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ABSTRACT

A method is develoned for digital simulation of linear time-
invariant dynamic systems with lumped parameters and time delays.
Ordinarily, such systems can be described by a linear matrix differential-
difference equation, which can be transformed to an infinite-dimensional
difference equation whose solution is obtained in a recursive way.

As the present method depends on the accuracy of evaluation of the
matrix exponential, a simple comoutationi% procedure based on the
truncation of the infinite series for e is described.

In addition, an algorithm is given that ensures that the
transient state of an unforced linear time-invariant dynamic system with
zero time delay is calculated to a specified accuracy.

Several sample problems are included.
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i1




ACKNOWLEDGMENTS

The author is deeply indebted to Professor Ronald Carl Rosenberg,
thesis advisor, for his encouragment at every stage of this work and the
innumerable coustructive criticisms for improvement toward making this
report readable. The author also owes a debt of gratitude to the members
of the ENPORT Project and to many other individuals who must remain
anonymous due to lack of space. In a special category, the valuable
suggestions of Professor Dean C. Karnopp and Mr, Yves Willems are greatly
appreciated. Special thanks are due to Hojalata y Lamina S, A,, Monterrey,
Mexico which generously financed this work.

Work reported herein was supported in part by Project MAC, an
M.I.T. research project sponsored by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval Research Contract Nonr~-
4102(01) . Reproduction of this report or in part, is permitted for any

purpose of the United States Government,

iii




TABLE OF CONTENTS

ABSTRACT L] L] L] L] . L] . . L] L] L] L] L] L] . . L)

ACKNOWLEDGMENTS 4 o o o o & o ¢ ¢ o ¢ o @

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1 - INTRODUCTION e ® a4 ¢ o 8 o
1-1 Description of the problem . .

1-2 Formulation of the approach .

1-3 Application of results in dynamic simulation

2 - DYNAMIC RESPONSE OF LINEAR TIME~-INVARIANT SYSTEMS

2-1 System characterization by state variables . + « «

2-2 Digital solution of the matrix differential equation

2-3 Digital evaluation of the matrix exponential . . . .

2-4 Error bounds in the transient response . .

3 - DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMS

WITH LUMPED PARAMETERS AND TIME DELAYS

3-1 Digital solution of the matrix differential-difference

equation.......-...............

4 - ALGORITHMS FOR DIGITAL COMPUTATION

4=1-1 TRANS, The time response of linear time-invariant

SystemSoolOOOcQO?oooo

4-1-2 EXPMAT . The evaluation of the matrix exponential

4-1-3 DISTUR, Forcing signals . .

.

4=2-1 TIMDEL, The time response of linear systems with

lumped parameters and time delays

4-2-2 DELFOR, The evaluation of the set of transition

matrices +« 4+ o s ¢ ¢ o ¢ o

iv

»

*

ii

iii

12

14

14

24

25

29

32

34

38




4-2-3 PERTUR, Forcing signals ¢ ¢ 8 e e e ¢ & & 0 s a

CHAPTER

5-1 Test problem for the simulation of dynamic systems

5 - SOLUTION TO SMLE PROBLEMS e ¢ o & & & 4 0 o

without delay I T T T S T S S T T T Ty

5-2 Control of composition in a chemical reactor

5-3 Test problem for the simulation of dynamic systems

with delays ® 8 8 0 e s+ 6 ¢ 8 s s e 4 s e

CHAPTER
BIBLIOGRAPHY , . . + « &

APPENDIX A, - PROGRAM LISTINGS

L]

6 - COMMENTS AND SUGGESTIONS FOR FUTURE RESEARCH

41

43

43

44

53
74
76

79




This empty page was substituted for a
blank page in the original document.



CHAPIER 1

INTRODUCTION

1-1 Description of the problem

This report presents a method for the simulation of linear time-
invariant dynamic systems with lumped parameters and time delays.

In many industrial processes one often encounters a type of time
delay called "transportation lag". This kind of delay is generated when
process materials move from one point in a process to another point
without any appreciable change taking place in the properties or
characteristics of the process materials. Such delays may be caused by the
flow of fluids through pipes, or by the motion of webs or filaments.,
Systems such as distillation columns and long heat exchangers are
characterized by a multitude of small lags, which have an effect somewhat
gimilar to that of time delays, The effects are not identical; however,
some insight may be gained by using time delays models., The control of
composition in a chemical reactor has been selected as a typical problem
and this is depicted in section 5-2,

Models having delays often arise in the study of systems with a
mixture of lumped and distributed elements. An interesting form of
topological representation suitable for such systems has been invented by
Prof., H. M. Paynter at M.I.T., and is called the bond graph., Rosenberg (17)
and Auslander (1)* describe its use in modeling in some detail,

Many other physical systems, such as electrical, mechanical and

* Numbers in parenthesis refer to items in the bibliography.




hydraulic transmission lines, and certain types of structural problems,
are good examples of distributed systems which can be modeled using the
delay operator. These systems often are analyzed as two-port chains, and
usually the equations are slightly more involved than the type treated in
this report., It is suggested that the reader interested in these kind of
problems consult Koepcke (9) and Vaughn (20), as well as any standard text

treating transmission phenomena.
1-2 Formulation of the approach

As an extension to the use of ordinary differential equations
which arise when the future behavior of the system depends only upon its
present state and not upon its past history, many systems that include
time delays can be described by a linear matrix differential-difference
equation. That is, the system is described by

. n m
X(t) = } A X(t-T)+ ]D

H(t - T,) ]
{=1 ju1 3

J

where X and U are the state and input vectors, respectively and Ti and Tj
are some fixed delay times, A1 are a set of n x n matrices, and Dj are a
set of n x r matrices, Techniques such as the direct method of lyapunov or
laplace transforms can be used in the analysis of the equation. However,
the use of these techniques frequently requires extensive computation, and
for that reason they are not practical for hand analysis. At this step,
designers and analysts are forced to rely on the digital computer as a
computing aid.

Because matrix manipulations are so convenient to implement on a

digital computer, many existing dynamic systems programs are based on a




matrix formulation of the problem. This convenience, together with the
inherent elegance of the matrix approach, 1s helping to promote its
acceptance among systems theorists.

This report analyzes systems governed by the following differential-
difference equation, for which it is desired to have a time sampled version

of the state response:

X(E) = A X(t) + B X(t = T) + DU(E) + DUt = T
where

T = time delay.

X(t) = (o x 1) vector. It is called the state vector,

U(t) = (r x 1) vector., It is the forcing signal or
input vector, and it is assumed to be constant
between samples.,

A, B = (n x n) constant coefficient matrices.

Dl' D, = (n x r) constant driving matrices.

2
Koepcke (9) shows that the equivalent difference equation is (see
section 3-1)

X+ =] [&(1) X(c - iNT) + A (7) Ut = 1NT)]
i=0

where N -'% , and ¢i and Ai are called plant transition matrices and
control transition matrices respectively.

The accuracy of evaluation of these sets of transition matrices
depends upon the accuracy of evaluation of the matrix exponential, In
section 2-3 a simple procedure based on the truncation of the infinite
series of eAT (11,6), which guarantees a specified accuracy in the matrix

exponential, is described.




Also, a procedure is developed (21) to emsure that the calculated
transient state of unforced linear time-invariant dynamic systems with
gero time delay, is accurate to a specified tolerance.

Several sample problems are presented to demonstrate the

computation techniques.

1-3 Application of results in dynamic simulation

The two sets of simulators deduced throughout the development of
this work, were tested on the time-shared IBM 7094 operated by Project MAC,
and the entire operation, input and output, was carried out at an IBM 1050
remote console typewriter. The algorithms will be part of the ENPORT
Project which is being carried out at the mechanical engineering department
under the direction of Professor Rosenberg.

ENPORT is a digital computer program that accepts a bond graph
description of a dynamic system and produces its time response, Work is
being done on the theory of bond graphs, and a systematic graphical
method has been developed for generating the state differential equations.
ENPORT is organized in such a way that a broad class of nonlinear, active
and passive, mixed energy~type systems can be handled.

The wakelike nature of certain types of distributed systems make
simulation by means of the digital computer, with its ability to exactly
model the time delay operator, very natural, A simulation method based on

delay-bond modeling has been developed by Auslander (1).




CHAPTER 2

DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMS

The analysis of many systems problems encountered in scientific
and engineering investigations can be performed by either one of two
major approaches. The essentially block diagram approach, involves the
determination of the transfer characteristics of the system components
and the overall transfer characteristics. The second approach is based
primarily upon the characterization of a system by a number of coupled
first order differential equations which govern the behavior of the state
variables. This technique is often implemented with the aid of a state

variable diagram and is referred to as the state-variable approach.

