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Abstract

We show how a computational system can be constructed to "rcason”, cffectively
and consequentially, about its own infercndal processes. The analysis proceeds in two
parts.  First, we consider the general question of computational semantics, rejecting
traditional approaches, and arguing that the declarative and procedural aspects of
computational symbols (what they stand for, and what behaviour they engender) should be
analysed independently, in order that they may be coherently related.  Second, we
investigate self-referential behaviour in computational processes, and show how to embed an
effective procecural model of a computational calculus within that calculus (a model not
unlike a raeta-circular interpreter, but connected to the fundamental operations of the
machine in such a way as to provide, at any point in a computation, fully articulated
descriptions of the state of that computation, for inspection and possible modification). In
terms of the theories that result from these investigations, we present a general architecture
for procedurally reflective processes, able to shift smoothly between dealing with a given
subject domain, and decaling with their own rcasoning processes over that domain.

An instance of the general solution is worked out in the context of an applicative
language. Spccifically, we present three successive dialects of LISP: 1-L1SP, a distillation of
current practice, for comparison purposes; 2-L1sP, a dialect constructed in terms of our
rationalised scmantics, in which the concept of evaluation is rejected in favour of
independent notions of simplification and reference, and in which the respective categories
of notation, structure, semantics, and behaviour are strictly aligned; and 3-LISP, an
extension of 2-L1sp endowed with reflective powers.

This research was supported (in part) by the National Institutes of Health Grant No. 1 P0]
I.M 03374 from the National Library of Medicine.
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Extended Abstract

We show how a computational system can be constructed to "reason” effectively and
consequentially about its own infercnce processes. Our approach is to analyse self--
referential behzviour in computational systems, and to propose a theory of procedural
reflection that enables any programming language to be extended in such a way as to
support programs able to access and manipulate structural descriptions of their own
operations and structures. In particular, onc must encode an explicit theory of such a
system within the structures of the system, and then connect that theory to the fundamental
operations of the system in such a way as to support three primitive behaviours. First, at
any point in the course of a computation fully articulated descriptions of the state of the
reasoning process must be available for inspection and modification. Second, it must be
possible at any point to resume an arbitrary computation in accord with such (possibly
modified) theory-relative descriptions. Third, procedures that reason with descriptions of
the processor state must themselves be subject to description und review, to arbitrary depth.
Such reflective abilities allow a process to shift smoothly between decaling with a given
subject domain, and dcaling with its own reasoning processes over that domain.

Crucial in the devclopment of this theory is a comparison of the respective semantics
of programming languages (such as LIsP and ALGoL) and declarative languages (such as
logic and the A-calculus); we argue that unifying these traditionally separate disciplines
clarifics both, and suggests a simple and natural approach to the question of proccdural
reflection. More specifically, the semantical analysis of computational systems should
compris¢ independ:nt formulations of declarative import (what symbols stand for) and
procedural consequence (what effects and results arc engendered by processing them),
although the two semantical treatments may, because of side-effect interactions, have to be
formulated in conjunction. When this approach is applied to a functional language it is
shown that the traditional notion of evaluation is confusing and confused, and must be
rejected in favour of independent notions of reference and simplification. In addition, we
defend a standard of category alignment: there should be a systematic correspondence
between the respective categories of notation, abstract structure, declarative semantics, and
procedural consequence (a mandate satisified by no cxtant procedural formalism). It is
shown how a clarification of these prior semantical and aesthetic issues cnables a
procedurally reflective dialect to be clearly defined and readily constructed.

An instance of the general solution is worked out in the context of an applicative
language, where the question reduces to one of defining an interpreted calculus able to
inspect and affect its own interpretation. In particular, we consider threc successive dialccts
of L1sp: 1-LIsp, a distillation of current practice for comparison purposes, 2-LISP, a dialect
categorically and semantically rationalised with respect to an explicit theory of declarative
semantics for s-expressions, and 3-1.1sp, a derivative of 2-L15p endowed with full reflective
powers. 1-LIsP, like all Lisp dialccts in current use, is at hcart a firsr-order language,
employing meta-syntactic facilities and dynamic variable scoping protocols to partially
mimic higher-order functionality. 2-L1sp, like SCHEME and the A-calculus, is higher-order: it
supports arbitrary function designators in argument position, is lexically scoped, and treats
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the function position of an application in a standard extensional manner. Unlike SCHEME,
however, the 2-LISP processor is based on a regimen of normalisation, taking each
expression into a normal-form co-designator of its referent, where the notion of normal-
form is in part defined with respect to that referent’s semantic type, not (as in the case of
the A-calculus) solely in terms of the further non-applicability of a set of syntactic reduction
rules. 2-LISP normal-form designators are environment-independent and side-effect free;
thus the concept of a closure can be reconstructed as a normal-form function designater. In
addition, sincz normalisation is a form of simplification, and is thercfore designation-
preserving, meta-structural expressions are not de-referenced upon normalisation, as they are
when evaluated. Thus we say that the 2-LIsp processor is semantically flat, since it stays at
a semantically fixed level (although explicit referencing and de-referencing primitives are
also provided, to facilitate explicit level shifts). Finally, because of its category alignment,
argument objectification (the ability to apply functions to a sequence of arguments
designated collectively by a single term) can be treated in the 2-L1sP basc-level language,
without requiring resort to meta-structural machinery.

3-LISP is straightforwardly defined as an extension of 2-LISp, with respect to an
explicitly articulated procedural theory of 3-L1sp embedded in 3-LIsp structures. This
embedded theory, called the reflective model, though superficially resembling a meta-circular
interpreter, is causally connected to the workings of the underlying calculus in crucial and
primitive ways. Specifically, reflective procedures are supported that bind as arguments
(designators of) the continuation and environment structure of the processor that would
have beecn in effect at the moment the reflective procedure was called, had the machine
been running all along in virtue of the explicit processing of that reflective model. Because
reflection may recurse arbitrarily, 3-L1SP is most simply defined as an infinite tower of 3-
LISP processes, cach engendering the process immediately below it. Under such an
account, the use of rcflective procedures amounts to running programs at arbitrary levels in
this reflective hierarchy. Both a straightforward implementation and a conceptual analysis
are provided to demonstrate that such a machinc is nevertheless finite.

The 3-Lisp reflective model unifies three programming language concepts that have
formerly been viewed as independent: meta-circular interpreters, explicit names for the
primitive interpretive procedures (EvAL and APPLY in standard LIsp dialccts), and procedures
that access the state of the implementation (typically provided, as part of a programming
environment, for debugging purposcs). We show how all such behaviours can be defined
within a pure version of 3-L1sp (i.e., independent of implementation), since all aspects of
the state of any 3-LISP process are available, with sufficient reflection, as objectified entities
within the 3-LIsp structural field.
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Preface and Acknowledgements

The possibility of constructing a reflective calculus first struck me in June 1976, at
the Xerox Palo Alto Research Center, where I was spending a summer working with the
KRL representation larguage of Bobrow and Winograd.! As an exercise to learn the
language, 1 had embarked on the project of representing KRL in KRL; it. seemed to me that
this "double-barrelled” approach, in which I would have both to use and to mention the
language, would be a particularly efficient way to unravel its intricacics. Though that
exercise was ultimately abandoned, I stayed with it long enough to become intrigued by the
thought that one might build a system that was self-descriptive in an important way
(certainly in a way in which my KRL project was nof). More specifically, I could dimly
envisage a computational system in which what happencd took effect in virtue of
declarative descriptions of what was 0 happen, and in which the internal structural
conditions were represented in declarative descriptions of those internal structural
conditions. In such a system a program could with equal ease access all the basic
operations and structures either directly or in terms of completely (and automatically)
articulated descriptions of them. The idea seemed to me rather simple (as it still does);
furthermore, for a variety of rcasons I thought that suckh a reflective calculus could itself be
rather simple — in some important ways simpler than a non-reflective formalism (this too 1
still believe). Designing such a formalism, however, no longer seems as straightforward as I
thought at the time; this dissertation should be viewed as the first report emcrging from the

research project that ensued.

Most of the five years since 1976 have been devoted to initial versions of my
specification of such a language, called MANTIQ, based on these original hunches. As
mentioned in the first paragraph of chapter 1, there are various non-trivial goals that must
be met by the designer of any such formalism, including at lcast a tentative solution to the
knowledge representation problem. Furthermore, in the course of its development, MANTIQ
has come to rest on some additional hypotheses above and beyond those mentioned above
(including, for example, a sense that it will be possible within a computational setting to
construct a formalism in which syntactic identity and intcnsional identity can be identified,

given some appropriate, but independently specified, theory of intensionality). Probably
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the major portion of my attention to date has focused on these intensional aspects of the

MANTIQ architecture.

It was clear from the outset that no dialect of LiSP (or of any other purely
procedural calculus) could serve as a full reflective formalism; purely declarative languages
like logic or the A-calculus were dismissed for similar reasons. In February of 1981,
however, I decided that it would be worth focusing on LIsP, by way of an example, in
order to work out the details of a specific subset of the issues with which MaNTIQ would
have to contend. In particular, I recognised that many of the questions of reflection could
be profitably studied in a (limited) procedural dialect, in ways that would ultimately
illuminate the larger programme. Furthermore, to the extent that LISP could scrve as a
theoretical vehicle, it seemed a good project; it would be much easier to develop, and even

more so to communicate, solutions in a formalism at least partially understood.

The time from the original decision to look at procedural reflection (and its
concomitant emphasis on semantics — I realised from‘ investigations of MANTIQ that
semantics would come to the fore in all aspects of the overall enterprise), to a working
implementation of 3-L1Sp, was only a few weeks. Articulating why 3-L1Sp was the way it
was, however — formulating in plain English the concepts and catcgories on which the
design was founded — required quite intensive work for the remainder of the year. A first
draft of the dissertation was completed at the end of December 1981; the implementation
remained cssentially unchanged during the course of this writing (the only substantive
alteration was the idea of treating recursion in terms of explicit Y operators). Thus (and I
suspect there is nothing unusual in this expericnce) formulating an idea required
approximatcly ten times more work than embodying it in a machine; perhaps morc
surprisingly, all of that effort in formulation occurred afler the implementation was
complete. We somectimes hear that writing computer programs is intellectually hygenic
because it requires that we make our ideas completely explicit. 1 have come to disagree
rather fundamentally with this view. Certainly writing a program does not force one to one
make one’s ideas articulate, although it is a useful first step. More seriously, however, it is
often the case that the organising principles and fundamental insights contributing to the
coherence o a program are not explicitly encoded within the structures comprising that
program. The theory of declarative semantics embodied in 3-Lisp, for example, was

initially tacit — a fact perhaps to be expected, since only procedural consequence is
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explicitly encoded in an implementation. Curiously, this is one of the reasons that building
a fully reflective formalism (as opposed to the limited procedurally reflective languages
considered here) is difficult: in order to build a general reflective calculus, one must embed

within it a fully articulated theory of one’s understanding of it. This will take some time.

An itinerant graduate student career has made me indelibly indebted to more people
than can possibly be named here. It is often pointed out that any ideas or contributions
that a person makes arise not from the individual, but from the embedding context and
community within which he or she works; this is doubly true when the project — as is the
case here — is one of rational reconstruction. It is the explicit intent of this dissertation to
articulate the tacit conception of programming that we all share; thus I want first to
acknowledge the support and contributions of all those attempting to develop and to deploy

the overarching computational mectaphor.

Particular thanks are duc to my committce members: Peter Szolovits, Terry
Winograd, and Jon Allen, not only for the time and judgment they gave to this particular
dissertation, but also for their sustaining support over many years, through periods when it
was clear to none of us how (or perhaps even whether) I would be able to delincate and
concentrate on any finite part of the encompassing enterprise. I am gratcful as well to
Terry Winograd and Danny Bobrow for inviting me to. participate in the KRL project where
this research began, and to them and to my fellow students in that research group (David
Levy, Paul Martin, Mitch Model, and Henry Thompson) for their original and continued
support.

Finally, in the years between that seminal summer and the present, any number of
people have contributed to my understanding and commitment, in ways that thcy alone
know best. Let me appreciatively just mention my famnily, and Bob Berwick, Ron
Brachman, John Brown, Chip Bruce, Dedre Gentner, Barbara Grosz, Austin Henderson,
David Israel, Marcia Lind, Mitch Marcus, Marilyn Matz, Ray Perrault, Susan Porter, Bruce
Roberts, Arnold Smith, Al Stevens, Hector LcVesque, Sylvia Weir, and again Terry
Winograd.
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Prologue

It is a striking fact about human cognition that we can think not only about the
world around us, but also about our ideas, our actions, our feelings, our past experience.
This ability to reflect lies behind much of the subtlety and flexibility with which we deal
with the world; it is an essential part of mastering new skills, of reacting to unexpected
circumstances, of short-range and long-range planning, of recovering from mistakes, of
extrapolating from past experience, and so on and so forth. Reflective thinking
characterises mundane practical matters and delicate theoretical distinctions. We have all
paused to review past circumstances, such as conversations with guests or strangers, to
consider the appropriateness of our behaviour. We can remember times when we stopped
and consciously decided to consider a set of options, say when confronted with a fire or
other emergency. We understand when someone tells us to believe everything a friend tells
us, unless we know otherwise. In the course of philosophical discussion we can agree to
distinguish views we believe to be true from those we have no reason to belicve are false.
In all these cascs the subject matter of our contemplation at the moment of reflection

includes our remembered experience, our private thoughts, and our reasoning patterns.

The power and universality of reflective thinking has caught the attention of the
cognitive science community — indeed, once alerted to this aspect of human behaviour,
theorists find evidence of it almost everywhere. Though no one can yet say just what it
comes to, crucial ingredients would seem to be the ability to recall memories of a world
experienced in the past and of one’s own participation in that world, the ability to think‘
about a phenomenal world, hypothetical or actual, that is not currently being experienced |
(an ability presumably mediated by our knowledge and belief), and a certain kind of true
self-reference: the ability to consider both one’s actions and the workings of one’s own
mind. This last aspect — the self-referential aspect of reflective thought — has sparked
particular intcrest for cognitive theorists, toth in psychology (under thec label mefa-
cognition), and in artificial intelligence (in the design of computational systcms possessing
inchoate reflective powers, particularly as cvidenced in a collection of ideas loosely allicd in
their use of the term "meta": meta-level rules, meta-descriptions, and so forth).
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In artificial intelligence, the focus on computational forms of self-referential
reflective reasoning has become particularly central. Although the task of endowing
computational systems with subtlety and flexibility has proved difficult, we have had some
success in developing systems with a moderate grasp of certain domains: electronics,
bacteremia, simple mechanical systems, etc. One of the most recalcitrant problems,
however, has been that of develoning flexibility and modularity (in some cases even simple
effectiveness) in the reasoning processes that use this world knowledge. Though it has been
possible to construct programs that perform a specific kind of reasoning task (say, checking
an circuit or parsing a subset of natural language syntax), there has been less success in
simulating “"common sense”, or in developing programs able to figure out what to do, and
how to do it, in either general or novel situations. If the course of reasoning — if the
problem solving strategies and the hypothesis formation behaviour — could itself be treated
as a valid subject domain in its own right, then (at least so the idea goes) it might be
possible to construct systems that manifested the same modularity about their own thought
processes that they manifest about their primary subject domains. A simple example might
be an electronics "expert” able to choose an appropriate method of tackling a particular
circuit, depending on a variety of questions about the relationship betwcen its own
capacities and the probiem at hand: whether the task was primarily one of design or
analysis or repair, what strategies and skills it knew it had in such areas, how confident it
was in the relevance of specific approaches based on, say, the complexity of the circuit, or
on how similar it looked compared with circuits its already knew. Expert human problem-
solvers clearly demonstrate such reflective abilities, and it appears more and more certain

that powerful computational problem solvers will have to possess them as well.

No one would expect potent skills to arise automatically in a reflective system; the
mere ability to reason about the reasoning process will not magically yield systems able to
reflect in powerful and flexible ways. On the other hand, the demonstration of such an
ability is clearly a pre-requisite to its effective utilisation. Furthermore, many rcasons are
advanced in support of reflcction, as well as the primary one (the hope of building a system
able to decide how to structure the pattern of its own rcasoning). It has been argucd, for
example, that it would be easier to construct powerful systems in the first place (it would
seem you could almost e/l them how to think), to interact with them when they fail, to

trust them if they could report on how they arrive at their decisions, to give them "advice"”
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about how to improve or discriminate, as well as to provide them with their own stratcgies

for reacting to their history and experience.

There is even, as part of the general excitement, a tentative suggestion on how such
a self-referential reflective process might be constructed. ' is suggestion — nowhere
argued but clearly in evidence in several recent proposals — is a particular instance of a
general hypothesis, adopted by most A.L researchers, that we will call the kmowledge
representation hypothesis. It is widely held in computational circles that any process
capable of reasoning intelligently about the world must consist in part of a field of
structures, of a roughly linguistic sort, which in some fashion represent whatever knowledge

and beliefs the process may be said to possess. For example, according to this view, since I
know that the sun sets each evening, my "mind" must contain (among other things) a
language-like or symbolic structure that represents this fact, inscribed in some kind of
internal code. There are various assumptions that go along with this view: there is for one
thing presuraed to be an internal process that "runs over" or "computes with" these
representational structures, in such a way that the intelligent behaviour of the whole results
from the interaction of parts. In addition, this ingredient proccess is required to react only
to the "form" or "shape" of thesc mental rcpresentations, without regard to what they
mean or represent — this is the substance of the claim that computation involves formal
symbol manipulation. Thus my thought that, for example, the sun will soon sct, would be
taken to emerge from an interaction in my mind between an ingredient process and the
shape or "spelling” of various internal structures representing my knowledge that the sun

does regularly set cach evening, that it is currently tea time, and so forth.

The knowledge representation hypothesis may be summarised as follows:

Any mechanically embodied intelligent process will be comprised of structural
ingredients that a) we as external observers naturally lake lo represent a
propositional account of the knowledge that the overall process exhibits, and b)
independent of such external semantical attribution, play a formal but causal
and essential role in engendering the behaviour that manifests that knowledge.
Thus for example if we felt disposed to say that some process knew that dinosaurs were
warm-blooded, then we would find (according, presumably, to the best explanation of how
that process worked) that a certain computational ingredient in that process was understood

as representing the (propositional) fact that dinosaurs were warm-blooded, ans curthermc.e
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tlat this very ingredient played a role, independent of our understanding of it as
representational, in leading the process to behave in whatever way inspired us to say that it
knew that fact. Presumably we would convinced by the manner in which the process
answ-red certain questions about their likely habitat, by assumptions it made about other
aspects of their existence, by postures it adopted on suggestions as to why they may have

become extinct, etc.

A careful analysis will show that, to the extent that we can make sense of it, this
view that knowing is representational is far less evident — and perhaps, therefore, far more
interesting — than is commonly believed. To do it justice requires considerable care:
accounts in cognitive psychology and the philosophy of mind tend to founder on simplistic
models of computation, and artificial intelligence treatments often lack the theoretical rigour
nccessary to bring the essence of the idea into plain view. Nonetheless, conclusion or
hypothesis, it petmeates current theories of mind, and has in particular led researchers in
artificial intelligcnce to propose a spate of computational languages and calculi designed to
underwrite such representation. The common goal is of course not so much to spcculate on
what is actually represented in any particular situation as to uncover the general and
categorical form of such representation. Thus no one would suggest how anyone actually
represents facts about tea and sunsets: rather, they might posit the gencral form in which
such beliefs would be "written” (along with other belicfs, such as that Lasa is in Tibet, and
that 11 is an irrational number). Constraining all plausible suggestions, however, is the
requirement that they must be able to demonstrate how a particular thought could emerge
from such representations — this is a crucial meta-theoretic characteristic of artificial
intelligence research. It is traditionally considered insufficient mercly to propose true
theories that do not enable some causally effective mechanical embodiment. The standard
against which such theories must ultimately judged, in other words, is whether they will
serve to underwrite the construction of demonstrable, behaving artefacts. Under this
general rubric knowledge representation efforts differ markedly in scope, in approach, and
in detail; they differ on such crucial questions as whether or not the mental structure are
modality specific (one for visual memory, another for verbal, for example). In spite of such
differences, however, they manifest the sharcd hope that an attainable first step towards a
full theory of mind will be the discovery of somcthing like the structure of the "mechanical

mentalesc” in which our beliefs are inscribed.
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It is natural to ask whether the knowledge representation hypothesis deserves our
endorsement, but this is not the place to pursue that difficult question. Before it can fairly
be asked, we would have to distinguish a strong version ciaiming that knowing is necessarily
representational from a weaker version claiming merely that it is possible to build a
representational knower. We would run straight into all the much-discussed but virtually
intractable questions about what would be required to convince us that an artificially
constructed process exhibited intelligent behaviour. We would certainly need a definition
of the word "represent”, about which we will subsequently have a good deal to say. Given
the current (minimal) state of our understanding, I myself see 1.0 reason to subscribe to the
strong view, and remain skeptical of the weak version as well. But one of the most difficult
questions is merely to ascertain what the hypothesis is actually saying — thus my interest in
representation is more .a concern to make it clear than to defend or deny it. The entire
present investigation, therefore, will be pursued under this hypothesis, not because we grant
it our allegiance, but merely because it deserves our attention.

