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ABSTRACT

In order to anﬁarca the security of tha information
stored in a computing utility, it is neosssary to certify
that the protectidn mechanism is oorrectly implamsnted so
that there exist ao nneuatrolled:anaaﬁs path to the stored
information, Certification ws that: the: security
kernel be mach smaller and niup&cz'zhan:thn supervisor of
present general purpose operating systems.. This thesis
explores one aspect of improving the ccartifiability of a
computing utility by designing a dynumic iinkexr that runs
outside the security kernel domain.

The dynamic linker is designed to run in. any user
protection domain of a multidomain computing utility. It
is shown that the dynamic linker never needs the privileges
of the security kernel to properly operate. In particular,
the thesis demonstrates the ability of the dynamic linker
to link programs together across domain boundaries without
violating the protection of either domain involved in the
operation.
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I. Introduction
1. Security Kernel

The concept of comput »gf?ﬁtilitz designates a computer
system or a netuork of computer tysteus dedicated to ser-
vice a community of users (l). The tgpc.of,the gomputers,
' of the services renderad and of the eeununity of users may
vary w1de1y. Yet it remaxns that in aIl cases one of the
- most jmportant features of the coneut$ng utlllty is to
provide the users of the eommuniﬁy*v%tk~ﬁhe ability to share
the resources of the syatéﬁ ‘ Wb will be speciflcally con-
cerned about sharing the infqgn;tiqn stoxad in the conpu—
~ ting utility. Different membera of the comnunlty of users
may have different int«nt;ana xhieh nra in contlict with
one another with respect to the“ntotéd”infe&nation. Some
user might willfully or accidentally access (use, steal
or modify) the information kept by another user in the
computing utility. Hence uncontrolled sharing of all
information poses a direct throat.to the sc¢uritx of the
information and to the privacy of the individuals con-
cerned by the information (2-6).

In order to enforce the security of the information
and to safeguard the privacy of the individuals concerned

by the information, the access to the stored information

must be contfolled by some protection mechanism (7-11).




However, no protection mechanism will serve our purpose

unless it is truated by ite usexs. Several features of a

- protection mechanism cqn&nibuxggpq,mgggn%5&;3%;ap;g_j6,15).
It is not our purpose here tg disemmox even to list these
features. Only one of them is of-iaterest to us: the
vce:tificatien~of3eograqtn§ss3q£§§§§£9;g5{ﬁtippﬂgggpgnigm.

Certificatio ass guarantees that the protection

mechanism completely @ontrols the .agcess.to the gtored
.:informationtuthat,it;is.ag,gfﬁagﬁgvgqkmgiggggggtiqaYQQ,the
desired pretection,sdhqmgt Qngft§§??¥%f§§§§%g§? way a user
program could subvert, gircumvent or.modify it to gain un-
authorized access. to. the . atored. information,. Certification
of a protection mechanigm-is the result of a ‘careful audit-
ing of each compopent comtributing to.ihe.protection of

the stored inioxnptionw;,Sugh,auditinguagtwonlyding;uggs

a verification of the ;n;entgpnmgadn;hgjimelementatlon of

each ‘component of.the: protection me

Anism, bnx algo a ver-
ification that interactions amgng-themagpd with,the outS1de
resulting in unauthorized access to information. . \

1y, dmplemented by a
The programs and
data bases of the software poxtiop.aze A very sensitive

world cannot cause malfunction ox, unex

The protection mechanisms. are. Usna.
. combination of haxdware and softwaxe...

part of the computing utility, for they control.who can

access what information. Ag a result, this protection
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software must be isolateg from and protected against other
prdgrams in fhe computing utili%?ﬂ Eﬁy%pﬁateatidn'software
component, if tampered with, could cause unawthorized
access to stored information. Hence, usay programs must
be prevénted’frdn*ﬁo&ffying;-suﬁvertianer aireﬂMVGnting
the protection software. Snchﬂﬁa!aﬁéimmutflhgﬁld-PrOVide
‘a complete control over the-intét&ctien&{ﬁl&ﬂaﬁn the pro-

' tection software and other programs in a computing utility.

The security kernel of a cemputing &tikiﬁy‘is that
 part of the software which could, as a result of a bug or
malicious alteration, cause unauthorized access to infor-
mation. Thus it is the prpgfaﬁs'én&’ﬂhta bages of the
protection software plus any other programs (and data
‘bases which control their behavior) that have direct
access to the protection software.

In most systems the security kernel corresponds closely
to the supervigsor. It includes a great many programs and
data bases that are not functionally part of ‘the protec-
tion software. As a result, the security kernel is much
larger and more complex than the sﬁbcyntﬁm¥9hich:tmplements
the protection mechanisms. Phis is unfortunate, because
it 'is the entire security kernel which must be certified
to establish confidence in the security of stored infor-
mation. Exﬁra size and complexity‘naﬁ&ieartification

more difficult.
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This thesis will explore one aspect of making the
seéurity kernel of a ébmpufing ﬁ£i1ity‘émailei, kimpler,
and thus more certifiable by dééeiopinéwa‘éystem design
in which the linking function ié'ouiside}théiSecurity ker-
nel. The linker of a cOmpﬁtiﬁé utility is the program
responsible for binding together Sépétaté'pfoéedure and
data modules!to build Iargerfﬁfoéram é1eméhth:’“In current
systems, the linker is almost éIﬁé&é}part'bethé security
kernel, but as will be demonstrated in éﬁis thesis, is not
part of the protection softwaré. RemOVInéfthe linker can
significantly reduce the complexity and the size of the

security kernel.

2. Dynamic Linker

In writing a complex program, it is extremely desirable
to subdivide it into several,mbddles.k In'dbing so, the
complexity of the programming task is reduced for the
modules can be programmed and“%esﬁedfihdeﬁendently and
existing modules may be incorporéted into new programs.
The idea of modularity implies the’exiétencéfbf some'mech_
anism to assemble modules into larger prdgréms. The
writer of a module must be able to connect his module to
others. One simple way to achieve ﬁké connectiorn is to

give a symbolic name to each module and to denote it by'

that name in other modules. This establishes a sxmbolic
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link between the two modules. The problem is that symbolic
links afe meaningless for thefharéwa;e of thg processor.
For -a symbolic link between two modules to become a snapped
;g§£’usable‘by ¢hespnbcesanr?vﬁhgjsggpcl;gfnamn7nsedgby

the programmer must beftranslafedjintomthg logical (hard-
ware interpretable[ad&ress of the module denoted by the

symbolic name. When used to combine gqpafatelyvcompiled
modules transﬂgtionvi8gcalled linking. The program which
takes care of the translation is called the linker.
There~exists a wide varietf;cf linkers which we will
not describe here (12). Often a linker is,invdkgﬁ‘when\a
program is loaded into primary memory. Before control is
given to that program, each symbolic name it uses is
~ translated into,a logical address'by the linker. 1In
other schemes, control,isAgiven to,a;pxpgram;module as
soon as it is in primary memory. When exacuticn of the
module hits a gymbolic name, a‘harﬁware‘eveh;_(fault,_inter—
rupt, trap) triggers the linker execntipn,tp‘trapalate the
symbqlic name into a logical address. ‘Execﬁtion.resgmes
after the link is translated (snapped). This type of
linking is called dynamjic linking and is carried on by a

dynamic linker. It is more flexible and saves ‘the cost

of loading into memory and linking together modules
which may not '‘be used by the‘program'eve:y time it is

invoked. Although the rest of our thesis will be talking
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about dynamic linkers, the results of the research are
also applicable to regular linkers. The problem is more
challenging for dynamic linkers precisely because of the

dynamic aspect introduced by the hardware events.

3. Background

Certification is a relatively recent topic in the field
of computer science. Many authors have occasionally men-
tioned the need for certification, as we did here. But
there exists no concensus on the best:way to.certify a
large software system. - The area:is not-very well struc-
tﬁred and much work has still to . be done to organize it.
Yet most of the papers on that topic  seem teaagree that
whatever hypothetical method is used.to audit-and certify
the security kernel, the correctness of a "simple" kernel
will be easier to verify than the correctnessiof a
"complex" kernel. A small number of modules, strict con-
st:aints on the interactions between the modules, method-
ical design, systematic. implementation,:precise supporting
documentation, simple language constructs, formatting and
readability are factbrs likely to simplify the task of
auditing the security kernel. Conversely, a large number
of modules will undoubtedly complicate the problem. In
addition, it is likely to increase the number of inter-

actions to worry about. Complexity and sophistication of
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the modules themselves would also make auditing hardu,r.

A good guideline when trying teo simplify the sacurity
kernel is the principle of least privilege. This princi-
pie is the eguivalent of the military "need-to-know" rule.
It states that any program module should be: granted just
the privileges it needs toc properly operate and no more.
Modules of the security keznc?: shoudd: be granted the
privileges of the security kexmel on: . the basis that they
contribute to the protection of the stoved information.
Modules mot contzibuting to the protection. goal should
not be able to use such privileges. Keeping them inside
the security kme;l' increases. the size and complexity of
the kernel and brings in functions: and. construets that are
hard to validate with respect t¢ the protection goal of
the kernel. Keeping them outeide the kernel cuts dowa on
the number of modules amd intesactions to- be considered
as part of the certification process. A module cannot
abuse privileges it dossn't have to modify, cireumvent, or
subvert the security kernel cperation..

4. Motivations

Designing a dynamic linker to run outaide the security
kernel environmemt of a computing utility is motivated by
the desire to improve the ctrtifj:ah&litye af the protection




Yy w5

AT L T TV T T e

-15-

mechanism in the system. under concern. A linker is char--

acterlzed by fbur features ‘which suggest it thould run

‘outside’ the security kernel ot the ayétﬁm to ease the

I %v‘,iz”i'iaj"-“,‘ Saan iy

auditing of the kernel
Firstly, a linker does not . iﬁ@iéﬁéﬁ% any cbncept ‘te-
lated to the prétectxon of tﬁo ﬁy%tﬁhf”of nebﬁkd‘to support

'the protection mechanisms., LA "“*”;ﬁ"”“*

Secondiy, in view of the functioh 1mplémented by the‘
1inker, it seems reasonable to sus?ect th&t ‘the llnker
does not need any of the pr1V1iB§é§ gfhntad to typical
modules of the saturity Xernel. The?tf%rt, the Teast

' fprlvilege prlnc ipre’ impliéﬁ”that‘%ﬁa 1Ihker ﬁe outsxde the

security kernel.

"@hifaiy;lﬁiIfﬁkérfiéoiﬁlé%ﬁéiai“é Viry ‘Somplex program.

Even though its function is eésy ‘to’ éasbribe, ‘the details
" of its’ implementation tequiré ‘the’ liga of’intricate and
’sophxsticated Ianguagé‘éOnﬂfrﬁﬁfi‘ﬁhibﬁ:mako the reaaing ;

and auditing of the program a quasi iﬂpﬁrﬁihle task.,
Flnally, the linker, by its very nature handles aata
dxrectly accessible to the users of the iyit@m; *éuch

data’ could oontain - pufposely dr not - 1ndoﬁhistencies A

'capable of causing ‘thé 11ﬁkér tﬁ marfﬁﬁdfiéh or perform

EE

unexpeoted operatlons.’ Oﬁé”sﬁipéctﬁ’ 't it iS'much

*:ﬁardgf'fo'véfifi;thé”%grfec€76ﬁ§?i%foﬁ*ﬁf:i;ﬁfd@fﬁﬁ*ﬁﬁon g
it cén'be‘préSentéd*ﬁith'éﬂ“hfﬁ%tfﬁf?uiﬁ%ﬁé‘tﬁah’to'vérify

oy el
pp s LR e
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correct operation whenfa‘"co:rect" input is guaranteed.
Since malfunction and unexpected behavior are ruled out
for program components of the security kernel, very
sophisticated macbinery would be required to verify the
consistency of user requests to the linker and insure
proper operation. Even if sucb machinery were available,
it would only‘increase the complexity of‘the‘linker. |
Again we cowe 1o the conclusion that,the linker should
not be part of the security kq:nel, If so, no malfunction
of the linker will ever subvert the protection mechanism
of the system and cause.unauthp:izeﬂ access to protected
information.

To summarize our motivation we can say that designing
the linker to run outside the security kernel environment
of a system is a step towards s;mpligying, isolatingland
jbetter defining the security‘kernel, ;he:eby,making its

auditing easier.

5. Objectives

The motivation for our thesis is based on four argu-
ments which suggest that the linker should run outside
the security ke:nel environment of the system. The first
objective of our thesis is to show that it can run outside
the security kernel. We will have to show that the linker

indeed does not contribute anyhow to the protection of the
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system and is never needed to support the operation of the
kernel. We also will have to show the inverse relation;
that is, the linker does not use or need any of the priv-
ileges of the security kernel modules. 'Weveventually will
have to show that the idea of forcing the linker to exe-
cute outside the security kernel environment does not
introduce any unsuspected, unsolvable problems.

Clearly wé would not pay so much attention to our
problem if its solution were obvious and if all linkers
known today were running outside the security kernel
environment of the system for which they were designed.
There exist a few systems (13) where the problem has been
solved. However, it was solved only for the very simple

case of a static linker binding modules together inside

one protection environment. Instead our thesis will pro-

pose a general solution of the problem for a dynamic

linker binding modules together across protection environ-

ment boundaries. The design to be proposed can be applied

to any type of computing utility with some variations
which we will eventually mention when appropriate.

Except for a few cases already mentioned, all systems
are designed with their linker being a component of the
security kernel, and having the privileges of the security
kernel (14). The second objective of the thesis is to show

the feasibility of the design to be proposed for a
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particular reel'world system We have chosen to remove the
linker of the Multics (Multlplexed Informatxon & Computing
Service) (15-18) system from the security kernel environ-
ment and to force its executlon lnto the usex envxronment.
The linker presently runs in the environment of the
security kernel of Multics as do many othex components of
the system whlch do not belong in the security kernel elther.
The main reason for thls design was that the cost of o
dynamlcally changlng the protectlon environment of a
computatlon was prohrbltlve in the inltial ver31on of
Multics. Hence, it was decided to 1nclude many system |
components in the securlty kernel that were not part
of the protectlon mechanlsms in order to m&nimize the
number of times the protectlon envxronment was changed
in the course of a computatlon. Snappxng a aingle llnk
requlres two environment ohangee with the linker lnside
the securlty kernel but may requlre 10 to 100 thh the
linker outsxde.7 A second veraion of the Multics hardware
(15) has reduced the cost of a change in pretectlonl
envrronment to the level of a normal 1nterprocedure
call. As a result, there is no lenger an eeonomic

1ncent1ve to 1eave the linker in the securlty kernel.
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Before we go on to develop the design we will mention
a third,ij&CtiVe;Of'hheuthﬁﬁiﬁgr.In*namaﬂingxtheqdynaﬁic
linker from the-security kernel of Multigps, we hope to
establish a few more criteria for deciding whether or not
a program beldngs in the security kernel of a system. We
also hope to better define what general prpgr&mming fea-
tures cdntributé or hinder the task of rembving a program
from the security kernel. These lists of criteria and
features of interest will certainly be as helpful as the
removal of the linker itself to better define the security
kernel of a computing utility in general and of Multics in
particular. |
6. Plan of the Thesis

Before we come to the body of the thesis we would like
to briefly describe how we will develop the research and
carry it on to the detailed implementation of a linker
running outside the security kernel of a.domputing utility.