2-1 System Characterization by State Variables

From the point of view of system analysis it is convenient to
classify the variables which characterize or are associated with any
system into (1) input, or forcing signals, Ui, which in essence represent
the stimuli generated by systems other than the ome under investigation
and which influence the system behavior; (2) output, or response,
variables Y{, which describe those aspects of system behavior that are
of interest to the investigator; and (3) state variables Xi, which
characterize the dynamic behavior of the system under investigation.

One way of defining state variables is by making use of the state
variable diagram. A state variable diagram is made up of integrators,
coefficients and summing devices. It describes the relationships among

the state variables and provide physical interpretations of them. The




outputs of the integrators denote the state variables.

For continuous-time systems the state variable diagram is the
same as the analog-computer simulation diagram. The state variable
diagram may be derived from the overall transfer function of the system
in three different ways (1) direct programming, (2) parallel programming,
and (3) iterative programming. These methods are later ilustrated in the
chapter corresponding to the solution to sample problems. Further
information can be obtained from Tou (19), Schwarz and Friedland (18) and

Ogata (15).
2-2 Digital Solution of the Matrix Differential Equation

A linear time-invariant system or process can be described by a set
of first order linear differential equations with constant coefficients,

which may be expressed in matrix form as

_}.g(t) = A X(t) + D U(e) (2.1)
where

A is the coefficient matrix

D is the driving matrix

X is the state variable vector

U 1s the state forcing signal vector

By analogy to the scalar case, the solution of eq. (2.1) is

AT -t ) TeA(T -1

t
=)

X(T) = e X(t ) + f D U(1) dt (2.2)

with the initial conditions given bylg(to).
For simplicity let t, - 0, and let us define

AT

¢(T) = e (203)




as the transition matrix of the process. An equivalent name is the matrix

exponential,

Therefore eq. (2.2) can be reduced to
Toar
X(T) = ¥(T) X(0) + &(T) Ie D U(t) dt (2.4)
0
If T is small compared to the shortest period of interest in U(t),

U(t) may be approximated over the region by U(0).

Then eq. (2.4) bacomes

X(T) = &(T) X(0) + ¢('r)[ ﬁ.““ d't) D U() (2.5)
By integration of the series of ¢ '
]:e‘AT at = A1 - 0(-1)] (2.6)
Thus
X(T) = #(T) X(0) + &(T) A"2{1 - &(~T)] D U(0) (2.7)

Let us define

1 AT A-l e-AT

AT = [e2T A" - o 1D (2.9)

as the control transition matrix,
From the series definition of e-AI, it is observed that

oo mAT | -AT -1

Therefore, eq. (2.9) becomes

1 _ AT -AT ,-1

AC(T) = [eAT A” N

-1

A(T) = (AT A -1

-A7]D

or

AT = [T -1) a7H D (2.10)




Thus eq. (2.8) can finally be written as

2@ = AT 30 + 1T - » s duo , (2.11)
or
X(T) = &(T) X(0) + A(T) U(0) (2.12)

In general eq. (2.12) can be expressed as

X@E*+IT) = (T) X(KT) + A(T) U(KT) (2.13)
which indicates that the state vector of the process after a particular
interval depends upon the previous vector and also depends upon the
forcing vector evaluated at the previous time.

There are several methods available for computing the closed form
expression for eAT, either as a special case of the study of the functions
of a matrix or by a purely algebraic method based on the Laplace Transform,
It is suggested, for those interested in these schemes, that they consult

Ogata (15), Zadeh and Desoer (23), or Bellman (2).
2-3 Digital Evaluation of the Matrix Exponential

eAT is given by

2
AT B B, B B, B
e = a -I+B+2(u)+3(-i-i-)+---- (2.14)

note that each term in parenthesis is equal to the previous term. This
provides a convenient recursion scheme,

To ensure a reasonable truncation of the series, it is necessary
to judge the convergence of the series. The norm of a matrix A is a real,
non-negative number denoted by "A” , that gives a measure of the size of
the matrix elements,

Let




o(t) = 2T ma M + R

where M is the truncated matrix which is an approximation of eAT (see

reference 11)

K i
Mow § (AT (2.15)
i!
1=0
and R is the remainder matrix
© i
R= J 4D (2.16)
1=K+l

If each element in the matrix eA.r is required with an accuracy

of "d" significant digits, then

EMES 1o'd|mij| (2.17)
where rij and mij are elements of matrices R and M respectively.
Let us define the norm of matrix A as:
lal = min{max [2|aij|], max [2|a1j|]} (2.18)
i 3 3 i
For this norm, we have
la sll<lallisl (2.19)
Iaij|;lA‘ (2.20)
and
DakelBle Ial + Usll (2.21)

Then, it follows that
o 1 i 1
R s e Q.22
i=K+1 i=K+1
if the same norm is applied to the remainder matrix R,

Upon expansion of eq. (2.22)
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"A"K+11 K+1 "A|K+21 K+2
T )1

|2y, < + (2.23)

and, calling € the ratio of the second term to the first

uAuK+2 TK+2

- a1 - ke
|| A|1<+1 T1<+1 K+2 (2.24)

(K+1) 1

Therefore

lake (2.25)
kK = ¢

Making the substitution of eq. (2.19) into eq.(2.23), it follows

that
| <"(A‘r) I | "(AT)K" I )2 [+
K! K+1 K! (K+2) (K+1)
" Xl @A’ |
Xt @) T (226
or

yls ||.(ér_>_J|[ILA_r__l lac_flac ),

K+1 K+2 K+l

LSlar_flar o |, ____] . @.27)

K+3 K+2 K+l

Thus

|<"§AT! l["AT "[ 1+LALJ

K+1 K+2
||A1 “"AT "
’+3 Kk+2 T -=-} (2.28)

Now, because any factor of the form i:i_u for a>2 is always less

than e, by eq. (2.24), then
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K
Ir, . e lanSi{ial 2 3
ij'= K1 X1 {1+e+ec+ec+¢e+ -} (2.29)

If e¢<1, eq. (2.29) takes the form

|rij|“<—‘|kAT)E'[lA . } (2.30)
K! K+1 * 1~ ¢

This equation is suggested by Everling (6) as the upper bound in
the remainder matrix R.

In order to initialize the procedure, a certain K has to be
chosen, but this K cannot be arbitrary, because it may happen that e>1,

and relation (2.30) would not hold any more.

This situation can be solved using eq. (2.25); thus

e o]

In order to ensure that e;}/Z, the initial condition for K should

be
k> 2 | al (2.31)

However, it is possible that ||Ar"be less than 1/2; then K would
be legs than one. So, in order to avoid this possibility, an initial value
of K can be obtained from

K = max [ 2lacl, 2 1 (2.32)

At this point, Everling (6) suggests that K be incremented by
half of its initial value, in the course of iterationm.

Although the matrix series approach for the evaluation of the
transition matrix is suitable for digital computation, the disadventage
stems from the convergence requirements for the series eAT, so it would
be desirable to speed the computation.

This can be done recalling the basic relationship
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a
eAT = [eAT/a] (2.33)
where o is chosen using the following expression
_ oB
a = 2> max|ja,,|T (2.34)
2 mx |y
i,

where B is the smallest integer allowed.

The idea is to compute eAT/a, because the norm of At/o is smaller
than AT, and the series will converge faster. Once the addition of the
corresponding elements in the matrix terms of the infinite series is done,
all that is required is to raise the result to the power a. The last step
involves very few matrix multiplications, because a is a power of 2; for
example, if o = 32 only 5 matrix multiplications are performed at the end
of the computation.

The steps presented in this section are summarized in a flow

diagram in chapter 4.
2-4 Error bounds in the transient response

Although the matrix eAT can be obtained within prescribed
accuracy, the truncation error of the matrix series, and the roundoff
error do propagate in the state vector with increasing time.

It is desirable, therefore to derive recursion relations which
bound the propagated error due to these sources. Whitney (21) suggests
one method.

The homogeneous case of eq. (2.13) is
X(K+1 T) = ¢(T) X(K T) (2.35)

If eq. (2.15) is used in place of ¢(T), the numerical calculation
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reads

X (K+1 T) = M X, (K T) (2.36)
where X, (K+1 T) is the perturbed state vector obtained from numerical
calculation.