Given the represention hypothesis, the suggestion as to how to build self-reflective
systems — a suggestion we will call the reflection hypothesis — can be summarised as

follows:

In as much as a computational process can be constructed to reason about an
external world in virtue of comprising an ingredient process (interpreter)
JSormally manipulating representations of that world, so too a computational
process could be made to reason about itself in virtue of comprising an
ingredient process (interpreter) formally manipulating representations of its own
operations and structures.
Thus the task of building a computationally reflective system is thought to reduce to, or at
any rate to include, the task of providing a system with formal representations of its own
constitution and behaviour. Hence a system able to imagine a world where unicorns have
wings would have to construct formal representations of that fact; a system considering the
adoption of a hypothesis-and-test style of investigation would have to construct formal
structures representing such a inference regime.

Whatever its merit, there is ample evidence that researchers are taken with this view.
Systems such as Weyrauch’s roL, Doyle’s tus, McCarthy’s ADVICE-TAKER, Hayes’ coLuM, and

Davis' Teresius are particularly explicit exemplars of just such an approach.?2 In
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Weyhrauch’s system, for example, sentences in first-order logic arc constructed that
axiomatize the behaviour of the LISP procedures use in the course of the computation (FoL
is a prime example of the dual-calculus approach mentioned earlier). In Doyle’s systems,
explicit representations of the dependencies between beliefs, and of the "reasons” the
system accepts a conciusion, play a causal role in the inferential process. Similar remarks
hold for the other projects mentioned, as well as for a variety of other current research. In
addition, it turns out on scrutiny that a great deal of current computational practice can be
scen as dealing, in one way or another, with reflective abilities, particularly as exemplified
by éomputational structures representing other computational structures. We constantly
encounter examples: the wide-spread use of macros in LIsp, the use of meta-level structures
in representation languages, the use of explicit non-monotonic inference rules, the
popularity of meta-level rules in planning systems.2 Such a list can be extended
indefinitely; in a recent symposium Brachman reported that the love affair with "meta-level
reasoning" was the most important theme of knowledge rcpresentation research in the last

decade.?

The Relationship Between Reflection and Representation

The manner in which this discussion has been presented so far would secem to imply
that the interest in reflection and the adoption of a representational stance are theoretically
independent positions. I have argued in this way for a reason: to make clear that the two
subjects are not the same. There is no a priori reason to believe that even a fully
representational system should in any way be reflective or able to make anything
approximating a rcference to itself; similarly, there is no proof that a powerfully self-
referential system nced be constructed of representations. However — and this is the crux
of the matter — the reason to raise both issues together is that they are surely, in some
sense, related. If nothing else, the word "represcntation” comes from “re” plus “"present”,
and the ability to re-present a world to itself is undeniably a crucial, if not the crucial,
ingredient in reflective thought. If I reflect on my childhood, I re-present to myself my
school and the rooms of my housc; if I reflect on what I will do tomorrow, ! bring into th=
vicw of my mind’s eyc the sclf I imagine that tomorrow [ will be. If we take
“representation” to describe an activity, rather than a structure, reflection surcly involves
representation (although — and this should be kept clearly in mind — the "representation”
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of the knowledge representation hypothesis refers to ingredient structures, not to an
activity).

It is helpful to look at the historical association between these ideas, as well to search
for commonalities in content. In the early days of artificial intelligence, a search for the
general patterns of intelligent reasoning led to the development of such general systems as
Newell and Simon’s 6ps, predicate logic theorem provers, and so forth.5 The descriptions
of the subject domains were minimal but were nonetheless primarily declarative,
particularly in the case of the systems based on logic. However it proved difficult to make
such general systems effective in particular cases: so much of the “expertise” involved in
problem solving seems domain and task specific. In reaction against such generality,
therefore, a procedural approach emerged in which the primary focus was on the
manipulation and reasoning about specific problems in simple worlds.? Though the
procedural approach in many ways solved the problem of undirected inferential
meandering, it too had problems: it proved difficult to endow systems with much generality
or modularity when they were simply constituted of procedures designed to manifest certain
particular skills. In reaction to such brittle and parochial behaviour, researchers turned
instead to the development of processes designed to work over general representations of
the objects and categories of the world in which the process was designed to be embedded.
Thus the representation hypothesis emerged in the attempt to endow systems with generality,
modularity, flexibility, and so forth with respect to the embedding world, but to rctain a
procedural cffectiveness in the control component.” In other words, in terms of our main
discussion, representation as a method emerged as a solution to the problem of providing
general and flexible ways of reflecting (not self-refercntially) about the world.

Systems based on the representational approach — and it is fair to say that most of
the current "expert systems" are in this tradition — have been relatively successful in
certain respects, but a major lingering problem has been a narrowness and inflexibility
regarding the style of reasoning these systems employ in using these representational
structures. This inflexibility .n reasoning is strikingly parallel to the inflexibility in
knowledge that led to the first round of representational systems; rescarchers have therefore
suggested that we need reflective systems able to deal with their own constitutions as well
as with the worlds they inhabit. In other words, since the style of the problem is so paralle}

to that just sketched, it has sccmed that another application of the same medicine might be
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appropriate. If we could inscribe general knowledge about how to reason in a variety of
circumstances in the "mentalese” of these systems, it might be possible to design a
relatively simpler inferential regime over this "meta-knowledge about reasoning”, thereby
engendering a flexibility and modularity regarding reasoning, just as the first
representational work engendered a flexibility and modularity about the process’s

embedding world.

There are problems, however, in too quick an association between the two ideas, not
the ieast of which is the question of to whom these various forms of re-presentation are
being directed. In thc normal case — that is to say, in the typical computational process
built under the aegis of the knowledge representation hypothesis — a process is constituted
from symbols that we as external theorists take to be representational structures; they are
visible only to the ingredient interpretive process of the whole, and they are visible to that
constituent process only formally (this is the basic claim of computation). Thus the
interpreter can see them, though it is blind to the fact of their being representations. (In
fact it is almost a great joke that the blindly formal ingredient process should be called an
interpreter: when the LIsP interpreter evalutes the expression (+ 2 3) and returns the result
5, the last thing it knows is that the numeral 2 denotes the number two.)

Whatever is the case with the ingredient process, there is no reason to suppose that
the representational structures are visible to the whole constituted process at all, formally or
informally. That process is made out of them; there is no more a priori reason to suppose
that they are accessible to its inspection than to suppose that a camera could take a picture
of its own shutter — no more reason tc suppose it is even a cohercnt possibility than to say
that France is near Marscilles. Current practice should overwhelmingly convince us of this
point: what is as tacit — what is as thoroughly lacking in self-knowledge — as the typical
modern computer system?

The point of the argument here is not to prove that one cannot make such structures
accessible — that one cannot make a representational reflective system — but to make clear
that two ideas are involved. Furthermore, they are different in kind: one (representation) is
a possibly powerful method for the construction of systems; the other (reflection) is a kind
of behaviour we are asking our systems to exhibit. [t remains a question whether the

represcntational method will prove uscful in the pursuit of the goal of reflective behaviour.
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That, in a nutshell, is our overall project.

The Theoretical Backdrop

It takes only a moment’s consideration of such questions as the relationship between
representation and reflection to recognise that the current state of our understanding of
such subjects is terribly inadequate. In spite of the general excitement about reflection,
self-reference, and computational representation, no one has presented an underlying theory
of any of these issues. The reason is simple: we are so lacking in adequate theories of the
surrounding territory that, without considerable preliminary work, cogent definitions cannot
even be attempted. Consider for example the case regarding self-referential reflection,
where just a few examples will make this clear. First, from the fact that a reflective system
A is implemented in system B, it docs not follow that system 8 is thereby rendered reflective
(for example, in this dissertation I will present a partially-reflective dialect of Lisp that I
have implemented on a por-10, but the por-10 is not itself reflective). Hence even a
definition of reflection will have to be backed by theorstical apparatus capable of
distinguishing between one abstract machine and another in which the first is implemented
— something we are not yet able to do. Second, the notion seems to require of a
computational process, and (if we subscribe to the representational hypothesis) of its
interpreter, that in reflecting it "back off" one level of reference, and we lack theories both
of interpreters in general, and of computational reference in particular. Theories of
computational interpretation will be required to clarify the confusion mentioned above
regarding the rclationship between reflection and representation: for a system to reflect it
must re-present for itself its mental states; it is not sufficient for it to comprise a set of
formal representations inspected by its interpreter. This is a distinction we encounter again
and again; a failure to make it is the most common error in discussions of the plausibility
of artificial intelligence from those outside the computational community, derailing the
arguments of such thinkers as Searle and Fodor.2 Theories of reference will be required in
order to make sense of the question of what a computational process is "thinking" about at
all, whether reflective or not (for example, it may be easy to claim that when a program is
manipulating data structures representing women’s vote that the process as a whole is
"thinking about suffrage"”, but what is the process thinking about when the interpreter is

expanding a macro definition?). Finally, if the scarch for rcflection is taken up too
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enthusiastically, one is in danger of interpreting everything as evidence of reflective
thinking, since what may not be reflective explicitly can usually be treated as implicitly
reflective (cspecially given a litile imagination on the part of the theorist). However we
lack general guidelines on how to distinguish explicit from implicit aspects of computational
structures.

Nor is our grasp of the representational question any clearer; a serious difficulty,
especially since the representational endeavour has received much more attention than has
reflection. Evidence of this lack can be seen in the fact that, in spite of an approximate
consensus regarding the general form of the task, and substantial effort on its behalf, no
representation scheme yet proposed has won substantial acceptance in the field. Again, this
is due at least in part to the simple absence of adequate theoretical foundations in terms of
which to formulate either enterprise or solution. We do not have theories of either
representation or computation in terms of which to define the terms of art currently
employed in their pursuit (representation, implementation, interpretation, control structure,
data structure, inheritance, and so forth), and are consequently without any well-specified
account of what it would be to succeed, let alone of what to investigate, or of how to
proceed. Numerous related theories have been developed (model theories for logic,
theories of semantics for programming languages, and so forth), but they don’t address the
issues of knowledge represcntation directly, and it is surprisingly difficult to weave their

various insights into a single coherent whole.

The representational consensus alluded to above, in other words, is widespread but
vague; disagrcements emerge on every conceivable technical point, as was demonstrated in
a recent survey of the field.® To begin with, the central notion of “representation” remains
notoriously unspecified: in spite of the intuitions mentioned above, there is remarkably
little agreement on whether a representation must "re-present” in any constrained way (like
an image or copy), or whether the word is synonymous with such general terms as "sign"
or "symbol". A further confusion is shown by an inconsistency in usage as to what
representation is a relationship between. The sub-discipline is known as the representation
of knowledge, but in the survey just mentioned by far the majority of the respondents (to
the surprise of this author) claimed to usc the word, albeit in a wide varicty of ways, as
between formal symbols and the world about which the process is designed to reason. Thus a

KLONE structure might be said to represent Don Quixote tilting at a windmill; it would not
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taken as representing the fact or proposition of this activity. In other words the majority
opinion is not that we are representing knowledge at all, but rather, as we put it above, that

knowing is representational °

In addition, we have only a dim understanding of the relationship that holds
between the purported representational structures and the ingredient process that interprets
them. This relates to the crucial distinction between that interpreting process and the
whole process of which it is an ingredient (whereas it is 7 who thinks of sunsets, it is at best
a constituent of my mind that inspects a mental representation). Furthermore, there are
terminological confusions: the word “semantics” is applied to a variety of concerns, ranging
from how natural language is translated into the representational structures, to what those
structures represent, to how they impinge on the rational policies of the "mind” of which
they are a part, to what functions are computed by the interpreting process, etc. The term
“interpretation” (to take another example) has two relatively well-specified but quite
independent meanings, one of computatidnal origin, the other more philosophical; how the
two relate remains so far unexplicated, although, as was just mentioned, they are strikingly
distinct.

Unfortunately, such general terminological problems are just the tip of an iceberg.
When we consider our specific representational proposals, we are faced with a plethora of
apparently incomparable technical words and phrases. Node, frame, unit, concept, schema,
script, pattern, class, and plan, for example, are all popular terms with similar connotations
and ill-defined meaning.!! The theoretical situation (this may not be so harmful in terms
of more practical goals) is further hindered by the tendency for representational research to
be reported in a rather demonstrative fashion: researchers typically exhibit particular formal
systems that {often quite impressively) embody their insights, but that are defined using
formal terms peculiar to the system at hand. We arc left on our own to induce the relevant
generalities and to locate them in our evolving conception of the rcpresentation enterprise
as a whole. Furthermore, such practice makes comparison and discussion of technical
details always problematic and often impossible, defeating attcmpts to build on previous

work.

This lack of grounding and focus has not passed unnoticed: in various quarters one

hcars the suggestion that, unless scvercly constrained, the entirc representation enterprise
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may be ill-conceived — that we should turn instead to considerations of particular
epistemological issues (such as how we reason about, say, liquids or actions), and should
use as our technical base the traditional formal systems (logic, LIsp, and so forth) that
representation schemes were originally designed to replace.12 In defense of this view two
kinds of argument are often advanced. The first is that questions about the central
cognitive faculty are at the very least premature, and more seriously may for principled
reasons never succomb to the kind of rigourous scientific analysis that characterizes recent
studies of the peripheral aspects of mind: vision, audition, grammar, manipulation, and so
forth.!® The other argument is that logic as developed by the logicians is in itself
sufficient; that all we need is a set of ideas about what axioms and inference protocols are
best to adopt.!* But such doubts cannot be said to have deterred the whole of the
community: the survey just mentioned lists more than thirty new represcntation systems
under active development.

The strength of this persistence is worth noting, especially in conncction with the
theoretical difficulties just sketched. There can be no doubt that there are scores of
difficult problems: we have just barely touched on some of the most striking. But it would
be a mistake to conclude in discouragement that the enferprise is doomed, or to retreat to
the meta-theoretic stability of adjacent fields (like proof theory, model theory, programming
language semantics, and so forth). The moral is at once more difficult and yet more
hopeful. What is demanded is that we stay true to these undeniably powerful ideas, and
attempt to develop adequate theoretical structures on this home ground. It is true that any
satisfactory theory of computational reflection must ultimatcly rest, more or less explicitly,
on theories of computation, of intensionality, of objectification, of semantics and reference,
of implicitness, of formality, of computation interpretation, of representation, and so forth.
On the other hand as a community we have a great deal of practice that often embodies
intuitions that we are unable to formulate coherently. The wealth of programs and systcms
we have built often betray — sometimes in surprising ways — patterns and insights that
cluded our conscious thoughts in the course of their development. What is mandated is a

rational reconstruction of those intuitions and of that practice.
In the case of designing reflective systems, such a reconstruction is curiously urgent.

In fact this long introductory story ends with an odd twist — one that "ups the ante” in the
scarch for a carefully formulated theory, and suggests that practical progress will be
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impeded until we take up the theoretical task. In general, it is of course possible (some
would even advocate this approach) to build an instance of a class of artefact before
formulating a theory of it. The era of sail boats, it has often been pointed out, was already
drawing to a close just as the theory of airfoils and lift was being formulated — the theory
that, at least at the present time, best expiains how those sailboats worked. However there
are a number of reasons why such an approach may be ruled out in the present case. For
one thing, in constructing a reflective calculus one must support arbitrary levels of meta-
knowledge and self-modelling, and it is self-evident that confusion and complexity will
multiply unckecked when one adds such faciliti . _ an only partially understood formalism.
It is simply likely to be unmanageably complicated to attempt to build a self-referential
system unaided by the clarifying structure of a prior theory. The complexities surrounding
the use of APPLY in LISP (and the caution with which it has consequently come to be
treated) bear witness to this fact. However there is a more serious problera. If one
subscribes to the knowledge representation hypothesis, it becomes an integral part of
developing self-descriptive systems to provide, encoded within the representational medium,
an account of (roughly) the syntax, semantics, and reasoning behaviour of that formalism.
In other words, if we are to build a proccss that "knows" about itsclf, and if we subscribe to
the view that knowing is representational, then we are committed to providing that sytem
with a representation of the self-knowledge that we aim to endow it with. That is, we must
have an adequate theories of computational representation and reflection explicitly
Jormulated, since an encoding of that theory is mandated to play a causal role as an actual

ingredient in the reflective device.

Knowledge of any sort — and self-knowledge is no exception — is always theory
relative. The representation hypothesis implies that our theories of reasoning and reflection
must be explicit. 'We have argued that this is a substantial, if widely accepted, hypothesis.
One reason to find it plausible comes from viewing the entire enterprise as an attempt to
communicate our thought patterns and cognitive styles — including our reflective abilities
— to these emergent machines. It may at some point be possible for understanding to be
tacitly communicated between humans and system they have constructed. In the
meantime, however, while we humans might make do with a rich but unarticulated
understanding of computation, representation, and reflection, we must not forget that

computers do not share with us our tacit understanding of what they are.
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Chapter 1. Introduction

The successful development of a general reflective calculus based on the knowledge
representation hypothesis will depend on the prior solution of three problems:
1. The provision of a computationally tractable and epistemologically adequate
deccriptive language,
2. The formulation of a unified theory of computation and representation, and
3. The demonstration of how a computational system can reason effectively and

consequentially about its own inference processes.
The first of these issues is the collective goal of present knowledge representation research;
though much studied, it has met with only partial success. The problems involved are
enormous, covering such diverse issues as adequate theories of intensionality, methods of
indexing and grouping representational structures, and support for variations in assertional
force. In spite of its centrality, however, it will not be pursued here, in part because it is so
ill-constrained. The second, though it is occasionally acknowledged to be important, is a
much less well publicised issue, having received (so far as this author knows) almost no
direct attention. As a consequence, every representation system proposed to date
exemplifies what we may call a dual-calculus approach: a procedural calculus (usually LISP)
is conjoined with a declarative formalism (an encoding of predicate logic, frames, etc.).
Even such purportedly unified systems as proLoG! can be shown to manifest this structure.
We will in passing suggest that this dual-calculus style is unnccessary and indicative of
scrious shortcomings in our conception of the representational endeavour. However this
issue too will be largely ignored. The focus instead will be on the third problem: the
question of making the inferential or interpretive aspects of a computational process
themselves accessible as a valid domain of reasoning. We will sliow how to construct a
computational system whose active interpretation is controlled by structures themselves
available for inspection, modification, and manipulation, in ways that allow a process to
shift smoothly between dealing with a given subject domain, and dealing with its own
reasoning processes over that domain. In computational terms, the question is one of how
to construct a program able to reason about and affect its own interpretation — of how to

define a calculus with a reflectively accessible control structure.
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1.a. General Overview

The term "reflection” does not name a previously we!l-defined question to which we
propose a particular solution (although the reflection principles of logic are not unrelated);
before what can present a theory of what reflection comes to, therefore, we will have to
give an account of what reflection is. In the next section, by way of introduction, we will
identify six distinguishing characteristics of all reflective behaviour. Then, since we will be
primarily concerned with computational reflection, we will sketch the model of computation
on which our analysis will be based, and will set our general approach to reflection into a
computational context. In addition, once we have developed a working vocabulary of
computational concepts, we will be able to define what we mean by procedural reflection —
an even smaller and more circumscribed notion than computational reflection in general.
All of these preliminaries are necessary in order to give us an attainable set of goals.

Thus prepared, we will set forth on the analysis itself. As a technical device, we will
in the course of the dissertation develop three successive dialects of LISP, to serve as
illustrations, and to provide a technical ground in which to work out our theories in detail.
We should say at the outset, however, that this focus on Lisp should not mislead the reader
into thinking that the basic reflective architecture we will adopt — or the principles
endorsed in its desigh — are in any important sense LISP specific. LISP was chosen
because it is simple, powerful, and uniquely suited for reflection in two ways: it already
embodies protocols whereby programs are represented in first-class accessible structures,
and it is a convenient formalism in which to express its own meta-theory, given that we will
use a variant of the »-calculus as our mathematical meta-language (this convenience holds
especially in a statically scoped dialect of the sort we will ultimately adopt). Nevertheless,
as we will discuss in the concluding chapter, it would be possible to construct a reflective
dialect of FOR'fRAN, SMALLTALK, or any other procedural calculus, by pursuing essentially the

same approach as we have followed herc for Lise.

