLIST will then
produce the CRE corresponding to M.

ORDERPOINTER(L) sets up the correspondence between generated
symbols and the expressions on the list L, generating new
symbols if L is longer than any previous VARLIST. These
generated symbols, placed on the COR of the value of the
variable GENVAR, also form the assoclist for a newly RATREP'd
expression.

11.6. Command-level Programs
$RATSIMP{X) converts the expression X and all its non-rational

subexpressions into CRE form, and then back again. This has
the effect of rationally simplifying the expression X and all
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its non-rational expressions.

SRESULTANT(X) computes the resultant of the polynomial X, using a
polynomial remainder sequence technique.

$GCD(X,Y) computes the greatest commen divisor of the two
polynomials X and Y.

$DIVIDE(X,Y,V) calls PDIVIDE on the two polynomials X and Y,
whose main variable is V.

$FACTOR(X) factors the numerator and denominator of the rational
function X over the integers.

SGFACTOR(X) factors the polynomial X over the Gaussian integers
{with sqrt(-1) = %21 adjoined).

SMOD(X) converts the single-variable polynomial X to modular
representation, accessing the value of MODULUS set globally.

l1.7. Other Notes

Efficiency can be considerably improved if the knowledge
that a quotient is in lowest terms can be preserved. |f the
global flag NOREPEAT is set to T, then any MQUOTIENT or MTIMES
with a RATSIMP flag (placed there by $RATDISREP) will not be
RATREDUCE'd as it is being converted to CRE form by RATREP. It
may occasionally be useful to set NOREPEAT to NIL, since E = (x-
1)/(z+1) is reduced, but if z = x“*, E can be reduced further on
a second pass by treating it as (z*-1)/(z+1).

Setting SGCDSWITCH to NIL replaces the modular GCD
algorithm with the reduced PRS algorithm. Setting $GCDOFF
disables the gecd routines entirely (all gcds are 1). Setting
$SBERLEFACT to NIL replaces the Berlekamp factoring algorithm with
the less efficient Kronecker algorithm.

Listings of these functions and their subroutines are are
available from the author.



BEibliography+

1. ACM. Proc. of the Second Symposium on Svmbolic and Algebralc
Manipulation, Los Angeles, Calif., March, 1971, (This volume

will be referred to as SYMSAM 11.)

2. Berlekamp, E. R. "Factoring Polynomials over lLarge Finite

Fields," Math. Comp. 24, no. 111, July, 1971 (713-736).

3., Brown, W. S. "Rational Exponential Expressions and a

Conjecture Concerning pi and e," Amer. Math. Monthly 76,
Jan., 1969, (28-34).

4L, ==-. "On Euclid's Algorithm and the Computation of Polynomial
Greatest Common Divisors," SYMSAM 11, also J. ACM 18, no. &,

Oct., 1971, (u78-504).

S. Caviness, B. F. "On Canonical Forms and Simplification,"

doctoral dissertation, Carnegie-Mellon University, 1967.

6. =-. "On Canonical Forms and Simplification," J. ACM 17,

April, 1970, (385-396).

-



10,

11.

12.

13,

14,

15.

= 185 i~

Carraciole di Forino, A, gt al, "PANON=IB -- A Programming

Language for Symbol Manipulation," University of Pisa, ltaly,

19C6.

Christensen, C. "Examples of Symbol Manipulation in the AMBIT

Programming Language," Prog. ACM 20th National Conference.

Cleveland, Ohio, 1965, 247-261,

Collins, G. E. "SAC-| System: An Introduction and Survey,"

SYMSAM 11,

Eisenpress, H. and Bomberault, A. "Efficient Symbolic Differ-
entiation Using PL/| FORMAC," IBM New York Scientific Center

Technical Report No. 320-2856, New York, Sept., 1968,

Engeli, M. "Achievements and Problems in Formula

Manipulation," Proc. IF|P Cong. 68, Invited Papers, North-
Holland Publ. Co., Amsterdam, 1968, (79-84),

Farber, D, gf al, SNOBOL, A String Manipulation Language, J.