Chapter II will develop a computing utility model where
emphasis will be put on features directly relevant to our
research. The model will serve as a basis_to describe the
design and it will help the reader to apply the design to
different systems by matching the model with that system.

Chapter III will propose a complete desiéﬁ of relevant
parts of the computing utility. Problems encountered in

the design will be discussed and solutions will be proposed.
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In Chapter IV we will demonstrate the feasibility of
the proposed design by describing its implementation on

Multics.
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In order to better define the features of the de51gn

we will propose, and to gensralize its applicability to

any computlng utility, we w1ll describe a computing utllity

D
i 2

model Thls will enable ‘us to explain the proposed de51gn

in terms of the model. It w111 enable/the reader to apply

the de81gn to any spec1f1c computing utility by matchlng

'that computing utility w1th the model.

We w111 develop the model 1n two steps.ﬂ Firstly, we
will describe a protection model suited to the env1ronment
of a computing utility.‘ Secondly, we will build on top of
this model an 1nformation storage eodel suited to the
needs of a dynamic linker. The model will help us to
better define the concepts of protection envxronment and
loglcal address space whlch we have»o;;asionally mentioned
but have not carefully defined yet. We then w1ll explain
in detail the operation of the 11nker in terms of the\

‘mn s

model. This Will greatly simplify the subsequent descrip-

tion of the design of a linker running outside the security

I

kernel of a computing utllity.

1. Information Protection Model
. e

In order to better understand and etudy the problems

related to protection of stored 1nformation,,several

rait

- L )



structural and mathematical:models of protection schemes
have been proposed (19,20). vﬁe’will Eriefly describe here
a model based on the:concept of protection domain (21;22).
' This model will help us understandewhat isvmeant by a
.protection enuironment and particularly what the security
kernel environment is. | |

For the purpose of our discu581on, we - w111 talk about
the environment of the computing utility in terms of
objects and subjects. Objects are pa551ves They are the
information containers of the‘computing utility. They
must be protected to prevent unauthorized access to
stored information. Objects are the procedures and data
bases stored in the computing utility. Sub ects are
active. SubJects are the 1nterna1 representation of users
of‘the computing utility. Subjects, sometimes called
processes or Jobs, act on behalf of users to create,
delete, dify, use and manipulate objects.

Subjects can access objects by means of capabilities.
A capabiligx is an identifier denoting some object 1n the
computing utility. Any subject possessing a capability
for an object is entitled to access that object.

The set of capabiiities avaiiable toua’given subject
defines the domain of execution of'the‘subject.  The domain
of execution of the subject is the protection env1ronment

where the subject operates.
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When a subject changes domain of execution, it changes
its set of capabllities. He' can enter a new domaln of
execution only through a gatél li ggﬁg*f%fe*ptocedure‘
object which forces'enirance to a doﬁﬁiﬁAto'coincide’with
invocation of certain prooedure objects Ihjthé domain;
These procedures completely determine the activity of the
subject in the domain. For a ineh‘euﬁﬁeo%j"e;gate is an
entry point into"a given domain. "ﬁowééer; for two
different subjects, the same gate 655&&%”ieads into dis-
tinct domains. We make theiaésuﬁﬁtioﬁLthétqeeoh domain
can be entered by only one subject. ‘I‘hus when two subjects
w1sh to enter the "same" domain, they*are actually |
installed into distinct domains contalning equlvalent sets
of capabilities. | | RIS R

. With this model in mind we can betfé:"talk about the
environment of the4securitywkerﬁéi“y“§of?eeohyuseficompu_
tation, i.e. for each subject of the cbmputing utility,
there exlsts one domain-the seourlty kernei ‘domain (23,25)-
where capabilities exist for the subject to eCCesswpro—
cedure and data objects df?thé'aécu§1€§*kéfhe1; " Access to
the data objects is constrained by fﬁeieoGQEE”pattern
encoded in the procedures of the kernel. Access to the
procedures is further restricted to certain entry points:
the gates intd'the“QGCufity’kefﬁeiuaomhih;/ hence'complete

control is gained on the infefecﬁiohs‘befﬁeen‘the kernel

et JAEEY
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and the outsidc world. The security kamel is a so0 called
» (24,25) an instance of which exists

protected u,.
in the fu:st dmain cmted for each su.hject in the com-

puting t&;l.:.t:y.

2. Imﬁomatlm; Storage Model

The yzevxm paragraphs lwve Mc Wmore precise the
notlon of pmtactn.an mvummt We will Bow consider
the concept of logical address space. ,

The set of all objects in a mntwg ut:..hty con-
stltutes the maf the mwt.ipg wti,lity. Among
these objects is a particular set of objects called
catalogs. c;u; are data bases containing descriptive
information about some set of cbjects. Ope of the items
contained in >avl4:gta.lngv about each sbject described in that
catalog is the physical address of each chisct. The
physical addr ress of an object defings where the object is
located on some memory device attached to the computing

utility. The physical address of an object must be clearly
dlstmguuhad from its logical ngm m logica

. 2ddress of an object is the address by which an existing
subject references tha object. Only logical addresses are

meaningful to proqessors executing machine code. An
object always has a physical address even when it resides

on secondary storage and no subject uses it. But it may
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not have any loglcal address if no subject uses it.
Assigning a logical address to an object on behalf of a
subject is the role of the file system manager (FSM)
When a subject wants to asslgn a loglcal address to
an object, it must pass to the PSM the unique 1dent1f1er

of the object. The unlque'identifiér“of an"object can be

a unique name, a unique number, or a catalog unique iden-

~ tifier and the symbolic name 6f an object if ‘that catalog.

Unigue‘identifierslare‘differeht ffés symbolic'nameshin
that more than one'sbjeaf”may‘EAVé”éﬁé”E?ﬁs’symbalié’hame
as 1ong'as'they'arevdescribed'in:different catalogs, but
no two objects can have the same uniqué identifiers.
| When given a unlque identlfier, the FSM’ performs two dis-
tinct functions. Flrstly,ylt searches the file System to

| find the descrlptlon of the object denoted by the unique
1dentifter; If the search fails or 1£ the FSM dec1des that
the requestlng subJect does 'not have the rlght to know about
the obJect under concern, an error message is returned

and no actlon is taken.' If the search succeeds and the
requesting subject has the rightito‘ﬁnoé"about the'object,
the FSM maps the obJect 1nto a 1og1ca1 address of the
address space currently seen by the subject (enables a
10g1ca1 address), remembers the blndlng between the

unlque 1dent1f1er and the 1og1ca1 address, and returns the
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logical address to the aubject.

One guestion is now in otﬂex. What is the real
nature of a lqgicaivadd?ess? Since the PSM, a component
of the sécurity kerﬁel, rei?anec logical addn@sses on the
baéis of a protection decision, é loqical“adﬂ;ess is
Vmerely a capablllty to access an object. As long as a
subject has no enabled loglcal address for an object, it
cannot reference that ab;ect. If andrwhgn'a;lpg;cal
address is enabled and dalive;ed,go the subject b& the
FSM, it gains.éccqss to the corraspom#inévqugci, i.e. it
has a‘capability for,that‘abjact,:‘éh;s egﬁgb;ishes the
connection between ouf iqfoxmation pi§t9§£ion model and
our information storage model. | »

This connectlon between the two models brings up the
gquestion of the nature of the loglcal address space. Since
a capability for an object is granted to a glven subject
in a glven domain, one might wonder whether the loglcal
address allocated to the object is valld only for that
subject in that doma1n. In other words, once a loglcal
address is assxgned to an object far somé subject in some
domain, will that subject see the same obgect at the same
address in other domains? Wlll all suhjects see the same
object at the same address in all domaxns? The answer to
these questions depends very much on the type of loglcal

address space supported by the system under concern. In
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the simplest case, where the logical address of an object
is its primary memory address,'lf any, then we can talk of
a system wide address space.f Once an address of the space
is allocated to an object,,all subjectsﬁln all domalns
will see that object at that.address if they have access
to it. On a virtual memory system, each user, i.e. each
subject may have one address space of 1ts own. When an
address is allocated to an object in a subject ‘address
space the subject w111 see the obJect at that address in
all domains where he can access the object and the address
will be meanlngless (not usable) in other domains. But
all other subjects may or may not use the correspondlng
address of their own address space ‘for the same object.k
Flnally in some systems, there may be one address space

in each domaln. Such is the case, for 1nstance, of base
and bound machines. ;Ardomain'fsxdefined by the base and
the bound of its address space. A logical address is
mapped into’a‘physicai address’hy'relccatinctit relatively
to the base and Within theabouhdhof tﬁe“&h&féss space of
that domain. Once an object is mapped into one address
space, the address space of another domain may or may not
contain the same object at the ‘same’ logxcal address ‘depen-
dependlng on what its base and bound are.‘ To conclude this
discussion, we will assume for the rest of thls the51s,

iy

that the concept of address space, when unqualifled, means .
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the address space seen by the glvan subject xn the given
domaln. Unless speczfically &tated, no aasunptxon will be
made about who can see the same address space in what

doma;n‘

3. A Dynaaac Llnkxng Mndel ; _
The laat paxagraph dsscrihed the models we wlll ‘use

‘ to support our desiqn. Befoxa we aova cn ho the design
yyltaelf we will dﬁscrihe the dstailoﬂ overation of linker
Wlth respect to the moéals.: In éoan so, e w;ll not have
to worry about uhat a uniqué idant;flex, 2 loglcal address,
a domaxn, or a gate is. He knou that all theae concapts
can be ldﬁntlflﬂd in any cnmputxag utllity and that our
descrlption can be based on them thhout &nbiguxty. .
| Whenevnr a sub;act executxng an object encountets a

1ic Li,{ to another object,

symbolxc naac of, or a sym

a harduare cvent called a 1' fault occurs. As a result
‘of the link fanlt a copy of a;l machine reglsters, called

the machxne atatus, 1s haaded to the 11nker.'

The fxxst task of the 11nker 1: to analyze the machine
status to detern;ne which4synb011c lxnk caused the fault
and which ob;act waa helng exacuted at the tlme of the
fault. This object is callad the faulting ob;ect. The

domaln vhere it was executed is called the faultlng domaln.
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By searching the faulting object, the linker will find a
complete description of the symbolic link and in particular
the symbolic name associated to the link which designates
some object of the environment. This object is called the

target object of the link. The domain in which it belongs

is called the target domain.

The second task of the linker is to search for the
target object in the file system and to map it into the
logical address space. In order to do this the linker
will of course need to invoke the FSM. The search is

driven by so called search rules. Each domain has

associated with it a different set of search rules.

Search rules are an ordered set of catalog unigque iden-
tifiers. Of course, it is irrelevant to talk about search
rules when the file system is one single catalog. However,
in general, it contains many catalogs. The search rules
force the linker to search only some of these catalogs

in the desired order. The linker takes one search rule

at a time, combines it with the symbolic name of the

target object thereby making an object unique identifier.
The linker hands the unique identifier to the FSM to search
the file system. " If the search fails, the FSM returns an
error code to the linker. The linker will keep trying

the next search rule, if any, until a search succeeds.
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In this case the FSM returns the logical address of the
target object to the linker..
The third task of the linker is then to translate

the symbolic link intc a snapped link usable by the pro-
cessor. This is called snapping the link. The linker

just replaces the symbolic n;n@ iﬁ th§ link by the
logical address of the target object.

Pinally the linker must modify the machine status
to force the executing subject to reuse the now snapped
link. , _

By a mechaniam external to the linker itgelf, the
machiﬁe status is then restored so that the executing.
subject jumps back to where it was just before the link
fault.

Once a symbolic link is replaced by a lagical link,
it will no more cause any link fault for the current

subject in the current domain.

L gees s P B AR T SRR e L T R AT e e
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III. Design
1. General

The last chapter presented a computlng utlllty model

T

which will be used to support the dlscusslon of the desrgn.

The steps in the operatlon of a dynamlc llnker have been

e ,,\- e

descrlbed. As 1t should now be clear to the reader that

programmlng the llnker 1tse1f 1s a feaslble task, the

current chapter w1ll rather concentrate on the problems
of 1nsert1ng such a 11nker 1nto the overall de51gn of a
computlng utlllty such that 1t be outsidethe securlty

kernel The next chapter w1ll then present a test case

1

implementatlon of the de31gn to demonstrate the use of the

5

‘,;

model in ldentlfydng the components of a real system and to
show the feaslblllty of 1mp1ementing the deslgn on a real
system.

In developlng the d1scussron of the deslgn we w1ll

i,i

try as much .as posslble to progress naturally and to

handle each problem as it shows up. In a flrst sectlon

we w111 explaln how the security kernel can operate

w1thout the help of the dynamlc llnker. In the remalnlng

‘s-‘-.t

sectlons we wlll demonstrate that the dynamlc llnker can

operate wlthout the pr1v11eges of the securlty kernel.
Thls order of dlscu551on 001nc1des w1th the order of
events when a computlng utlllty is brought up 1nto

operation: the security kernel by its fundamental
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'purpcse is the first subsysten to be operatidnal and is
used to bring up the rest of the systam functlons, the
dynamlc linker among others.

We do not clazm in any uuy thnt the dasign to be
outllned 'is the only possible dsslgn solving our problem.
By 1ts very nature. the topxc of tha reseaxch poses
several structural problems which are easy to identlfy
and to describe. Eewevar, denlgning solutlons to these
structural problems cannot be dome systemat;cally as
would be the case for mathenatlcal problems solutlons
to a p&rtlcular structuxal prublen nay bring up other
structural problema It 1s hard to predxct and to control
- the propagation of the effeets of a partlcular solution
to a particular problem. Hence it 18 hard to estimate a
priori whzch solutlon m;nimizes the nunber and the mag-
nltude of hldden potentlal problems As it 1s impowsible
to dlscuss all solutions in detazl, ﬁe wxll attempt to
justlfy our chaiee betwaen dlfferenﬁ solutions whenever
posslble, and especially where a soph;stxcated solutlon
has bean prefered to an apparently more obvxoun one.
| Even so, we do not claxm that all possibilities will be
dlscussed. We are convznced that equzvalent de31gns could
be pfopoéed. We belleve only that our design is among

the sxmplest ones.
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Finally, we will attempt as much as possible to be
sufficiently precise in the discussion of the design to
convince the reader that subsequent implementétion is
practical and straightforward. At the Same time, we will
try to remain sufficiently abstract to enable the reader
to implement the design on any general purpose computing

utility.