The first ISP dialect (called 1-L1sP) will be an example intended to summarise
current practice, primarily for comparison and pedagogical purposes. The second (2-L1sP)
differs rather substantially from 1-L1SP, in that it is modified with refercnce to a theory of
declarative denotational semantics (i.c., a theory of the denotational significance of s-

expressions) formulated independent of the bchaviour of the interpreter. The interpreter is
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then subsequently defined with respect to this theory of attributed semantics, so that the
result of processing of an expression — i.e., the the value of the function computed by the
basic interpretation process — is a normal-form codesignator of the input expression. We
will call 2-L1sP a semantically rationalised dialeci, and will argue that it makes explicit
much of the understanding of LISP that tacitly organises most programmers’ understanding
of LIsp but that has never been made an arrticulated part of .1sp theories. Finally, a
procedurally reflective LISP called 3-L1sP will be developed, semantically and structurally
based on 2-L1sp, but modified so that reflective procedures are supported, as a vehicle with
which to engender the sorts of procedural reflection we will by then have set as our goal.
3-Lise differs from 2-LIsp in a variety of ways, of which the most important is the
provision, at any point in the course of the computation, for a program to reflect and
thereby obtain fully articulated "descriptions”, formulated with respect to a primitively
endorsed and encoded theory, of the state of the interpretation process that was in effect at
the moment of reflection. In our particular case, this will mean that a 3-LISP program will
be able to access, inspect, and modify standard 3-11sp normal-form designators of both the
environment and continuation structures that were in effect a moment before.

More specifically, 1-L1sp, like LISP 1.6 and all Lisp dialects in current use, is at
heart a first-order language, employing meta-syntactic facilities and dynamic variable
scoping protocols to partially mimic higher-order functionality. Bccause of its meta-
syntactic powers (paradigmatically exemplified by the primitive QuoTE), 1-LISP contains a
variety of inchoate reflective features, all of which we will examine in some detail: support
for meta-circular interpreters, explicit names for the primitive processor functions (evaL and
APPLY), the ability to mention program fragments, protocols for expanding macros, and so
on and so forth. Though we will ultimately criticisc much of 1-L1sP’s structure (and its
underlying theory), we will document its properties in part to serve as a contrast for the
subsequent dialects, and in part because, being familiar, 1-LISP can scrve as a base in

which to ground our analysis.

After introducing 1-L1SP, but beforc attempting to construct a reflective dialect, we
will subject 1-LISP to a rather thorough semantical scrutiny. This project, and the
reconstruction that results, will occupy well over half of the dissertation. The reason is that
our analysis will require a reconstruction not only of Lisp but of computational scmantics

in general. We will argue that it is crucial, in order to develop a comprehensible reflective
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calculus, to have a semantical analysis of that calculus that makes explicit the tacit
attributicn of significance that we will claim characterises every computational system. This
attribution of semantical import to computational expressions is prior to an account of what
happens to those expressions: thus we will argue for an analysis of computational
formalisms in which declarative import and procedural consequence arc independently
formulated. We claim, in other words, that programming languages are better understood
in terms of ¢wo scmantical treatments (one declarative, one procedural), rather than in terms
of a single one, as exemplified by current approaches (although interactions between them
may require that these two semantical accounts be formulated in conjunction).

This semantical reconstruction is at heart a comparison and combination of the
standard semantics of programming languages on the one hand, and the semantics of
natural human languages and of descriptive and declarative languages such as predicate
fogic, the A-calculus, and mathenatics, on the other. Neither will survive intact: the
approach we will ultimately adopt is not strictly compositional in the standard sense
(although it is recursively specifiable), nor are the declarative and procedural facets entirely
separate (in particular, the procedural ccnsequence of a given expression may affect the
subsequent context of use that determines what another expression designates). Nor are its
consequences minor: we will we able to show, for example, that the traditional notion of
evaluation is both confusing and confused, and must be separated into independent notions
of reference and simplification. We will be able to show, in particular, that 1-LISP’s
evaluator de-references some expressions (such meta-syntactic terms as (QUOTE X), for
example), and doces not de-ref=rence others (such as the numerals and 1 and niL). We will
arguc instead for what we will call a semantically rationalised dialect, in which simplification

and reference primitives are kept strictly distinct.

It is our view that semantical cleanliness is by far the most important pre-rcquisite to
any conceivable trcatment of reflection. However, as well as advocating semantically
rationalised computational calculi, we will also cspouse an acsthetic we call category
aligrznrén?, by which we mean that there should be a strict category-category correspondence
across the four major axes in terms of which a computation calculus is analysed: notation,
abstract structure, declarative semantics, and procedural conscquence (a mandate satisfied
by no extant dialects). In particniar, we will insist in the dialects we design that each

notational class be parsed into a distinct structural class, that each structural class be treated
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in a uniform way by the primitive processor, that each structural class serve as the normal-
form designator of each scmantical class, and so forth. This is an aesthetic with
consequence: we will be able to show that the 1-LISP programmer must in certain
situations resort to meta-syntactic machinery merely because 1-L1sp fails to satisfy this mild
requirement (in particular, 1-L1sP lists, which are themselves a derivative class formed from
some pairs and one atom, serve semantically to encode both function applications and
enumerations). Though it does not have the same status as semantical hygiene, categorical
elegance will also prove almost indispensible, especially from a practical point of view, in
the ' drive towards reflection.

Once we have formulated these thcoretical positions, we will be in a position to
design 2-L1sp. Like scHeME and the A-calculus, 2-LISP is a higher-order formalism:
consequently, it is statically scoped, and treats the function position of an application as a
standard extensional position. It is of course formulated in terms of our rationalised
semantics, implying that a declarative semantics is formulated for all expressions prior to,
and independent of, the specification of how they are treated by the primitive processor.
Consequently, and unlike SCHEME, the 2-LISP processor is based on a regimen of
normalisation, taking each expression into a normal-form designator of its referent, where
the notion of normal-form is defined in part with reference to the semantic type of the
symbol’s designation, rather than (as in the case of the A-calculus) in terms of the further
(non-) applicability of a set of syntactic reduction rules. 2-LIsP’s normal-form designators
are environment-independent and side-effect free; thus the concept of a closure can be
reconstructed as a nmormal-form function designator. Since normalisation is a form of
simplification, and is thercfore designation-preserving, meta-structural expressions (terms that
designate other terms in the language) are not de-referenced upon normalisation, as they
are when evaluated. We will say that the 2-LISP processor is semantically flat, since it stays
at a semantically fixed level (although explicit referencing and de-referencing primitives are

also provided, to facilitate explicit shifts in level of designation).

3-L1sp is straightforwardly defined as an extension of 2-L1sp, with respect to an
explicitly articulated procedural theory of 3-Lisp en . dded in 3-Lisp structures. This
embedded theory, called the reflective model, though superficially resembling a meta-circular
interpreter (as a glance at the code, listed in s6-207, shows), is causally connected to the

workings of the underlying calculus in critical and primitive ways. The reflective modcl is
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similar in structure to the procedural fragment of thc meta-theoretic characterisation of 2-
Lisp that we encoded in the A-calculus: it is this incorporation into a system of a theory of
its own operations that makes 3-LIsP, like any possible reflective system, inherently theory
relative. For example, whereas environments and continuations will up until this point have
bren theoretical posits, mentioned only in the meta-language, as a way of explaining LISP’s
behiaviour, in 3-1.I1S® such entities move from the semantical domain of the meta-language
into the semantical domain of the object language, and environment and continuation
designators crerge as part of the primitive behaviour of 3-LISP protocols.

More specifically, arbitrary 3-L1sP reflective procedures can bind as arguments
(designators of) the continuation and environment structure of the interpreter that would
have been in effect at the moment the reflective procedure was called, had the machine
been running all along in virtue of the explicit interpretation of the prior program,
mediated by the reflective model. Furthermore, by constructing or modifying these
designators, and resuming the process below, such a reflective procedure may arbitrarily
control the processing of programs at the level beneath it. Because reflection may recurse
arbitrarily, 3-LISP is most simply defined as an infinite tower of 3-LISP prbcesscs. each
engendering the process immediately below, in virtue of running a copy of the reflective
model. Under such an account, the use of reflective procedures amounts to running simple
procedures at arbitrary levels in this reflective hierarchy. Both a straightforward
implementation and a conceptual analysis are provided to demonstrate that such a machine

is nevertheless finite.

The 3-L1sp reflective levels are not unlike the levels in a typed logic or set theory,
although of course cach reflective level contains an omega-order untyped computational
calculus essentially isomorphic to (the extensional portion of) 2-L1sp. Reflective levels, in
other words, are at once stronger and more encompassing than are the order levels of
traditional systems. The locus of agency in each 3-LiIsP level, on the other hand, that
distinguishes one computaional level from the next, is a notion without precedent in logical
or mathematical traditions.

The architecture of 3-Lisp allows us to unify three concepts of traditional
programming languages that are typically independent (three concepts we will have

explored separately in 1-LISP): a) the ability to support meta-circular interpreters, b) the
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provision of explicit names for the primitive interpretive procedures (EvAL and APPLY in
standard Lisp dialects), and c) the inclusion of procedurcs that access the state of the
implementation (usually provided, as part of a programming environment, for debugging
purposes). We will show how all such behaviours can be defined within a pure version of
3-L1sP (i.e., independent of implementation), since all aspects of the state of the 3-Lisp
interpretation process are available, with sufficient reflection, as objectified entities within
the 3-L1sp structural field.

The dissertation concludes by drawing back from the details of L1sp development,
and showing how the techniques employed in one particular case could be used in the
construction of other reflective languages — reflective dialects of current formalisms, or
other new systems built from the ground up. We will show, in particular, how our
approach to reflection -may be integrated with notions of data abstraction and message
passing — two (related) concepts commanding considerable current attention, that might
seem on the surface incompatible with the notion of a system-wide declarative semantics.
Fortunately, we will be able to show that this early impression is false — that procedurally
reflective and semantically rationalised variants on these types of languages could be readily

constructed as well.

Besides the basic results on rcflection, there are a variety of other lessons to be taken
from our investigation, of which the integration of declarative import and procedural
consequence in a unified and rationalised semantics is undoubtedly the most important.
The rejection of evaluation, in favour of separate simplification and de-referencing
protocols, is the major, but not the only, consequence of this revised semantical approach.
The matter of category alignment, and the constant question of the proper use of meta-
structural machinery, while of course not formal results, are nonetheless important
permeating themes. Finally, the unification of a variety of practices that until now have be
treated independently: macros, meta-circular interpreters, EVAL and APPLY, quotation,
implementation-dependent dcbugging routines, and so forth, should convince the reader of
onec of our most important claims: procedural reflection is not a radically new idea;
tentative steps in this direction have been taken in many areas of current practice. The
present contribution — fully in the traditional spirit of rational reconstruction — is merely

one of making explicit what we all already knew.
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We conclude this brief introduction with three footnotes. First, given the flavour of
the discussion so far, the reader may be tempted to conclude that the primary emphasis of
this report is on procedural, rather than on representational, concerns (an impression that
will only be reinforced by a quick glance through later chapters). This impression is in part
illusory; as we will explain at a number of points, these topics are pursued in a procedural
context because it is simpler than attempting to do so in a poorly understood
representational or descriptive system. All of the substantive issues, however, have their
immediate counterparts in the declarative aspects of reflection, especially when such
declérativc structures are integrated into a computational framework. Our investigation will
always be carried on with the parallel declarative issues kept firmly in mind; the attribution
of a declarative semantics to LISP s-cxpressions will also reveal our representational bias.
As was mentioned in the preface, the decision to first explore reflection in a procedural
context should be taken as methodological, rather than as substantive. Furthermore, it is
towards a wunified system that we are aiming; one of the morals under our present
reconstruction is that the boundaries between these two types of calculus should ultimately
be dismantled.

Secondly, as this last comment suggests, and as the unified treatment of semantics
betrays, we consider it important to unify the theoretical vocabularies of the declarative
tradition (logic, philosophy, and to a certain extent mathematics) with the procedural
tradition (primarily computer science). The semantical approach we will adopt here is but a
first step in that direction: as was mentioned in the first paragraph, a fully unified
treatment remains an unattained goal. Nonetheless, considerable effort has been expended
in the dissertation to present a single semantical and conceptual position that draws on the

insights and techniques of both of these disciplines.

Third and finally, as the very first paragraph of this chapter suggests, the dissertation
is offered as the first stcp in a general investigation into the construction of generally
reflective computational calculi, to be based on more fully intcgrated theories of
representation and computation. In spite of its reflective powers, and in spite of its
declarative semantics, 3-LISP cannot properiy be called fully reflective, since 3-LISP
structures do not form a descriptive language (nor would any other procedurally reflective
programming language that might be developed in the future, based on techniques set forth
here, have any claim to the more general term). This is not because the 3-L1SP structures
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lack expressive power (although 3-LIsP has no quantificational operators, implying that
even if it were viewed as a descriptive language it would remain algebraic), but rather
because all 3-L1sp expressions are devoid of assertional force. There is, in brief, no way to
say anything in such a formalism: we can set x to 3; we can test whether x is 3; but we
cannot say fhat x is 3. Nevertheless, we contend that the insights won on the behalf of 3-
Lisp will ultimately prove useful in the development of more radical, generally reflective
systems. In sum, we hope to convince the reader that, although it will be of some interest
on its own, 3-LISP is only a corollary of the major theses adopted in its development.
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1.b. The Concept of Reflection

In the present section we will look more carefully at what we mean by the term
“reflection”, in general and in the computational case; we will also specify what we would
consider an acceptable theory of such a phenomenon. The structure of the solution we will
eventually adopt will be presented only in section l.e, after discussing in section lc the
attendent model of computation on which it is based, and in section 1.d our conception of
computational semantics. Before presenting any of that preparatory material, however, we
do well to know where we are headed.

1.b.i. The Reflection and Representation Hypotheses

In the prologue we sketched with broad strokes some of the roles that reflection
plays in general mental life. In order to focus the discussion, we will consider in more
detail what we mean by the more restricted phrase "cohpulational reflection”. On one
reading this term might refer io a successful computational model of general reflective
thinking. For example, if you were able to formulate what human reflection comes to
(presumably more precisely than we have been able to do), and were then able to construct
a computational model embodying or exhibiting such behaviour, you would have some
reason to claim that you had demonstrated computational reflection, in the sense of a

computational process that exhibited authentic reflective activity.

Though we will work with this larger goal in mind, our use of the term will be more
modest. In particular, we take no position on whether computational processcs are able to
"think" or "reason" atf all; certainly it would seem that most of what we take computational
systems to do is attributed, in a way that is radically different from the situation regarding
our interpretations of the actions of other people. In particular, humans arc first-class
bearers of what we might call semantic originality: they themselves are able to mean,
without some observer having to attribute meaning to them. Computational processes, on
the other hand, are at least not yet semantically original; to the extent they can be said to
mean or refer at all, they do so derivatively, in virtuc of some human finding that a

convenient description (wc duck the question as to whether it is a convenient truth or a

convenient fiction).2 For example, if, as you read this, you rationally and intentionally say
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"I am now reading section 1.b.i", you succeed in referring to this section, without the aid of
attendant observers. You do so because we define the words that way: reference and
meaning and so on are paradigmatically and definitionally what people do. In other words
your actions are the definitional locus of reference; the rest is hypothesis and falsifiable
theory. On the other hand, if I inquire of my home computer as to the address of a
friend’s farm, and it tells me that it is on the west coast of Scotland, the computer has not
referred to Scotland in any full-bloodcd sense: it hasn’t a clue as to what or where Scotland
is. Rather, it has typed out an address that it probably stored in an ASCII code, and 7
supbly the reference relationship between that spelled word and the country in the British
Isles.

The reflection hypothesis spelled out in the prologue, about how computational
models of reflection might be constructed, embedied this cautionary stance: we said there
that in as much as a computational process can be constructed to reason at all, it could be
made to reason reflectively in a certain fashion. Thus our topic of computational reflection
will be restricted to those computational processes that, for similar purposes, we find it
convenient lo describe as reasoning reflectively. In sum, we avoid completely the question of
whether the "reflectiveness” embodied in our computational models is authentically borne,
or derivately ascribed.

This is one major reduction in scope; we immediately adopt another. Again, in the
prologue, we spoke of reflection as if it encompassed contemplative consideration both of
one’s world and of one’s self. We will discuss the relationship betwcen reflection and self-
reference in more detail below, but we should admit at the outset that the focus of our
investigation will be almost entirely on the “"selfish” part of reflection: on what it is to
construct computational systems able to dcal with their own ingredient structures and
operations as explicit subject matters. The reasons for this constraint on our investigation
are worth spelling out. It might scem as if this restriction arises for simple reasons, such as
that this is an easier and better-constrained subject matter (since after all we are in no
position to postulate models of thinking about cxternal worlds). However in fact this
restriction in scope arises for deeper reasons, again having to do with the reflection
hypothesis. First, we will consider internal or interior processes able to reflect on interior
structurcs, which is the only world that those internal processes conceivably can have any
access to. For example, we will construct a particular kind of LISP processor (interpreter),
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and L1ISP processors have no access to anything except fields of LISP s-expressions. On the
other hand LIsp processors are crucially interior processes (in a sense that will be made
clear in the next section): they do not interact with the world directly, but rather, in virtue
of running programs, engender more complex processes that interact with the world.

This “interior” sense of language processors interacts crucially with the reflection
hypothesis, especially in conjunction with the representation hypothesis. Not only can we
restrict to our attention to ingredient processes "reasoning about” (computing over,
whatever) internal computational structures, we can restrict our attention to processes that
shift their (extensional) attention to meta-structural terms. For consider: if it turns out that
I am a computational system, consisting of an ingredient proccss P manipulating formal
representations of my knowledge of the world, then when I think, say, about Virginia Falls
in northern Canada, my ingredient processor P is manipulating representations that are
about Virginia Falls. Suppose, then, that I back off a step and comment to myself that
whenever I should be writing another sentence I have a tendency iastead to think about
Virginia Falls. What do we suppose that my processor p is doing now? Presumably
("presumably”, at least, according to the knowledge representation hypothesis, which, it is
important to reiterate, we are under no compulsion to believe) my processor P is now
manipulating representations of my representations of Virginia Falls. In other words,
because we are focussed on the behaviour of interior processes, not on compositionally
constituted processes, our exclusive focus on self-referential aspects of those processes is all
we can do (given our two governing hypotheses) fo uncover the structure of constituted,

genuine reflective thought.

We can put this same point another way. The reflection hypothesis docs not state
that, in the circumstance just described, p will reflecr on the knowledge structures
representing Virginia Falls (in some weird and wondrous way) — this would be an
unhappy proposal, since it would not offer any hope of an explanation of rcflection.
Reflective behaviour — the subject matter to be explained — should presumably not occur
as a phcnomenon in the explanation. Rather, the reflection hypothesis is at once much
stronger and more tractable (although perhaps for that very rcason less plausible): it posits,
as an cxplanation of the mechanism of reflection, that the interior process compute over a
different kind of symbol. The most important feature of the reflection hypothesis, in other
words, is its tacit assumption that the computation engendering reflective reasoning,
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although it may be over a different kind of structure, is nonetheless similar in kind to the
sorts of computation that regul.rly proceed over normal structures.

In sum, it is our methodological allegience to the knowledge representation
hypothesis that underwrites our self-referential stance. 'Though we will not mention this
meta-theoretic position further, it is crucial that it be understood, for it is only because of it
that we have any right to call our inquiry a study of reflection, rather than a (presumably
less interesting) study of computational self-reference.

Lb.ii. Reflection in Computational Formalisms

With these preliminaries set straight, we may turn, then, to the question of what it
would be to make a computational process reflective in this sense.

At its heart, the problem derives from the fact that in traditional computational
formalisms the behaviour and state of the interpretation process are not accessible to the
reasoning procedures: the interpreter forms part of the tacit background in terms of which
the reasoning processes work. Thus, in the majority of programming languages, and in all
representation languages, only the un-interpreted data structures are within the reach of a
program. A few languages, such as LISP and swosoL, extend this basic provision by
allowing program structures to be examined, constructed, and manipulated as first class
entities. What has never been provided is a high level language in which the process that
interprets those programs is also visible and subject to modification and scrutiny. Therefore
such matters as whether the interpreter is using a depth-first control strategy, or whether
free variables are dynamically scoped, or how long the current problem has been under
investigation, or what caused the interpreter to start up the current procedure, remain by
and large outside the realm of reference of the standard representational structures. One
way in which this limitation is partially overcome in some programming languages is to
allow procedures access to the structures of the implementation (examples: MDL, INTERLISP,
etc.3), although such a solution is inclegant in the cxtreme, defeats portability and
coherence, lacks generality, and in general exhibits a variety of mis-features we will examine
in due course. In more rcpresentational or declarative contexts no such mechanism has
been demonstrated, although a need for some sort of reflcctive power has appeared in a
varicty of contexts (such as for over-riding defaults, gracefully handling contradictions, etc.).
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A striking example comes up in problem-solving: the issue is one of enabling simple
declarative statements to be made about how the deduction operation should procced. For
example, it is sometimes suggested that a default should be implemented by a deductive
regime that accepts infercnces of the following non-monotonic variety:

i) 4 (S1-1)
P

Though it isn't difficult to build a problem solver that embodies some such behaviour (at
least on some computable reading of "not provable™), one typically doesn’t want such a
rule' to be obeyed indiscriminately, independent of context or domain. There are, in other
words, usually constraints on when such inferences are appropriate, having to do with, say,
how crucially the problem nceds a reliable answer, or with whether other less heuristic
approaches have been tried first. What we are after is a way to write down specific
instances of something like s1-1 that refer explicitly both to the subject domain and to the
state of the deductive apparatus, and that, in virtue of being wrilten down, lcad that
inference mechanism to behave in the way described.