AClM 11, no. 1, Jan., 1964, (21-30),

Fateman, R. "On the Computation of Powers of Polynomials,"

SIGSAM Bulletipn (to appear).

--. "The User=-Level Semantic Matching Capability in MACSYMA,"

SYMSAM 11 (311-323),

-=, and Moses, J, "Canonical Forms for First Order Expo-

nential expressions," in preparation.



16.

17.

18.

1g,

20.

- 186 -

Fenichel, R. "An On-Line System for Algebraic Manipulation,"
doctoral dissertation, Harvard University, July 1966, (also
appeared as Report MAC-TR-35, Project MAC, MIT, Cambridge,
Mass., Dec., 1966; now available from the Clearinghouse,

document AD-b657-282.)

Gentleman, W. M., "Optimal Multiplication Chains for
Computing a Power of a Symbolic Polynomial," Dep't of Applied
Analysis and Computer Science Research Report CSRR 2035,
University of Waterloo, Waterloo, Ontario, March, 1971, also
SIGSAM Bulletin no, 18, April, 1971 (23-30), also Math. Comp.

(to appear).

Hearn, A. "REDUCE, a Program for Symbolic Algebraic Computa-
tion," invited paper presented at SHARE XXXIV, Denver,

Colorado, March, 1870.

-=-. "REDUCE Users' Manual," Stanford Artificial Intelligence
Project, Memo 50, Stanford University, Stanford, Calif.,

Feb., 1967.

==, "The Problem of Substitution," Stanford Artificial
Intelligence Report, Memo No. AlI-70, Stanford University,
Stanford Calif., Dec., 1968. (Also appears in Proceedings of
the 1968 Summer Institute on Symbolic Mathematical
Lomputation, R. Tobey, editor, |BM Boston Programming Center,
Cambridge, Mass.,1969, 3-19.)



21.

22,

23,

2L,

25.

26.

27.

28.

29,

- 187 -

Heile, Francis B. '"Photon Propagation Through Strong Uniform

Magnetic Fields," Master's Thesis, MIT, 1971.

Heindel, Lee E., "Computation of Powers of Multjvariate Poly~-
nomials over the Integers," Bell Telephone Laboratories,

Holmdel, N.J., Feb., 1871.

Itturiaga, R. "Contributions to Mechanical Mathematics,"
doctoral dissertation, Carnegie-Mellon University,

Pittsburgh, Pa., April, 1967.

Johnson, S, C. "On the Problem of Recognizing Zero'" SYMSAM

Il, also J. ACM 18, no. &4, Oct., 1971, (559-565).

Kleiman, S. L. "Computing with Rational Expressions in
Several Algebraically Dependent Variables," Bell Telephone

Laboratories, Murray Hill, N. J., 1865,

Knuth, D. E. IThe Art of Computer Programming, vol 1,
"Fundamental Algorithms," Addison-Wesley Publ, Co., 1968%.
-=. Ihe Art of Computer Programming, vol 2, "Seminumerical

Algorithms," Addison-Wesley Publ., Co., 1969,

Lendon, R. "Proving Programs Correct: Some Techniques and

Examples," BIT 10, no, 2, 1970, (1G8-182).

Manove, M., Bloom, S. and Engelman, C. "Rational Functions in
MATHLAB," Memc MTP-35, The MITRE Corp., Bedford, Mass.,

August, 1966,



50.

3l.

32.

33.

3k,

35.

36.

- 188 -

Martin, W. A. "Symbolic Mathematical Laboratory," doctoral
dissertation, M.l1.T., 1867. (also appeared as report MAC-TR-
36, Project MAC, M.1.T., Cambridge Mass., 1967; now available

from the Clearinghouse, document AD-657-283,)
--, and Fateman, R. "The MACSYMA System,'" SYMSAM 11 (59-75).