2. Security Kernel Initialization

Before any user can request service from a computing
utility, the system must be brought up into operation.
This initialization task is done under thé responsibility
of a subject called the initializer. The initializer hust
cause the loading and set up of all programsrequired to
support the operation of the system. The first of all
subsystems which needs to be initialized is the security
kernel because of its fundamental function: generating
other subjects and domains for these subjects wbuld be
impossible without an operational security kernel. We
afe concerned about one aspect of making the kernel
operational. Like all subsystems in a computing utility,
the security kernel is a modular program. Hence its
operation does require a linkihg function to combine the
modules together. However, our objective is to propose

a design where no dynamic linker exists in the security
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kernel domain. The securlty kexnal 13 not allowed to cause
link fanlts. Hgnca all llnka ©f the securlty kernel must
‘be snapped prior to the operatian ot thz kernel. ThlB

task is part of the 1acu21ty knxnnl iaxtmnlisatmon.

Llnkang together all mndulas of the uecurlty kernel
requires the help of a static linker. Es'entially two
 types of static linker could be used: a binder or a
prelinker. The binder is a static linkar vhich'prépares
~once and for all a fully oparational securxty kernel
that can be usod uithont any further xnltialxzataon as
many tlmes as demxred The prelankar is a statlc lxnker
- which lxnks the modules of the secnrlty karnel boq%ther
each txme the systcu is stackad durlng an initlalxzatlon
‘phaae. w111 not describe the detailed design of either
a binder or a prelxnker. Thls toplc 13 helou the level
of our dlscu;l;on. We will ask the reader to raallze that
writing a static linker is feasible 1n mgny‘ways. We
will just diqcu;g the proﬁert;as;pf‘;gch\typg bf siaﬁic
linker. | - -

The tcchnique of the bxnder seems both sxmple and
economical. It is economlcal becaune the links of the
securlty kernel are snapped only once for a glven system
version and the resulting oparational securlty kernel can

be reused as many times as desired, It is simple because
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auditlng and certlflcatlon of the kernel must be done

only once on the f1na1 operatlonal kernel.ﬁ The binder

1

is kept out31de the env1ronment to be certlfled; only

UL th & Fei

the results of lts operatlon are to be audited._
_The technlgue of the prelinker instead requires that

the prellnker be audlted and certifled. since domalns

nl:. ,:‘ .‘ “' M

\ are meanlngless unt11 the securlty kernel is 1n1t1allzed

e
‘t..a

to support them, the v1rg1n env1ronment seen by the

,inrtralizer may be v1ewed as just one s;ngle domaln

bound to become the domaln of the security kernel. Con-

*z

sequently the prelinker of the security kernel whrch ls

DM BB}

executed prior to any module of the kernel is 1n _some

ARG Sy l-«l« r

sense a component of the soon—to-be kernel. The pre-
L T LA .

llinker must therefore be certified._ By now the reader :

e “:‘« REA N1y

may wonder what 1s gaxned by the prelinker technique.

We want to remove the dynamlc linker from the secur1ty

Y

kernel but we propose to keep a prelinkeg in the kernel

¥ s i

Flrstly, the use of a prel;nker may make the system

1n1tializatlon more flexxble.( The use of a binder fre-

T LEEDTFE F

quently implies that not only the 3ersxon of the system

Jm

but also the 1n1t1s1 conflguratlon of the system (hard—

Begs

ware conflguratlon and slzes of various supervzsor tables)

R cevimi Lawey g

always be what the blnder assumed. Instead, in the case

LI E BT B L iEE

of the prellnker, even though the version of the system

_,,"3," ~T*4,‘;

PSS

~used may always be the same, the conflguration of the




s e R et R T RO SRR T S R L TR e R S

-36~-

system may be changed each time the system is started by
propetlf natifying‘the prelinker of releﬁant cOnfigutation
data to be respected. Thus a;préiinkér'ia'more’flexible
than a binder. B o

Secondly, believing that the certification of the
- prelinker is just as bad as the certification of the .
dynamic linker is Qrong. By its d?ndniclanQCt; by the
requirement that it be able to deal with 6bjéc£s scattered
in a large file system, and by the fact that it may support
miscellaneous sophisticated lihking fégtﬁtei needed by
user programs (see next chapter), the d&namic 1inke};is
a much more elaborate program than the'préiinkei. The
prelinker is a static linker; it deals only with objects
of the supervisor concentrated in just a few well known
cataiogélof the file ayatemé>ahd it may not kuppbrt
sophisticated linking features bééhuséléééﬁrity’kérnei
modulei, unlike\user modules, may bé‘ﬁroérsmmed to avoid
such features. In addition, by its very n&tﬁre, the pre-
1Inke£ iiyan atomic p#ogram whiié-the éyh:mié‘linker is a
mbdular program; All such factoxshmake.i §relinker a lot
simpler and hence easiér4to certify than a dynamic linker.
Finaliy since the prelihker is neéded'ohiyiduring |
initialization the security kernel can discard its own
capability to ever again access it during régﬁlar system

operation. Thus the prelinker cannot be executed again
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once the system is 1n1t1allzed, and therefore it cannot
hurt the system. This also sxmpllfles the problem greatly.
Consequently, the ch01ce between binder and prellnker is -
a choice between relatlve certlflablllty and flexlbllity, In
general this choice is 1ndependent of where the future
dynamic linker will be runnlng.‘ Slnce the implementation
to be described in the next"éﬁgﬁtéf isdﬁaSed on the pre-
linker idea, wevwill as;umeltne{s;m;iiééﬁ iﬁ'tﬁié chaﬁter.
ﬁowever, we ucknowledge the feetfn;t uéing a binder is
most probably equivalent as fariasjour:thesis is concerned.
‘We will now temporarily abandon tne*ooeretionii eeeurity
'kernei we have obtained" The next’ sectlon w111 flrst dis-
cuss a few desxgn princ1ples an& then carry on the develop-
ment of the system by building other domalns around the

‘securlty kernel.

5. bynamic Linker Initielinetion
a. Design Principles R

In the‘preVioua‘section,,we heve‘eﬁown how the
 security kernel modules can be linked toééthé} without the
help of the dynam;c linker.A'Oneéfiinked, they no ionger
need any linker, thus they can operate without one. The
rest of this chapter will examine the other side of the
desién. It‘uill beﬂdemonstratéd:stepiby:eteptthat the

dynamic linker can operate outside the security kernel.
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It seems that the first problem we encounter is to
deflne what "outside” meana. One half of our dnsxgn is to
remove the linker from the domain of the eecurity kernel.
The second half of it is to dhcidn in uhich athax douaan
or domaans the linker will run

1t seelts very appeal;ng to s;nply lnatall the 1inker
~once and for all in a domain of its own (see figure 1) where
a subject will be able to go if and whon necessary. ‘Even
though this solutxon may seem clean and obvious, it is very
_likely to ra;se implementation probleas Ind.ed, on each
link fault, thc linker donaxa would have to be pravxded
dynamically with appxoprlate capabilities to access the
faulting object, aad perhaps thq taxgetﬂ‘ohgject or even
other obﬁects in the faulting or tge_ta:ggtdomuin; When
the dynamic linker was always running in ihe saée domain
and that domain was tﬁe security kernel domain, providing
it with dynaaic'capabilities_was'eaayvgivgnithe ﬁniqug
privileges available in the security kernel. _nguver,»
| thié is no more true if th; linkéi{runs in 5 domain
different from the secuxity‘kqxnél'domain, Furthermore,

a linker domain containing capabilities for objects in
several demains,‘even if only one §£‘a:tiﬁg, can.poten—
tially operate as an unauthoriied,infoth@tion chanhel
between these domains if it mﬁifﬁqgtions' Therefore, such

a linker must be certified to prevent potential unauthorized
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Figure 1: Different environments for the linker.

Domain A

Security Linker
kernel domain

Domain B

Case 1: Linker in its own domain,

Case 2: Linker in each domain except the kernel.

Domain A

Securtity
kernel

Domain C

Domain B
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access to the information. ‘

A second potential answer can bs found by thinking
in terms of capabilities. Since the linker will need to
access objects in the faulting domain and perhaps in the
target domain, both domains seem potential candidates to
host the linker. The target domain is actually not a
good cendidate because it is not deterninoa until the
target object is identified. Hence it is undetermined
at the time of the fault and the only domain where the
linker could initially run is the faulting domain which
is easily determined by the machi#o'étatus.

Consequently, even though we do not defxnztely reject
the first solution, we atxongly reconnand and will fur-
ther assume the second solution which at least guarantees
easy access to the faulting donains and eliminates a
securlty thraat. It will be seen that access to the
target domain is usually not required and eventually easy
to provide. 1In the above diacuh?iqn‘ﬁe'havu identified
the major problem of remeving the linker from the security
kernel domain: it no more has all the privileges to access
any ebjaetlih any domain; each particular invocation of
the linker will see access capabilities constraihéd‘tq'
those o§Athe££au1ting demain for the invocation (see

figure 1).
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We have just decided to design thé linker to run in
"the" faulting domain. Since any domain is a potehtial
faulting domain except for the security kernel domain, the.
linker must be made "available" in all domains except the
security kernel domain. The second problem which we will
now discuss is the notion of availability of the linker
in a domain. What does availability of the linker mean?

Firstly, it means that capabilities must exist in all
domains, except the security kernel domain, to execute
the linker. Providing such capabilities in each domain
is rather trivial and should pose no implementation problems.

Secondly, a dynamic linker, like most programs of a
computing utility is a modular program. As such proper
operation will be possible only if there exists a means
to snap links between the various modules involved in
dynamic linking. For most programs in a computing
utility links can be snapped dynamically. In the case
of the dynamic linker, this proposition is nonsense:
if the dynamic linker contains unsnapped links, it is not
operational and cannot count on itself to snap its own
links. Hence a static linker must be used to link the
dynamic linker modules prior to using them. As long as
the linker was part of the security kernel, its modules
were linked together by the prelinker of the security

kernel. Now we have removed the linker from the kernel,
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it will mo more be avtematioally prelinked. :Hence, its
modules must -samehow -be linked together independentiy :

. make it operetional in other dumaims.  We may .ask ourselves
what sort of limks esist in the dgnesic linker and heve

to he zmqppnﬁﬂcxak&ea&my,' mha51ﬁﬁkitfi!na:s¢t:éf proce—
_dures and 8ata modules which ascerding:to our -objective

can bewgimcuhnﬁ‘1a.,nygaima&u!aﬁﬂu,&\%&awnpnnriiy kernel
domain. Clearly at least all links botyean these modules
mtbzwﬂt@wwwon. In ad@dtion,
the eariier desoription of ithe Lisker upe mentioned
the need to imvoke the TSM. Einee:khe 1%&%‘& dis anywhere
but in the security kermel, it can invoke ithe BEM only

ﬂrmghmmMewaslmmmww Hance
there uniﬂ exigt links to thaaaégut-ia They maet also be

snapped. ﬂanneqnaat&yv t&a s&%nitian amnshe pictured by

- ﬁgm 2. Each domein ‘has onpabiXities, Aike Somain D,

to execute “the™ linker. "The" limker is ths set of all
¥ inveolead in dynamically
linking +wo wodules. The linker s¥60 CONGAiNS Gne .Or more

links +to security kernel gates. WNotioe that these gates,

as kernel ot

s, are guaranbesd to be further pre-

‘Titiked to dmbernal modules of the Xemel during system
initialization. Hence we ‘dc not wewd €0 worry .about them

anymore even though they .contmin links -to<be involved in

dynamic linking.,
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Figure 2: Linker andvsecurlty kernel
Initialization: conflguration
of the links to be snapped. °

Security kernel

(::>:ante

© Alteady prelinked

To_be énépbed'yet



b. Prelinking the linker

We'are now in a po;ifion”tO“ﬂiacuns how static
linking of the dynam;c linker can be dnns. We had left
the developwent of the ay:tan at the' atago uhere the
security kernel was operational in the fz;st and only
domain of the eﬁ&iranment .

ﬂg;vill now pﬁrsua that dis-
cussion and axamine the ‘g z. ipvclvaﬂ with making
the linker available in pew Quuaias anﬂund the aecnrity

kernel dqa.ip
 The Eﬁrat question to be asked is: when do we want

to link the modules of the linker together? To answer

" this qug'li , we mugt bear in mind the important fact

that linking modules together in some domain, whether
staficailyap&-dynamically, firat regquires mapping the
modules inte the relevant iédéhak'qugo.

; Since each domain or fu#uxe domaiﬂ in the computing

utility could, in the most gﬁueral 'wmﬂ, have its own

address space, this suggests. that mnpping an@ consequent
linking of the 11nke“f;ould be. done aach ti@e a domain

is generated. Such a &éslga would he gafy expensive in
comparison to the deslgnvwhpra the Iinkarwms in the gecurity
kernel and was prelinked only once, | |

- We- wguldkx;&har lrka a de:xgn«uhere the linker
modules are llnked together only once for the whole sys~

tem.just as ip the case where the linker was in the
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sequxi;g kernel. Heyever,‘egggieﬂgggigﬁ:regeggge_gpa£7the
linker be mapped into;faéhticif3§6ﬁiesses‘in fhe eddressv‘
space of each potentlal faulthg ddmaln for the same o
snapped links to be neaa&aq@ul~&amall doqalns. Thlszdx

condition can actualiy be»fuifiiié& becaqpe in all real

systems that we ¢an think of, eveﬁ*wh!h each dbm&in"has a

private address spacé, all'adaress spaces contain some

| set of loglcal~addresses in overlapping.numerlcal ranges.'

Since the lgnkez is the first program needed 1n any domaln,
it is the flr%t program to be mapped into any domain
address space.ﬁ-Hénce we.. canﬂimpase to map lts modules

into the same numexlcal 1og1ca1mgﬁdxesses foxwall dgmaln
address. spaces (except the“secﬁxiﬁy kernql address space
of course)ﬁ This 13 ‘pictured in gigure 3}» Mapping of ‘the
linker 1nto logical address spaces would Btlll have to

happen once for each,loglce1~aadress Space created, but

;the,costly;qperétionJoflfabricating the'snapped links

could be performed only once. These snapped links will

be valld 1n all domAAns if the 1oq;pa1 mapping on which -

they are based is enforced in gll dOM&th.ﬁ»WBWW&ll now

i

see how this can be done. TR _ C s
The second question to be asked is: Ebgw can we link
the linker modules together? The ‘above discussion has

actually divided the task of linking the linker modules
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Figure B:V ‘Pomal :ns and thelr address space.
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into two. We first must fabricate all necesséry snapped
links on the basis of some fictive mappind (to be

decided upon). We thén must éﬁfcfﬁéjﬁhiﬁ“ﬁhﬁﬁihg'in“each
domain address space we create and we mugt communicate

the snapped links based on that mapping ¥o each new domain.

\WéAwi114n0w examine”tﬁésezﬁwbwétéﬁﬁ in detail.