Particular examples are easy to imagine. Consider, for instance, a computational
process designed to repair electronic circuits. One can imagine that it would be useful to
have inference rules of the following sort: “unless you have been told that the power supply
is broken, you should assume that it works", or, "you should make checking capacitors your
first priority, since they are more likely to break down than are resistors”. Furthermore, we
would like ensure that such rules could be modularly and flexibly added and removed from
the system, without each time requiring surgery on the inner constitution of the inference
engine. Though we are skirting closc to the edge of an infinite regress, it is clear that
something like this kind of protocol is a natural part of normal human conversation. From
an intuitive point of view it doesn’t seem unreasonablc to say, “By the way, if you ever want
to assume P, it would be sufficient to establish that you cannot prove ils negation.”, the

question is whether we can make formal sense out of this intuition.

It is clear that the problem is not so much one of what to say, but of how to say it
(say, to some kind of theorem-prover) in a way that docsn’t lead to an infinite regress, and
that genuinely affects its behaviour. All sorts of technical questions arise. It is not obvious,
for example, what language to use, or even to whom such a statement should be directed.

Suppose, for example, that we were given a monotonic natural-deduction based thcorem
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prover for first order logic. Could we give it S1-1 as an implication? Certainly not; s1-1,
at least in the form given above, is not even a well-formed sentence. There are various
ways we could encode it as a sentence — one way would be to use set theory, and to talk
explicitly about the set of sentences derivable from other sentences, and then to say that if
the sentence "—P" is not in a certain set, then "p" is. However, although such a sentence
might contribute to a model of the kind of inference procedure we desire, it wouldn’t make
the current inference mechanism behave non-monotonically. To do this would not be to
construct a non-monotonic reasoning system, but rather to build a monotonic one prepared
to rcason about a non-monotonic one. While such a formulation might be of interest in
the specification of the constraints a reasoning system must honour (a kind of “competence
theory" for non-monotonic reasoning?), it doesn’t help us, at least on the face of it, with
the question of how a system using defaults might actually be deployed. Another option
would be to build a non-monotonic inference engine from scratch, using expressions like
S1-1 to constrain its behaviour, like the abstract specifications of a program. But this would
solve the problem by avoiding it — the whole question was how to use such comments on
the reasoning procedure coherently within the structures of the problem-specific application.

Yet another possibility — and one we will focus on for a moment — would be to
design a more complex inference mechanism to react appropriately not only to sentences in
the standard object language, but to meta-theoretic expressions of the form si-1. Although
no system claiming to be of just this sort has been demonstrated, such a program is readily
imagineable, and various dialects of PROLOG — perhaps most clearly the 1c-PrOLOG of
Imperial College® — are best viewed in this light. The problem with such solutions,
however, is their excessive rigidity and inelegance, coupled with the fact that they don’t
really solve the problem in any case. What a PROLOG user is given is not a unified or
reflective system, but a pair of two largely independent formal systems: a basic dcclarative
language in which facts about the world are expressed, and a procedural language, in which
the behaviour of the inference process is controlled. Although the elements of the two
languages are mixed in a PROLOG program, they are best understood as separate aspects.
One sct (the clause and implication and predicate structure, the identity of the variables,
and so forth) constitutes the declarative language, with the standard semantics of first-order
logic. Another (thc sequential ordering of thc sentences and of the predicates in the

premise, the "consumer” and “"producer” annotations on the variables, the “cut” operator,
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and so forth) constitute the procedural language. Of course the flow of control is affected
by the declarative aspects, but this is just like saying that the flow of control of an ALGoL
program is affected by the data structures. Thus the claim that to use PROLOG is to
“program in logic" is rather misleading: instead one essentially writes programs in a new
(and, as it happens, rather limited) control language, using an encoding of first-order logic
as the declarative representation language. Of course this is a dual system with a striking
fact about its orocedural component: all conclusions that can be reached are guaranteed to
be valid implications of prior structures in the representational field. However, as was
mentioned above, this kind of dual-calculus approach seems ultimately rather baroque, and
is certainly not conducive to the kind of reflective abilities we are after. It would surely be
far more elegant to be able to say, in the same language as the target u{orld is described,
whatever it was salient to say about how the inference process was to proceed. For
example, to continue with the PROLOG example, one would like to say both
FATHER(BENJAMIN,CHARLES) and CUT(CLAUSE-13) OT DATA-CONSUMER(VARIABLE-4), in the same
language and subject to the same semantical treatment. The increase in elegance,
expressive power, and clarity of semantics that would result are too obvious to belabour:
just a moment’s thought leads to one realise that one a single semantical analysis would be
necessary (rather than two); the reflective capabilities could recurse without limit (in PROLOG
and other dual-calculus sytcms there is only one level); a meta-theoretic description of the
system would have to describe only one formal language, not two; descriptions of the
inference mechanism. would be immediately available, rather than having to be extracted

from procedural code; and so forth.

The ability to pass coherently between two situations: in the reflective case to have
the structures that normally control the interpretation process be fully and explicitly visible
to (and manipulable by) the reasoning process, and in the other to allow the reasoning
process to sink into them, so that they may take their natural effect as part of the tacit
background in which the reasoning process works — this ability is a particular form of

reflection we will call procedural reflection (" procedural” because we are not yet requiring

that those structures at the same time describe the reasoning behaviours they engender: that
is a larger task). Though ultimately limited, in the sensc that a procedurally reflective
calculus is by no means a fully reflective one, cven this more modest notioa is on its own a

considerable subject of inquiry.
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L.b.iii. Six General Properties of Reflection

Given the foregoing skeich of what our task is, it is appropriate to ask, before
plunging into details, whether we have any sense in advance of what form our solution
might taxe. Six properties of reflective systems can be identified straight away — features
that we will expect our ultimate solutions to exhibit, however they end up being structured
or explained. ' .

First, the nqti‘On is one of self-reference, of a causally-connecied kind, stronger than
the notions explored by mathematicians and philosophers over much of the last century.
What we need is a theory of the causal powers required in order that a system’s possession
of self-descriptive and self-modelling abilities will actually matter to it — a requirement of
substance since full-blooded, actual behaviour is our ultimate subject matter, not simply the
mathematical characterisation of formal relationships. In dealing with computational
processes, we are dealing with artefacts behaviourally defined, unlike systems of logic which
are functionally defined abstractions that in no way behave or participate with us in the
temporal dimension. Although any abstract machine of Turing power can provably model
any other — including itself — there can be no sense in which such self-modelling is even
noticed by the underlying machine (even if we could posit an animus ex machina to do the
noticing). If, on the other hand, we aim to build a computational system of substantial
reflective powers, we will have to build something that ir, affected by its ability tb "think
about itself”. This holds no matter how accurate the self-descriptive model may be; you
simply cannot afford simply to reason about yourself as disinterestedly and

inconsequentially as if you were someone else.

Similar requirements of causal connection hold of human reflection. Suppose, for
example, that after taking a spill into a river I analyse my canoeing skills and develop an
account of how I would do better to lean downstream when exiting an eddy. Coming to
this realisation is useful just in so far as it enables me to improve; if I merely smile in
vacant pleasure at an image of an improved me, but then repeat my ignominious
performance — if in other words, my reflective contemplations have no effect on my
subsequent behaviour — then my reflection will have been worthless. The move has to be
made, in other words, from description to reality. In addition, just as the result of
reflecting has to affect future non-reflective behaviour, so does prior non-reflective
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behaviour have to be accessible to reflective contemplation; one must also be able to move
from reality to'-description. It would have been equally futile if, when I paused initially to
reflect on the cause of my dunking, I had been unable to remember what I had been doing
just before I capsized.

In sum, the relationship between reflective and non-reflective behaviour must be of a
form such that both information and effect can pass back and forth between them. These
requirements will impinge on the technical details of reflective calculi: we will have to
strive to provide sufficient connection between reflective and non-reflective behaviour so
that the right causal powers can be transferred across the boundary, without falling into the
opposite difficulty of making thein so interconnected that confusion results. (An example is
the issue of providing continuation structures to encode control flow: we will provide
separate continuation structures for each reflective level, to avoid unwanted interactions, but
we will also have to provide a way in which a designator of the lower level continuation
can be bound in the environment of the higher one, so that a reflective program can
straightforwardly refer to the continuation of the process below it) Furthermore, the
interactions can become rather complex. Suppose, to take another example, that you decide
at some point in your life that whenever some type of situation arises (say, when you start
techaving inappropriately in some fashion), that you will pause to calm yourself down, and
io review what has happened in the past when you have let your basic tendencies proceed
unchecked. The dispassionate fellow that you must now become is one that ~mbodies a
decision at some future point to reflect. Somehow, without acting in a self-conscious way
from now until such a circumstance arises, you have to make it true that when the situation
does arise, you will have left yourself in a state that will cause the appropriate reflection to
happen. Similarly, in our technical formalisms, we will have to provide the atility to drop
down from a reflected state to a non-reflected one, having left the base level systcm in such
a state that when certain situations occur the system will automatically reflect, and thereby

obtain access to the reasons that were marshalled in support of the original decision.

Second, reflection has something — although just what remains to be scen — to do
with self-knowledge, as well as with self-reference, and knowledge, as has often been
remarked, is inherentls theory-rzlative. Just as one cannot interpret the worid except by
using the concepts and categories of a theory, onec cannot reflect on one’s self except with
reference to a theory of oneself. Furthermore, as is the case in any theoretical eadeaveur,



1. Introduction . Procedural Reflection 44

the phenomena under consideration under-determine the theory that accounts for them,
even when all the data are to be accounted for. In the more common case, when only
parts of the phenomenal field are to be treated by the theory, an even wider set of
alternative theories emerge as possibilities. In other words, when you reflect on your own

behaviour, you must inevitably do so in a somewhat arbitrary theory-relative way.

One of the mandates we will set for any reflective calculus is that it be provided,
represented in its own internal language, with a complete (in some appropriate sense)
theory of how it is formed and of how it works. Theoretical entities may be posited by this
account that facilitate an explanation of behaviour, even though thosc entities cannot be
claimed to have a theory-independent ontological existence in the behaviour being
explained. For example, 3-Lisp will be provided with a “"theory”, in 3-LIsp, of 3-LISP
(reminiscent of the meta-circular interpreters demonstrated in McCarthy’s original report®
and in the reports of Sussman and Steels,’ but causally connected in novel ways). In
providing this primitively supported reflective model, we will adopt a standard account, in
which many common notions of LisP (such as the notion of an environment just
mentioned, and a paiallel notion of a continuation) play a central role, even though they
are not first-ciass objects of the language in any direct sense. It is impossible in a non-
refleczive L1IsP to define a predicate truc only of environments, since environments as such
don’t exist in non-reflective Lisp’s. However, once we endow our particular dialect with
reflective powers, the notion of an environment will be crucial, and environments will be

nassed around as first-class objects.

There are other possible Lisp theorics, some of which differ radically from the one
we have chosen. It is possible, for cxample, to replace the notion of environment
altogether (note that the A-calculus is explained without any such device). But the point is
that in building a reflective model based on this alternative theory, other objects would
probably be posited instead: in order to reflect you have to use some theory and its
associated theoretical entities.

The third general point about reflection regards its name: we dcliberately use the
term "reflective”, as opposed to "reflexive”, since therc are various senses (other recent
research reports not withstanding®) in which no computational process, in any sense that

this author can understand, can succeed narcissistically in thinking about the fact that it is
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at that very instant thinking about itself thinking about itself thinking ... — and so on and so
on, like a transparent eye in a room full of mirrors. The kind of reflecting we will consider
— the kind that we will be able technically to define, implement, and control — requires
that in the act of reflecting the process "take a step back", in order to allow the interpreted
process to consider what it was just up to: to bring into view formal symbols which
describe its state "just a moment earlier”. From the fact of having a name for itself it does
not automatically acquire the ability to focus on its current instantaneous self, for in the
process of "stepping back” or reflecting, the "mind’s eye" moves out of its own view, being
repléced by an (albeit possibly complete) account of itself. (Though this description is
surely more suggestive than incisive, much of the technical work to be presented will allow
us to make it precise.)

The fourth comment is that, in virtue of reflecting, a process can always obtain a
finer-grained control over its behaviour than would otherwise be possible. What was
previously an inexorable stepping from one state to the next is opened up so that each
move can be analysed, countered, and so forth. In other words we will see in great detail
how reflective powers in fact provide for a more subtle and more catholic — if less efficient
— way of reacting to a world. The requirement here is as usual for what was previously
implicit to be made explicit, albeit in a controlled and useful way, without violating the
ultimate truth that not everything can be made explicit in a finite mechanism. This ability
enables a system designer to satisfy what might be taken as incompatible demands: the
provision of a small and elegant kernel calculus, with crisp definition and strict behaviour,
and at the same time provide (through reflection) the user with the ability to modify or
adjust the behaviour of this kernel in peculiar or extenuating circumstances. Thus

simplicity and flexibility can be achieved togecther.

This leads us to the fifth general comment, which is that the ability to reflect never
provides a complete scparation, or an utterly objective vantage point from which to view
either oneself or the world. No matter now reflective any given person may be, it is a
truism that there is ultimately no escapc from being the person in question. Though we
will generally downplay any conncction between our formal work and human abilities, we
cah perhaps allow that the kind of reflection we are modelling is closer to what is known as
detachment or awareness than to a strict kind of sclf-objectivity (this is why we are

systematically and intentionally imprecise about whether reflection is focused on the self or
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on the world). The environment example just mentioned provides an illustration of this in
a computational setting. As we will see in detail, the environment in which are bound the
symbols that a program is using is, at any level, merely part of the embedding background
in which the program is running. The program operates within that background,
dependent on it but — in the ncrmal (non-reflective) course of events — unable to access it
explicitly. The operation of reflecting makes explicit what was just implicit: it renders
visible what was tacit. In doing so, however, a new background fills in to support the
reflection. Again, the same is true of human refliction: you and I can interrupt our
conversation in order to sort out the definition of a contentious term, but — as has often
been remarked — we do so using other terms. Since language is our inherent medium, we
cannot step out of it to view it from a completely independent vantage point. Similarly,
while the systems we build will at any point be able to back up and mention what was
previously used, in doing so more structures will come into implicit use. This lesson, of
course, has been a major one in philosophy at least since Peirce; certainly Quine’s lesson of
Neurath’s boat holds as true for the systems we design as it does for us designers.?

Sixth and finally, the ability to reflect is something that must be built into the heart
or kernel of a calculus. There are theoretically demonstrable reasons why it is not
something which can be "prozrammed up" as an addition to a calculus (although one of
course can implement a reflective machine in a non-reflective one: the difference between
these two must always be kept in mind). The reason for this claim is that, as discussed in
the first comment, being reflective is a stronger requirement on a calculus than simply being
able to model the calculus in the calculus, something any machine of Turing power is
capable of doing (this is the "making it matter" that was alluded to above). This will be
demonstrated in detail; the crucial difference, as suggested above, comes in connecting the
self-model to the basic interpretation functions in a causal way, so that (for example and
very roughly) when a process "decides to assume something”, it in fact assumes it, rather
than simply constructing a model or self-description or hypothesis that says that it is in fact
assuming it. As well as "backing up"” in order to reflect on its thoughts, in other words, the
process needs to be able to "drop back down again”, to consider the world directly, in
accord with the consequences of those reflections. Both parts of this involve a causal
connection between the explicit programs and the basic workings of the abstract machine,

and such conncctions cannot be "programmed into" a calculus that does not support them



1. Introduction ) Procedural Reflection 47

primitively.
Lb.iv. Reflection and Self-Reference

At the beginning of this section we said that our investigation of reflection in general
would primarily concern itself, because of the knowledge representation hypothesis, with
the self-referential aspects of reflective behaviour. There has been in the last century ne
lack of investigation into self-referential expressions in formal systems, especially since it
has been exactly in these areas where the major results on paradox, incompleteness,
undecidability, and so forth, have arisen. We should therefore compare our enterprise with
these theoretical precursors.

Two facets of the computational situation show how very different our concerns will
be from these more traditional studies. First, although we do not formalise this, there is no
doubt in our work that we consider the locus of referring to be an entire process, not a
particular expression or structure. Evefn though we will'posit declarative semantics for
individual expressions, we will also make evident the fact that the designation of any given
expression is a function not only of the expression itself, but also of the statc of the
processor at the point of use of that expression. And of course it is the processor that uses
the symbol; the symbol does not use itself. To the extent that we want our system to be
self-referential, then, we want the process as a whole to be able to refer, to first
approximation, fo its whole self, although in fact this usually reduces to a question of it

refering to some of its own ingredient structure.

We do not typically want specific structures themselves to be sclf-designating, exactly
to avoid many of the intractable (if not inscrutable) problems that arise in such cases. It
will be perfectly possible to construct apparently self-designating expressions (at Icast up to
type-equivalence: token self-reference is more difficult). But by and large the system of
levels we will adopt will exclude such local self-reference, practically if not formally, from
our consideration. Truly sclf-referential expressions, such as This sentence is six words long,
are unarguably odd, and certain instances of them, such as the clichéd This sentence is false,
are undeniably problematic (strictly, of course, the scntence "This sentence is six words
long” contains a self-reference, but is not itself self-rcferential; however we could use
instead the composite term "This five word noun phrase”). None of these truths impinge

particularly on our quitc different concerns.
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The second major comment is this: in traditional formal systems, the actual reference
relationship between any given expression and its referent (be that referent itself or a distal
object) is mediated by the externally attributed semantical interpretation function. The
sentence "This sentence is six words long" doesn’t actually refer, in any causal full-blooded
sense, to anything; rather, we English speakers fake it to refer to itself. The causal
reference relationship between that sentence as sign, and that sentcnce as significant, flows
through us.

As we said in the previous section about causal connection, in constructing reflective
computational systems it is crucial that we not defer causal mediation through an external
obscrver. Reflection in a computational system has fo be causally connected, even if the
semantical understanding cf that causal connection is externally attributed. For example, in
3-L1sp there is a primitive relationship that holds between a certain kind of symbol, called
a handle (a canonical form of meta-descriptive rigid designator) and another symbol that,
informally, each handle designates. Suppose that H, is some handle, and that s, is some
structure that H, refers to; strictly speaking the relationship between H, and s, is an internal
relationship, that we, as external semantical attributors, take to be a reference relationship.
Until we can construct computational systems that are what we called semantically original,
the semantical import of that relationship remains external. But the cawsal relationship
between W, and S, must be internal: otherwise there would be no way for the internal
computational processes to trcat that relationship in any way that mattered.

We can put this a little more formally, which may make it clearer. Suppose that & is
the externally attributed semantical interpretation function, and that = is the primitive
function that relates handles to the structures we call their referents. Thus we have, to use
the prior example, [®(H,) = S,], as well as [Z(H,) = S;]. More generally, we know that:

VH,S [[HANDLE(H)] A [E(H) = S]] o [@(H) = s} (51-2)

However this equation, though in some sense strictly true, in no way reveals the structure of
the relationship between @ and Z; it merely states their extensional equivalence. More
revealing of the fact that we take the relationship between handles and referents to be a

reference relationship, if we arc allowed to reify relationships, is the following:

B(Z) = @ (S1-3)
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or, rather, since not all symbols are handles, as:
HE)C @ (s1-4)

The requiremeht that reflection matter, to summarise, is a crucial facet of
computational reflection — one without precedent in pre-computational fermal systems.
What is striking is that the mattering cannot be derived from the semantics, since it would
appear that mattering — real causal connections — are a precursor to semantical originality,
not something that can follow the semantical relationships. Put another way, in the
inchoately semantical computational systems we are presently able to build, the reference
relationships between internal meta-level symbols and their internal referents (these are the
semantical relationships that are crucial in reflective considerations) may have to be causal
in two distinct ways: once mediated by us who attribute semantics to those symbols in the
first place, and once internally so that the appropriate causal behaviour, to which we
attribute semantics, can be engendered. On that day when we succeed in constructing
semantically original mechanisms, those two presently independent causal cennections may
merge; until then we will have to content ourselves with causally original but semantically
derivative systems. The reflective dialects we will examine will all be of this form.
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1.c. A Process Reduction Model of Computation

We need to sketch the model of computation on which our analysis will depend.
We take processes as our fundamental subject matter; though we will not define the
concept precisely, we may assume that a process consists approximately of a connected or
coherent set of events through time. The reification of processes as objects in their own
right — composite and causally engendered — is a distinctive, although not distinguishing,
mark of computer science. Processes are inherently temporal, but not otherwise physical:
they do not have spatial extent, although they must have temporal extent. Whether there
are more abstract dimensions in which in is appropriate to locate a process is a question we
will side-step; since this entire characterisation is by way of background for another
discussion, we will rely- more on example, and on the uses to which we put these objects,
than on explicit formulation.