The propagated error at time (K+1) T due to the approximate M

is
E(RHL T) = X(K+1 T) - X, (K+1 T) (2.37)
Rewriting eq. (2.35) and substracting eq. (2.36) from it yields
X(K+L T) - X, (K+1 T) = [MR][X, (K T) + EK T}
-M 5*(K T) , (2.38)
or
E(KH1 T) = [M + RIE(K T) + R X, (K T) (2.39)
From eq. (2.17)
-d
IrijI; 10 |mij| (2.17)
We can define
R, = lrijl 1 (2.40)

where I 1s a matrix each of whose elements is unity. Replacing R with R,

in (2.39), we obtain the running error bound for E(K+l T), that is

E(K¥1 T) = [M+ R] E(K T) + R, X, (K T) (2.41)

The computation may be initialized assuming E(0) is zero.
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CHAPTER 3

DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMS

WITH LUMPED PARAMETERS AND TIME DELAYS

It has been found that many industrial
transportation lags are common can be described
differential-difference equations. The chemical
many examples,

This chapter analyzes the special case
one delay, and a technique suitable for digital

The derivation follows a criterion developed by

processes in which
by a system of

process industry offers

of a system subject to
computation is described.

Koepcke (9).

3-1 Digital solution of the matrix differential-difference equation

Consider a dynamic system which is governed by the following

differential-difference equation

_;g(:) = A X(t) + B X(t - T) + D,U(¢) + D,U(t = T) (3.1)
where
X(t) = (n x 1) vector, referred to as the state vector;
U(t) = (r x 1) input vector, assumed constant between samples;
i.e. U(L) = U(tk) for tksqgtK+l;
A, B = (n x n) constant coefficient matrices; and
D,, D, = (n x xr) constant driving matrices

Let us consider first the homogeneous part of eq. (3.1); that is

i(_(t) = A X(t) + B X(t = T) (3.2)

Taking the laplace transform of eq. (3.2),
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SX(S) - X(0) = (A + B e °1) X(S) (3.3)
orY
X(8) = [SI ~ (A + B e 517! x(0) (3.4)
Defining ZEe-ST, then
X(S) = [SI - (A + B 2)]7T x(0) , (3.5)
or
X(8) =2 (1 - (a+3B2)/81™ X0 . (3.6)
Let W = [I - R]™L, where R-A;Bz ; then
WeI+R+R +R 4B 4 cmeme | 3.7

Therefore, one should choose an "S" large enough to emsure that
eq. (3.7) is valid.

Thus

2 3
X(S) _% [+ 4 ; BZ . (A +znzz + SA +3BZ) +

s s
4
+ 1‘-‘-1"-4-3—2)— + ===] X(0) (3.8)
s
Recall the facts that
(A + B2)2 = a2 + A(BZ) + (B2)A + (BZ)>

3

(A + 82)2 = a3 + 42(BZ) + A(B2)A + ABZ} + (BZ)A% +

+ (BZ)A(BZ) + (B2)%A + (82)
(a + B2)? = 2% + A3(82) + A2(B2)A + A% (BZ) 2+ A(B2)A® +
+ A(BZ)A(BZ) + A(BZ)2A + A(BZ)3 + (B2)A3 +

+ (BZ)A?(BZ) + (BZ)A(BZ)A + (BZ)A(BZ)2 +

+ (82)2a% + (82)2A(BZ) + (B2)A + (B2)*
etec.

Then, arranging by terms of equal delay,
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where

2,3 4
) = B+t e A Ay Ay x0 +

S S S S

+ (BZ 4 AGBD) + (B2)A A2(BZ) + A(BZ)A + (BZ)AZ
"l + 3 + A +

S S S
A3@2) + 42(82)a + a(BD) A% + (82)A°
+ s + == ] X(0) +
S

+[SBZZ + ASBZ)2 +(BZ)A(BZ) + (BZ)ZA + Angzzz 4+ A(BZ)A(BZ)
3 4 5
S S S

+ ASBZ!ZA + SBZ)AZSBZE + (BZ)A(BZ)A + SBZZZAZ +

g°

+--1X(0) +

3 3 2 2 3
+ ISBZI.! + A(BZ)~ + (BZ)A(BZ) 5+ (BZ) “A(BZ) + (BZ) A +
S S

+-- 1 X(0) +

4
+ [_g_s_z_%__+ ] X(0) +
S

+ m—m——— (3.9)
Now, because
2X(t) = X(t - T) (zz=e ™), (3.10)
We have
ZX(0) = X(-T) ,

z%%(0) = X(-2D) ,

z3_)g(0) = X(-3T) , and so forth,

Therefore, X(S) can be arranged in the following way.

X(S) = ®(8)X(0) + ¢1(S)X(~T) + ®2(S)X(-2T) + ¢3(S)X(-3T) +

+ 04 (S)L(~4T) + === (3.11)
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2 3 4
00 (S) = -I-+%+-4-5+4A-—+A—5+ S (3.12)
S S S S S
B AB + BA AZB+ABA+BA2
$1(S) = =3 + 3 + % +
S S S
3 2 2 3
+AB+ABA+ABA +BA+ (3.13)
5
S
BZ ABZ 4+ BAB + BZA A232+ABAB + ABZA <+ BAZB
$2(5) m o= 4 = + e +
3 4 5
S S S
2,2
+BABA X B A (3.14)
5
S
3 2 2 3
¢3(S)-§—+AB + BAB +BAB+BA+ (3.15)
5
S S
B4
$,(S) = = + (3.16)
S
Rearranging terms, it follows that
2 3 4
%(S)-L+A2-+£‘—§+Az+%+ ---------- (3.17)
S S S S S
2
8,(S) __B_i_+AB +3BA+AgAB +322 + BA”
S S S
A[A(AB + BA) + BA%] + BA>
+ e — e (3.18)
]
2 2 2
B AB" + B{AB + Bll AIAB + B(AB + BAzl
$,(S) = "'3‘ + A + R +
S S S
2
+ B[A(AB + BA) + BA"] + (3.19)
5
S
B2 48> + B[AB? + B(AB + BA)]
$3(S) = = + R + = (3.20)
S S
BI'
S

Let us try to find a relationship among the coefficients. With
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this idea in mind, we shall form the array shown in figure 3.1:

psutojsuril-aoeTde] 2yl Jo sjuswaTe 2yl 3Jo Aeily T°¢ 2anITg

S9D0TI13BW UOTIFSUBIY

4 + 4
| “ IRERR
0 0 0 0 0
o 0 0 0 0
[(ve + gV)9 + Ammvim + _Nmz mm 0 0 0
HN.E + (ve 4+ gv)V]g + [(vE + V)9 + Ammvﬁ.« (ve + av)d + ANB< Nm 0 0
(Ve + HNé + (V€ + 9OV)VIV e+ (vi + av)y |va +av | ¢ 0
oY v n \{ 1
g-5 p=5 g-5 g5 1S




19

It is seen that the correlation among the elements (call any

element by C ) is

i,]
¢l g2 g3 b ¢S
i | 1 1
Coo Ccal COZiCO3-ﬁ—CO4
0 1 C T 2 s e
Ny
0 0 1 Coo1C3 T2
0 0 0 C33;;C34
0 0 0 o f%c,,

where the arrows indicate the inmediate dependance; i.e., C12 depends on

Col and Cll’ etc,

From a careful study of the array in fig. 3.1, it is found that

Cyqy AC 4 . BCiy iy 3.22)
o I+l 3+l .

where 1" 1s the subindex denoting row and "j" is the subindex denoting
column,

The following conditions should be added, in order to initialize

a computational procedure

c = 0 >0 3.2

-1,3 = ¢ 3
co,o - I (3.24)
Ci.° =0 i>0 (3.25)

The inverse laplace transform of eq. (3.22) yields (note:

L[t%/nl] = 1/s°1 )
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-1 3 3
€] GT T o] T By gl T G029
Therefore
- 3 (42 h P
Ci,j [Aci,j-ll-l— -1 + [Bci-l,j-lL4L— g-nt ,(3.27)
3t 31 -1
or
[AC ]t + [BC It
o 41 1-1,4-1
Ci,j 3 . (3.28)
Changing j for j+1, eq. (3.28) takes the final form
[AT]C + [BT]C
- i 1-1,1
¢ 341 a&iﬁl (3.29)

Actually eq. (3.,29) gives all coefficients without any need to

multiply them by TJ

j .
This 1is because T has been associated with matrix A and B, and in

order to compute any C , the initial conditions given by eqs. (3.23),

1,3+l
(3.24) and (3.25) have to be considered.