Fabricating the snapped link# is, a8 we ‘alréady men-
tioned, the task of a static Iinkér. Sinée the snapped
links must be fabricatéd"ﬁéf&fé‘in§.domﬁfnfis created
around the kernel domain, the stati¢ linker must do its
job before or during system initial{zation.  “Before®
corresponds to the idea of a Siﬁéeffii"bﬁtfhéﬁiédffééponds
to that of a prelinker. The choice between the two is
the same as in the case of ﬁﬁéﬂééqﬁfititkefnélLiniﬁi&liza—
tion. As we have assumed the idea of thé*bfélinker”for

the secﬁrity'keihél,fit is ail but:hatﬁra1'£o”keep the

_ same idea for the linker. The flavor bt the désign is

of course to use the security kernel prelihker a second |
time (with some variations péfhdpﬁ)'tb"ﬁieliﬁk thé‘dynamic
linker. This saves Ehe'trouble;dfwdfitiﬂg“éﬁd“cefﬁffyihg
another prelinker.’ Once Ehécﬁécdfity”ﬁéfnei“is prelinked,
and just before capabilities’ to use the preilnkér are dis-
carded, the initializer invokés the prelinker agaln to
prelink the future dynamlc 11nker. " rhe’ following para~

grapls will d:.scuss step by step the operat:lon ‘of the -
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object can be achieved by the FSM. If they are not, the
target object must be initially brought.into the address
space of the security kernel from whatever memory device
is used to load amd start the systenm, otherwise it could
not be accessed and identified by the prelinker. 1In the
latter case, searching is reduced to a simpleescanning
of all objects in the address space and will succeed
when the right symbolic name is found. This of course
implies that any potential target object, i.e. the linker
and any security kernel gate it calls, be in the address
space of the kernel.

Finally we have to worry about mapping.‘ Once the
target object of a link has been identified, a legical
address must be obtained for it to build the link to it.
The problem may seem trivial here since everything refer-
enced by the linker and the linker itself is mapped in
the current address space to start with. However, we
must remember that whatever mapping we base the snapped
links on will have to be enforced in all future domains.
It may not be feasible or reasonable to map the linker
and security kernel gates it calls into all address spaces
at the addresses where they currently are in the kernel.
In particular, we have mentioned that logical eddresses in
a domain are a form of capabilities for that domain. We

have also mentioned that after initialization, the security
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‘kernel ﬁill.want“to:dis@utd!ittﬁauﬁ capabilities to ever
) again-xécesa thﬁ“prolihkir41*§§£s*iiiaibitﬁha15§0‘uﬁhlP
the pralinker from the address: tpa«hw&e‘euzznntly sees.
Along the same lines of thougﬁt the 1&5&&% ie mapped in
the in_ﬂ:’iai kxernel ad:&mnpm for- the: purpbse of pre-
linking. aut ‘the linker 1' - part of the security
kérnei Hfmee the initialiser will' aiso' unmap it after
prelinking is completed. v
following protlem. ALl objects we are inter
currehtly mapped into the only §ul£ﬁ@iﬁﬂ§¢iifn§§ah%5ﬁut'
this mapping is temporary and the Puture mepging to be
used’ in all domains other titan ‘the security kernel domain
f”f‘fiquab-@.

This future mapping i=s of course tﬁaﬂiﬁaﬁivo aapping we
'diSCﬁsﬁéa aarticr; Determining the ‘fictive mapping is | ‘
thus done by the prelinker by’ aa;i‘“f:fw%bu~tngut object
of each Iink it translates a- tagiaaiFiddﬁlta-tuitibktrfor |
all future domains. R S

sted in are

may be entirely diffnr-nt a8 represer

Let us now conclude the above digcussien by deserib-
ing the mapping function of tNe pr.lfnkcr. ‘Pigure 4
'illustrates this function. The prttinkﬁxﬁﬁaéc sfid pro-
'gressively builds up fﬁo'tébiﬁl:**ﬁhﬁﬂfié&ivvedipping
" table "dahains a set of entries of the form (légical
address - unique identifier). "Each such entry defines
the future logical address of the uniquely identified
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object. Each time the prelinker snaps a link to a target
object in the linker not alresdy sssigwed a fiotive log~
ical address, it generates a iuit&ble fictive address

and adds one entry to th& tibi‘zf'r*th&t object. The
snapped links table aontains saappud links alroady fabri-
cated(hg the prelinker. :Such- tuaapcd links of course will
be meanianul in all domains . as thuy are baacd on the
fictive mapping which will be enforced in all éo-lial i
Once all logical links iaauad from the linku: are fabri-

‘"Vcated, the pttxinknr task is completed. Qheasaeurity

kernel can thnﬁ discard its own caﬁabilitias for the
prelinker ‘857th¢'115k0¥ b!*dii&liéclting their addresses
in the current address space-. euiy the two t&blos»BuiLt
by the prelink&r rcnnin in the address space of the
security kcrnel. They will be used to dxivn,the initiali-
zation of cach aubsaganntly created domain.:

We have just described how the snapped linka of
the linker c¢ould be gnnomatcdv It rauninn to be demon-
strated how the fictive mapping og which they are based
can be énfoxcca'in each ﬁew &ouain; Such a t&ak is part
of each domsin initialttﬂtieh IE t& stxaightfatwutd
Each time the -tcuxity kernel creates ; new domain, it
uses the fictive mapping table to drive the FSM and have
it enforce the mapping in the new domain. Each entry of
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the table is interﬁreted as a request from the»néw-domain
to search the file system for the bbject ‘ityualy iden-
tified by the entry and to map it intbkth¢ spécif§é€;fic—
tiVeilogical addreés. After having done so for all

entries, the fictive logical ‘adidresses are actual valid

- logical addresses for thé hew dchain.’ Then the security

‘Kerhel‘maps~a~copy‘of:ﬁhé;sﬁap?@ﬁilfﬁiéﬁéﬁﬁié”ihfd*fﬁe

'newfdcmafn;addressfspaeéL'iiﬁ¥§3ﬁﬁl&ifiﬁiiIY“éﬁébié’ihe

linker ‘to properly operate in the new domaih by using

‘the snapped links based on the row reil mapping for that

SR R

- What we have achieved is providing each domain with
an operational linker; i.w. a”pféfiniéa jinker. The |
f£irst section of this chapter described how the security
kernel could be iniffaiizea*ﬁ&thﬁﬁéwéheﬁﬁaiﬁﬁafﬂth@iay-
namic linker. Theﬂcurfehfjisétibn&hAihaeaéribéa*h&w'the
dynamic linker could in turn-be initialized iﬁ“mucﬁ”ihe'
same way. A fictive mapping of thé -linkeér and’ some

secnrity>ketne1‘gatés”héd*fo’ﬁe“ééﬁﬁfatédidﬁrihé system

initialization and must be enforced By thé 'PsM indepen-

dently for each domain created durifig system operation.
Each such domain then sees thé iinker- and- réelevant gecurity
kernel gates in its 1égica1“adaié§§*sbaééf5'iﬁ*aaaition,
each domain has a copy of the snapped links required by

‘the linker to operate. Link faults can now safely occur
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in such domains. This will be the topic in the next

‘4. Link fault handling EE
&fumhanshomhwbommamty
kemlwitbutmhalpafawm ~ We. then
~bave shown how the security kersel can in twrm imitialize
a linker iam each domain it croates. It remains to be
each domain can handle link faults without the privileges
it would bave if it were in the security kermel domain.
As long as it was part of the security kexmel, the linker
general. We pow will show that the constrained privileges
~ available to the linker in the fanlting domain are still
sufficient to guarantee proper operatioa. a
The first problem we will now discuss is that of
invoking the linker in the fmlmgm. . SW that
an object being executed in some domain causes a link
fault by attempting to reference another object thxough
a untranslated symbolic limk. This lipk famit is an
event recognized by the hardware of the system. As a

result of the event, control must be given to the limker.
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Some faults-access v101atlons for instance-are very sensi-
:tlve events and ‘must be handied by the security'kernel.
Slnce the processor recognlzes hardware events ‘themselves,
but may not know about their nature of’ their'sensitivity,
1t 1s frequently necessary ‘that all faults be sorted by
}the aecurlty kernel before being ‘padbed ve any other
domain for handling. COnsequently, on o ¥ink fault, the
first program to be 1nvoked is the’ sédﬁritY“kernel
1 Such actlon may seem straightfbrwird Qﬁe security
kernel could just call a ‘gate’ “fnto ‘thé faulting domain
F‘;and that gate could in turn GAFY “tHe lkﬁk&r. “However,
hilf we want to be absolute]y génefal, 6qf design mast flt
systems which support a very “iarge’ ﬂﬁnbﬁr ‘G domains. In
'*that case, slnce any domain is a p&ﬁﬁﬁéial faalting “domain,
the securlty kernel needs to know abodt’a’ “gate ihto each
domain. But since domalns ‘and’ gat&l cafi’ be’ éreated
and destroyed at will durlng systeh opération, it is
1mpossible to prelink the kernel to’ a ghte into each
’,domaln at system inltlaixzation‘tfﬁé “ fihice’ we must
."find some means to enter the fauItinQ'ﬁomain~without
knowing about any gate lnto"it. Khd‘ﬁ%‘nmst SOmehow
| lnvoke the 11nker in that domainT“*nany dtf!erent
}solutions can be proposed to these’ pfﬁﬁlé&ﬂ’d&pﬁnding

won the details °f a Particulax lYnﬂE'h
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a computing utility always haa-a,machanism to traﬁsfer
control fram the security kexrel to aaather dnma1n~w1thout
- knowing apything about that damain.

We will anly mention ana-pmtnible aalumian for tie
sake of completeness, but we do nat clazm authnrahlp for
it and we inaist on the fact that d;ffexent systems may
requ;zg;dxﬁﬁamen;,meehanlams. quce ths,sqcnr1ty kernel
maintains and enforces protection, it uau#lly has the
bo#er.tm dynamically and;tgngoxiriix fotcéaecéas to any
object in any domain if neca#a&ryh Far 1nstancc, on
many machines, the sypervisox can xclet the pr1v1leged
mode hit at ixll. Qanaequantly, even.thoughvthe lxnker
is not a gaken the security knrnal can force control to
jump ta the linkex in the maédle of a faulting domain.
Thisg solves the pxablem of entexxng the doma;n but we

still have tqQ know where the linker ;s in that dcmain to
’Jump to it. For that purpose we can slmply store the
logical addxaaa of the linker at some convantional address
in the fanlt;ng domain. Hence, on a 11nk fault, the
securxty kernel analyzes the mach;na status to determlne
the. faulting domain. It then loaks up the loglcal
address of the linker for that domaln at the conventlonal
address. and feorces tha<cqntrcl to Jump to the 11nker in
the faultlng domain. Initialization of the conventlonal

locatlon is part of the domaxn creation operatlon.
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This design has a side advantage. By'changing the
: address of the linker in the conventional location, the
subject executing in the faulting donaianan define any
other program to be its linker. It just has to prelink
its own linker with the standard linhertprior to changing
the content of the conventional object. hd ’

: HaVing described how the linker is invoked in a link
fault, our second topic w111 be to denonstr;te that the
symbolic link which caused the fault can be snapped Wlth

‘;only the capabilities of the faulting dcmain.d In the
earlier description of the operationkof the linker, we
kidentified three steps in the snapping of a link-
. Identification of the symbolic name of the link
| ;"Search for and mappingvof the target object o
’ corresponding to that name L S
. .Translation of the symbolic link intoa snapped
| link based on the previous mapping. :
The first and third steps require exclusively access to
the faulting domain because that is where the symbolic
link and the mapped link belong.‘ The target object and
the target domain do not contain any infcrmation about
links directed towards them The linker has access to

the faulting domain and can thus handle steps one and

three. If the target domain is different from the
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faultlng doaain. the aecond step niqht require infornatxon
embeddad in the t#rget domain.‘ Eouuvnr,vsearching and
mapp;ng are actually poxforned by tho FSM in tha aocurlty
kernel. Tho sccuxity kernel can access xnformation about
any targct object. Thus the linksx just calla the FSM
through a gate into the kernel. Thc rsu thnn saarches
for the target object, docidos uhothor the faultinq )
\domaxn has the rxght to know about it, eventually maps it
into the faulting addxoai spaee aad retnrna a capuhilxty,
i.e. thc logical adﬂrass of the targat objecqlto the linker
in the fanltiag domain.V We will :ae in the noxt ch‘pter
that in some ayltnnu. conplauontary infor-;tion about the
target ehject must navtrthalala b‘ axtrtctad from the
target donain. It w111 be shcun than how thil can be done.

We finully discua; the third problen, namcly return-
lng contxol fron the linkex to ihe faulting object
The goal is that tho nction ot thc dynn-ic linker be
entirely transparant to the faultiag objeot. !hz only
notlceable &ifferance in the environn.nt is the nbw
translated link. Apart fran thil, fha faulting objects
expects to find everything unchanqid

The nachxna registors must roflnct thc machine status
just before the hardware fault occurred. Par thi- purpose
the linker needs to restore the status of the machine.
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Whenvthevlinker was invoked it received a copy'of the
stétuswof"thetﬁééhihe.to'fiué?ou¥yaﬁgtﬁcuuooﬁﬁthépfuult.
Restorlng this status in the machzna registers must be an
‘atomic’ operatlon to guaranteefcon81atbncy of ‘the status
as a whole., It would be a pf%tection v101atxon to allow
any domaln other than the seé%rity kernéi “to restore “the
status of the machlne.' Restorlng the machine status is
done by copylng data out of some &bject 1nto the machlne
registers. If any domalnr could perform such an operatlon
it could set the machine status to a paétern reerctlng
a subject in some other domaim.4 This would‘be equlvalent
to Jumping right in the middlb of a domafh and by-passing
xthe entlre protectlon mechanism. Hence restoring the
chlne status requ;res iecugity karnel prfv;ieges whxch

the 11nker does not have.4 Thp only soiut{bn ts to have

" the llnker call the securlty kernel. A gate ‘must be '
installed in the securlty kermei for thaé purpose. “The
géte'ﬁiii examine the machlne :tatua it is ‘asked o -

| restore.;ng and when properﬂfq%aliaatea the‘madﬁlno
status islreatored and control 5umpt ﬁack ‘to ‘where ‘the

' fault occurred 1n the faulting oﬁieot. Vafidﬁtion oF ‘the

machxne status to be restored muat determlne what domaln

is defined by the machine statua, and verify that that
Masg wmen

‘domain is the faulting domaln. 'Agal ’

thé latter mech—

anism described is one among scveral posiigie éeslgns
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~of a feature of ganéfalvintare't which any conputing

J utllity aqpports undex Some tora In many cases, the
simple fact of txylng to restoxc #hn nnahine atatux from
the fault;ag Somain causes caatxnl tc lwitﬁh to pxivileged

. mode 1n the supervisor. - Tha rastoxo inatruction itself is
the return gate. Again'wn do not alnim authorship fcr

| the mech@nispl just delcribed

| 5. Cross dcunln problams ‘ ,

. The fixtt two sect;ons of thxs chapter havo discussed
_ the 1nit;a1ization of the sccuri@y kgrnel and of ther

dynamzc linker. The pxevioua noetian haa then discussed.
”,the handl;ng cf 1ink faults by tha opcxatiannl 1inker.
The deslgn may therefcre seen conplate.ﬁ It 18 nat. We
will now dz:cnas a hiddan problan whichrwa have only ,
lndlrectly approached qnd caxcfnlly avaiénd montioning
so far,: Tha pr@blem 1: dirqctly rclatad tc the multi-
domain. aqunt of the conputinq utility.( It is a problem
of general intereat wh;ch ex;stn in any nnltx-dcnain
computxng ug;lity. Our rasearch eqna choas lt and 7
uncoverad 1t for the flrst tina ) Wb helzeve that 1t may
| have been solved in particular qases alaost by accident.