We will often depict processes as rough-edged circfes or balls, as in the following
diagram. The icon is intended to signify what we will call the boundary or surface of the
process, which is the interface between the process and the world in which it exists (we
presume that in virtue of objectifying processes we carve them out of a world in which they
can then be said to be embedded). Thus the set of events that collectively form a coherent

process in a given world will all be events on the surface of this abstract object. In any
given circumstance this set of events could presumably be more or less specifically
described: we might simply say that the process had certain gross input/output behaviour
("input" and "output" would have to be defined as surface perturbations of a certain class:
this is an interesting but non-trivial problem), or we might account in fine detail for every
nuance of the process’s behaviour, including the exact temporal relationships between one

event and the next, and so forth.
(S1-6)

PROCESS P

It is crucial to distinguish more and less fine-grained accounts of the surface of a
process, on the one hand, from compositional accounts of its interior, on the other. That a

process has an interior is again a striking assumption throughout computer science: the role
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of interpreters (what we will call processors) is a striking example. Suppose for instance
that you interact with a so-called L1sp-based editor. It is standard to assume that the Lisp
interpreter is an ingredient process within the process with which you interact: it in fact is

the locus of anima or agency inside your editor process that supplies the temporal action in
the editor. On the other hand that process never appears as the surface of the editor: no
editor interaction is directly an interaction with the LiSP processor. Rather, the Lisp
processor, in conjunction with some appropriate LISP program, together engender the
behz}vioural surface with which you interact.

There are a variety of architectures — or classes of architecture — that computer
science has studied; we will briefly mention just two, but will focus throughout the
dissertation on just one of these. Every computational process (we will examine in a
moment which processes we are disposed to call computational) has within it at least one
other process: this supplies the animate agency of the overall constituted process. It is for
this reason that we call this model a "process reduction” model of computation, since at
each stage of computational reduction a given process is reduced in terms of constituent

symbols and other processes. There may be more than one internal process (in what are
known as parallel or conconcurrent processes), or there may be just a single one (known as
serial processes). Reductions of processes which do not posit an interior process as the
source of the agency we will consider outside the proper realm of computer science,
although of course some such reduction must at some point be accounted for if the
engendered process is ever to be realised. However this kind of reduction from process to,
say, behaviour of physical mechanism, is more the role of physics or electronics than
computer science per se. What is critical is that at some stage in a scries of computational
reductions this leap from the domain or processes to the domain of mechanisms be taken,
as for example in the explaining how the behaviour of a set of logic circuits constitutes a
processor (interpreter) for the micro-code of a given computer. Given this one account of
what we may call the realisation of a computational process, then an entire hierarchy of
processes above it may obtain indirect realisation. If, for example, that micro-code
processor interprets a set of instructions that are the program for a macro-machine, then a
macro-processor may thereby exist. Similarly, that macro-machine may interpret a machine
language program that implements SNoBoL: thus by two stages of composition (the inverse of

reduction) a sSNOBOL processor is also realised.
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In order to make this talk of processors and so forth a little clearer, we show in the
following diagrams two quite different forms of computational reduction: what we will call
a communicative reduction and an interpretive reduction. The arrow is intended to mean
"reduces to"; thus in si-6 we imply that process p reduces to a set of five interior
processes. What it is for processes to communicate we will not say: the assumption is
merely that these five ingredient processes interact in some fashion, so that taken as a
composite unity their total behaviour is (i.e., can be interpreted as) the behaviour of the
constituted process. Responsibility for the surface of the total process p is presumably
shared in some way amongst the five ingredients. Examples of this sort of reduction may
be found at any level of the computational spectrum, from metaphors of disk-controllers
communicating with bus mediators communicating with central processors, to the message-
passing metaphors in such AI languages as ACT1 and SMALLTALK, and so forth.10

B -

Communicative reductions will receive only passing mention in this dissertation; we
discuss them here only in order to admit that the model of reflection that we will propose

is not (at at Icast at present) sufficiently general to encompass them. We will focus instead

(S1-8)

on the far more common model that we call an interpretive reduction, pictured in the
following diagram. In such cases the overall process is composed of what we will call a
processor and a structural field. The first ingredient is the locus of active agency: it is what
is typically called an “interpreter”, although we avoid that term because of its confusion

with notions of interpretation from the declarative tradition (we will have much more to say
about this confusion in chapter 3). The second is the program or data structures (or both):
it is often called a set of symbols, although that term is so semantically loaded that we will

avoid it for the time being.
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(51-7)

ocessor

Structural Field

All of the standard interpreted languages are examples of this second kind of reduction, of
which LISP is as good an instance as any. The structural field of L1sP consists of what are
known as s-expressions: a combination of pairs (binary graph elements c¢f a certain form),
atoms, numerals, and so forth. '

We intend the interpretive model to underwrite both language design and the
construction of particular programs. For example, we can characterise FORTRAN in these
terms: we will posit a FORTRAN processor that computes over (examines, manipulates,
constructs, reacts to, and so forth) elements of the FORTRAN structural field, which includes
primarily an ordered sequence of FORTRAN instructions, FORMAT statements, etc. Suppose that
you set out to build a FORTRAN program to manage your financial affairs: what you would
do is specify a set of FORTRAN data structures and a process to interact with them. We
might call those data structures — the tables that list current balance, recent deposits,
interest rate, and so on — the structural field of process CHEQUERS that you are building.
The program that you want to interact with this data base we will simply call p. Thus the
first reduction of cHeQuers would be pictured in our model as follows:

W T

CHEQUERS
Structural Field

(51-8)

We have said, however, that P is specified by a FORTRAN program (P is not itself a program,
because P is a process, and programs are static, requiring interpretation by a proccssor in
order to engender behaviour). Thus P can itself be understood in terms of a reduction in
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terms of the program ¢ ("c" for "code"), which when processed by the FORTRAN processor
yields process p. Thus we have a double reduction of the following sort:

(s1-9)
FORTRAN PROCESSOR

'

There are a host of questions that would have to be answered before we could make
this precise (before, for example, we could construct an adequate mathematical treatment of
these intuitions). For example, the data structures in the foregoing example are themselves
have to be impicmented in FORTRAN as well. However to fill out the model just a little, we

* CHEQUERS

can suggest how we might, in these terms, define a variety of commonplace terms of art of
computer science.

First, by the computer science term interpreter (again, we use instead “processor")
we refer to a process that is the interior process in an interpretive reduction of another
interior process. For example, the process P in the check-book example was not an
interpreter, because it was the ingredient process only singly: the process thereby
constituted, which we called CHEQUERS, was not ifself an interior process. Hence p fails to
be an interpreter. The reason that we call the process that interprets LISP programs an
interpreter is because LISP programs are structural field arrangements that engender other
interior processes that work over data struétures so as to yield yet other processes.

Second, by a compilation we refer to the transformation or translation of a structural
field arrangement S, to another structural field arrangement S,, so that the surface of the
process that would be yielded by the processing of s, by some processor Py is equivalent
(modulo some appropriate equivalence metric) to the processing of s, by some processor p,.
For example, we spoke above about a FORTRAN processor, but of course such a processor is
rarely if ever realised; rather, FORTRAN programs are typically compiled into some machine
language. Suppose we consider the compiler that compiles FORTRAN into the machine
language of the 18M 360. Then the compilation of some FORTRAN program C; into an I8M
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360 machine language porgram C,,, would be correct just in case the surface of the process
that would result from the processing of ¢; by the (hypothetical) FORTRAN processor would
be equivalent to the process that will actually result by the processing of Cyqo by the basic
18M 360 machine language processor. Thus compilation is relative to two reductions, and is
mandated only to ensure surface-surface equivalence.

Third, by implementation we typically refer to two kinds of construction. To
implement a process simply means to construct a structural field arrangement s for some
processor P so that the surface of the process that results from the interpretation of s by p
yields the desired behaviour. More interesting is to implement a language (by a
computational language we mean an architecture of a structural field and a behaviourally
specified processor that interprets arrangements of such a field). In its most general form,
one implements a language by providing a process p that can be reduced to the structural
field and interior processor of the language being implemented. In other words if I
implement L1sp, all I am required to do is to provide a process that behaviourally appears
to be a constituted process consisting of the LIsp structural field and the interior LISP
processor. Thus I am completely free of any actual commitment as to the reality, if any, of

the implemented field.

Typically, one language is implemented in another by constructing some
arrangement or set of protocols on the data structures of the implementing language to
encode the structural field of the implemented language, and by constructing a program in
the implementing language that, when processed by the implementing language's processor,
will yield a process whose surface can be taken as a processor for the interpreted language,
with respect to that encoding of the implemented language’s structural field. (By a grogram
we refer to a structural ficld arrangement within an interior processor — i.e., to the inner
structural field of a double reduction — since programs are structures that are interpreted
to yield processes that in turn interact with another structural field (the data structures) so

as to engender a whole constituted behaviour.)

Finally, we can imagine how this model could be used in cognitive theorising. A
weak computational model of some mental phenomenon would be a computational process
that was claimed to be superficially equivalent to some mentai behaviour. Note that
surface cquivalence of this sort can be arbitrarily fine-grained; just because a given

computational model predicts the most minute temporal nuances revealed by click-stop
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experiments and so forth does not imply that anything other than surface equivalence has
been achieved. In contrast, a strong computational model would posit not only surface but
interior architectural structure. Thus for example Fodor’s recent claim of mental
modularity!! is a coarse-grained but strong claim: he suggests that the dominant or
overarching computational reduction of the mental is closer to a communicative than to an

interpretive reduction.

This has been the briefest of sketches of a substantial subject. Ultimately, it should
be formalised into a generally applicable and mathematically rigourous account, but in this
dissertation we will merely use its basic structure to organise our particular analyses.
However there are three properties of all structural fields that are important for us to make'
clear, for the present investigation. First, over every structural field there must be defined
a locality metric or mzasure, since the interaction of a processor with a structural field is
always constrained to" be locally continuous. Informally, we can think of the processor
looking at the strué’tural ficld with a pcxicil-beam flashlight, able to see and react only to
what is currently illuminated (morc formally, the behaviour of the processor must always be
a function only of its internal state plus the current single structural field element under
investigation). Why it is that the well-known joke about a COME-FROM statement in FonrhAN
is funny, for example, can be explained only because this local accessibility constraint is
violated (otherwise it would be a perfectly well-defined construct).  Note as well that in
logic, the A-calculus, and so forth, no such locality considerations come into play. In
addition, the measure space yielded by this locality metric necd not be uniform, as LISP
demonstrazes: from the fact that A is accessible from 8 it does not follow that B is accessible
from A.

Second — and this is a major point, with which we will grapple considerably in our
considerations of semantics — structural field elements are taken to be significant — it is
for this rcason that we tend to call them symbols. We count as computational, in particular,
only those processes consisting of ingredient structurcs and events to which we, as external
observers, attribute scmantical import.

The reason that I do not considcr a car to be a computer, although I am tempted to
think of its electronic fuel injection module computationally, arises exactly from this

question of the attribution of significance. The main constituents of a car I understand in
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terms of mechanics — forces and torques and plasticity and geometry and heat and
combustion and so on. These are not interpreted notions: the best explanation of a car does
not posit an externally attributed semantical intepretation function in order to make sense
of the car’s internal interacticns. With respect to any computer, however, — whether it is
an abacus, a calculuator, an electronic fuel injection system, or a full-scaie digital computer
— the best explanation is exactly in terms of the interpretation of the ingredients, even
though the machine itself is not allowed access to that interpreiation (for fear of violating
the doctrine of mechanism). Thus I may know that the ALu in my machine works in such
and.such a way, but I understand its workings in terms of addition, logical operations, and
so forth, all of which are interpretations of how it works. In other words the proper use of
the term "computational” is as a predicate on explanations, not on artefacts.

The third constraint follows directly on the second: in spite of this scmantical
attribution, the interior processes of a compuiational process must interact with these
structures and symbols and other processes in complete ignorance and disregard of any
externally attributed semantical weight. This is the substance of the claim that computation
is formal symbol manipulation — that computation has to do with the interaction with
symbols solely in virtue of their shape or spelling. We within computer science are so used
to this formality condition — this requirement that computation proceed syntactically —
that we are liable to forget that it is a major claim, and are in danger of thinking that the
simpler phrase "symbol manipulation” means formal symbol manipulation. But in spite of
its familiarity, part of our semantical reconstruction will arguc that we have not taken this
attribution seriously enough.

A book should be writtenr on all these matters; we mention them here only because
they will play an important role in our reconstruction of L1sp. There are obvious parallels
and connections to be explored, for e:ample, between this external attribution of
significance to the ingredients of a computational process, and the question of what would
be required for a computational system te be semantically original in the sense discussed at
the beginning of the previous section. This is not the place for such investigations,
although we will make explicit this attribution of significance to LISP structures in our
pfescntation of a full declarative semantics for Lisp, as section 1.d and chapter 3 will make
clcar. The present moral is merely that this attribution is neither somecthing new, nor

something specific to LIsP’s circumstances. The external attribution of significance is a
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foundational part of computer science.
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i.d. The Rationalisation of Computational Semantics

From even the few introductory sections that have been presented so far, it is clear
that semantical vocabulary will permeate our analysis. In discussing the knowledge
representation and reflection hypotheses, we talked of symbols that represented knowledge
about the world, and of structures that designated other structures. In the model of
computation just presented, we said that the attribution of semantic significance to the
ingredients of a process was a distinguishing mark of computer science. Informally, no one
could possibly understand L1sP without knowing that the atom T stands for truth and NIL
for falsity. From the fact that computer science is thought to involve formal symbol
manipuation we admit not only that the subject matter inciudes symbols, but also that the
computations over them occur in explicit ignorance of their semantical weight (you cannot
treat a non-semantical object, such as an eggplant or a waterfall, formally; simply by using
the term formal you admit that you attribute significance to it on the side). Even at the
very highest levels, when say that a process — human or computational — is reasoning
about a given subject, or reasoning about its own thought processes, we implicate semantics,
for the term “semantics” can in viewed, at least in part, as a fancy word for aboutness. It is
necessary, therefore, to set straight our semantical assumptions and techniques, and to make
clear what we mean when we say that we will subject our computational dialects to

semantical scrutiny.

L.d.i. Pre-Theorelic Assumpticns

In engaging in semantical analysis, our goal is nof simply to provide a
mathematically adequate specification of the behaviour of one or more procedural calculi —
one that would enable us, for example, to prove programs correct, given some specification
of what they were designed to do. In particular, by "semantics" we do not simply mean a
mathematical formulation of the properties of a system, formulated from a meta-theoretic
vantage point (unfortunately it seems that the term may be acquiring this rather weak
connotation with some writers). Rather, we take semantics to have fundamentally to do
with meaning and reference and so forth — whatever they come to — emerging from the
paradigmatic human use of language (as we mentioned in section 1.b.i). We are interested
in semantics for two reasons: first, because, as we said at the end of the last section, all
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computational systems are marked by external semantical attribution, and second, because
semantics is the study that will reveal what a computational system is reasoning about, and
a theory of what a computational process is reasoning about is a pre-requisite to a proper
characterisation of reflection.

Given this agenda, we will approach the semantical study of computational systems
with a rather precise set of guidelines. Specifically, we will require that our semantical
analyses answer to the following two requircments, emcrging from the two facts about
processes and structural ficlds laid out at the end of section l.c:

1. They shouid manifest the fact that we understand computational structures in
virtue of attributing to them semantical import;

2. They should make evident that, in spite of such attribution, computational
processes are formal, in that they must be defined over structures independent
of their semantical weight;
Strikingly, from just these two principles we will be able to defend our rcquirement of a
double semantics, since the attributed semantics mentioned in the first premise includes not
only a pre-theoretic understanding of what happens to computational symbols, but also a
pre-compulational intuition as to what those symbols stand for. We will therefore have to
make clear the declarative semantics of the elements of (in our case) the LISP structural

field, as well as establishing their procedural import.

We will explorz these resulis in more detail below, but in its barest outlines, the
form of the argument is quite simple. Most of the results are conscquences of the
following basic tenet (we have relativised the discussion to LIsp, for perspicuity, but the
same would hold for any other calculus):

What LISP structures mean is not a function of how they are treated by the

LISP processor; rather, how they are treated is a function of what they mean.

For example, the expression "(+ 2 3)" in LISP evaluates to 6; the undeniable reason is that
"(+ 2 3)" is understood as a complex name of the number that is the successor of 4. We
arrange things — we defined L1IspP in the way that we did — so that the numeral 6 is the
value because we know what (+ 2 3) stands for. To borrow a phrase from Barwise and
Pérry, our reconstruction is an attempt to regain our semantic innocence — an innocence
that still permeates traditional formal systems (logic, the A-calculus, and so forth), but that
has been lost in the attempt to characterise the so-called "“semantics” of computer
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programming languages.

That "(+ 2 3)" designates the number five is self-evident, as are many other
examples on which we will begin to erect our denotational account. For example, we have
already mentioned the unarguable fact that (at least in certain contexts) T and NIL designate
Truth and Falsity. Similarly, it is commonplace use the term "CAR" as a descriptive function
to designate the first element of a pair, as for example in the English sentence "did you
notice that the CAR of that list is the atom LaMBDA". From such practice we have
incontrovertible evidence that a term such as (CAR X) designates the cAR of the list or pair
designated by x. Finally, it is hard to imagine an argument against our assumption that
(QuoTE X) designates x (in spite of often-heard claims that QuoTE is a function that holds off
the evaluator, rather than that it is a naming primitive). In sum, formulating the declarative
semantics of a computational formalism is not difficult, once one recognises that it is an

important thing to do.

L.d.ii. Semantics in a Computational Setting

In the most general form that we will use the term semantics,'? a semantical
investigation aims to characterisc the relationship between a synfactic domain and a
semantic domain — a relationship that is typically studied as a mathematical function
mapping elements of the first domain into elements of the second. We will call such a
function an interpretation function (to be sharply distinguished from what in computer
science is called an interpreter, which we are calling a processor). Schematically, as shown
in the following diagram, the function & is an interpretation function from s to b:

@ (S1-10)

| Syntactic Domain é—J % Semantic Domain D I

In a computational setting, this simple situation is made more complecx because we are
studying a variety of interacting interpretation functions. In particular, the diagram below
identifies the relationships between the three main semantical functions that permeate our
analysis. © is the interpretation function mapping notations into elements of the structural
field, @ is the interpretation function making explicit our attributed semantics to structural
field elements, and ¥ is the function formally computed by the language processor. @ will
be explained below; it is intended to indicate a ®-semantic characterisation of the
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relationship between s1 and s2, whereas ¥ indicates the formally computed relationship —
a distinction similar, as we will soon argue, to that between the logical relationships of
derivability (—) and eniailment (1=).

(s1-11)

l Notation N1 | | [ Notation N2 l
© (<]
Y

v Y
| Structure S1 j Structure S2 l
o )
‘5! IL Q | Y

| Designation D1 Dasignation D2 l

For mnemonic convenience, we use the name "¥" ‘by analogy with psycnology, since a
study of ¥ is a study of the internal relationships between symbols, ail of which are within
the machine (¥ is meant to signify psychology narrowly construed, in the sense of Fodor,
Putnam, and others!3). The label "¢", on the other hand, chosen to suggest philosophy,
signifies the relationship between a set of symbols and the world.

As an example to illustrate s1-11, suppose we accept the hypothesis that people
represent English sentences in an internal mental language we will call mentalese (suppose,
in other words, that we accept the hypothesis that our minds are computational processes).
If you say to me the phrase "a composer who died in 1750" and I respond with the name
"]. S. Bach", then, in terms of the figure, the first phrase, qua sentence of English, would
be N1; the mentalese representation of it would be s1, and the person who lived in the 17th
and 18th century would be the referent p1. Similarly, my reply would be N2, and the
mentalese fragment that I presumably accessed in order to formulate that reply would be
s.. Finally, 02 would again be the long-dead composer; thus b1 and b2, in this case, would
be the same fellow.