The computation of the C is done in a recursive way, as

1,j+1
given by eq. (3.29). Once they are computed, they may be substituted in
the inverse laplace transformation of eqs. (3.17), (3.18), etc,, so that
$o (1), ®:1(1), ®2(T)y o+ can be generated, The last set of matrices are
called "plant transition matrices".

Returning to eq. (3.11), if ets is multiplied into both sides,

then
eBSx(5) = 0,(5)e"Sx(0) + 0,(5)e Sx(-T) + 0,(s)etSx(-21) +

+ 03(5)e5x(-3T) + —— , (3.30)

or
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eE5%(S) = 00(S)X(E) + B1(SIX(t = T) + &2 (HX(t = 2T) +
+ 03(S)X(t = 3T) + —— . (3.31)

Taking the inverse laplace transform of eq. (3.31), it turns out

to be
X(t + 1) = $(T)X(L) + 31 (DX(t = T) + d2(TIX(t - 2T) +
+ $3(DX(t = 3T) + ===—-, (3.32)
or
Xt + 1) =] ¢ (0X(c - 4D (3.33)
1=0

This is the sampled version of the homogeneous part of the
differential-difference equation.

Now, let us consider the addition of an input vector or forcing
signal,

In chapter 2, section 2-2, it was found that the digital version

of the time-invariant matrix differential equation adopted the form

X(KFL T) = &(T) X(KT) + A(T) U(KT) (3.34)
where
o(1) = e?T (3.35)
and
amy = AT -1 a7t (3.36)
Although it was not demonstrated, it can be gshown that
A(T) -OZQ %‘;‘—f_)f;‘-l TD , (3.37)
3=0
or

® 3
A(T) =) “n- 1 _+p

31 341 . (3.38)

3=0
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If the terms E%I and TD were absent, the series would be the well

known matrix exponential, whose terms can be computed in a recursive way by

. (&)
Cory ™ 341 (3.39)

Therefore, eq. (3.38) is

A (T) -jZO CO.

By following the same line of reasoning, the control transition

T

y E:T D (3.40)

matrices in the case of the complete differential-difference equation can

be written as

Pt T s T
Ai(T) = jzici’j E:T D1 + jzici_l'j E:I D2 (3.41)

and the complete difference equation is

X+ = ) [9(1) X(t - 4T) + A, (T) U(t - 1T)] (3.42)
1=0

In resume, the digital version of
X(t) = AX(t) +B X(t-T) + Dlg(t) + ng(c -T)

is

o

X+ 1) = ] [® (1) X(t - INT) + 4, (1) U(t - iNT)]
1=0

where

T
N T

o, (1) = } ¢

j-0 Dj
A c
c } [AT] 1J_L+ (Bt} Ci—;_,j_
i,j+1 j+l
(o = I
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CHAPTER 4

ALGORITHMS FOR DIGITAL COMPUTATION

This chapter presents flowcharts for the algorithms of chapters
2 and 3, from which the computer programs were derived. They accept as
input the coefficient matrices, the driving matrices, the initial state
vector, and deterministic forcing vectors. As output, the computer will
produce the astate vector at the current sampling time and the set of
transition matrices, if desired,

Because these routines will eventually become part of Project
ENPORT, they were designed to be used on the time-sharing system. However,
they may be operated in the BATCH procedure without any difficulty, by
modifying the input/output statements,

The programs were written in the MAD language, and are listed in

Appendix A,
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4-1-1 TRANS

Purpose: to compute the time response of linear time-invariant

systems,

Inputs: order of system (M = ); sampling time (T = ); final
time (TF = ); number of input signals (R = ); the

augmented A matrix and the inftial state (x(1) = ).

Outputs: the transition matrix; the current time; and the state

of the system.

Remarks: main program. Subroutines called by TRANS: EXPMAT, and

DISTUR,
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Read from the console
order of system (M = )
sampling time (T = )
final time (TF = )

l

Is there any disturbing

no

signal ?

yes

Read from the console
number of input signals

(R=)

M=M+R

l

Read from the console
the augmented A matrix
A(l,1) = =<, A(2,1) = --
AM,1) = —-

l

Read from the console
initial state X(1) = —-

l

Save initial state
XI(1) = X(1)
XI(M=R) = X(M~R)

l

TA =T TA 13 running time

(3 TRANS, Page 1 of 3 pages.




no

?

Is R4 0 7

o]

Execute distur, (TA)

\

XI(M=R+1) = X(M=R+1)

XI(M) = X(M)

,1

Initial error
E(1) = 0.
——————— E(I) is error vector
E(M) = O,

l

TZ = T TZ is time increment

l

Get transition matrix

Execute expmat. (T)

l

Output to console

Transition matrix
EM(1,J)

!

Save transition matrix
EMP(I,J) = EM(1,J)

'

Initialization

PE(I) = 0 EB PE is new E
Y(I) = 0 Y is new X

é TRANS. Page 2 of 3 pages

27
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Compute new state

Y(I) = Y(I) + EMP(L,J)*X(J)

'

PE(I) = PE(1) + (EMP(I,J) + RLJ)*E(J)

+ RIJ*X(J)

no

NORM = ) |PE(I)]|
I

{

7

Is NORM > 10~

?

yas

T=TA

!

Execute expmat.(T)

PE(I) = 0.
Y(I) = 0,

\

Y(I) = Y(I) + EM(I,J)*XI(J)
PE(I) = PE(I) + RIJ*XI(J)

5

X(I) = Y(D)
E(I) = PE(I)

TA. X(l) LN X(M"R)

Output to the console

\

RI1J is upper bound in

remainder terms

|
iIs TA < TF ?

TA = TA+TF

—

lyea
End of program

Get new disturb. vector

Execute distur,

(TA)

®

TRANS. Page 3 of 3 pages.







Entry to expmat.

'

B(I,J) = A(1,J)

l

B(I,J) = B(I,J)*T

) J

8

a =2 > max|B(1,3)]

B is the smallest positive

integer

) J
B(X,J) = B(1,J)/a

y

NORM = JB] = min{max[I|B(I1,J)|], max[L|B(I,J)|]}
I J

l J I

Initial values of K K is the number of

K = max[2#NORM, 2] terms of the series
]
Increment
IN= K/Z
K BI
e IZO fT c,
€ - 181
K+2

EXPMAT. Page 1 of 2 pages.




®

K
B sl 1
a - | L 2,

l

Is RIJ < 1077 |Ru(1,7)| 7|2 ik = K + IN

y.;‘{- 1
r

TERM = EMAEM

l

LL=LL+1

'

Is LL>8 ? no

vos |

Function return

l

End of function

EXPMAT, Page 2 of 2 pages.

k)
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4=2-1

TIMDEL

Purpose: to compute the time response of linear systems with

lumped parameters and time delays.

Inputs: order of system (M = ); sampling time (T = ); time
delay (TD = ); final time (TF = ); number of input
signals (R = ); the A matrix; the B matrix; the D,

matrix; the D, matrix; the initial state (X(1,1) = ).

2

Outputs: the plant transition matrices, the control transition
matrices if desired; the current time; and the state

of the system.,

Remarks: main program. Subroutines called by TIMDEL: DELFOR,

and PERTUR,




no

Read from the console
order of system (M = )
sampling time (T = )
time delay (1D = )

final time (TF = )

l

Is there any disturbing

signal?

|

Read from the console
number of input signals

(R=)

REL = TD/T

;

REL > 1, integer

Read from the console
the A matrix, A(l,1l) = --
A(Z,l) . o=

'

Read from the console
the B matrix. B(1l,1) = --
B(2,1) & ==

!

Is R¥0?

oy

Read from the console
the D1

natrix, Dl(l.l) - -

®

TIMDEL. Page 1 of 3 pages.

3
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Read from the console

the D2

02(2.1) - -

matrix, Dz(l,l) - -

Y

Compute set of transition
matrices
Execute delfor. (T)

i

no

Do you wish to have the

transition matrices ?