In gengggl, 1; has been 1gno§q§.’ Hencn wa will propose

a general solution for it.
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The linker is invoked on a link fault and completes
its task by asking the security kernel to restore the
machine status. It is not properly speaking called by
‘the faulting object and does not properly return to that
object. It takes no "input" or "output" arguments.
Instead the objects it receives to work on are defined
by the machine status automatically saved by the security
kernel and the result of its computation is a snapped link
The question we will now discuss is where does the linker
store the snapped link so that the faulting object can
later retrieve it? Or in other words, what is the
nature of a logical 1link?

In a computing utility where information sharing is
a fundamental objective, special care must be taken to
6rganize the sharing of program modules. In order to
operate, a program requires working storage fo store and
retrieve data. One usually distinguishes three kinds of
working storage: in a PL/1 environment, these classes
or types are known as external, internal static and
automatic storage. Data modules or data objects as we
referred to them in the thesis are examples of external
storage. Many programs can refer to a particular piece
of external storage. That piece is external to each pro-

gram and shared by all. External storage can be created
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ox ;d‘?“?"X‘?“ at any time and can exist as long as desired.
Aut;omi,ic storage on the other hand belgngs to a given
program, is not ghared, is created. M the program is
J.nvoked ‘and dispppears when action resylting from that
1nvocat:.on terminates. . A stack frape ip an Algol machine
is a typical example of automatic gtorage. . Internal
static storage shares features of gm;nmtic and.of
external storage. Like autematic storage it is private
to qne program and not shareable, Like external storage,
its life time can be more than just oge invocation of the

St B

program. Internal static storage by definition ig allocated

to a program when that program is invoked for the first
time in a damain, and is des! . when the domain is

destroyed. In other woxds intqrm Sstatic storage con-
tinues to exist hetween invocatians of A-program as long

as the dopain which containe it existe. Going back to the
problem of ipformation sharing in a computing utility, it
is clear that procedure code (pquidsdl; is pure). can be
shared by different subjects in different domains.
Similarily,. . external storage. can:be shared, ) ’

 some praqant.ipna. sharing external storage allows sharmg
data. However, it maybe desixable not to share internal

static, and it is certainly desirable not to share auto-

matic storage. Let us consider the case of internal
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static itoraqe, Sharing internal. static storage may lead
to-gconflicts since subjects in: different: domains. may carry
on diffe:ent;cgmpﬁgations»withﬁﬁhefsamaggrocednmnsfvThus
mutual: protection and independence: of demains will in
-such cases_requéxé»difierent static storage:areas .to be
allocated in each domain where. a:procedure is currently
used. We will asaume such:a. gase- in-the following dis-
cussion andgwillszoposé~a design which-allocates static

- storage on-'a per domain basis, ‘It should now be clear

- that.a snapped link is a typical example:of an internal

 gtatic information item. It is ncan&nqﬁﬁi only in a
given domain -during the existence of:that:domain. -Hence
in each domain wheresome:procedure objeck:is:currently
_used, an instance of each link issued:frem the-procedure
is stored in the static-storage:area assigned-to that:
procedure in that domain.. The set otﬁaiiwiinksfissued
from a procedure is referred to as the:lipkage: section
of the procedure. .Thus, an instancge:of.the:iinkage
section ofwaaprosgéure@e$ists,inaaaehasﬁatic;sbcrage..
araa‘asg;gned.to.thatxprocedureviasth@adg-ainsuwhere it
is currently used. -Both the lia;iﬁ‘gnd*hhnwpnosqduze;can
. retreive the appropriate linkage :section ascerding to some
system wide-convention whiah:is;ieftgtoﬁhhagdtaeretion

of the designers of the system.
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The hidden problem we mentioned earlier is that of
deciding how static storage shounld be allocated when a
procedure is about to be used for the first time by some
subject in some domain. Often this task is left to the
‘dynamic linker. Such awkward éﬁt&gm results in a major
‘protection violation instance. We will now- discuss why
and propose a correct design.

Clearly we do not want to allocate static storage for~
all programs exscutable in a given domain whon we initialize
that domain: it is impossidle to scan the: whole file system
to find all procedures executable in thesdomain and allo-
cate static storage for them; it is: simply impoesible to
know in. advance about all procedures:executable ia the
domain because of the dynamic aspect of the fils system.

On the-cthaxjhaad we want to be certain that when a pro-
gram is invoked for the first time in a given duamin,
static storage is already allocated for its linkage sec-
tion so that the executing subject can-look: it up when it
needs to follow a link to some: extevmal gbject.

‘The first solution which comes o the mind is to allocate

the space when the abject is invoked for the first time,
On the:aseu-ptxon~that‘a&ldabjeetsgashuiﬁvukadfby“sznbolic
names and given that all symbolic links are handled by the
linker, we conclude that the'linker should allocate static
storage when it discovers it is snapping a link to a tar-

get object which has not yet any static storage in the
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target domain. Although this seems to be--a clean solution,
it violates protection,. Indeed,hif;awsuhjectucouidbget the
logical address of.a tqrget object:- by guessing it or by
appropriatecalls toatheasecuii&y.kérnel}ait“migh;,call
that object directly by logical address. amd: not by sym-
bolic name. In doing so, it will by-pass the linker and
willkepd up executing an object which has not been pro-
vided with static storage; this ie likely to-terminate
the life of the subject..  Protection wige it is perfectly
legal as long as the subject huris.oanly itself. in the
current domain. But if the target object the subject was
_calling is a_gate‘into.apothe;:g@mginﬂfhyfpgagiag the
linker could cause damage to thbe trarget-demain by‘ not
initializing some static storage as expested. . This of
course is a violation of the protectiem: f the other
domain. 1In addition, having,the;1inker~inmthe;f¢ultihg
domain allocate storage in the tazget domain could be
vexry hard to achieve.

The second solution which comes to:the mind and
- seems perhaps easgier to;implemgat;is,tofmake;sta;ic.stor—
age,illpcation,é funciion of the FSM3“~Since;néin9wa pro-
cedure in a domain requires mapping it into the address
space of that domain; the FSM is guaranteed-to be invoked

for any procedure each time that:procpdure is used in a



- different domain. Thus the FSM could at that time allocate
- statie @toxi@. to that procedure in the appropriate domain.
The FSM is mora likely than the linker to have the capa-
bilities to do so. However this design alse violates pro-
tection. Since the linkar«invotésrthﬁ“!ﬂﬁ, by symbolically
referencing w1@haut even invoking all gates into a domain B,
a domain A could create a mass of link faults causing static
storage to be allocated to each gate into domain B. Such
mass allocation could overflow the storage available in
domain B thereby violating its protection since it would
have been triggered by domain A.

As our research naturally came across the gquestion
of static ata:ag@ allocation, the abeve problem was uncov-
ered. Obviously anether solution had to be proposed
which would solve the protectioen problem. 1In addition, it
was felt that static storage allocation did not functionally
belong to the dynamic linker to start with. Thus a correct
design, but also a much cleaner and mere afficient design
is proposed hereafter. It is Sasedwon the fact that static
storage alloeation is triggered by the domain itself where
it must be allocated. Thus no protection violatien is
pogsible. »

when execution of a procedure object starta, the sub-
ject must, according to the system convention already men-

tioned, retrieve the linkage section of the object in the
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current domain. We Suggest that this search generate a

hardware internal statit’ 'storage fault ~(I¥S ‘fault) when

and if it fails. This ¥85 fault shouWFd!be handled by the
system in a manner very similar to a link fault. It

should be passed to the faulting domain. Anadlysis of the
machine ‘status would tell' which ‘object requires static
storage to be allocated. 'Static storsge would be created

: faut el sbject. = After the
‘ machine—séatus‘is»f@étorédy*Eﬁé4%hb§éé%@%ﬁﬁid&ﬁﬁéceéﬁful1y

in thé faulting ‘domain for tha

retry the search. Of course just -like! ‘the Yinker had to
be prelinked; the static storage -allodatdy thust have its
static: storage allocated at domain infEialivetion to be
operational. ERIEP

The design we ‘have just proposed ‘guarantees the pro-
tection of all domains bBecause statie storsge allocation
is made independent of dynamic Tinking. © Hence'‘allocation
is no more triggered by the execution of & random untrus-
ted object, but by-the ‘ewecution Of ‘the obféct itself
which needs static storagé. ~The debign ‘stems Erom ‘the
simple fact that no objedt, dnd Parefeuiarly no gate into
any domain, can depend on a caller ad¥ibmni‘¥o perform any
task in general, ‘static¢ storagé’ allocavion in particular.

Given that -links are peér domeih ‘wtatic items, it is
now clear why the security kernel must communicate a cCopy

of the linker links independently to each domain it
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createe. This copy is installed mthesma.c storage
area of the linker in that domain.

6. Summary

This chapter has attempted to present a gomplete
design of a dynamic linker running oubside the security
kernel of a computimg utility. Four main problems have
been distinguished. It has basn dew d first that
the security kernel could be pade operagiona
help of a dynamic, linker. It has been shown that the
dynamic linker coculd be made a Je in -all domains
while being prelinked only once. It has thgnheen
explained how the linker handles link faults. Finally, the
hidden although fundamental preblem #f static storage
allocation ip a multidomain system. was Giacuse
concludes the presentation of the complate design. The
following chapter will illustxate the ues of the computing
utility model and the principles of the desigh by identi-

1 without the

This

fying the componepts of the model to those of a real world
system and applying the design to thag system. Concluding
remarks on the actual implementation will convince the
reader of the feasibility and .usefulnass of the design.

b
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Iv. Implementation
1. General
In developing our theSlS we have first discussed a

computlng utility model which enabledJusﬁtZ éive a formal
description of the operation of ardynamic linker. In a
second stage we have presented and discussed in terms of the
the model the general de81gn features of a oomputing util-
ity where the dynamic linker is}e;ecuted outsxde the
security kernel domaln. We w111 now build up the third
level of the thesis. This level consists 1n demonstra—
tlng the feasrbility of the proposed design by descrlbing
and analyzing the details of its 1mplementation on a real
world computing utillty. ) # ‘

| The Multics ‘system has been chosen as a test case for
the 1mp1ementatlon. The Multlcs system (15 18) is a com-
merc1a1 computlng ut111ty developed JOintly by the
Massachusetts Institute of Technology and Honeywell Infor-
matlon Systens, Inc. It is supported by the Honeywell 6180
computer system. It 1mp1ements a powerful v1rtual memory

RN R

time sharing system w1th extensive informatlon sharing

3

fac111t1es. In additlon to being ea31ly avallable for

ok d

this research Multics was a very 1nterest1ng test case

=

for our de81gn.

Firstly, Multics was designed with protection of
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information as an initial objective. Proéection has influ-
enced almost all of its design foaturea. Proﬁeotion
mechanisms are embadded in most of the functions availabla
on Multics. Evon tho hardwaro of the 6180 processor was
d9819ned to support the concept of domnin (15).

Secondly, a recent project has been 1aunched with the
objectlve of defining and audxting tha sacurity kernel of
Multlcs to certlfy the correctness of the protection
mechanxsm. Since the dynamic linker of Multics was
initlally designed to be executed in the security kernel
env1ronment, the present research matchod exactly tha
objectives of the certification project. |

Finally, the protoction’moohanism of Multics matches
very closely the oomain protection model as described
earlier. Hence there is a direct paroiiol between rhé
descrlption of the donain based design and itﬂ implamen-
tation.

We will divide the discussion of the implonentatzon
into four parts. The following two aactiona will at the
same txme briefly describe the genoral design features of
Multics and match the real system componentn ‘with the con-
cepts of the camputing utility model describad earlier.
The next section will then talk about a dynamlc 1inking

spec:.f:.catiomon Multics to familiarlze the reader with
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the nature of the functions which the dynamic linker is

expected to support. The remainlng eectiona willppresent

- the reader w1th a dlscusslon of the 1mplemsntatlon of the

dynamic linker. Emphasls will be put on the discusslon

of selected specific problems encouiteted?;y thk imple-
mentation. We. do not clalmgthatwthﬁwﬂ§ﬂh;ﬂm§ tp be discussed

constitute an exhaustive list- of all p;obiems whlch the

implementation faced. Out of t33 comp@et? list of prob-

lems encountered durlng the implementatlon, We have

carefully selected spec1f1c problem@ w&ieh wh belleve are
instances of more.general pxeblomlmzhutwahywdﬂd;gner is
bound to face on any cemputing utility‘ﬁnpeﬁ sdme form or
another. e e fAmM? S
2. Information Protectlon.zxxuultics =

The equivalent- ef a domain -in-Multies- &a errlng (15/
18). Rings can be viewed as a set of domains ﬁith a
linearly nested orderlng 6£'§£1611;§as. The a aet of capa-
bilities of any glven r1ng is 2 sqpset ef tpe cqppbilit1es
in the next most privileged’ ting, a8’ reprﬁééﬁ{éﬁ in
figure 5. The 6180 hardware processor snpports up to
eight rings for each user. The eight rings’ are numbered
from 0 to 7 by decreasing order of privileges. Because

every ring has at least the capabilities of the next

Rl S A T
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Figure 5: Multics protection rings.

ring 4

- ring 3

1 ring 2

J ring 1

- ring 0

(Brackets indicate the sccpe of capabilities
available in the different rings.)
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higher humbeted ring the concept of gate exists only in
the dowitard @irection of é%bﬁsiiiﬁﬁﬁﬁiiiéia A" subject
tekeéﬁ%ingfin*%in@*ﬁ?ﬁﬁ§ﬁ*as§'§§¥%§ %ﬁ@ﬁiaﬁioﬁ‘fbjafgafe
" if he wants to obtain'the extra capibliiities of ring m

( #meller tha'h)! On the othér hdnd} 8’ Bibjedt execu-
. ting in®rifig miand willing to'mbve €6’ #ing 1’ (again'm
“~ amaller tha' n) can freely do 8o, - Thé’fdea of a gaté

- inté ving 'n for ring ' m is” irrelévant, -l c iv 0l

' All tisers ﬂp%ééuhibi?)”%%ui%iEﬁ@“ﬁe&ﬁ§i£§fiéfhei”more

than their own programs which’ m&Y‘QOntain“bu’:“céﬁﬁbié of
causing trouble. In turn they probably trust their own
programs more than tther user'aUpitdrai %jéﬁﬁfé“telative
ord@ring of’progPaiiiiah be supefimp
‘ordering of rings: ‘SBince the'secutity 'kethel is‘by

i ot

ﬂ?tééiﬁefﬁélative

nature the mbet"tristwrthy’ set of 'pPograis’ it ts #esigned

| to be' ‘ewecutéd -in’ ring0. But it mist Bé isctatéd in

this ring”frém evérything etsd" iri"tHe &n9ifohment. Hence

the restof the superviscr ‘gR6014 ‘BE Pejédted to’ ring 1.