N1, N2, S1, S2, D1, and D2, in other words, need not neccssarily all be distinct: in a
varicty of different circumstances two or more of them may be the same entity. We will
cxamine cases, for example, of sclf-referential designators, where s1 and b1 are the same
object. Similarly, if, on hearing the phrase "the pseudonym of Samuel Clemens", I reply
"Mark Twain", then p1 and N2 are identical. By far the most common situation, however,
will be as in the Bach example, where p1 and 02 are the same cntity — a circumstance

where we say that the function ¥ is designation-preserving. As we will see in the next
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section, the a-reduction and g-reduction of the A-calculus, and the derivability relationship
(~) of logic, are both designation-preserving relationships. Similarly, the 2- and 3-LIsSP
processors will be designation-preserving, whereas 1-LISP’s and SCHEME's evaluation
processors, as we have already indicated, are not.

In the terms of this diagram, the argument we will present in chapter 3 will proceed
roughly as follows. First we will review logical systems and the A-calculus, to show the
general properties of the @s aud ¥s employed in those formalisms, for comparison. Next
we will shift towards computational systems, beginning with PROLOG, since it has evident
connections to both declarative and procedural traditions. Finally we will take up LIsP,
We will argue that it is not only coherent, but in fact natural, to define a declarative ® for
LIsp, as well as a procedural ¥. We will also sketch some of the mathematical
characterisation of these two interpretation functions. It will be clear that though similar in
certain ways, they are nonetheless crucially distinct. In particular, we will be able to show
that 1-L1SP’s ¥ (EVAL) obeys the following cquation. We will say that any system that
satisfies this equation has the evaluation property, and the statement that, for example, the
equation holds of 1-L1sp the evaluation theorem. (The formulation used here is simplified

for perspicuity, ignoring contextual relativisation; $ is the set of structural ficld elements.)

Vs € S [if ®(S) € S then ¥(S) = &(S) (S1-12)

else ®(¥(S)) = &(S)]
1-LISP’s evaluator, in other words, de-references just those terms whose referents lie within
the structural field, and is designation-prescrving otherwise. Where it can, in other words,
1-LISP’s ¥ implements &; where it is not, ¥ is ®-preserving, although what it does do with
its argument in this case has yet to be explained (saying that it preserves & is too easy: the
identity function preserves designation was well, but evaL is not the identity function).

The behaviour described by s1-12 is unfortunate, in part because the question of
whether ®(S) € s is not in general dccidable, and therefore even if one knows of two
expressions S, and S, that s, is ¥(S,), one still does not necessarily know the relationships
between @(S,) and &(S,). More seriously, it makes the explicit use of meta-structural
chilities extraordinarily awkward, thus defeating attempts to cngender reflection. We will
argue instead for a dialect described by the following alternative (again in skeletal form):
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vs € S [[o(S) = ®(¥(S))] A NORMAL-FORM(¥(S)) ] (s1-13)
‘When we prove it for 2-L1sp, we will call this equation the normalisation theorem; any
system satisfying we will say has the mormalisation property. Diagrammatically, the

circumstance it describes is pictured as follows:

(S1-14)
normal form

Such a ¥, in other words, is always ®-preserving. It relies, in addition, on a notion of
normal form, which we will have to define.

In the A-calculus, ¥(S) would definitionally be in normal-form, since the concept of
that name is defined in terms of the non-applicability of any further g-reductions. As we
will argue in more detail in chapter 3, this makes the notion less than ideally uscful; in
designing 2-L1sp and 3-L1sp, therefore, we will in contrast define normal-formedness in
terms of the following three (provably independent) properties:

1. They must be context-independent, in the sense of having the same declarative
and procedural import independent of their context of use;

2. They must be side-effect free, implying that their procedural treatment will
have no affect on the structural field or state of the processor;

3. They must be stable, by which we mean that they must normalise to
themselves in all contexts.

It will then require a proof that all 2-L1sp and 3-L1sP results (all expressions ¥(S)) are in
normal-form. In addition, from the third property, plus this proof that the range of ¥
includes only normal-form expressions, we will be able to show that ¥ is idempotent, as was
suggested earlier (¥ = ¥o¥, or cquivalently, vS ¥(S) = ¥(¥(S))) — a property of 2-LISP
and 3-tisp that will ultimately be shown to have substantial practical benefits.
There is another property of normal-form designators in 2-L1sp and 3-LISP, beyond
the three requirements just listed, that will follow from our category alignment mandate. In
designing those dialects we will insist that the structural category of each normal form
designator be determinable from the fype of object designated, independent of the structural



1. Introduction . Procedural Reflection 65

type of the original designator, and independent as well of any of the machinery involved
in implementing ¥ (this is in distinction to the received notion of normal form employed in
the A-calculus, as will be examined in a moment). For example, we will be able to
demonstrate that any term that designates a number will be taken by ¥ into a numeral,
since numerals will be defined as the normal-form designators of numbers. In other words,
from just the designation of a term x the structural category of ¥(x) will be predictable,
independent of the form of x itself (although the token identity of ¥(x) cannot be predicted
on such information alone, since normal-form designators are not necessarily unique or
canonical). This category result, however, will have to be proved: we call it the semantical

type_theorem. _

That normal form designators cannot be canonical arises, of course, from
computability considerations: one cannot decide in general whether two expressions
designate the same function, and therefore if normal-form function designators were
required to be unique it would follow that expressions that designated funcions could not
necessarily be normalised. Instead of pursuing that sort of unhelpful approach, we will
instcad adopt a non-unique notion of normal-form function designator, still satisfying the
three requirements specified above: such a designator will by definition be called a closure.
All well-defined function-designating expressions, on this scheme, wiil succumb to a
standard normalisation procedure.

Some 2-L1sP (and 3-L1SP) examples will illustrate all of these points. We include
the numbers in our semantical domain, and have a syntactic class of numerals, which are
taken to be normal form number designators. The numerals are canonical {one per
number), and as usual they are side-effect free and context independent; thus they satisfy
the requirements on normal-formedness. The semantical type thcorem says that any term
that designates a number will normalise to a numeral: thus if x designates five and v
designates six, and if + designates the addition function, then we know (can prove) that (+ x
Y), since it designates eleven, will normalise to the numeral 11, Similarly, there are two
boolean constants $7 and $f that are normal-form designators of Truth and Falsity, and a
canonical set of rigid structure designators called handles that arc normal-form designators
of all s-expressions (including themsclves). And so on: closures are normal-form function
designators, as mentioned in the last paragraph; we will also have to specify normal-form

designators for sequences and other types of mathematical objects included in the
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semantical domain.

We have diverted our discussion away from general semantics, onto the particulars
of 2-L1sp and 3-LISP, in order to illustrate how the semantical reconstruction we endorse
would impinge on a language design. However it is important to recognise that the
behaviour mandated by s1-13 is not new: this is how all standard semantical treatments of
the A-calculus proceed, and the designation-preserving aspect of it is approximately true of
the inference procedures for logical systems as well, as we will see in detail in chapter 3.
Neither the A-calculus reduction protocols, in other words, nor any of the typical inference
rules one encounters in mathematical or philosophical logics, de-reference the expressions
over which they are defined. In fact it is hard to imagine defending si1-12. What may have
happened, we can speculate, is that because LIsp includes its syntactic domain within the
semantic domain — because LISP has QUOTE as a primitive operator, in other words — a
semantic inelegance was inadvertantly introduced in the design of the language that has
never been corrected. Thus our rationalisation of LISP is an attempt to regain the
semantical clarity of predicate logic and the A-calculus, in part by connecting the language
of our computational calculi with the language in which those prior linguistic systems have
been studied.

It is this regained coherence that, we claim, is a necessary prerequisite to a coherent

treatment of reflection.

A final comment. The consonance of S1-13 with standard semantical treatments of
the A-calculus, and the comments just made about t1sp’s inclusion of QUOTE, suggest that
one way to view our project is as a semantical analysis of a variant of the A-calculus with
quotation. In the L1sp dialects we consider, we will retain sufficient machinery to handle
side effects, but it is of course always possible to remove such facilities from a calculus.
Similarly, we could remove the numerals and atomic function designators (i.e. the ability to
name composite expressions as unities). What would emerge would be a semantics for a
deviant A-calculus with some operator like QuoTe included as a primitive syntactic construct
— a semantics for a meta-structural extension of the already higher-order X-calculus. We
will not pursue this line of attack in this disscrtation, but, once the mathematical analysis of

2-LIsp is in place, such an analysis should emerge as a straightforward corrollary.
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1.d.iii. Recursive and Compositional Formulations

The previous sections have suggested briefly the work that we would like our
semantics to do; they do not reveal how this is to be accomplished. In chapter 3, where
the reconstruction of semantics is laid cut, we of course pursue this latter question in detail,
but we can summarise some of its results here. Beginning very simply, standard approaches
suffice. For example, we begin with declarative import (®), and initially posit the
designation of each primitive object type (saying for instance that the numerals designate
the numbers, and that the primitively recognised closures designate a certain set of
functions, and so forth), and then specify recursive rules that show how the designation of
each composite expression emerges from the designation of its ingredients. Similarly, in a
rather parallel fashion we can specify the procedural consequence (¥) of each primitive type
(saying in particular that the numerals and booleans are self-evaluating, that atoms evaluate
to their bindings, and so forth), and then once again specify recursive rules showing how
the value or result of a composite expression is formed from the results of processing its
constituents,

If we were considering only purely extensional, side-effect free, functional languages,
the story might end there. However there are a varicty of complications that will demand
resolution, of which two may be mentioned here. First, none of the LISP’s that we will
consider are purely extensional: there are intensional constructs of various sorts (QUoTE, for
example, and even LAMBDA, which we will view as a standard intensional proredure, rather
than as a syntactic mark). The hyper-intensional QuoTe operator is not in itself difficult to
deal with, although we will also consider questions about less-fine grained intensionality of
the sort that (a statically scoped) LAMBDA manifests. As in any system, the ability to deal
with intensional constructs will cause a reformulation of the entire semantics, with
extensional procedures recast in appropriate ways. This is a minor complexity, but no
particular difficulty emerges.

The second difficulty has to do with side-effects and contexts. All standard model-
theoretic techniques of course allow for the gencral fact that the semantical import of a
term may depend in part of on the context in which it is used (variables are the classic
simple cxample). However the question of side-cffects — which are part of the total

procedural consequence of an expression, impinges on the appropriate context for declarative
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purposes as well as well as for procedural. For example, in a context in which x is bound
to the numeral 3 and v is bound to the numeral 4, it is straightforward to say that the term
(+ X Y) designates the number seven, and returns the numeral 7. However consider the
more semantics of the more complex (this is standard LIsP):

(+ 3 (PROG (SETQ Y 14) Y)) (S1-16)

It would be hopeless (to say nothing of false) to have the formulation of declarative import
ignore procedural consequence, and claim that S1-16 designates seven, even though it
patently returns the numeral 17 (although note that we are under no pre-theoretic
obligation to make the declarative and procedural stories cohere — in fact we will reject 1-
LISP exactly because they do nof coherc in any way that we can accept). On the other
hand, to include the procedural effect of the seTQ within the specification of @ would seem
to violate the ground intuition which argued that the designation of this term, and the
structure to which it evaluates, are different.

The approach we will ultimately adopt is one in which we define what we call a
general significance function Z, which embodies both declarative import (designation), local
procedural consequence (what an expressioni evaluates to, to use LISP jargon), and full
procedural conscquence (the complete contextual effects of an expression, inciuding side-
effects to the environment, modifications to the ficld, and so forth). Only the total
significance of our dialects will be strictly compositional, the components of that total
significance, such as the designation, will be recursively specified in terms of the designation
of the consituents, relativised to the total context of use spccified by the encompassing
function. In this way we will be able to formulate precisely the intuition that s1-16
designates seventecn, as well as returning the corresponding numeral 17.

Lest it seem that by handling i.aese complexities we have lost any incisive power in
our approach, we should note that it is not always the casc that the processing of a term
results in the obvious (i.e., normal-form) designator of its referent. For example, we will

prove that the cxpression
(CAR '(A B C)) (S1-16)

both designates and returns the atom A. Just from the contrast between these two examples
(st-15 and S1-16) it is clear that LISP processing and LISP designation do not track each

other in any trivially systematic way.
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Although our approach will prove successful, we will ultimately abandon the strategy
of characterising the full semantics of standard L1sp (as exemplified in our 1-LISp dialect),
since the confusion about the semantic import of evaluation will in the end make it
virtually impossible to say anything coherent about designation. This, after all, is our goal:
to judge 1-LISP, not merely to characterise it. By the time our semantical analysis is
concluded, we will not only know that L1sP is confusing, we will also have seen in detail
why it is confusing, and we will be adequately prepared to design a dialect that corrects its

€rTOoIS.

1.d.iv. The Role of a Declarative Semantics

One brief final point about this double semantics must be brought out. It shculd be
clear that it is impossible to specify a normalising processor without a pre-computational
theory of semantics. If you do not have an account of what structures mean, independent of
how they are treated by the processor, there is no way to say anything substantial about the
semantical import of the function that the processor computes. On the standard approach,
for example, it is impossible to say that the processor is correct, or semantically coherent, or
semantically incoherent, or anything: it is merely what it is. Given some account of what it
does, one can compare this to other accounts: thus it is possible for example to prove that a
specification of it is correct, or that an implementation of it is correct, or that it has certain
other independently definable properties (such as that it always terminates, or uses certain
resources in certain ways). In addition, given such an account, one can prove properties of
programs written in the language — thus, from a mathematical specification of the

_processor of ALGOL, plus the listing of an ALGoL program, it might be possible to prove that
that program met some specifications (such as that it sorted its input, or whatever).
However none of these qucstions are the question we are trying to answer; namely: what is

the semantical character of the processor itself?

In our particular case, we will be able to specify the semantical import of the
function computed by L1sp’s evAL (this is content of the evaluation theorem), but only by
first laying out both declarative and procedural theorics of LISP. Again, we will be able to
désign 2-L1sp only with reference to this pre-computational theory of declarative semantics.
It is a simple point, but it is important to make clear how our semantical reconstruction is a

prerequisite to the design of 2-L1sP and 3-L1sP, not a post-facto method of analysing them.
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1.e. Procedural Reflection

Now that we have assembled a minimal vncabulary with which to talk about
computational processes and matters of semantics, we can sketch the architecture of
reflection that we will present in the final chapter of the dissertation. We will start rather
abstractly, with the general sense of reflection sketched in section 1.b; we will then make
use of both the knowledge representation hypothesis and the reflection hypothesis to define
a much more restricted goal. Next, we will employ our characterisations of interpretively
reduced computational processes and of computational semantics to narrow this goal even
further. As this progressive focussing proceeds, it will become more and more clear what
would be be involved in actually constructing an aathentically reflective computational
language. By the end of this section we will be able to suggest the particular structure that,
in chapter 5, we will embody in 3-LISP.

Lei A First Sketch

We begin very simply. At the outset, we characterised reflection in terms of a
process shifting between a pattern of reasoning about some world, to reasoning reflectively
about its thoughts and actions in that world. We said in the knowledge representation
hypothesis that the only current candidate architecture for a process that reasons at all
(even derivatively) is one constituted in terms of an interior process manipulating
representations of the appropriate knowledge of that world. We can see in terms of the
process reduction model of computation a little more clearly what this means: for the
process we called CHEQUERS to reason about the world of finance, we suggested that it be
interpretively composed of an ingredient process P manipulating a structural field s
consisting of representations of check-books, credit and debit entires, and so forth. Thue

we were led to the following picture:

(S1-17)

CHEQUERS
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Next, we said {in the reflection hypothesis) that the only suggestion we have as to how to
make CHEQUERS reflective was this: as weil as constructing proccss P to deal with these
various financial records, we could also construct process Q to deal with p and the structural
field it manipulates. Thus @ might specify what to do when p failed or encountered an
unexpected situation, based on what parts of p had worked correctly and what state I was
in when the failure occured. Alternatively, @ might describe or generate parts of p that
hadn’t been fuily specified. Finally, @ might effect a more complex interpretation process
for e, or onz particularized to suit specific circumstances. In general, whereas the world of
p — the domain that P models, simulates, rcasons about — is the world of finance, the
world of @ is the world of the process P and the structural field it computes over.

We have spoken as if ¢ were a different process from P, but whether it is really
different from p, or whether it is P in a differeni guise, or p at a different time, is a
question we will defer for a while (in part because we have said nothing about the
individuation criteria on processes). All that matters for the moment is that there be some

process that does what wes have said that ¢ must do.

What do we require in order for Q to reason about p? Because Q, like all the
processes we are considering, is assumed to be interpretively composed, we need what we
always need: structural represcntations of the facts 2bout p. What would such
representations be like? First, they must be expressions (statements), formulated with
respect to some theory, of the state of process p (we begin to see how the theory relotive
mandate on reilecticn from section 1.b is making itself evident). Second, in order to
actually describe p, they must be causally connected to P in some appropriatc way (another
of our general requirements). Thus we are considering a situation such as that depicted in
the foilowing diagram, where the field (or field fragment) Sp contains these causally
connected structural descriptions:

(S1-18)
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This diagram is of course incomplete, in that it does not suggest how sp should relate to p
(an answer to this question is our current quest). Note however that reflection must be
able to recurse, implying as well something of the following variety:

{C} - —

REFLECTIVE
CHEQUERS

(51-19)

Where then might an encodable procedural theory come from? We have two
possible sources: in our reconstruction of a semantical analysis we will have presented a full
theory of the dialects we will study; this is one candidate for an appropriate theory. Note,
however, since we are considering only procedural rcflection, that although in the general
case we would have to encode the full theory of computaticnal significance, in the present

circumstance the simpler procedural component will suffice.

The second source of a theorctical account, which is actually quite similar in
structure, but even closer to the one we will adopt, is what we will call the meta-circular

processor, which we will briefly examine.

Leii. Meta-Circular Processors

In any computational formalism in which programs are accecssible as first class
structural fragments, it is possible to construct what arc commonly known as meta-circular
interpreters: "meta" because they operatc on (and therefore terms within them dcsignate)
other formal structures, and "circular” because they do not constitute a definition of the
processor, for two reasons: they have to be run by that processor in order to yield any sort
of behaviour (since they are programs, not processors, strictly), and the behaviour they
would thecreby engender can be known only if one knows beforchand what the processor
does. Nonctheless, such processors arc often pedagogically illuminating, and they will play
a critical role in our development of the reflective model. In line with our general strategy
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of reserving the word "interpret" for the semantical interpretation function, we will call
such processors meta-circular processors.

In our presentation of 1-LISP and 2-L1sP we will construct meta-circular processors
(or MCP’s, for short); the 2-L1sp version is presented here (all the details of what this
means will be explained in chapter 4; at the moment we mean only to illustrate the general

structure of this code):

(DEFINE NORMALISE (51-20)
(LAMBDA EXPR [EXP ENV CONT] °
(COND [(NORMAL EXP) (CONT EXP)]
[(ATOM EXP) (CONT (BINDING EXP ENV))]
[(RAIL EXP) (NORMALISE-RAIL EXP ENV CONT)]
[(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP) ENV CONT)J)))

(DEFINE REDUCE (s1-21)
(LAMBDA EXPR [PROC ARGS ENV CONT]
(NORMALISE PROC ENV
(LAMBDA EXPP. [PROC!]
(SELECTQ (PROCEDURE-TYPE PROC!)
[IMPR (IF (PRIMITIVE PROC!)
(REDUCE-IMPR PROC! ARGS ENV CONT)
(EXPAND-CLOSURE PROC! ARGS CONT))]
[EXPR (NORMALISE ARGS ENV
(LAMBDA EXPR [ARGS!]
(IF (PRIMITIVE PROC!)
(REDUCE-EXPR PROC! ARGS! ENV CONT)
(EXPAND-CLOSURE PROC! ARGS! CONT))))]
[MACRO (EXPAND-CLOSURE PROC! ARGS
(LAMBDA EXPR [RESULT]
(NORMALISE RESULT ENV CONT)))1)))))

(DEFINE EXPAND-CLOSURE (s1-22)
{LAMBDA EXPR [CLOSURE ARGS CONT]
(NORMALISE (BODY CLOSURE)
(BIND (PATTERN CLOSURE) ARGS (ENV CLOSURE))
CONT)))

The basic idea is that if this code were processed by the primitive 2-L1Sp processor, the
process that would thereby be engendered would be behaviourally equivalent to that. of the
primitive processor itself. If, in other words, we were to assume mathematically that
processes are functions from structure onto behaviour, and if we called the processor
presented as s1-20 through s1-22 above by the name MCP,, and called the primitive 2-LIsP
processor P,,, then we would presumably be able to prove the following result, where by
"~" we mean behaviourally equivalent, in some appropriate sense (this is the sort of proof

of correctness one finds in for example Gordon:!?
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Py (MCP2 ) = Py (S1-23)

It should be recognised that the equivalence of which we speak here is a global
equivalence; by and large the primitive processor, and the processor resulting from the
explicit running of the MCP, cannot be arbitrarily mixed (as a detailed discussion in
chapter 5 will make clear). For example, if a variable is bound by the underlying processor
P,., it will not be able to be looked up by the meta-circular code. Similarly, if the meta-
circular processor encounters a control structure primitive, such as a THROW or a QuIT, it will
not cause the meta-circular processor itself to exit prematurely, or to terminate. The point,
rather, is that if an entire computation is mediated by the explicit processing of the MCP,
then the results will be the same as if that entire computation had been carried out dircctly.