McBride, F. V., Morrison, D. J. T., and Penguelly, R. M. "A
Symbol Manipulation System," in Machine Intelligence 5, B.
Meltzer and D, Michie, editors, American Elsevier Publ. Co.,

N- T-.r Ig?ﬂ {33’?‘3&?).

McCarthy, J., et al, LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Mass., 1865,

Moses, J. "Algebraic Simplification, a Guide for the Per-
plexed," SYMSAM |1, also Comm. ACM 14, no. 8§, Aug., 1971,
(527-538).

-=, "Symbolic Integration," (SIN) doctoral dissertation, MIT,
1967 (alsoc appeared as Report MAC-TR=47, Project MAC, MIT,
Cambridge, Mass., Dec. ,1867; now available from the
Clearinghouse, document AD-662-666.) Also see, =--. "Symbolic
Integration - the Stormy Decade,'" SYMSAM |1, also Comm. ACM

14, no. 8, Aug., 1971, (548-560).

--, Rothschild, L. P., and Schroeppel, R. "A Zero-Equivalence
Algorithm for Expressions Formed by Functions Definable by

First Order Differential Equations," in preparation.



37. Perlis, A., ltturiaga, R., Standish, 7. "A Definition of

Formula Algol,"

a paper presented at the (first) Svmposium on
Symbolic and Algebraic Manipulation of the ACM, lWash., D.C.,

March, 196G&.

38, Ralston, A. A First Course in Mumerical Analysis, McGraw-
Hi1ll, N. Y., 1965.

39. Richardson, D. "Some Unsolvable Problems Involving Elementary

Functions of a Real Variable," J. Symb. logic 33 1968, (514-
520).

L0, Risch, R. "The Problem of |Integration in Finite Terms," Irans

AMS 139, May, 1969, (167-189).

41, ==, "The Solution of the Problem of Integration in Finite

Terms,"

AMS . )

IBM Watson Research Center, N.Y., (submitted to Bull.

L2, Sammet, J. "Revised Annotated Descriptor-Based Blbliography

on the Use of Computers for Non-numerical Mathematics,"in

Proc. of the IFIP Working Conference on Svmbol Manipulation
Lapnguages, North Holland Publ., 1968, pp. 358-4BL, This

bibliography first appeared in Comp. Rev. 7, (1966), (Bl-
B31). Updates are published periodically in the Bulletin of
the Special Interest Group on Symbelic and Algebraic
Manipulation (SIGSAM) of the ACM; the bibliography is
presently being maintained by John C. Wyman of Syracuse

University.



43,

Ly,

45.

46.

L7.

L8,

Slagle, J. "A Heuristic Program that Solves Symbolic Integra-
tion Problems in Freshman Calculus, Symbolic Automatic
Integrator (SAINT)," doctoral dissertation, MIT, 1961 (a

paper based on this thesis appears in Computers and Thought,
McGraw=-Hil11, HNew York, 18E3,)

Teitelman, W. "PILOT: A Step Toward Man-Computer Symbiosis,"
doctoral dissertation, MIT, Sept., 1966, (Also appeared as
MAC-TR-32, Project MAC, MIT, Cambridge, Mass., Sept., 1966,

now available from the Clearinghouse, document AD=-6L5-660.)

Tobey, R. "Experience with Formac Algorithm Design," Comm.

ACM 8, no. 8, Aug., 1966, (589-5897).

Tschebetarow, N. Grundzuse der Galgis'chen Theorie, P.
Noordhoff, N. V., 1950.

van der Waerden, B. L. Modern Algebra, vol. 1, Frederick

Ungar Publ, Co. N. Y., 1953,

Wilson, L. R. "Hypergeometric Functions in MATHLAB," M.I.T.

Artificial Intelligence Group Memo 196, June, 1870.