 Perhaps prograns “ander develepmuﬁt~32‘f§sﬁ“sen§itive pro-

. grams ‘of “tNé -supervissrshould be“fﬁﬁﬁtlid&*fnlrfng 2.
b1y betny #Eidied: " BMed progiams; -

commatad#;, “cotiptle®s ‘and ‘dther tosts"@firectiy Fetatea ‘to

the ‘- actiéns 3§gﬁsé:s*é&ﬁ“ﬁe*éﬁ@cﬁt@d”fﬁ rifng¥"3; ‘¢ and 5.

sh

Thé~nofﬁ£1%éaﬁé‘is“fing:4filTﬁfﬁ”?ifgﬁs thé®user €& 'dxecute

OTIY ORI FES E Y S AR T




-74~

protected sﬁbs?stems in ring 3 on the assumption that
everything in rings below 3 is trusted and will not sub-
vert the subgystem in ring 3. A user can also test un-
trusted programs in ¥ing 5. Rings 6 and 7 are abgolutely
virgin: no function of the operating system is available
there. They initially have no capabilities for any gate
into lower rings. Hence a user ﬁay use these two rings
to install any two-ring systeé# he wants and keep it en-

tirely within his control.

3. Information Storage in Multics

The Multics equivalent of a subject is a process. A
process is defined by a site of execution and a logical
address space. Each preceés,hask;tsi@wn addtashispaee.
A process is the entity representing a user in the machine.

The address space seen by a user .in a twe-dimensional
virtual memory of very large capacity (15). Along one
dimension the memory is partitioned into segments addressed
by their order number, Along the other dimension, it is
addressed by word. Hence the logigal address of an object
in this virtual memory is of the form (s,w) where s is a
segment number and w a word number in that segment. The
format of such references limits the size of the virtual

memory to 256 K segments X 256 K words.
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Multics file system is a tree-structured hierarchy of
catalogs. Catalogs are éalled directories. The leaves
of the tree are called segments. A segment ié the equiv—‘
alent of a collection of objects in our model. An atomic
object is an entry in a segment. Directories are also

atomic objects. The unigue identifier of a directory is

the tree-name of the directory. The unique identifier of
a segment is the tree name of the parent directory concat-
enated Qith the symbolic name of the segment. Directories
and segments of the file system are of course mapped into
segments of the virtual memory when £hey are used. Such
mapping is supported by the FSM.

The security kernél of the operating system is
shared by all users. Since it is the very first thiﬁg
which has to be operational in any process, it is the
first thing to be mapped into any process address space.
Hence the security kernel always occupies the same loca-
tions of the virtual memory of each process. Furthermore,

all rings in a process share the same address space.

4. Dynamic linking in Multics
The previous two sections have established a parallel
between the Multics system and the computing utility model

of the thesis. Our second step towards the discussion of
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the imﬁlemeﬂtatidn will be therstafemeni of dynamic‘;ink—
ing specifications in Multics.» ” ) |

The Multlcs system supports various hlqhelevel
1angnages but was initially @eﬁmgned EQ sappert PL/i
Most of thersystem programm ef Multlcs are wrltten in
PL/1. As the address space‘of a Hel;zqs preeess 1s two—
dlmen51onal it was both easy and &eszrable to have a two-
dlmen51ona1 name space for PL/1 syﬁbolle names. An object

symbolic name or entry name is of the form~eegnamesentryname

where segname is the symbolic name of the seg-
ment containing the entry and entryname is the stbollc
name of the word offset where the entry';s located in
the Segmeﬁt o v |
Given a source program (or source segment) any cem-
pller generates an object program (or ebject segment)
which contalns three sections as descrlbed 1n flgure 6.
The last section contalns the pure executable code of the
program. The 6ef1n1tlon sectxen contalns on one hand the
list of entry names and word offsets of all entrles in the
object segment. On the other hand 1t contalns the list of
all names of entrles into external object segments which
this object segment may reference. anally there is the

v1rg1n llnkage sectlon. We 1n51st on the word v1rg1n

which is used to distinguish the present type of linkage
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Figure 6: Multics object segments.
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section from a non virgin linkage section which will be
derived from the virgin one and is 1n the statxc storage
area as descrlbed in the thesxs. The v1rgin lxnkage sec-
tion always remains virgin and is sharablo. For each ex~
ternal objeat referenced in the sou:ce pr@gxgm, a link is
inserted in the virgin linkage section.

A?llnk 13 a triple (s,w,f). (B,w) is a loglcal
address as defined eﬁrlier and £ is'a flag. In a symbolic
link, the flag is always a bit pattérn indicating that
(s,w) is invaiid. Attempting to us@ (s,w) as aucﬁ will
cauge a link f;gli, At;thistQ§qgwgs,w) somehow points
to the symbolic naﬁe associated witﬁ the link, infthe

'defanit;on»sectlon and not to the tnrget object oﬁ the
‘link. When the object segment is first executed in a
‘rlng, statlc storage is allocated fbr it in that rlng.
The virgin llnkage section is c0p1eﬁ into the static stor-
age area yielding a non-virgin linkiggwggg;igg,“.khe
address of the non-virgin linkage section is stored in a
conventional location where an executing process can
always retrieve it when it uses the object segment. When
execution encounters a reference to an external object,
the linkage section address is used to look up the corre-
sponding link. This triggers the hardware fault since

(f) is set. As a result of it, the linker will snap the

/
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link by replacxng the 1nva11d (s w) by the1va11d address
of the object correspondlng to the entry n&me wﬁieh
caused the fault. The fault flag (f) wlll*he turned off

i gewm R 2o

%tb“i%&féZ?Z‘the validity of (s,w). We nyw,have a snapﬁéd
link to the target entry. If and when 1he¢same link is .
used again 1n the future by the same uqbr process,‘no

more linkage fault w111 be taken. To plarify the above‘
R ﬁ 1 = E y

discussion, the 81tuation is plctuxe&,zn f[ggré”?

”‘i e et

In v1ew of thé’ ahoxewﬂnlexiption »we fanenow present

. a 51mpllf1ed basic functional-block dlagramwof“the

¥ ‘2
Lot
FEE

dynamlc linker (see figure 8). On a llnk fault caused by |

object A (see figure 7)*the @ynamie tfnking drlver is
invoked. It analyzes the machine status to determine
whlch llnk caused theé linhkagé:faulellABy follow;ng the o
: p01nter (s,w) currently in the symbolic llnk, the?i;ﬁken
finds the syﬁbollc name B § b correpsondlng to that link
in the definition sectlon of the faultlng ebject A ‘;t‘
then passes name B to the segment search d;iver. Qhe

'segment search driver tnles a set of aeayéﬁ”r 1és "(@irec-

tory treenames) on the FSM until the an finds B in one
of the dlrectorles. The FSM then maps B 1pt6 the~ ad&ress
space of the faultlng process and getnrns the segment W;
number s of B to the sear&h“ﬁrim which ii‘f‘Wms

it to the linking drlver.? The Iinking d;ivertthen passes
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Figure 7: Dynamic linking
on Multics
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Figure 8: Functional diagram of the
Multics dynamic linker.
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the segment number s and the name b to the entry search
driver. ’This one,scans:the definition sectiaon of segmén;
numbered s (i.e. B) until it finds the name b. It then
returns the offset w of bin B to théylinking driver.

The dynamic linking driver finally replaces the address
(s,w) in the symbolic link by the address (s,w) of B $ b
and turns off the flag (f) tbwnMMe“the link a snapped
link. The machine status can then be restored and
execution can proceed. i i |

We do insist on the fact that the above déscriptioﬁ

is a sxmpllfied strictly functional deflnlfion of the |
llnker. In ao way should it be assumed";%at the linker
contains pnly ;hrae:mvdules and that lln&*ngihappens as.
naturally as we described it. In the bdﬁréé’dfvthis
chapter we will progressively complicaté the description
we have just given and discuss the problems encountered
by the implementation. This section concludes the
descriptivn“part‘of“the chapter. We will now apply our
design t@ Multics and present selected aspects of the

implementétion.

5. Initialization
In this first section about the implementation of

the design, we will outline how the security kernel and
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the linker are initialized. This outline will be brief
because no particular problem was encountered. The im-
plementation of the design was relatively straightforward.
The Multics system is initialized by a dedicated
initializer process. All modules of the security kernel
are loaded into the system from a generation tape.
Immediately after the loading, the virtual memory address-
ing mechanism is initialized so that the initializer pro-
cess sees a regular virtual memory with the restriction
that the capacity of that virtual memory is temporarily
constrained to that of the real memory. A prelinker is
then invoked to link together all modules of the security
kernel which are read in from the tape. After the pre-
linker is run, miscellaneous initialization tasks are
performed. When the security kernel is entirely opera-
tional, the.prelinker, as well as other initialization
programs are unmapped and thrown out of the addressable
space. We have described this mechanism for the sake of
completeness. However it existed before we implemented
our design. We used it as a basis for our implementation.
We now turn our attention to the initialization of
the linker. Since the security kernel is initialized by
a prelinker, it is all but natural to use the same pre-
linker a second time to initialize the linker. Actually

the implementation uses a hybrid technique involving both
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a binder and a prelinker. Multics provides its users with
a binder of which the goal is to take several object seg-
ments and to merge them into one which has only one text
section, one definition section and one virgin linkage
section. Of course any link between the original dis-
tinct object segments submitted to the binder are directly
translated into relative offsets within the resulting bound
 object segment. Tﬁe»binﬁe:“Wzﬁ'uxé& to bind t¢ge£hervthe
modules of the linker, i.ex the modulés inside the main
box of figure 8. Consequently the bﬁly*liﬁks“iSsued'frbm the
bound linker, which the binder could not translate are
links to the FSM and links to external data bases. Notice
that figure 8 shows only one link to the PSM. In reality
there are several such links. As we s#id earlier figure 8
is only'a simplified:functional diagram. To be more
accurate too, the links to the FSM are actiually links to
ring 0 gates since the FPSM is in the seturity kernel and
 is accessible only through these gates. &lso the links

to external data bases are not repreéserited in figure 8.
The external data bases are error code tables ard system
data tables. They are used by the linker but are not‘
really part of it and do certainly not belong in its

- functional diagram.

The task of the prelinker is thus to snap the links

from the bound linker to the external data bases and to
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the security kernel gates. The operation of the prelinker

matches exactly that described in the general ‘case. Since

"the prelinker does not know about any file system, (even

though the bound linker, the ekternal data bases and ‘the
LY '( ¥
security kernel gates are catalogued in the file system

and stored on secondarymemory) a copy of each module must

be 1oaded into the initializer address space “from the

.system generation tape. The bound linker is loaded w1th

attributes such ‘that it does not get prelinked as a module

of the ‘kernel. Instead when ‘the kernel is initialized

and just before it throws theipreiiﬁﬁer“ouéjofwits:address

space, it invokes the prelinker a second time £o prelink

'the‘béﬁﬁé‘liﬁké¥;' The prelinker builds a fictive mapping

table and a snapped links tahle as statdd “in the general

deSign.- In the particular case ‘of Mmltics, the snapped

‘links table is simply a copy of the virgin linkage section

of the bound linker where all symbolic Tinks are replaced
by snapped links reflecting tﬁé‘éietivé*éébpiﬁél” The

fictive mapping table is a little more interesting.' Since
there is only one address space per proceas ‘Gommon to all

rings instead ‘of one per process and per ring, the reader

‘may wonder why a fictive mapping of the linker, ‘the data

bases and security kernel gatee 18 necessary. Couldn t .

they just stay where they are? The answer is negative

L
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because of the peculiar way the secﬁrity,kernel is mapped
~into each ‘process address space. It is a conventlon ‘that
~all segmants whzch are part of tha eecurity kernel during
regular operation are mapped lnto the 1owest sagmant'
4numbers of eaeh process addrens spaoe. Hence all lowest
rsegment numbers are reserved for the kernel and constltute
some sort of prlvate address space. Ho cuch segment

_ number is ever used outside the kernel., Hence, even
though the linker, the external aata bases and the security
kernel gates are in the address _space during lnitlallzatzon,
they must be remapped intpvhlgher:g%gqggt pqmggrs‘ger the
higher numbered rings. That r1¢£;g§ mapping will be valid
for all ringelgl.to 7) of 311¥§?9°e§§9§:;;T° gppmarigq_the
problem, although the address space of a process is common
to.all rings, a fictivevmapplngkmugtkﬁe installediby:the
prelinker because some SPGQ%fiQHFE;Q,Eﬂté 3 piece out of
the process addreas space_eedbtgrqa‘lt_irte what may be
regarded as a prlvate kernel &édreqs qpace. If thls rule
did not exlst, clearly, the 1n1tlal mapping could be
‘kept and be the flnal.real mapping After the two tables
are generated, the BecurltY'kernel throws away lts capa-
bllltles to access'the prelxnker, the linker and the ex-
ternal data bases by sxmply deallecatlng thexr current

segment numbers. Remember that the llnker and‘the data
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bases are still stored in the file system on secondary
memory, so that the system can retrieve them there later
on when they will be needed. Of course the two tables
built by the prelinker may not be thrown away. Since
they will be used throughout the life of the system each
time a ring is created, they must remain permanently in
the address space of the kernel.

We finally come to discussing the task of enforcing
the fictive mapping. This task is also straightforward
and identical to the general design. In order to operate
correctly, Multics object segments need a static storage
area and an automatic storage area. Automatic storage
is allocated in a special segment called the stack. This
segment is used as an Algol call stack. Static storage
is allocated in a special segment called the combined
linkage segment (cls). There exists one stack and one
cls per ring and per process. There exists a system
wide convention stating that the stack of a given ring
always occupies the same segment number in the address
space of any process. This enables any process to find
the right stack in the right ring. Each stack header
contains (conventional) the address of the cls for the
same ring. This enables any process to retrieve the
right cls for the right ring. Given these two conven-

tions, it is clear that no process will ever be able to
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touch its cls in a ring before it touches its stack in
that ring. Hence the convention is that when the process
uses its stack segment number for the first time, a hard-
ware fault occurs which is interpreted as a ring initiali-
zation fault and triggers action of the kernel to initialize
the ring. When the stack and the cls for that ring are
initialized, the kernel invokes the FSM. As stated in the
general design, the FSM uses the fictive mapping table
prepared by the prelinker to map the linker, the external
data bases and the security kernel gates in the process
address space. Finally the kernel copies the snapped
links table built by the prelinker into the cls just
fabricated for the new ring. Control is then restored
into the new ring. The linker has been mapped into the
address space and its non-virgin linkage section contain-
ing only snapped links exists in the cls of the new ring.
Thus the linker is operational in that ring.