We can merge these results about MCPs with the diagram in s1-17, as follows: if we
replaced P in s1-17 with a process that resulted from p processing the meta-circular
processor, we would still correctly engender the behaviour of CHEQUERS:

I

Y

CHEQUERS ////
S

(S1-24)

Furthermore, this replacement could also recurse:
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(51-26)

CHEQUERS

Admittedly, under the standard interpretation, each such replacement would involve a
dramatic increase in inefficiency, but the important point for the time being is that the

resulting behaviour would in some scnse still be correct.

Le.iv. Procedural Reflective Models

We can now unify the suggestion made at the end of section l.e.ii on having Q
reflect upwards, with the insights embodied in the MCP’s of the previous section, and
thereby define what we will call the procedural reflective model. The fundamental insight
arises from the eminent similarity between diagrams si-18 and si-19, on the onc hand,
compared with s1-24 and S1-26, on the other. These diagrams do not represent exactly the

same situation, of course, but the approach will be to converge on a unification of the two.

We said earlier that in order to satisfy the requircments on the Q of section l.c.ii we
would need to provide a causally connected structural cncoding of a procedural thcory of
our dialect (we will use L1sP) within the accessible structural ficld. In the immediatcly
preceding section we have scen something that is appoximately such an encoding: the meta-
circular processor. However (and here we refer back to the six properties of reflection
given in section 1.b) in the normal course of events the MCP lacks the appropriatc causal
access to the state of p: whercas any possible state of @ could be proccdurally encoded in
terms of the meta-circular process (i.c., given any account of the state of p we could
rétroactivc]y construct appropriate arguments for the various procedures in the meta-circular
processor so that if that meta-circular processor were run with those arguments it would
mimic p in the given state), in the normal course of events the state of p will not be so
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encoded.

This similarity, however, does suggest the form of our solution. Suppose first that p
were never run directly, but were always run in virtue of the explicit mediation of the
meta-circular processor — as, for example, in the series of pictures given in s1-24 and s1-
26. Then at any point in the course of the computation, if that running of one level of the
MCP were interrupted, and the arguments being passed around were used by some other
procedures, they would be given just the information we need: causally connected and
correct representations of the state of the process p prior to the point of reflection (of
course the MCP would have to be modified slightly in order to support such a protocol of
interruption).

The problem with this approach, however, is the following: if we always run p
mediated by the meta-circular processor, it would scem that p would be unnecessarily
inefficient. Also, this proposal would seem to deal with only one level of reflection; what if
the code that was looking at these structural cncodings of p’s state were themselves to
reflect? This query suggests that we have an infinite regress: not only should the MCP be
used to run the base level Q programs, but the MCP should be used to run the MCP. In
fact all of an infinitc number of MCP’s should be run by yet further MCPs, ad infinitum.

Leaving aside for a moment the obvious vicious regress in this suggestion, this is not
a bad approach. The potentially infinite set of reflecting processes Q arc almost
indistinguishable in basic structure frcm the infinite tower of MCP’s that would result.
Furthermore the MCP’s would contain just the correct structurally encoded descriptions of
processor state. We would still need the modification so that somc sort of interruption or
reflective act could make use of this tower of processes, but it is clear that to a first

approximation this solution has the proper character.

Furthermore, it will turn out that we can simply posit, essentially, that the primitive
processor is cngendered by an infinite number of recursive instances of the MCP, each
running a version one level below. The implied infinite regress is after all not problematic,
since only a finite amount of information is encoded in it (all but a finite number of the
bottom levels cach MCP is mercly running a copy of the MCP). Because we (the language
designers) know exactly how the language runs, and know as well what the MCP is like, we

can provide this infinite number of levels, to usc the current jargon, only virtually. As
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chapter 5 will explain in detail, such a virtual simulation is in fact perfectly well-defined. It
is no longer reasonable to call the processor a meta-circular processor, of course, since it
becomes inextricably woven into the fundamental architecture of the language (as will be
explained in detail in chapter 5). It is for this reason that we will call it the reflective
processor, as suggested above. Nonetheless its historical roots in the meta-circular processor
should be clear.

In order to ground this suggestion in a little more detail, we will explain just briefly
the alteration that allows this architecture to be used. More specifically, we will in 3-L1sp
support what we will call reflective procedures — procedures that, when invoked, are run
not at the level at which the invocation occured, but one level higher, being given as
arguments those expressions that would have been passed around in the reflective

processor, had it always been running explicitty. We present the code for the 3-Lisp
reflective processor here, to be contrasted only very approximately with s1-20 through s1-
22 (the important line is underlined for emphasis):

(DEFINE MORMALISE (S1-26)
(LAMBDA SIMPLE [EXP ENV CONT]
(COND [(NORMAL EXP) (CONT EXP)]
[(ATOM EXP) (CONT (BINDING EXP ENV))]
[(RAIL EXP) (NORMALISE-RAIL EXP ENV CONT)]
[(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP) ENV CONT)])))

(DEFINE REDUCE (51-27)
(LAMBDA SIMPLE [PROC ARGS ENV CONT]
(NORMALISE PROC ENV
(LAMBDA SIMPLE [PROC!]
(SELECTQ (PROCEDURE-TYPE PROC!)
[REFLECT ((SIMPLE . ¢(CDR PROC!)) ARGS ENV CONT)]
[SIMPLE (NOKMALISE ARGS ENV (MAKE-C1 PROC! CONT))]1)))))

(DEFINE MAKE-C1 (S1-28)
(LAMBDA SIMPLE [PROC! CONT]
(LAMBDA SIMPLE [ARGS!]
(COND [(= PROC! tREFERENT)

(NORMALISE +(1ST ARGS!) $(2ND ARGS!) CONT)]

[(PRIMITIVE PROC!) (CONT +(+PROC! . $ARGS!))]

[ST (NORMALISE (BODY PROC!)

(BIND (PATTERN PRUC!) ARGS! (ENV PROC!))

CONT)1))))

What is important about the underlined line is this: when a redex (application) is
encountered whose CAR normalises to a rcflective procedure, as opposed to a standard
procedure (the standard ones are called siMpLE in this dialect), the corresponding function
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(designated by the abstruse term (SIMPLE . ¢(CDR PROC!)), but no matter) is run at the level
of the reflective processor, rather than by the processor. In other words ths single
underlined line in S1-27 on its own unleashes the full infinite reflective hierarchy.

Coping with that hierarchy will occupy part of chapter 5, where we explain all of
this in more depth. Just this much of an introduction, however, should convey to the
reader at least a glimpse of how reflection is possible.

Leiv. Two Views of Reflection

The reader will note a certain tension between two ways in which we have
characterised this form of reflection. On the one hand we sometimes speak as if there were
a primitive and noticeable reflective act, which causes the processor to shift levels rather
markedly (this is the explanation that best coheres with some of the pre-theoretic intuitions
about reflective thinking in the sense of contemplation). On the other hand, we have also
just spoken of an infinite number of levels of re’lective processors, each essentially
implementing the one below, so that it is not coherent eithe: to ask at which level  is
running, or to ask how many reflective levels are running: in some sense they are all
running at once, in exactly the same sense that both the Lisp processor inside your editor,
and your editor, are both running when you use that editor. In the editor case it is not, of
course, as if LISP and editor werc both running together, in the sense of side-by-side or
independently, rather, the one, being interior to the other, in fact supplies the anima or
agency of the outer ore. It is just this sense in which the higher levels in our reflective
hicrarchy are always running: each of them is in some sense within the processur at the
level below, so that it can thereby engender it.

We will not take a principled view on which account — a single locus of agency
stepping between levels, or an infinitc hierarchy of simultaneous processors — is correct:
they turn ont, rather curiously, to be behaviourally equivalent. For certain purposes one is

simpler, for others the other.

To illustrate the "shifiing levels” account (which is more complex than the infinite
number of levels story), we present the following account of what is involved in
constructing a reflective dialect, in part by way of review, and in part in order to suggest to
the reader how it is that a reflective dialect could in fact be finitely constructed. In
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particular, you have to provide a complete theory of the given calculus expressed within its
own language (the reflective processor — this is required on both accounts, obviously).
Secondly, you have to arrange it so that, when the process reflects, all of the structures used
by the reflective processor (the formal structures designating the theoretical entities posited
by the theory) are available for inspection and manipulation, and correctly encode the state
that the interpreter was in prior to the reflective jump. Third, you have to make sure that
when the process decides to "drop down again”, the original base-level interpretation
process is resumed in accordance with the facts encoded in those structures. In the minimal
case, upon reflection the processor would merely interpret the reflective processor explicitly,
then at some further point would drop down and resume running non-reflectively. Such a
situation, in fact, is so simple that it could not be distinguished (except perhaps in terms of
elapsed time) from pure non-reflective interpretation.

The situation, however, would get more complex as soon as the uscr is given any
power. Two provisions in particular are crucial. First, the entire purpose of a reflective
dialect is to allow the user to have his or her own programs mn along with, or in place of,
or between the steps of, the reflective processor. We need in other words to provide an
abstract machine with the ability for the programmer to insert code — in convenient ways
and at convenient times — at any level of the reflective hierarchy. For example, suppose
that we wish to have a A-expression closed only in the dynamic environment of its use,
rather than in the lexical environment of its definition. The reflective model will of course
contain code that performs the default lexical closure. The programmer can assume that
the reflective code is being explicitly interpreted, and can provide, for the lambda
expression in question, an alternate piece of code in which different action is taken. By
simply inserting this code into the correct level, (s)he can use variables bound by the
reflective model in order to fit gracefully into the overall regime. Appropriate hooks and
protocols for such insertion, of course, have to be provided, but they have to be provided
only once. Furthermore, the reflective model will contain code showing how this hook is
normally treated.

As well as providing for the arbitrary interpretation of special programs, at the
reflective level, we need in addition to enablc the user to modify the explicitly available
structures that were provided by the reflective model. Though this ability is easier to
design than the former, its correct implementation is considerably trickicr. An cxample will
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make this clear. In the L1sP reflective model we will exhibit, the interpreter will be shown
to deal explicitly with both environment and continuation structures. Upon reflecting,
programs can at will access these structures that, at the base level, are purely implicit.
Suppose that the user’s reflective code actualiy modifies the environment structure (say to
change the binding of a variable in some procedure somewhere up the stack, in the way
that a debugging package might support), and also changes the continuation structure
(designator of the continuation function) so as to cause some function return to bypass its
caller. When this reflective code "returns”, so to speak, and drops back down, the
interpretation process that must then take effect must be the one mandated by these
modified structures, not the one that would have been resumed prior to the reflection.
These modifications, in other words, must be noticed. This is the causal connection aspect

of self-reference that is so crucial to true reflection.

Lev. Some General Comments

The details of this architecture emerged from detailed considerations; it is interesting
to draw back and see to what extent its global properties match our pre-theoretic intuitions
about reflection. First, we can see very simply that it honours all siy. requirements laid out

in section l.b.iii:

1. It is causally connccted and theory-relative;
2, It is theory-relative;

3. It involves an incremental “stepping back" rather than a true (and potentially
vicious) instantaneous self-reference;

4. Finer-grained control is provided over the processing of lower level structures;

5. It is only partially detached (3-Lisp reflective procedures are still in 3-LISP,
they arc still animated by the samc fundamental agency, since if one level
stops processing the reflectivec model (or some analogue of it), all the
processors "below"” it ccase to exist); and

6. The reflective powers of 3-Lisp are primitively provided.

Thus in this sense we can count our architecture a success.

Regarding other intuitions, such as the locus of self, the concern as to whether ihe
potential to reflect requires that one always participate in the world indirectly rather than
directly, and so forth, turn out to be about as difficult to answer for 3-L1sp as they arc to

answer in the case of human reflection. In particular, our solution docs not answer the
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question we posed earlier about the identity of the reflected processor: is it P that reflects,
or is it another process @ that reflects on p? The "reflected process” is neither quite the
same process, nor quite a different process; it is in some ways as different as an interior
process, except that since it shares the same structural field it is not as different as an
implementing process. No answer is forthcoming until we define much more precisely
what the criteria of individuation on processes are, and, perhaps more strikingly, there
seems no particular reason to answer the question one way or another. It is tempting (if
dangerous) to speculate that the reason for these difficulties in the human case is exactly
why. they do not have answers in the case of 3-LIsP: they are not, in some sense, "real”
questions. But it is premature to draw this kind of parallel; our present task is merely to
clarify the structure of proposed solution.
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1.f. The Use of LISP as an Explanatory Vehicle

There are any number of reasons why it is important to work with a specific
programming language, rather than abstractly and in general (for pedagogical accessibility,
as a repository for emergent results, as an example to test proposed technical solutions, and
so forth). Furthermore, commonsense considerations suggest that a familiar dialect, rather
than a totally new formalism, would better suit our purposes. On the other hand, there are
no current languages which are categorically and semantically rationalised in the way that
our theories of reflection demand; therefore it is not an option to endow any extant system
with reflective capabilities, without first subjecting it to substantial modification. It would
be possible simply to present some system embodying all the necessary modifications and
features, but it would be difficult for the reader to sort out which architectural features
were due to what concern. In this dissertation, therefore, we have adopted the strategy of
presenting a reflective czlculus in two steps: first, by modifying an existing language to
conform to our semantical mandates, and second, by extending the resulting rationalised
language with reflective capabilities.

Once we have settled on this overall plan, the question arises as to what language
should be used as a basis for this two-stage development. Since our concern is with
procedural rather than with general reflection, the class of languages that are relevant
includes essentially all programming languages, but excludes exemplars of the declarative
tradition: logic, the A-calculus, specification and representation languages, and so forth (it is
important to recognise that the suggestion of constructing a reflective variant of the A-
calculus represents a category error). Furthermore, we need a programming language — a
procedural calculus — with at least the following properties:

1. The language should be simple; reflection by itself is complicated enough that,

especially for the first time, we should introduce it into a formalism of
minimal internal complexity.

2. It mast be possible to access program structures as first-class elements of the
structural field.

3. Meta-structural primitives (the ability to mention structural field elements, such
as data structures and variables, as well as to use them) must be provided.
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4. The underlying architecture should facilitate the embedding, within the

calculus, of the procedurzl components of its own meta-theory.
The second property could be added to a language: we could devise a variant on ALGoL, for
example, in which ALGOL programs were an extended data type, but LIsp already posscsses
this feature. In addition, since we will use an extended A-calculus as our meta-language, it
is natural to use a procedural calculus that is functionally oriented. Finally, although fuil-
scale modern LISPs are as complex as any other languages, both LISP 1.6 and SCHEME have
the requisite simplicity.

L1sP has other recomendations as well: because of its support of accesssible program
structures, it provides considerable evidence of exactly the sort of inchoate reflective
behaviour that we will want to reconstruct. The explicit use of evAL and AppLY, for
example, will provide considerable fodder for subsequent discussion, both in terms of what
they do well and how they are confused. In chapter 2, for example, we will describe a half
dozen types of situation in which a standard LIsP programmer would be tempted to use
these meta-structural primitives, only two of which in the deepest sense have to do with the
explicit manipulation of expressions; the other four, we will argue, ought to be trcated
directly in the object language. Finally, of course, LISP is the lingua franca of the Al

community; this fact alone makes it an eminent candidate.

Lfi. 1-v18P asa Distillation of Current Practice

The decision to use LISP as a base doesn’t solve all of cur problems, since the name
"L1sp" still refers to rather a wide range of languages. It has seemed simplest to define a
simple kernel, not unlike LISP 1.6, as a basis for further development, in part to have a
fixed and well-defined target to set up and criticise, and in part so that we could collect
into one dialect the features that will be most important for our subsequent analysis. We
will tzke LISP 1.6 as our primary source, although some facilities we will ultimately want to
examine as examples of reflective behaviour — such as carch and THRow and QuIT — will
be added to the repertoirc of behaviours manifested in McCarthy’s originai design.
Similarly, we will include macros as a primitive procedure type, as well as intensional and
extensional procedures of the standard variety (“call-by-value” and "call-by-name”, in
standard computer science parlance, although we will avoid these terms, since we will reject

the notion of "valuc” entirely).
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It will not be entirely simple to present 1-L1SP, given our theoretical biases, since so
much of what we will ultimately reject avout it comes so quickly to the surface in
explaining it. However it is important for us to present this formalism without modifying
it, because of the role it is to play in the structure of our overall argument. We ask of the
dialect not that it be clean or coherent, but rather that it serve as a vehicle in which to
examine a body of practice suitable for subsequent reconstruction. To the extent that we
make empirical claims about our semantic reconstructions, we will point to 1-LISP practice
(our model for all standard LISP practice) as evidence. Therefore, for theoretical reasons, ii
is c}ucial that we leave that practice intact and free of our own biases. Thus, we will
uncritically adopt, in 1-L1sp, the received notions of evaluation, lists, free and globai
variables, and so forth, although we will of course be at considerable pains to document all
of these features rather carefully.

As an example of the style of analysis we will cngage in, we present here a diagram
of the category structure of 1-L1sP that we will formulate iit preparation for the category

alignment mandate dominating 2-LISP:

(S1-29)
Lexical Structural Der. Str. Prucedural Declarative
/ T or NIL T.Values
Numerals Mumerals Numerals Numerals Numbers
Labels Atoms Atoms Atoms
Dotted P. Pairs Pairs (lambda ..) Functions
Lists {(quote ..) Saxprs
"List" Lists Sequences
Appl'ns A

The intent of the diagram is to show that in 1-L1SP (as in any computational calculus) there
are a variety of ways in which structures or s-expressions may be categorised; the point we
are attcmpting to demonstrate is the (unnecessary) complexity of interaction between these

various categorical decompositions.

In particular, we may just briefly consider each of these various 1-LISP
categorisations. The first (notational) is i. terms of the lexical categories that arc accepted
by the reader (including strings that are parsed into notations for numerals, lexical atoms,
and "list" and "dotted-pair” notations for pairs). Another (structural) is in terms of the
primitive types of s-expression (numcrals, atoms, and pairs); this is the categorisation that is

typically revealed by the primitive structure typing predicates (we wiil vall this procedure
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TYPE in 1-LISP, but it is traditionally encoded in an amalgam of AToM and MUMBERP). A
third traditional categorisaticn (derived structural) includes not only the primitive s-
expression types but also the dzrived notior of a list — a category built up from some pairs
(those whose CDRs are, recursively, lists) and the atom NIL. A fourth taxonomy (procedural
consequence) is embodied by the primitive processor: thus 1-LISP’s EVAL sorts structures
into various categoiies, each handled differently. This is the "dispatch” that one typically
finds at the top of the meta-circular definition of evaL and AppLy. There are usually six
discriminated categories: i) the self-evaluating atoms 1 and NIL, ii) the numerals, iii) the
other atoms, used as variables or globa! function designators, depending on context, iv) lists
whose first element is the atom LAMBDA, which are tsed to encode applicable functions, v)
lists whose first element is the atom QuoTE, and vi) other lists, which in evaluable positions
represent function application. Final.y, the fifth taxonomy (declarative imporf) has to do
with declarative scmantics — what categories of structure signify different sorts of
semantical entities. Once again a diffcrent category structure emerges: applications and
variables can signify semantical entities of arbitrary type except that they cannot designate
Sfunctions (since 1-L1sP is first-order); thc atoms 7 and NIL signify Truth and Falsity;
general lists (including the atom NIL) - -a signify enumerations (sequences); the numerals

sig: fy numbers; and so on and so forth.

Any rcfleciive program in 1-L1sp would have to know aboui all of these various
different categorisations, and about the relationships between them (as presumably all
human Lis? programmers do). We necd not dwell on the obvious fact that confusion is a

likely outcome of this categorical disarray.

(ne other example of 1-L1sP behaviour will be illustrative. We mentioned above
*hat 1-LISP requires the explicit use of ApPLY in a varicty of circumstances; these include

the following:

1. When an argument expression designates a function name, rather than a
function (as for example in (APPLY (CAR '(+ - 2)) '(2 3))).