]

Output to the console
plant transition matrices
EM(L), control transition
matrices DELF(L)

=)

Resad from the console
initial state X(1,1) = ==

'

TA =0
—y

W is the number of
transition matrices

computed

Xis (Mx W)

X(TA+T)

W=1

= ] EM(I+l) X(TA - I*REL#T)

I=Q

no

Execute pertur. (TA)

X(TA+T)

W=1

= X(TA+T) + ] DELF(I+1) U(TA - I*REL*T)

I=0

o

[TA=Ta+T |
¥

Output to the console
TA, X(TA+T)

1

TIMDEL. Page 2 of 3 pages.
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Entry to delfor

Y

A(1,J) = A(I,J)*T

Y

B(I,J) = B(I,J)*T

no Is R4 0 7

yes

D)(1,7) = D, (I,J)*T

Y

Dz(I,J) = DZ(I.J)*T

=

NORM = || Al = Min max[I|A(I,3)|], max[%|A(Z,J) ]
1 J J I

Y

Initial value of K
K = max[2*NORM, 2]

K 18 the number of terms

of the series .AT

Y

Increment
IN = K/2

I=90

c(-1,3) = 0, J>0

Y

C(0,0) = I

Y

G(2,-1) = 0

*=

C(1,0) = 0, I>0

DELFOR, Page 1 of 2 pages.
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@

i |

(1,

J+l) = J+1

[AlC(I,J) + [B]C(I-1,])

Y
K
EM(I+1) = ) C(1,J)
J=0
[ ]

L=1
]

K
*T%
G(L,I) = ] SCLaDAT*D

J=I J+l

L = L+l

—{1s 132 7 |

K+IN

no

DELF(I+1) = G(1,I) + G(2,1I-1)

Y

Is I 90?7

yes

NORM

£ m weema

K+2

K+1

K
A NORM
RLJ " K1 "[ l-¢

]

¥

no

Is RIJ < 1077 |EM(T) | ?

yes lF

1s |leu(reD)|| < 107

. |

Function return

Y

End of function

7

no

RIJ is upper bound in

remainder terms of oAT

I = I+l

DELFOR, Page 2 of 2 pages.
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L

ABMATKSE !

PLRTUR

.ompute tne forcing signal vector at tne current

“ime. The program has to keep track cof the past.

suvroutine called by TIMDEL,

41
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CHAPTER 5

SOLUTION TO SAMPLE PROBLEMS

This chapter describes a set of sample problems which were
selected because they represent typical applications of the two simulators.
They are intended to show the use of the state variable diagram, and also

to show the accuracy of the methods,
5-1 Test problem for the simulation of dynamic systems without delay

Example 5-1, Although this example may represent a great number
of physical processes, it was saelected purely from the mathematical point
of view, The same problem was run by Liou (1l1).

Given

0 1 0
_)‘g(t) =1 0 0 1 1X(¢t) (5.1)
=475 =2,75 =3

and

2
_)_(.(0) - =2,5 (5.2)

3.75

Obtain X(nT) using T = 0,1 Min.
The reported solution by Liou and the one obtained by the

simulator are







loadgo trans expmat distur
W 1010.4

EXECUTION.

GIVE ORDER OF SYSTEM (M = )

SAMPLING TIME (T = ), FINAL TIME (TF =)
m=3,t=.1,tf=2.%

IS THERE ANY DISTURBING SIGNAL
no

GIVE THE A MATRIX (A(1,1)=--,A(2,1)==--)
a(1,1)=0.,1.,0.*

a(2,1)=0.,0.,1.»*

a(3,1)=-.75,-2.75,=3.*

GIVE INITIAL STATE (X(1)=--)
x(1)=2.,-2.5,3.75*

TERMS OF THE MATRIX EXPONENTIAL

EM( 1, 1) = .999884E 00
EM( 1, 2) = .995717€-01
EM( 1, 3) = .452513E-02
EM( 2, 1) = -.339385E-02
EM( 2, 2) = .987440E 00
EM( 2, 3) = .8539963E-01
EM( 3, 1) = -.644972E-01
EM( 3, 2) = =-.239884E 00
EM( 3, 3) = .729451E 00
TIME X(1) X(2)
.10 .176781E 01 -.215290E
.20 .156774E 01 -.185614E
.30 .139515E 01 -.160242E
.40 .124603E 01 -.138548E
.50 .111700E 01 ~.119997E
.60 .100515E 01 -.104131E
.70 .907978E 00 -.905571E
.80 .823379E 00 ~.789413E
.90 .749538E 00 -.68996L4E
1.00 .684911E 00 -.604775E
1.10 .628178E 00 -.531753E
1.20 .578215E 00 -.469107E
1,30 .534062E 00 -.415312E
1.40 .494901E 00 -.369064E
1.50 .4b60034E 00 -.329250E
1.60 .428868E 00 ~.294921E
1.70 +400894E 00 -.265268E
1.80 .375681E 00 -.239602E
1.90 .352861E 00 =.217334¢E
2.00 .332118E 00 -.197965E
2.10 .313185E 00 -.181068E

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

¥ = A ¥(©)

X(1)
V(E) =|x(2)
X(3)

0 1 0
A=] 0 0 1
-s75 =2,75 -3

2
(0) = |~2.5
3.75)

X(3)

.320616E
.274116¢E
.234368E
.200401E
.171382E
.146596E
.125431¢€
.107362E
.919418E
.787838E
.675590E
.579853E
.L498212E
.428602E
.369257E
.318666¢E
.275537E
.238768E
.207415E
.180676E
.157862E

Figure 5.1 Console transaction for example 5.1

45
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A liquid stream enters tank 1 (figure 5.3) at a volumetric flow
rate F cfm and contains reactant A at a concentration of Co moles A/ft3.
Reactant A decomposes in the tanks according to the irreversible chemical
reaction,

A ———— B
The reaction is first order and proceeds at a rate
r=ke
where
r = moles A decomposing/(ft3)(cime)
¢ = concentration of A, moles A/ft3
k = velocity constant, a function of temperature

The reaction is to be carried out in a series of two stirred
tanks. The tanks are maintained at different temperatures. The temperature
in tank 2 is to be greater than the temperature in tank 1, with the result

that k., the velocity constant in tank 2, is greater than in tank 1, kl.

2!
Changes in physical properties due to chemical reaction are neglected.

The purpose of the control system is to maintain Cys the
concentration of A leaving tank 2, at some desired value in spite of
variation in inlet comncentration coe This will be accomplished by adding a
stream of pure A to tank 1 through a control valve.

Further assumptions are that the control valve and the measuring
element have no dynamics, and that the controller exert proportiomal action
on the process,

A portion of the liquid leaving tank 2 is continuously withdrawn
through a sample line, The measuring element is remotely located from the

process, because rigid ambient conditions must be maintained for accurate

concentration measurements. The sample line can be represented by a
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transportation lag.

, ______1 ™

controller

I——

vV, T
2

préduct
stream

composition
measuring
lement

F o

heating coils

Figure 5,

Control of a stirred-tank chemical reactor

The following data is

3

Molecular weight of A = 100 1b/1b mole

Pa

C
os

e ]
]

"~
L}

"
|

v

Valve sensitivity kv

0.8 1b mole/ft>

0.1 1b mole

100 cfm

A/ft:3

1.0 1b mole/min

1/6 nin-l

2/3 min~t

300 £t

1/6 cfm/psi

Measuring device sensitivity

e _

sample
stream

assumed to apply to the system

kn = 100 in. pen travel/(lb nolo/fts)

Time delay in sample line = T

The overall block diagram vhich the authors propose is
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c
R c c
K A 1 B :Z
_ S + 1 25 + 1
-TS
[}
Figure 5.4

Block diagram for a chemical reactor

control system

It is assumad that the inlet concentration c, does not change
with time.

As vas discussed in chapter 2, the state variable diagram can
be obtained in three ways. Direct programming will be used in this case.
With this purpose, let it be called <\ the input to the lag term E%T
and <y its output in figure 5,4, then

c 1
c, - T8+ (3.3)
or
-1
L. S
CB .S 1+.5 S 1 . (504)
Eq. (5.4) can be written as
c= .5 s-l Eb (5.5)
wvhere
°p

Eb - (5.6)

14,5871

Transposing

Kb - CB - .5 s-l Eb (5.7)
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By a similar procedure

.:.:. -2k, (5.8)

or
-1

.;E ) 1-0-:'1 ' -9

e = 5 E, (5.10)
vhere

E, - .1_:-:3 (5.11)

Transposing
=y 8 g (5.12)

The state variable diagram follows from eqs. (5.5), (5.7) and

eqs. (5.10), (5.12), and is shown in figure 5.5.

X, (0) \Elm
v - 3 X - f/ U
-1 L—-.s
TS
Figure 5.5

State varisble diagram for a chemical reactor

control systeam

The notation in figure 5.5 has been changed slightly. This is in
order to follow the same symbolism given in the previous chapters.