The last question which needs perhaps a brief comment
is why do we need to invoke the FSM each time a ring is
initialized in a process? Doing so for the first ring
should be enough since the address space in which the FSM
enforces the fictive mapping is the same for all other
rings. Our implementation is justified by an aspect of

the Multics virtual memory. In mapping a segment into a
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segment number, one heeds to specify the unique*identifier
of theyéeément aﬂa tﬁé‘fihg'dh“béhilfad?*éﬁiCﬁ the mapping
is done. Once the bound linket for- instarice is mapped into
its final address for cne riny all rings will see the’ |
addreésidccqpiéd"butEit*will not bé meaningful to them

until they also require the linker t& be” mapped there on
their behalf. ‘ : g

' This discussion completés the section on initialization

" of the kernel and of the Yinker. It ha¥ been’ demonstrated

that ‘straightforward implementation of the design was

' possible on a computing utility Iike Multics. ' No major

problem and no particularly interestiry -issue was raised

80 far. Now we have shown how tc‘fﬁﬁieﬁbﬁﬁfah'opérétional

linker, we will proceéd By showing how to invoke it in the

faulting ring on a link fault.

6. Fault Handling

We have shown how the Multics dynamic linker was
made operational in'é ring. -Our next stép is to ‘show how
link faults are passed tojit'andLhoﬁ”ft‘dﬁn"iétﬁrn control
to the faulting‘objé&t;'“Againfthis~b%n*5é*aoﬁe by a
straightforward application of ‘the d%&fdn,“ﬁsihg pre-
existing mechanisms. o C

All faults on'Mﬁitics are intércdepted by a special

module of the kernel. This module existéd already ‘in the
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initial version of Multics and its purpose is to analyze
and sort faults. .Just.g‘féw l4gp§;o;39q§g_hqd_tp be
modified so that link faults would be diracted to a sig-
nalling module instead of being directed to a ring 0,
linker. The mignalling module of the kermel existed as
well in the initial version of Multics. It_iéﬂalxpidy
used to signal evants. other than link faults in outer
rings. Becauae of the higraxéhy of rings, the security
kernel and the signalling module in particular can access
any object in a higher numbered ring and can switch the

ring of execution of a process. These privileges are
exploited to signal a link fault. = Jhen the signalling
module receives a copy of the machine status saved by

the fault interceptor module, it analyses it ;9,d§§§;mine
the number éf the faulting ring, and the segm@nt numbér
of the stack used at fault time. It then makes a stack
frame for itself on that astack and copies into it the
machine status. It copies as well a return address to
be used by the linker. It finally switches ring of execu-
tion and calls the linker. vThqjggdggﬁghggjphg linker is
found in the stack header (conventiona}). This address
must be set at ring initialization and may be changed by
the process if it wants to defimg.another linker of its

own in that ring.
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Let us assume for a moment that we know how the
linker itself works and suppose that it has snapped the
faulting link and wants to restore control to the faulting
object. The linker simply returns to the signalling module
in the current ring. The signalling procedure then calls
a gate into the kernel.lehe purpose of this gate is to
validate the machine sgatus returned to it by the signaller
and to restore it. Validation simply consists in verifying
that the status reflects a ring of execution not lower
than the faulting ring. This is to make sure that the
linker which handled the status in the faulting ring did
not maliciously set it so that control would be restored
in a lower numbered ring than the faulting ring, which
of course violates protection. The gate then destroys
the signalling stack frame in the faulting ring to make
the stack look as if nothing had happened. Restoring the
status is finally done in one indivisible hardware in-
struction which reloads all the machine registers, thereby

forcing control back into the formerly faulting object.

7. The dynamic linker
The last two sections have discussed respectively
the prelinking of the linker and the handling of link

faults. It remains to be demonstrated how the linker
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itself can be implemented to translate links properly. So
far the implementation did not encounter any major problem
or any cﬁeratiou of autst&ndﬁng“iutemust. -In this section
we will only very briefly outline the implementation as
a whole and‘thenvcosetnﬁrate on -selected interesting fea-
tures of the Multies system of which the implementation
cannot be derived directly from the global design princi-
ples. As we mentioned it before, these:selected topics
are only instances of broader problems which any designer
would face in any computing utility perhaps under differ-
ent aspeets.

The atartingspoint of the implementation is the
block diagram of figure 8. The basic dynamic linker is
programmed according to the fuactiemal specifications of
that diagram. This basic linker cnnt:in:&a,dozan inde-
pendent program modules. Once compiled, the resulting
object segments are bound together by the binder. A

bound objecﬁ iegment:xesults which contains: about forty

links to data bases and kernel gates and can itself be
invoked through about fifteen different entries; one of
which is the main link translation entry used for link
faults. .

On top of this basic linker we will now progressively
add other features, functional boxes and spécificaticns

as we go about discussing specific implementation problems.
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a. Implementation of peripheral features

Let us first turn our attention to the question of
static storage allocation. As we mentioned it in the
chapter about the global design, sthtic-sterageallocation
is a general problem which must be solved in any computing
utility. The wrong way of solving ifiiﬁét&*léave it in
1t is to install a hardware faunlt whlch q@ called the ISSF.

When a pxocess attempts to get a hoid of the address of

* imrg e ( s

e s AR 5

the statxc storage’ (non-virgln linkgge %%eﬁloh)jof the

vepy b

pnogram it is-executing and if that“tfdfipa 13 ot yet
aLlocated, a ISSF occurs wh;ch trlggers skorage allocatlon.
The old deslgn of the Mu1t¢cs dynamlc lln§er was such that

N e G P

statlc storage a}locatlon was part bf the lxpket task

(aee figure 9).’ Oh snapplng a link, the‘ i¢ linking

ayv Tah
dfiver used to always verify that the target 8F the link
4id nave static storage in the target ring. s stated

in the thesis, .this design violates protection because a
target oquct in a target ring cannot depend on a faulting
object iﬂ a faulting ?ing to use the linker and allocate
static sﬁoraée(Whére ?ppropxiate. In additi&n, even if
this w§s hd£wa pxdﬁééiian violation, it would simply be
impossible for the new linker iﬂ a faulting ring to

allocate space in a target ring if the target ring is
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Figure 9: 01d Multics dynamic linker.

link fault

Dynamic Static

linking e storage

driver allocator
Entry Segment
search search
driver driver




-95-

lower than the faulting ring. This was possible in the old
design because the linker was in the security kernel and
could access any ring.

Consequently we have proposed to implemgnt a hardware
ISSF as described, such that dynamic' linking and static
storage allocation are functionally distinct. Yet there
is still one advantage in kéeping them physically together
(see-figure 10). Keeping dynamic‘linking and static stor-
age allocation physically together means keeping them in
the same bound object segment, the bound linker. Thus
they are prelinked and ihitialized together at the same
time. Adding the static storage box’in figure 10 increases
the complexity of the dynamic linker but does not increase
the complexity or modify the design of prelinking and ring
initialization.

The operation of the linker is thus as follows.
Assume object A in ring 4 wants to invoke gate B in ring
3. Whether A invokes B by symbolic’name (link fault) or
directly by its address it happened to already know is
irrelevant. When execution moves to the target segment B
in ring 3, as soon as segment B tries to find a presumably
unallocated stétic storage, an ISSF occurs which results
in the linker (static storage allocator part) to be

invoked in ring 3. Allocation can and will thus safely
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Figure 10: New Multics dynami¢ 1lioker.
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Figure 11: Static storage a]lpgation on
Multics
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occur. This is pictured by figure 11.
The.problem of static storage allocation was just
one example, and perhaps the'ﬁost typical;>of a feature which
was hooked to the linker for convenience. Unfortunately, the
linker was not the right place to hook that feature to. Other
problems of the same kind were encountered during the implemen-
tation. Just to mention a few we can qiteﬁtrap handling and
| impure object segment handling. Such features are typical
examples of sophisticated tools which have been hooked to
the linker for convenience but dom§6t>;§tugliy belong
there. Trap handling is a feature ﬁhieh allows a program-
mér to forcé éxééution of ceftéin rgutigesvbefo:e his
program can be called for the first tiﬁe. The feature is
named after the fact that it is based on trapping the first
invocatidn'df“a program. Agaiﬁ the first invocation may
not be a symbolic invocation; thus the linker can be by-
passed; thus hooking the trap handling mechanism to the
linker is just as disastrous as hobkiné,éggfic storage
allocation to the linker. The solution is also to use a :
hardware fault. We will not describe it here as it is
really not part of the implementation of the linker.
Impure object segment handling is a facility which pro-
vides users with the ability of creating an object seg-
ment and then writing into it perhaps over the definition

and virgin linkage sections. Of course such an object
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segment is not sharable. It is important to save the
definition and virgin linkage section before they are
overwritten (by copying them into the cls before the first
reference). Such task was left to the linker. Again it
did not belong there. By-passing the linker and thus not
saving the definition and linkage sections could cause
damage to the object segment. 1In addition it did put an
extra burden on the linker by always forcing it to check
fof writeable object segments. The solution to the prob-
lem is to always save the definition and virgin linkage
sections of a writeable object segment in a separate seg-
ment when the object segment is created. Compilers can
take care of this very easily and already use such mechan-
isms to handle other features on Multics.

Static storage allocation, trap handling and impure
object segment are typical examples of peripheral features
which have been hooked to the linker for convenience. As
a result, they were mishandled, violated protection, com-
Plicated the linker and interfered with it performance.
Our design has corrected that situation.

b. Compatibility of interfaces

We would now liké to mention a second prbblem which

the implementation encountered. This problem is specific

to Multics but problems of the same kind would certainly
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arlse ln any eemput;ng utlllty Iho prqaent problem does

~ mot have 80 nnqh to do with thc 1xnk.x itaolf as 1t hac

with the ganexal 1dea of pulliag 2 uedule outside the
kernel._ o ; o A ‘ ‘
Any progran which 13 pgrt of the kgrnel is very |
‘rllkely to uae ethcx fnnctions of tha kerngl. In txylng
to pull that_program outside hhn &aun;l, one mnat make

. sure that 1t still can use ths othpr kernﬂ; functiona as
‘zlt did before.~ In the part;culnr essc of the lxnker, _the
~ old. MMltlcs llnker uand the rsM Lﬁa;ﬂ. th; security ker—
nel. Qf course, qnce ‘the linkor ijfpg;la& outszés the

ke;ne;, it canaot call thn rau daructly. All 1t can do is

<<<<<

invoke. it throngh ggpxqgrzate ga;ec (sco £iguxe 12) For-

Su..x i

}tunatsly the FaM of Mmltieﬂ was, glxaaég avgilable to the
h such gatas.g Ve diﬂ net have to<ﬁ

‘higher rinsw
‘ xmplemaat thnm. Bowevar the Latpraqg to the FSM across
‘these gatgs 1: nat the sama as the thorfase which the

SOARRE oy

1inker gaag tg spe d&ractly ian;do ring 0‘; Dareetarles

are currently igplamented ag ring 0 data hases. Thﬂlr
logical address in a process 13 alno a protccted 1ten

. User_ ;;pgg (l o 7) may talk nboag y ~;;RQ isa only'by

- treename gnd not hy seqngnt nnmber. Bim;ctpmy‘gngnant
~numbers_axe exclnslvaly uped inaids thc kernel. Thus

when the lxnker was inside the kernel the search rules

L
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Interface of the linker to the FSM.
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it used across the interface with the FSM were a set of
directory ségment numbers. Now the linker is moved
outside the kernel, directory segment numbers are not
suitable directory unique i@entifiers. Therefore the
linker must use directory treenames. This implementation
of search rules has the disadvantage ' that for each direc-
tory searched or each link fault, the treename presented
to the FSM gate must ‘be converted into corresponding seg-~
ment number to perform the search. Such conversion is
costly and has a negative effect on the perfarmance of
the linker. A parallel project is currently on %ts way
to make directory segment numbers available in user rinés.
Such a design will restore the inteérface to the FSM which
the linker used to see. However it has somé ﬁ§j6¥ protec-
tion implicationawdfgﬁhiéh‘the solution is not obvious.
We will not discuss ﬁhese implicationa here.

The problem of ﬁhe search rules was a typical
example of a compatibility problem% “éypre@o§ing the
linker from the kernel, we ;éféﬂfdgcedwbqwﬁake it compat-
ible with the interface of the kernel seen by the user
rings.
c. Limitation of Privileges

‘The last problem which we propose to discuss will
illustrate the impact on the capabilities of a program

of removing that program from the kernel. The problem
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deals with snapping downward cross ring links, a feature
" which the ring“the’linker used to mp@r%very ‘easily”and
which is now complicated by the ‘fagt thaét: the tinker-is in
the faulting ring. : - : ‘

' In the gereral design-described enrlier,’ the' FSM was
described ‘as a security kernel primitive which-given-a
' catalog unique identifier’and an“®bjéct syibolic name:
- returns’ a logical® address. om’ Hﬁltiésféi‘“&hi%‘“is*’-‘ﬁb’t the
" exact function of the FEM. ~The 89 takive a @lredctory’

treename and a segment name &hd rethins’ a seghent Atumber.

' The difference between thesée two' dedctiptions is that a
segment name ‘is not an object symbslic’ hame and’ ‘& segment
fiumbér is ohly & ‘partial’lcgic#l- hmsﬂ. KF & ‘consequence
a search’ of the definition’ section’ F thie target: segment
‘must be perfsimed to' £ind the offset’ of ‘e u:rqet bject
in the target segmént (sed figure®) )" Wheh' the’ targét
object i# in a ring equal to ‘dr highér Yken the Faulting
ring, such search posies no pro¥lem. hﬁ%‘ﬁﬁn} ‘the target
‘object is a gate ‘Into a ring Tower ‘tha “whe-faulting ring,
the linker in the faultifig riny e Whmm £
capability to redd or search the ‘target egiient. The old
linker exeduting i the Kernel WiW hive #nst vepability.
~ 'When snapping = THnk to‘a ‘Ghte ies a’ léwer embered
ring, the linker must extract tie offsét . “0f “that gate
from information contained in 'thé tardet ségment
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_ containing the gate, The only way to. extract. information
from that. targst segment is to. invoke apother gate, a
linker gate, into the target ring. The . function of the
linker gate is equivalent to the.fusctiop of the “entry
search driver" in figure B. But.the sgarch.happens in
the target xing instead of happening. in the faultipg ring.
The. question which the reades is; pow entitled to ask
is how does the.linker know sheut the 1ifkex gate.in the
first place? . Thers are several possible. apswers to this
question.. .Ope way the linker comld. kmow about it is by
rmmwn a. gabe named aftex. i;&m JW MMM
1ocated in. a segmant of some. conwentional. directory.,
The linker could then invoke the '&"‘% abtaip a segment
by giving: the F&M the pame of the ggoventional. directory
and the @ Al name of the gate. m % target.
- ring. It wauld thus receive a sagment number. m,
using a conventional offset. into. M saghe)
dynmls.x fabricate for itself a 4;;1& to th@ linke;
gate. Guah design is feasible and very appropriste if
thers was a large numbex of rings per prog '
Thus. there is .a much simpler solution to our problem which
L Multics system with a

conventions. It waould be

8. Bowever

is finite.

consists in providing the standaxr




-105-

finite set of gates (one per ring), loading these gates
into the machine during system initialization, prelinking
the linker to each such gate as usually and throwing the
gates out of the kernel address space after prelinking.
This is the solution which was implemented on Multics.