2. When the arguments to a multi-argument procedure are designated by a single
term, ratier than individually (thus if x evaluates to the list (3 4), one must
use (APPLY '+ x) rather than (+ X) or {(+ . X))

3. When the function is designated by a variable rather than by a global constant
(thus onc must use (LET ((FUN ‘'+)) (APPLY FUN '(1 2))) rather than (LET
((FUN '+)) (FUN 1 2))).
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4. When the arguments to a function are "already evaluaied”, since APPLY,
although itself extensional (is an €xpPR), does not re-evaluatc the arguments
even if the procedure being applied is an £xpr (thus one uses (APPLY '+ (LIST
X v)), rather than (EVAL (CONS '+ (LIST X Y))))
As we will see below, in 2-LIsp (and 3-L1IsP) only the first of these will require explicitly
mentioning the processor function by name, because it deals inherently with the designation
of expressions, rather than with the designation of their referents. The other three will be

adcquately treated in the object language

Lfii. The Design of 2-L1sp

Theugh it meets our criterion of simplicity, 1-L1sp wilt provide more than ample
material for further devclopment, as the previous two examples will suggest. Once we have
introduced it, we will, as mentioned carlier, subject it to a semantical analysis that will lead
us into an examination of computational semantics in general, as described in the previous
section. The search for semantical rationalisation, and the exposition of the 2-Lisp that
results, will occupy a substantial part of the dissertation, even though the resulting calculus
will still fail to meet the requirements of a procedurally reflective dialect. We discussed
what scmantic rationalisation comes to in the previous section; here will sketch how its

mandatcs are embodied in thie design of 2-LIsp.

The most striking difference between 1-L1sp and 2-Lisp is that .the latter rejects
evaluation in favour of independent notions of simplification and reference. Thus, 2-L1SP’s
processor is not called evaL, but NORMALISE, where by nonralisation we refer to a particular
form of expression simplification that takes each structure into what we call a normal-form
designator of that expression’s referent (normalisation is thus designation prescrving). The

details will emerge in chapter 4, but a sense of the resulting architecture can be given here.

Simple object lcvel computations in 2-L1sP (those that do not invelve meta-siructural
terms designating other clements of the Lisp field) are treated in a manner that looks very
similar to 1-L1sp. The cxpression (+ 2 3), for example, normalises to 6, and the expression
(= 2 3) to $F (the primitive 2-L1sP boolcan constant designating falsity). On the other
hand an obvious superficial difference is that meta-structural terms are not automatically
de-referenced. Thus the quoted term 'x, which in 1-L15p would evaluate to X, in 2-LISP

normaliscs to itsel Similarly, whereas (CAR *(A . 8)) would evaluate in 1-LISP to A, in 2-
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LISP it would normalise to 'A; (CONS 'A 'B) would evaluate in 1-LISP to (A . B); in 2-LISP
the corresponding expression would return *'(A . B).

From these trivial examples, an ill-advised way to think of the 2-L1SP processor
emerges: as if it were just like the 1-LISP processor except that it puts a quote back on
before returning the result. In fact, however, the differences are much more substantial, in
terms of both structure, procedural protocols, and semantics. For one thing 2-LISP is
statically scoped (like scheme) and higher-order (function-designating expressions may be
passed as regular arguments). Structurally 2-LIsp is also rather different from 1-Lise:
there is no derived notion of list, but rather a primitive data structure called a rail that
serves the function of designating a sequence of entities (pairs are still used to encode
function applications). So called "quoted expressions" are primitive, not applications in
terms of a QuoTe procedure, and they are canonical (one per structure designated). The
notation ‘X, in particular, is not an abbreviation for (QUOTE x), but rather the primitive
notation for a handle that is the unique normal-form designator of the atom x. There are
other notational differences as well: 1ails are written with square brackets (thus the
expression "[1 2 3]" notatcs a rail of three numerals that designates a sequence of three
numnbers), and expressions of the form "(F A, A, ... A.)" expand not into "(F . (A, . (A, .
(oo . (A [A A ... A"

The category structure of 2-LIsP is su.nmarised in the following diagram:

NIL)..))))" but into "(F

) (S1-30)

Lexical Structural Procedurat Declarative
Numerals Numerals Numerals |——{ Numbers |

Atoms Atoms Atoms ———3
Booleans Booleans Booleans T.Values

Rails Rails Rails Sequences

Pairs Pairs Pairs 1 Functions

Handles Handles Handles Structures

Closures, which have historically been treated as rather curiously somewhere between
functions and expressions, emerge in 2-L1sP as standard expressions; in fact we define the
term "closure” to refer to a normal-form function designator. Closures are pairs, and all
normal-form pairs are closures, illustrating once again the category alignment that

permeates the design.
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All 2-L1sp normal-form designators are not only stable (self-normalising), but are
also side-effect free and context-independeni. A variety of facts emerge from this result.

First, the primitive processor (NORMALISE) can be proved to be idempotent, in terms of both
result and total effect:

vS [ (NORMALISE S) = (NORMALISE (NORMALISE S)) ] (S1-31)

Consequently, as in the A-calculus, the yesult of normalising a constituent (in an extensional
context) in a composite expression can be substituted back into the original expression, in
place of the un-normalised cxpression, yiclding a partially simplified expression that will
have the same designation and same normal-form as the original. In addition, in code-
generating code such as macros and debuggers and so forth there is no need to worry about
whether an expression has already been processed, since sccond and subsequent processings

will never cause any harm (nor, as it happens, will they take substantial time).

Much of the complexity in defining 2-L1sp will emerge only when we consider
forms that designate other scmantically significant forms. The intricacies of just such
"level-crossing" expressions form the stock-in-trade of a reflective system designer, and only
Uy setting such issues straight before we consider reflection proper will we face the latter
task adequatcly prvpared. Primitive procedures called NaME and REFERENT (abbreviated as
"+" and "¢") are provided to mediate betweeen sign and significant (they must be primitive
because otherwise the processor remains semantically flat); thus (NAME 3) normalises to '3,
and (REFERENT °'A) to °'A.

The issue of the explicit use of "appLY", which we mentioned bricfly in discussing 1-
LISP above, is instructive to examine in 2-LIsp, since it manifests both the structural and
the semantic differences between 2-L1sp and its precursor dialect. In 1-Lisp, the two
functions evaL and AppLY mesh in a well-known mutually-recursive fashion. Evaluation is
uncritically thought to be defined over expressions, but it 135 much less clear what
application is defined over. On one view, "apply" is a functional that maps functions and
(sequences of) arguments onto the value of the function at that argument position — thus
making it a second (or higher) order function. On another, "apply"” takes two expressions
as arguments, and has as a valuc a third expression that designates the value of the function
designated by the first argument at the argument position designated by the sccond. In 2-

Lisp we will call the first of these application and the sccond reduction (the latter in part
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because the word suggests an operation over expressions, and in part by analogy with the g-
reduction of Church®). Current L1sP systems are less than lucid regarding this distinction
(in macLise, for example, the function argument is an expression, whereas the arguments
argument is not, and the value is not). The position we will adopt is depicted in the
following diagram {which we will explain more fully in chapter 3):

(S1-32)
Reduction
\‘
I FD: Func. Desig] I AD: Arg. Desig. I l VD: Value Desig]
® ) ' @
I F: Function | I A: Argument I I V: Value —I
Application

The procedure REDUCE, together with NORMALISE will of course play a major role in our
characterisation of 2-L1sp, and in our construction of the reflective 3-L1sp. However it will
turn out that there is no reason to definc a designator of the AppLY function, since any term

of the form

(APPLY FUN ARGS) (S1-33)
would be entirely equivalent in effect to

(FUN . ARGS) (S1-34)

REDUCE, in contrast, since it is a mecta-structural function, is neither t: vial to define (as

APPLY is) nor recursively empty.

A summary of the most salient differences between 2-L1sp and 1-L1SP is provided in

the following list:

1. 2-LISP is lexically scoped, in the sense that variables frec in the body of a
LaMBDA form take on the bindings in force in thcir statically enclosing context,
rather than from the dynamically enclosing context at the time of function
application.

2. Functions are first-class semantical objects, and may be designated by standard
variables and arguments. As a consequence, the function position in an
application (the cAR of a pair) is normalised just as other positions are.
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3. Evaluation is rejected in favour of independent notions of simplifcation and
reference. The primitive processor is a particular kind of simplifier, rather than
being an evaluator. In particular, it normalises expressions, returning for each
input expression a normal-form co-designator.

4. A complete theory of declarative semantics is postulated for all s-expressions,
prior to and independent of the specification of how they are treated by the
processor function (this is a pre-requisite to any claim that the processor is
designation-preserving). .

5. Closures — normal-form function designators — are valid ar 1 inspectable s-
expressions.

6. Though not all normal-form expressions are canonical (functions, in particular,
may have arbitrarily many distinct normal-form designators), nevertheless they
are all stable (sclf-normalising), side-effect free, and context independent.

7. The primitive processor (NORMALISE) is semantically flat; in order to shift level
of designation one of the explicit semantical primitives NAME Or REFERENT must
be applied.

8. 2-LISP is category-aligned (as indicated in S1-30 above): there are two distinct
structural types, pairs and rails, that respectively encode function applications
and sequence enumerations. There is in addition a special two-clement
structural class of boolean constants. Therc is no distinguished atom NIL.

9. Variable binding is co-designative, r~ther that designative, in the sensc that a
variable normalises to what it is bow..d to, and thercforc designates th.. referent
of the expression to which it is bound. Though we will speak of the binding
of a variabie, and of the referent of a variable, we wili not speak of a variable’s
value, since that term is ambiguous between these two.

10. Identity considerations on normal-form designators are as follows: the normal-
form designators of truth-values, numbers, and s-expressions (i.e., the boolcans,
numerals, and handles) are unique; normal-form designators of sequences (i.e.,
the rails) and of functions (the pairs) are not. No atoms are normal-form
designators; therefore the question does not arise in their case.

11. The usc of LaMBDA is purcly an issue of abstraction and naming, and is
completely divorced from procedural (ype (cxtensional, intensional, macro, and

so forth).

As soon as we have settled on the definition of 2-L1sp, however, we will begin to
criticise it. In pariicular, we will provide an analysis of how 2-L1sp fails to be reflective, in
spite of its semantical cleanliness. A number of problems in particular emerge as
troudlesome. First, it will turn out that the clean semantical separation between meta-levels
is not yet matched with a clean procedural scparation. For example, too strong a separation

betwecen environments, with the result that intensional procedures beconie extremely
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difficult to use, shows that, in one respect, 2-L1SP’s inchoate reflective facilitics suffer from
insufficient causal connection. On the other hand, awkward interactiois between the
control stacks of inter-level programs will show how, in other respects, there is foo rnuch
cornection. In addition, we will demonstrate a meta-circular implementation of 2-LISP in
2-L1sp, and we will provide 2-L1sP with explicit names for its basic interpreter functions
(NORMALISE and reouce). However these two facilities will remain utterly unconnected — an
instance of a general problem we will have discussed in chapter 3 on reflection in general.

Lfiii. The Procedurally Reflective 3-L1SP

From this last analysis will emcrge the design of 3-L1sP, a procedurally reflective
L1sp and the last of the dialects we will consider. 3-L1spP, presented in chapter 5, differs
from 2-LIsp in a variety of ways. First, the fundamental reflective act is identified and
accorded the centrality it deserves in the underlying definition. Each reflective level is
granted its own environment and continuation structure, with the environments and
continuations of the levels below it accessible as first-class objects (meriting a Quinean
stamp of ontological approval, since they can be the values of bound variables). These
environments and continuations, as mentioned in the discussion earlicr, are theory relative:
the (procedural) theory in question is the 3-Lisp reflective model, a causally connected
variant on the meta-circular interpreter of 2-L1sP, discussed in section l.c. Surprisingly, the
integration of reflective power into the meta-circular (now reflective) model is itself

extremely simple (although to implement the resulting machine is not trivial).

Once all thesc moves have been taken it will be possible to merge the explicit
reflective version of sIMPLIFY and REDUCE, and the similarly named primitive functions. In
other words the 3-L1sp reflective model unifies what in 2-LISP were scparate: primitive
names for the underlying processor, and explicit meta-circular programs demonstrating the

procedural structure of that processor.

It was a consequence of defining 2-L1SP in terms of SIMPLIFY that the 2-LISP
interpreter "stays semantically stable™: the semantical level of an input expression is always
the same as that of the expression to which it simplifies. An even stronger claim holds for
function application: except in the case of the functions NAME and REFERENT, the semantical
level of the resuit is also the same as that of all of the arguments, This is all evidence of

the attempt to drive a wedge between simplification and de-referencing that we mentioned
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earlier. 3-LISP inherits this seinantical characterisation (it even remains true, surprisingly,
in the case of reflective functions). A fixed-level interpreter like this — and of course this
is one of the reasons we made 2-L1sP this way — cnables us to make an important move:
we can approximately identify declarative meta levels with procedural reflective levels. This
does not quite have the status of a claim, because it is virtually mandated by the knowledge
representation hypothesis (furthermore, the correspondence is in fact asymetric: declarative
levels can be crossed within a given reflective level, but reflective shifts always involve
shifts of designation). But it is instructive to realise that we have been able to identify the
reflective act (that makes available the structures encoding the interpretive state and so
forth) with the shift from objects to their names. Thus what was used prior to reflection is
mentioned upon reflecting; what was facit prior to reflection is used upon reflection. When
this behaviour is combined with the ability for reflection to recurse, we are able to lift
structures that arc normally tacit into explicit view in one simplc reflective step; we can

then obtain acccss to designators of those structures in another.

voth the 3-Lisp reflective model, and a MACLISP implementation of it, will be
provided by way of definition. In addition, some hints will be presented of the style of
semantical equations that a traditional denotational-secmantics account of 3-L1sp would need
to satisfy, although a full semantical treatment of such a calculus has yet to be worked out.
In a more pragmatic vein, however, and in part to show how 3-L1sp satisfies many of the
desiderata that motivated the original definition of the concept of reflection, we will present
a number of examples of pregrams defined in it: a variety of standard functions that make
use ¢ " explicit evaluation, access to the implementation (debuggers, "single-steppers”, and
so forth), and non-standard cvaluation protocols. The suggestion will be made that the case
with which these powers can be embedded in "pure” programs recommends 3-LISP as a
plausible dialect in its own right. Nor is this simply a matter of using 3-.ISP as a
theore:cal vehicle to model these various constructs, or of showing that such models fit
naturally and simply into the 3-LIsp dialect (as a simple continuation-passing style can for
examplc be shown to be adapted in scHeMe). The claim is stronger: that they can be
natwrally embedded in a manner that allows them to be congenially mixed (without pre-
compilation) with the simpler, more standard practice. Although the user need not use an
explicit continuation-passing style, nonetheless, at any point in the course of the
computation, the continuation is cxplicitly available (upon reflection) for those programs
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that wish to deal with it directly. Similar remarks hold for other aspects of the controi

structure and environment.

One final comment on the architecture of 3-L1sp will relate it to the "two views on
reflection” that were mentioned at the end of sectioni l.e. Interpretation mediated by the
3-LIspP reflective model is guaranteed to yield indistinguishable behaviour (at least from a
non-reflective peoint of view — there are subtleties here) from basic, non-reflected
interpretation. This fact allows us to posit that 3-LISp runs in virtue of an infinite number
of levels of reflective model all running at once, by ar (infinitely flect) oversecing
processor. The resulting infinite abstract machine is well defined, for it is of course
behaviourally indistinguishable from the perfectly finite 3-L1sp we will already have laid
out (and implemented). For somne purposes this is the simplest way to describe 3-LISP,
Since the user can write programs to be interpreted at any of these reflective levels, and
cannot tell that all infinitude of levels are not being run (the implementation surreptitiously
constructs them and places them in view cach time the user’s program steps back to view
them), such a characterisation is sometimes more illuminating than talk of the processor
“switching back and forth from one level to another”. It is the goals of modelling
psychologically intuitive reflection — based on a vague desire to locate the self of the
machine at some level or other — that will lead us usually to use the language of explicit
shifts (this also more closely mimics the implementation we will have built), although if 3-
LISP were to be treated as a pur ly formal object, the inrinite characterisation is probably to

be preferred.

Lfiv. Reconstruction Rather Than Design

2-L1sP and 3-LISP can claim to bz dialects of Lisp only on a generous
interpretation. The two dialects are unarguably more different from the original LISP 1.6
than are any other dialects that have been proposed, including for example SCHEME, MDL, NIL,

SEUS, MACLISP, INTERLISP, and COMMON Lisp, 16

In spite of this difference, however, it is important to our enterprise to call these
languages Lisp. We do not simply propose them as new variants in a grand iradition,
perhaps better suited for a certain class of protlems than those that have gone before.
Rather — and this is one of the reasons that the dissertation is as long as it is — we claim

that the architecture of these new dialects, in spite of its differenace from that of standard
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LISPS, is a more accurate reconstruction of the underlying coherence that organises our
communal understanding of what LIsP is. We are making a claim, in other words — a
claim that should ultimately be judged as right or wrong. Whether 2-LISP or 3-LISP is
better than previous LISPs is of course a matter of some interest on its own, but it is not the
thesis that this dissertation has set ovt to argue.



1. Introduction Procedural Reflection 95

1.g. Remarks

l.g.i. Comparision with Other Work

Although we know of no previous attempts to construct either a semantically
rationalised or a reflective computational calculus, the research presented here is of course
dependent on, and related to, a large body of pricr work. There are in particular four
general areas of study with which our project is best compared:

1. Investigations into the meta-cognitive and intensional aspects of problem
solving (this includes much of current research in artificial intelligence);

2. The design of logical and procedural languages (including virtuaily all of
programming language research, as well as the study of logics and other
declarative calculi);

3. General studies of semantics (including both natural language and logical
theories of semantics, and semantical studies of programming languages); and

4. Studies of self-reference, of the sort that have characterised much of meta-
mathematics and theo:  of computability throughout this century particularly

since Russell, and including the formal study of the paradoses, the

incompleteness results of Godel, and so forth.

We will make detailed comments about our connections with such work throughout the
discussion (for example in chapter 5 we will compare our notion of sclf-reference with the
traditional notion used in logic and mathematics), but some general comments should be
made here.

Consider first the meta-cognitive aspects of problem-solving, of which the
dependency-directed deduction protocols presented by Stallman and Sussmaa, Doyle,
McAliester, and others arc an illustrative cxample.!” This work depends on explicit
encodings, in some form of meta-languag(, of information about object-level structures,
used to guide a deduction process. Similariy, the meta-level rules of Davis in his TEIRESIUS
system,1® and the use of meta-levels rules as an aid in planning,!® can be viewed as
examples of inchoate reflective problem solvers. Some of these expressions are primarily
procedural in intent,2? although declarative statements {(for cxample about dependencics)

are perhaps more common, with respect to which particular procedural protocols are
defined.



1. Introduction Procedural Reflection 96

The relationship of our project to this type of work is more accurately described as
one of support, rather than of direct contribution. We do not present (or even hint at)
problem solving strategies involving reflective manipulation, although the fact that others
are working in this area is a motivation for our research. Rather, we attempt to provide a
rigorous account of the particular issues that have to do simply with providing such
reflective abilities, independent of what such facilities are then used for. An analogy might
be drawn to the devclopment of the A-calculus, recursive equations, and LISP, in
relationship to tiie use of these formalisms in mathematics, symbolic computation, and so
forth: the former projects provide a language and architecture, to be used reliably and
perhaps without much conscious thought, as the basis for a wide variety of applications.
The present dissertation will be successful not so much if it forces everyone working in
meta-cognitive areas to think about the architecture of reflective formalisms, but rather if it
allows them to forget that the techaical details of reflection were ever consicercd
problematic. Church’s a-reduction was a successful manoeuvre preciscly because it means
that one con treat the A-calculus in the natural way; we hope that cur trcatment of
reflective procedures will cnable those who use 3-LISP or any subsequent reflective dialect

to treat "backing-off’ in the natural way.

The "reflective problem-solver" reported by Doyle?! deserves a special comment:
again, we provide an underlying architecture which might facilitate his project, without
actually contributing solutions to any of his particular problems about how reflection should
be cffectively used, or when its deployment is appropriate. Doyle’s cnvisaged machine is a
full-scale problem solver; it is also (at least so he argues) presumed to be large, to cmbody
complex theories of the world, and so forth. In contrast, our 3-LISP is not a problem
solver at all (it is a language very much in need of programming); it cmbodies only a small
procedural theory of itsclf, and it is really quite small. As well as these differences in goals
there arc differences in content (we for example endorse a set of reflective levels, rather
than any kind of truc instantancous sclf-refereniial reflexive reasoning); it is difficult,
however, to determine with very much dctail what his proposal comes to, since his report is
more suggrstive than final.

Given that 3-L1sP is not a problem solver of the sort Doyle proposes, it is natural to
ask whether it would be a suitable language for Doyle to use to implement his system,
There are two diffcrent kinds of answer to this question, depending on how he takes his
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project. If he is proposing a design of a complete computational architecture (i.e., a process
reduced in terms of an ingredient processor and a structural ficld), and wishes to implement
it in some convenient underlying language, then 3-Lisp’s reflective powers will not in
themselves immediately engender corresponding reflective powers in the virtual machine
that he implements. Reflection, as we are at considerable pains to demonstrate, is fir<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>