In figure 5.5 the state variables are xl and xz. The differential-
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difference equations for the state variables are readly obtained by

inspection of the diagram., That is,

x --.Sx

1 + .5 X, (5.13)

1

X, ==X, +KU=K Xl(t -T) (5.14)

2 2

Therefore the matrix differential-difference equation is

. -05 [ 0 0 0
X(t) = X(o) + X(t = T) + u(t) (5.15)
0 - K 0 K
where
Xl(t)
X(t) =
Xz(t)

Prom this equation, it is seen that the coefficient matrices and

driving matrices are

—-05 OST
A= (5.16)
L. 0 -1‘
~ 0 05
B - (5. 17)
- _K 0_
..0.‘
D, = (5.18)
1 K|
-0-
D, = (5.19)
2 o]

Five numerical examples were run using this system, These are

summarized as follows.

Example 5.2.1, Overall forward gain K= 5,24, We assume a time delay
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equal to zero. A unit step is the ipput and all initial conditions are

zero, The matrix differential equation is

=3 o5 0
i(t) = [=5,24 =1 5.,24| V(t) (5.20)
0 0 0
where
X, (1)
y(t) = Xz(t) (5.21)
u(e)

Example 5.2,2. Overall forward gain K = 5,24, and time delay =
5 Min., Same conditions of the state were taken, The matrix differential-

difference equation is

. -|5 05 0 0 0
X(t) = X(t) + X(t - J5) + u(e) +
- 5:24

.
+ [ Ut = 5) (5.22)

Example 5.,2,3, Overall forward gain K = 1,85, Time delay is zero,

The remaining conditions are the same, The state equation is

-05 .5 0

0 0 0

Example 5,2,4., Overall forward gain K = 1,85, Time delay = ,5 min,

Unit step and zero initial conditions are assumed. The state equation is




() =

X(t - ,5) +

U(t - 05)
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0
U(t) +
1.85

(5.24)

Example 5,2.,5. This is the same as example 5.2.4, with the

exception of the time delay, which is taken equal to 1 min.. The state

equation 1is

X(t) = [.

u(t - 1)

0
X(t-1) + u(t)
a 1085

(5.25)

All five examples with the input/output information and the

response curves, are shown in figures 5.6 to 5.15.

The interested reader should compare the responses of the three

cases with delay with those given by Coughanowr and Koppel on page 467 of

reference (4).

5~3 Test problem for the simulation of dynamic systems with delays

The eighth example was run in order to check the accuracy of

evaluation of the set of transition matrices, This example is discussed by

Koepcke (9).

The problem is described as an unstable process which is governed

by
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*

GIVE ORDER OF SYSTEM (M = )

SAMPLING TIME (T = ), FINAL TIME (TF =)
in=2,t=,5,tf=11,*

IS THERE ANY DISTURBING SIGNAL
yes

GIVE NUMBER OF INPUT SIGNALS (R =)
r=1x

GIVE THE A MATRIX (A(1,1)=--,A(2,1)==--)
a(1,1)=';51-510-*
a(2,1)=-5.24,~-1.,5.24~*

a(3,1)=0.,0.,0.*

GIVE INITIAL STATE (X(1)=-=)
x(1)=0.,0.*

TERMS OF THE MATRIX EXPONENTIAL
EM( 1, 1) .556076E 00
EM( 1, 2) .154089E 00
EM( 1, 3) .243387E 00
Et( 2, 1) -.161485E 01
EM( 2, 2) .401987E 00
EM( 2, 3) .185824E 01
EM( 3, 1) .000000E 00
EM( 3, 2) .000000E €O
EM( 3, 3) 1.000000E 0O

Hon s nwunu un

TIME X(1) X(2)
.50 .243387E 00 .185824E
1.00 .065063E 00 .221219¢E
1.50 .954087E 00 .167353E
2.00 .103181E 01 .990269E
2.50 .969739E 00 .590102E
3.00 .873563E 00 «529468F
3.50 .810740E 00 .660403E
4.00 .795981E 00 .8144LB8E
4.50 .811516E 00 .900262E
5.00 .833372E 00 .903654LE
5.50 .846973E 00 .8781306E
6.00 .349673E 00 .843503E
6.50 .845848E 00 .825210E
7.00 .8L0898E 00 .824044E
7.50 .837966E 00 .831568E
8.00 .837495E 00 .839327E
8.50 .838429E 00 .843206E
9.00 .839546E 00 .843258E
9.50 .840175E 00 .8L1L75E
10.00 .840250E 00 .839743E
10.50 .840025€E 00 .838925E
11.00 .833774E 00 .833960E

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

Figure 5.6 Console transaction

v(t) = A V(t)

X(1)
yit) = |X(2)
U(l)

-5
A= |-5,24
0

0
X = [0

for example 5.2,1

]
-1
0

0
5.2
0

-"]
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loadgo timdel delfor pertur

W 1039.4

EXECUTION.

GIVE ORDER OF SYSTEM (M = )
DESIRED SAMPLING TIME (T = )

TIME DELAY (TD = ), FINAL TIME (TF
m=2,t=.5,td=,5,tf=15,*

)

IS THERE ANY DISTURBING SIGNAL
yes

NUMBER OF INPUT SIGNALS (R = )
r=1x%

GIVE THE A MATRIX (A(1,1)=--,A(2,1)=-~)
a(l,1)=-,5,.5%
a(2,1)=0.,-1.+

GIVE THE B MATRIX (B(1l,1)=--,8(2,1)=--)
b(1,1)=0.,0.%
b(2,1)=-5.24,0.%

GIVE THE D1 MATRIX (D1(1,1)=--,D1(2,1)===)

d1(1,1)=0.»
d1(2,1)=5,24%*

GIVE THE D2 MATRIX (D2(1,1)=--,D02(2,1)===)

El4( 2, 1)
EM( 2, 2)

.100487E-03
.309662E-05

d2(1,1)=0.%
d2(2,1)=0,»
DO YOU WISH TO HAVE THE TRANSITION MATRICES
yes
TRANSFER MATRIX PHI( 0)
EM( 1, 1) = .778801E 00
EM( 1, 2) = .172270E 00
EM( 2, 1) = .000000E 00
EM( 2, 2) = .606531F 00
TRANSFER MATRIX PHI( 1)
EM( 1, 1) = -,235067E 00
EM( 1, 2) = ~-,187866E-01
EM( 2, 1) = -,180539E 01
Em( 2, 2) = -.,216281FE 00
TRANSFER MATRIX PHI( 2)
EM( 1, 1) = .126127€E-01
EM( 1, 2) = .614986E~03
EM( 2, 1) = .196883E 00
EM( 2, 2) = .119377E-01
TRANSFER MATRIX PHI( 3)
EM( 1, 1) = -,273338E~03
EM( 1, 2) = -,958848E-05
EM( 2, 1) = -.644506E-02
EM( 2, 2) = -,263750E-03
TRANSFER MATRIX PHI( 4)
EM( 1, 1) = .318384E-05
EM( 1, 2) = .872148FE-07
TRANSFER MATRIX PHI( 5)
EM( 1, 1) = -.231099E-07
EM( 2) = =-.519268F-09

1,
EM( 2, 1) -.914011E-06
EM( 2, 2) ~.225906E-07

é(t) = A X(t) + B X(t - .5)

+ DlU(t) + D2U(t - 45)

TRANSFER MATRIX DELTA( 0)
DEL( 1, 1) =
DEL( 2, 1) =

TRANSFER MATRIX DELTA( 1)
DEL( 1, 1) =
DEL( 2, 1) =

TRANSFER MATRIX DELTA( 2)
DELC 1, 1) =
DEL( 2, 1) =

TRANSFER MATRIX DELTAC( 3)
DEL( 1, 1) =
DEL( 2, 1) =

TRANSFER MATRIX DELTA( 4)
DEL( 1, 1) =

DEL( 2, 1) =

TRANSFER MATRIX DELTA( 5)
DEL( 1, 1) =

DEL( 2, 1) =

.256388E 00
.206178E 01

-.132818E-01
-.210165E 00

.283552E-03

.b72861E-02

-.327556E-05

-.103763E-053

.236515E-07
.937662E-06

-.116723E-09

-.555865E-08
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TRANSFER MATRIX PHI( 6) TRANSFER MATRIX DELTA( 6)
EM( 1, 1) = .114463E~03 DEL( 1, 1) = L418403E-12
EM( 1, 2) = .218008E-11

EM( 2, 1) = .544192E~-08 DEL( 2, 1) = .232657E-10

EM( 2, 2) .112283E-09

GIVE THE INITIAL STATE (X(1,1)=~---)
x(1,1)=0.,0.*
TIME X(1) X(2)