It is pictured in figure 13. During system initialization,
the linker is prelinked to the FSM gates as well as to
one linker gate for each ring. Then when A takes a link
fault in trying to call gate B, the linker is invoked in
ring 4. It obtains a segment number s for B from the FSM.
The FSM also tells it that B is a gate into ring 3.
Instead of calling the entry search module in ring 4, the
linker then calls the linker gate in ring 3. The linker
gate can search the oject segment B and thus returns the
offset w of b in B to the linker in ring 4.

The last problem discussed was an example of a case
where by being removed from the kernel, a program, the
linker, lost privileges which it used to exploit’to per-
form its task. Other such examples were encountered
during the implementation. For instance, the linker used
to store in a system wide data base, various meters count-
ing the number of link faults, the distribution of pro-
cessing time required, etc. Data could be extracted from
that data base by anybody interested in performance. Of

course, now the linker is in user rings it could still do
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Figure 13: Cross ring linking hfﬁhi;iCS
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such metering, but results could not be trusted because
the system wide data base would have to be actessible in
user rings too. Hence anybody ‘could write girbage into

it. The solution which we propose instéad is to just

keep a count of link Faults ih ring“0. “This is done by
the fault interceptor module. The count is’thus protected.
Other meters can be stored in per ring data bases if the
user desires. Such meters would of ¢ourse réflect only
the activity of that user in that ring.”” "

This is the last probleni we propdsed to present here
about the implementation. In no way do°we suggést that
the implementation faced no ﬁbf%?prdbiﬁﬁiﬁ%ﬁaﬁ“eﬁpiained
here. The problems presented here were’ $ust'typical =
examples representative of clagses of problems’ relevant
to the topic of our research. Pt%bl&mi’ﬁ&tidiéénéiad**.
‘here either fell ihto(catégofiéiwfbi“whféh‘ﬁé’ﬁﬁﬁé given
examples or into categories not télevant to our thesis

topic.
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V. ‘Conqluslon . — .

To conclude th;s thesxs, we would 1ikc to step back
and consider tbe design and‘lta,;gp;gagntgg;gg as a whole
to summarize what has been achieved, try to abstract the
‘main geaultBQOf the thesis, and e

mine tha cost of the
implementation, _ . ,

We first _propose to. compare the ald deaign of a
with the new deaigp we have implemente Our comparison
is based on figure 14. The p;gimg,n\ic;};nyfrﬁ was part of
the security kernel, It was copstituted by a set of
modules scattered across the whole kernel. Some of these
modules were dirmctly av;ilablc,to_:g%iggggtthxpﬁgh appro-
prlate gates into the kerpel (nes .
peripheral functions like static lto;age.allacation and

: x) . m.scellaneoua

i -
B %

trap handling were dirsctly hooked to the linker inside the
kernel. The new dynamic linker is a bound cbject segment.
Capabilities to use it exist in all rings except ring 0.

The modules of the dynamic linker which used to be available
through gates in the kernel are now directly available in
user rings. All periphéral features have been detached

from the linker and are now handled independently as
described earlier. The static storage Slloéator is still
physically connected to the linker to simplify initialization,

but it is functionally independent: its operation is



-109-

user ring

1 14
1

ik ol ALl

Linker F SM

01d conflguration
Figure 14: Multics linker

New configuration

user ring

Linker

user ring linker gate

Linker

ring O linker gate FSM gate

FSM




-110-

triggered by a special hardware fault. As a result of the
above facts the complexity of the lecurity kernel has been
reduced by a non-negligible, althnngh hard to mnasure,
amount. What can be measured is the rpdnctxan of the size
of the kernel. The following items have been}ektracted

from the kernel:

15000 wordé out of 300000 (5%),
30 entries out of 1200 (2.3%),
15 programs out of 300 (5%),
18 gates out of 165 (11%).

The case of the gates is particularly interesting. Since
the linker has been removed from thaskernel. all gates
which used to lead to it inside the kernel could be
removed too. The‘figure of lltfdhitrv&i*a’kpecial‘camment.
Since the interface’between the kernel ana the 6uter world
is one of the most sensitive, directly threatened part of
the kernel, a reducﬁion of size of 11§ is a significant
improvement. We attribute this high scare to the fact
that the linker wéa, as we have shown, essentially a user
ring program. Thus even though it was in ring 0, it was
natural that it be available to user rings through many

gates.
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Secondly we propose to discuss the results of the
thesis. A first result is the demonstration of the
feasibility of the design. Some components of the design
have not been implemented because they were thought to be
of minor importance and could not have any impact on the
overall success of the implementation. Other components
of the design like the functional independence of the
static storage allocator could not be implemented simply
because the supporting hardware is not yet available on
Multics. However it was approximated by software and
wheh tﬁé hardware becomes available, only a simple change
of a few lines of code is required to separate static
storage allocation from dynamic linking. On the whole thus
the majo; aspects of the design and of the implementation
have been verified to work correctly. System initializa-
tion, fault handling and dynamic linking have been imple-
mented. All features crucial to the operation of the
linker itself have been extensively tested and proved to
work under all circumstances. In particular cross-ring
linking was carefully tested.

The second result of‘the thesis is the improvement of
the protection and the certifiability of the kernel of
Multics. Size and complexity have been reduced in the

proportions mentioned above thereby making the auditing
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of the kernel an easier task. In sddition, the thesis

has corrected some buys i# the Mul¥ics system. The

~ pxotection threat resulting ttatﬁnﬁvi_aé peripheral features

.- hc:okdd to the linker mmnixwmud The protection

of the kernel itself is no more thr#itened by the uncon-

trollabie operation of the limkey. MRoreover the careful

study and the redesign of the linkér wndovered and

. remedied seversl unsuspected proté@tion flaws, not the

least of which is the problem ﬁf “#edtic storage alloeation.
The last major results woreh sentioning here are the

insights geined about the natuge of a léwdel. Although

the thesis has not provided any definition of what

. programs belong inside. the kernél, it certainly has pro-

vided a few insights about what Programs cun edsily be

moved gutside the kernel. The a posteriori anslysis of

the linker has revealed a few interesting features which

at the same time made the linke¥ st easy to remove pro-

gram and are a direct result of its user ring nature.

We do not suggest in any way that all programs »o‘xhibi'ting'

the features to be described should of sven could be

removed from the kernel. We ohly sugyest that such pro-

grams are cextainly better candidates for removal than

others ahd that any attempt to simplify s keinel should

start by examining such programs.
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The first feature which made the linker a good can-
didate for removal is the number of gates which lead to
it inside the kernel. As we already suggested,'this fact
is most probably connected to the user ring nature of the
linker. A program which is already available to user
rings through many gates is inside the kernel but close
to the outside world. Pulling it out should in general
be easier than pulling out a program deeply nested inside
the kernel (see figure 15).

The second feature of the linker which made it a good
candidate for removal is the fact that it wés not used to
support any other kernel function. 1In figure 15, program
B is callable through a gate. Thus aécording to our first
criterion, it should be easy to remove it. ‘However B is
needed to support A (invoked by A) inside the kernel, and
A is not available through a gate. Hence it is probably
hard to pull A outside the kernel and B has to stay
inside as well. This does not mean that B can never be
executed in a user fing when invoked by a user ring, but
it implies it must still be part of the kernel and thus
audited to support the operation of A. 1In the case of
the linker, since no other function like A used it, it
could easily be removed.

The third interesting feature of the linker is that



-114~

Figure 15: Multics security kernel.
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all kernel primitives (e.g. the FSM) it used to invoke
from inside ring 0 were already available to user rings
through gates. Thus removing it simply moved back the
boundary of ring 0 without even creating new gates through
it. 1Instead removing Z from the kernel in figure 15 would
require a gate to be added to reach X because X is not yet
available in the user rings.

The last three paragraphs have described overall
features of a program which make it a good candidate for
removal. Of course further functional investigation may
reveal that such a program cannot possibly be removed simply
because it deals directly with protection and is a proper
component of the kernel.

We finally would like to examine the cost of our
implementation: how much did the removal of the linker
alter the performance of the system? Given that performance
and performance evaluation were not among the goals of our
thesis, we will not present an exhaustive performance study
of the linker. However we have run a few simple performance
tests which consisted simply in measuring the time required
“to snap "average" links. By "average" we mean links of the
type most frequently handled by the linkef, vfhat is links
not going cross-ring and not using any sophisticated features.
The measurements were taken in two different cases. First,

we measured the time required to snap a link to an object
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currently mapped in the logiocal addxess space. Secondly,
we measured the time required to mnap A link to an object
not cu;:.’rentlyﬂ mapped in the logical addresa space. S8Such
measurements were carried on for both .the old linker and
the new linker.

In the first case, the new linker mmma 10 more
milliseconds than the old linkex, which represents an
increase of 40 to 60 percent of the total time reguired
by the old linker to enap the link. This fixed increase
in tme is independent of the amount of processing
required to handle the link itsalf. We abtribute it to
the fixed overhead involved in signailing the link fauit
ih the faulting ring, invoking security kernel primitives
through gates, and requesting the kermel to validate and
restore the machine atatus. All these operations are
required for the new linker to operate and were not
required or mot so complicated with the privilages of the
old linker, 7This increased overhead im the basic price
pa.id by our desiqn,

In the case of the second set of measurements, the
new linker requires roughly twice as much tise as the old
linker does. Such overbead is not a fixed overhead
although it coptains the fixed owerhead of 10 milliseconds.
Instead this overhead is relatively proportional to the
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length of the search for the target object in the file
system. In order to speed up the search for and mapping
of a target object, it is standard practice on Multics

to first look in the logical address space in case the
object is already there. The first set of measurements
corresponds to this case. Only if the object is not found
in the address space is the FSM invoked to search the file
system. The reason why this search is roughly twice as
long for the new linker as it used to be for the old one
is mainly because search rules are now directory treenames
instead of directory segment numbers. As we mentioned it
earlier, we expected this to yield a non-negligible
overhead because translation of a treename to a segment
number prior to each directory search is very expensive.
Fortunately, when the project of removing name space
management from the kernel is finished, we will be able to
restore the search rules under their old form and the per-
formance will no more suffer from the overhead described
above.

To conclude the discussion of performance, it must be
said that clearly some fixed overhead (10 ms) was paid by
the new design. However the overhead in the search is a
price paid only temporarily. In addition it is believed

that the figures presented can be improved. They are the
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results of very rough measurements; a more carsful analysis
is clearly needed to identify the bottlemecks in the new
linker and try to optimize the code there. Also, when
static storage allocation, trap hendling and other features
will be separated from the linker as recommended, the
performance of the linker is likely to increase signifi-
cantly because it will no?moru<h:w¢=bu~eheﬁ§‘and worry
about all such peripheral features. Thus the performance
perspective is not as bleak as the above figures seem to

suggest.

Summary

This ghesic has attempted to open a road towards
security kernel simplification Byvrdabéing the dynamic
linker from thcvtcaarity-keznei-af‘a-ceaputing'utility.
A second waie'aimad at aimplificatton*offtﬁé kernel is now
on its way to.remove name space manageient from the
security kernel. No matter how large an effott these two
first simplifications will have required, this effort is
almost negligible in comparison to what remains to be done.
Even when we will have reached the minimal définition of a
security kermel, the hardest part of its certification will
remain to be worked out: the auditing. There exists so
far no formal theory of kernel auditing. While program

verification techniques are a first step towards kernel
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auditing, they are not the panacea. Auditing a kernel is
much harder than auditing the sum of its program components
because of all hidden interactions between these components.
Yet because of the increasing need for security and
reliability of information stored in a computing utility,
more powerful and carefully verified protection mechanisms
are demanded. Protection of information is not only the
fact of defense, census, medical or criminal information
systems. It is a vital characteristic required by our
society from any information storage system, computers
not in the last place. Thus it is worth paying the price
of certification to satisfy the fundamental need for

true protection.
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Appendix: Gates remeved from the Multics security kernel
To lllustrate the varlety and the number and the
complexity of the functrons removed from the Multlcs

kernel by the 1mplementatlon doscribed in Chapter Iv,

we list here all gates removed from the kernel with thelr

respectlve description.

- assrgn llnkage
_allows the user to request the static storage

Ll

allocator to allocate a given amount of space in
| xthe cls of the requesting ring Aﬁpornter to
h?the allocated space 18 returned; R
- fs_search get wdlr | o h‘h ]
nallows the user to ask the treenene of his current
vworklng drrectory. The working dlrectory is used in
~ the search rules and can he any directory 80 defined
‘by the user; i
- fs_search_set wdir
:allows the user to define his new working directory:
- lget count 1inkage R
allows the user to obtain a pointer tothe statlc
storage of a segment given a pointer to and the
bitcount of that segment,d/wAA

]
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-  get_defname :
is a'generalization of'get;phtry_pamé for entries
not necessarily into executable programs;

- ‘get_éntry_pame: T | |
allows the ﬁser to find out the name of an entry into
a program given a link to that»entry}:

- get_linkage:
is essentially the éame ag_get_pount;linkgge but does
not require the bitcount of thé'segment under concern;

- get_lp:
allows the user to get a pointer tb the static stor-
age of a program in theirequesiing ring given a
pointer to the segment coniaining‘thé program;

- get_;el~pe§ment: | '
allows the user to get a pointer td the definition
or the linkage section of a segment given a pointer
to the segment; |

- get_search_rules:
allows the user to find out what his current search
rules are; | |

- get_seg_count:
allows fhe user to get a pointer to and the bitcount
of a segment given the segment name} |

- get_segment:

same as above but doesn't return the bitcount;
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Jinitiate_;earch;;uies=
1Qalieﬁlathcﬁﬁsﬁmfxbiaeﬁinhaiiugganxgh &giga;hnd‘enable
' them in" the current ring; - © e |
ﬁlink force: e S z.ééa; ‘

allows: the u'tr to foree a; link to h& 'nappndh ~ThHis
is: a “static linking" entrycin 4he dymamic linker;

- *1‘:_:};5-'

4‘f;aﬁpbintaa'il.a. a. lxnk)
to an objaw from - scmmts, ayim Wmhclid name.
of the ebject, 7
rest_of datmk: | T
‘allows the user to grow a data object under a given
,symbolic name if that ohject doesn' t exist yet. Thxs
is a gate into one of the aophisticated feature
 hand1er hooked to- the 11nker,
get lp.‘ | | |
" allows the user to set the static storage pointer for
a given program in the current ring; |
unnnap service.
allows the user to undo';hé work of the linker by
,unénapping any link the linker may have snapped in
the requesting ring to a given entry. |
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We hope this exhemstive 1ist of onge:getes into the
linker has convinced the: masmgmwmd the
complexity of the linker interface. This is ome of the

feasons why it eas very desizmbie amd: vegnrding to
remove ﬁ;tvzm the kermal. Tn sOditien to-hawing to

audit 18 gates into the kernel, on the aversge 4 arguments

- -per: gate had to be walidated,: M&mm complexity
<and themti.ﬁ,miqn problean-ovan: mopR. o - o
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