.50 .2564E 00 .2062E 01
1.00 .7980E QO .3102E 01
1,50 «1300E 01 .2831E 01
2.00 .1502E 01 .1539E 01
2.50 .1332E 01 .2406E-01
3.00 .9204E 00 -.8884E 00
3.50 .5132€ 00 -.7847E 00
4.00 .3246E 00 .1653F 00
4.50 .4295E 00 .1364E 01
5.00 .7391E 00 .2150E 01
5.50 .1067E 01 .2155E 01
6.00 .1237E 01 .1465E 01
6.50 .1179E 01 .5227E 00
7.00 .3475E 00 -.1450E 00
7.50 .6857E 00 -.2169E 00
8.00 .5349E 00 L2774E 00
8.50 .5622E 00 .1013E 01
3.00 .7330E 00 .1573E 01
9.50 .9408E 00 .1683E 01

10.00 .1072€ 01 .1335€ 01
10.50 .1065E 01 .7646E 00
11.00 .9L0O4E 0C .2988E 00
11.50 .7766E 00 .1715E 00
12.00 .6646E 00 .4115E 00
12.50 .6579E 00 .8506E 00
13.00 . 7480E 00 .1234E 01
13.50 .8763E 00 .1366E 01
14.00 .9708E 00 .1205E 01
14.50 .9854E 00 .8692E 00
15.00 .9214E 0O .5560E 00

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

Figure 5.8 Console transaction for example 5,2,2
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GIVE ORDER OF SYSTEM (M = )

SAMPLING TIME (T = ), FINAL TIME (TF =)
n=2,t=.5,tf=11,*

IS THERE ANY DISTURBING SIGNAL
yes

GIVE NUMBER OF INPUT SIGNALS (R )

r=1»

GIVE THE A MATRIX (A(1,1)=--,A(2,1)==-)
a(l,1)=-.5,.5,0.*
a(2,1)=-1.85,-1.,1.85~*

a(3,1)=0.,0.,0,.*

GIVE INITIAL STATE (X(1)==--)
x(1)=0,,0.*

TERMS OF THE MATRIX EXPONENTIAL

EM( 1, 1) .637370E 00
EM( 1, 2) .165714LE 00
EM( 1, 3) .888757E-01
EM( 2, 1) -.613141E 00

.531656E 00
.702016E 00
.000000E 00
.000000E 00
1.000000E 0O

EM( 2, 2)
EM( 2, 3)
EM( 3, 1)
EM( 3, 2)
EM( 3, 3)

TIME X(1) X(2)
.50 .888757E-01 .702016E
1.00 .267183E 0O .102075E
1.50 L44L358E 00 .108088E
2.00 .57787LE 00 .100422E
2.50 .658281E 00 .881598E
3.00 .0694033E 00 .767104E
3.50 .699993E 00 .684312E
4.00 .690429E 00 .6360641E
4.50 .675860E 0O .617160E
5.00 .662472E 00 .615736E
5.50 .652899E 00 .623187E
6.00 .6L74L58E 00 .633019E
6.50 .645293E 00 .641581E
7.00 .645202E 00 LOUT7LB1E
7.50 .646113E 00 .650643E
8.00 bL7276E 00 .651776E
8.50 .648274LE 00 .651666E
9.00 .648953E 00 .650995E
9.50 .643314E 00 .650222E
10.00 .6U9438E 00 .649590E
10,50 .649420E 00 .649178E
11.00 .649339E 00 .648970E

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

Figure 5,10 Console transaction for example 5,2.3

YD) = A V(B)

X(1)
¥(t) =|x(2)

u(l)

-05
A= "1.8
0

X(0) -[

5

0
0

]

] 0
"1 1.8
0 0
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*

GIVE ORDER OF SYSTEM (M = )

DESIRED SAMPLING TIME (T =)

TIME DELAY (TD = ), FINAL TIME (TF =)
m=2,t=.5,td=.5, tf=15,+

IS THERE ANY DISTURBING SIGNAL
yes

NUMBER OF INPUT SIGNALS (R =)
r=1»

GIVE THE A MATRIX (A(1,1)=--,A(2,1)=--)
a(1,1)=-.,5,.5%
a(2,1)=0.,~1.»

GIVE THE B MATRIX (B(1,1)=--,B(2,1)=--)
b(1,1)=0,,0.%*
b(2,1)=-1.85,0.=

GIVE THE D1 MATRIX (D1(1,1)=--,D1(2,1)=~-)
di(1,1)=0.%
d1(2,1)=1,85*

GIVE THE D2 MATRIX (D2(1,1)=--,D2(2,1)=--)
d2(1,1)=0.=

d2(2,1)=0,*

DO YOU WISH TO HAVE THE TRANSIT!ON MATRICES
no

GIVE THE INITIAL STATE (X(1,1)=---)
x(1,1)=0.,0,.*
TIME X(1) x(2)

.50 .9052E-01 .7279E 00
1.00 .2848E 00 .1143E 01
1.50 L4952E 00 .1282E 01
2.00 .6644E 00 .1214E 01
2.50 .7664E 00 L1034E 01
3.00 .8015E 00 .8266E 00
3.50 .7862E 00 .6539E 00
4,00 L7431E 00 .5u48E 00
4,50 .6932E 00 .5021E 00
5.00 .6512E 00 .5114E 00
5.50 .6245E 00 .5508E 00
6.00 .6138E 00 .5995E 00
6.50 .6158E 00 .6421E 00
7.00 .6251E 00 .6704E 00
7.50 .6369E 00 .0829E 00
8.00 .6472E 00 .6825E 00
8.50 .6541E 00 .6740E 00
9.00 .6572E 00 .6627E 00
3.50 .6572E 00 .6523E 00

10.00 .6552E 00 .6450E 00
10.50 .6525E 00 .6414E QO
11.00 .6499E 00 .6411E 00
11.50 .6482E 00 .6429E 00
12.00 .0473E 00 .6455E 00
12.50 .6472E 00 .6480E 00
13.00 .6476E 00 .64399E 00
13.50 .6482E 00 .6508E QO
14,00 .6488E 00 .6510E 00
14.50 .6493E 00 .6507E 00

15.00 .6495E 00 .6501E 00

61

_):(_(t) = A X(t) + B X(t - .5)

+ DlU(t) + D2U(t - .5)

Figure 5,12

5.2,4

Console transaction for example
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loadgo timdel delfor pertur

W 1250.1

EXECUTION.

GIVE ORDER OF SYSTEM (M )
DESIRED SAMPLING TIME (T )

TIME DELAY (TD }, FINAL TIME (TF
mn=2,t=.5,td=1.,tf=15.+

)

IS THERE ANY DISTURBING SIGNAL
yes

INPUT SIGNALS (R =

NUMBER OF )

r=1x*

GIVE THE A MATRIX (A(1,1)=--,A(2,1)=-~)
a(l,1)=-.5,.5*
a(2,1)=0.,~-1.*

GIVE THE B MATRIX (B(1,1)=--,B(2,1)=--)
b(1,1)=0.,0.*
b(2,1)=-1.85,0.+

GIVE THE D1 MATRIX (D1(1,1)=--,01(2,1)=--)
d1(1,1)=0.+
d1(2,1)=1.85*

GIVE THE D2 MATRIX (D2(1,1)=--,D2(2,1)=--)

d2(1,1)=0.%*

d2(2,1)=0.+

DO YOU WISH TO HAVE THE TRANSITION MATRICES

yes
TRANSFER MATRIX PHI( 0)
EM( 1, 1) = .778801E 00
EM( 1, 2) = .172270E 00
EM( 2, 1) = .000000E QO
EM( 2, 2) = .6006531E 00
TRANSFER MATRIX PHI( 1)
EM( 1, 1) = -.829913E-01
EM( 1, 2) = -.663267E-02
EM( 2, 1) = -.637393E 00
EM( 2, 2) = -.763586E-01
TRANSFER MATRIX PHI( 2)
EM( 1, 1) = .157213E-02
EM( 1, 2) = .766560E-04
EM( 2, 1) = .245409E-01
EM( 2, 2) = .149548E~-02
TRANSFER MATRIX PHI( 3)
EM( 1, 1) = -.120288E-04
EM( 1, 2) = =,421960E-06
EM( 2, 1) = =-,283627E-03
EM( 2, 2) = ~-.116068E-04
TRANSFER MATRIX PHI( 4)
EM( 1, 1) = .49U666E~07
EM( 1, 2) = .135504E-08
EM( 2, 1) = .156125E~05
EM( 2, 2) = .481116E-07
TRANSFER MATRIX PHI( 5)
EM( 1, 1) = -.126765E-09
EM( 1, 2) = -.,284L835E-11
EM( 2, 1) = -,501365E-08
EM( 2, 2) = =-.123917E-09

X(t) = A X(t) +B X(t - 1)
+ D1U(t) + D,U(t - 1)
"05 .5
v [ ]
0 )
B [—1.35 o}
0
D LuaJ
0

e o]
TRANSFER MATRIX DELTA(  0)
DEL( 1, 1) = .905188E
DEL( 2, 1) = .727918E
TRANSFER MATRIX DELTA( 1)
DEL( 1, 1) = -,165553E
DEL( 2, 1) = -,261964E
TRANSFER MATRIX DELTA( 2)
DEL( 1, 1) = .124783E
DEL( 2, 1) = .296106E
TRANSFER MATRIX DELTA( 3)
DEL( 1, 1) = ~_,508918E
DEL( 2, 1) = =-.161214E
TRANSFER MATRIX DELTA( L)
DEL( 1, 1) = .129736E
DEL( 2, 1) = .514338E
TRANSFER MATRIX DELTA( 5)
DEL( 1, 1) = -,226048E
DEL( 2, 1) = -.107649E

63
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GJVE THE INITIAL STATE (X(1,1)====)
x(1,1)=0,,0.*
TIME X(1) X(2)

.50 .9052E-01 .7279E 00
1.00 .28b64E 00 .1169E 01
1.50 .S5134E 00 +1411E 01
2.00 .7194E 00 .lub4E 01
2.50 .8664E 00 .1306E 01
3.00 .9369E 00 .1063E 01
3.50 .9328E 00 .7864E 00
L.00 .8712E 00 .5417E 00
4,50 .7771E 00 .3720E 00
5.00 .0770E 00 .2960E 00
5.50 .5928E 00 .3093E 00
6.00 .5384E 00 .3837E 00
6.50 .5185E 00 .5062E 00
7.00 .5299E 00 .6263E 00
7.50 .H5634E 00 .7262E 00
8.00 .6073E 00 .7881E 00
8,50 .6503E 00 .8080E 00
9.00 .6838E 00 .7909E 00
9.50 .7029E 00 .74L82E 00

10.00 .7068F 00 .6944E 00
10.50 .6980E 00 .B6429E 00
11.00 .6810E 00 .6038E 00
11.50 .6611E 00 .5825E 00
12.00 .6430E 00 .5795E 00
12.50 .6301E 00 .5915E 00
13.00 .6239E 00 .0128E 00
13.50 .6243E 00 .6370E 00
14.00 .6296E 00 .6584E 00
14.50 .06379E 00 .6733E 0O
15,00 .6466E 00 .6800E 00

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

Figure 5.14 Console transaction for example 5.2,5
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. 0 1 2 0 0
X(t) = X() + X(t - T) + u(t - T) (5.26)

It is assumed the sampling time equal to the time delay. That is,
TeTe —-min (5.27)

Koapcke reported the following results of the plant transition

matrices and the control transition matrices:

L 7Y

L

L

L

L 1Y

L

[ ,7071068

|-. 7071068

" 1338340

-.0277680

[ 0109582

|-.0022524

[ ,0005903

| -.0000742

" ,0000236

|~.0000026

[ .0000008

-.0000001

+7071068]

+ 7071068

.0277680]

-.0782980

.0022524]

.0026278,

+0000742]

= 40000854 |

.0000026]

+0000013)

+0000001]

-.0000000

Ao

4,

A

A,

Ay

As

[ ,00000 ]

| .00000 |

[ .2928932]

| .7071068]

[ .0075873]

|~+0308106

[ ,0004532]

| .0007349]

" ,0000119]

|-.0000165]|

[ ,0000003]

| 0000002

The time response of the system was obtained assuming a step

input and zero initial conditions for the integrators.

The solution is depicted in figures 5,18 and 5.19.




In a similar way, this same example was tested assuming no lags

in the system, that is

2 1 0
) = -1 -1 1| g (5.28)
0 0 o0
where
X, (t)
Y& = (% (E) (5429)
u(t)

The evaluation of the state is shown in figures 5,16 and 5.17,

It is interesting to compare the transient response in both cases.
As it can be seen in the plots (figures 5.17 and 5.19), the case with
delay is something less unstable than the linear one with delay equal to

ZeY0.

67
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*

GIVE ORDER OF SYSTEM (M = )

SAMPLING TIME (T = ), FINAL TIME (TF =)
m=2,t=.5,tf=15.*

IS THERE ANY DISTURBING SIGNAL
yes

GIVE NUMBER OF INPUT SIGNALS (R =)
r=1l+

GIVE THE A MATRIX (A(1,1)=--,A(2,1)=--)
a(l,1)=.2,1.,0.»

a(2,1)=-1.,-.1,1,*

a(3,1)=0.,0.,0.*

GIVE INITIAL STATE (X(1)===)
x(1)=0.,0,*

TERMS OF THE MATRIX EXPONENTIAL
EM( 1, 1) .976370E 00
EM( 1, 2) .492031E 00
EM( 1, 3) .124527E 00

EM( 2, 1 -.492031E 00
EM( 2, 2) .828760E 00
EM( 2, 3) .467126E 00

.000000E 0O
.000000E 00
1,000000E 00

EM( 3, 1)
EM( 3, 2)
EM( 3, 3)

wowH B RN

TIME X(1) X(2)
.50 .124527E 00 .U67126E
1.00 .475952E 00 .792930E
1.50 .979407E 00 .890141E
2.00 .151877E 01 . 72294 0E
2.50 .196311E 01 .318989E
3.00 .219820¢E 01 -.234422E
3.50 . 215544E 01 -.808739E
4.00 .183111E 01 -.126367¢
4.50 .129060E 01 -.148112E
5.00 .655877E 00 -.139538E
5.50 .783336E-01 -.101203E
6.00 -.296938E 00 ~.410143E
6.50 -.367197E 00 .273318E
7.00 -.995124E-01 .874313E
7.50 .457555E 00 .124068E
8.00 .118173E 01 .127022E
8.50 .190332E 01 .938392E
9.00 .244453E 01 .308336E
9.50 .266306E 01 -.480150E
10.00 .248841E 01 -.124111FE
10.50 .194347E 01 -.178583E
11.00 .114338E 01 -.196915E
11.50 .272011E 00 -.172740E

12.00 -.459826E 00 -.109832E

V(e) = A V()

v(t) -[

o2
A= -1
0

X(1)
X(2)
UL

1
-.1
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GIVE ORDER OF SYSTEM (M
DESIRED SAMPLING TIME (T = )

TIME DELAY (TD ), FINAL TIME (TF
m=2,t=.7853982, td=,7853982, tf=20,*

=)

)

IS THERE ANY DISTURBING SIGNAL
yes
NUMBER OF INPUT SIGNALS (R =)
r=1x*

GIVE THE A MATRIX (A(1l,1)=--,A(2,1)=-<)
a(l1l,1)=0.,1.+
a(2,1)=-1.,0.+

GIVE THE B MATRIX (B8(1,1)=-~,8(2,1)=--)
b(1,1)=.2,0.%
b(2,1)=0,,-,1*

GIVE THE D1 MATRIX (D1(1,1)
dl(1,1)=0,*
d1(2,1)=0.+

--,D1(2,1)=--)

GIVE THE D2 MATRIX (D2(1,1)=--,D2(2,1)==-)
d2(1,1)=0.=*

X(8)

d2(2,1)=1.+
DO YOU WISH TO HAVE THE TRANSITION MATRICES
yes

TRANSFER MATRIX PHI( 0)

EM( 1, 1) = .707107E 00
EM( 1, 2) = .707107E 00
EM( 2, 1) = -,707107E 00
EM( 2, 2) = .707107E 00
TRANSFER MATRIX PHI( 1)

EM( 1, 1) = .133834LE 00
EM( 1, 2) = .277680E-01
EM( 2, 1) = -.277680E-01
EM( 2, 2) = ~-.782980E-01
TRANSFER MATRIX PHI( 2)

EM( 1, 1 = .109582E-01
EM( 1, 2) = .225237E-02
EM( 2, 1) = -,225237E-02
EM( 2, 2) = .262783E-02
TRANSFER MATRIX PHI( 3)

EM( 1, 1) = .590343E-03
EM( 1, 2) = .741765E-04
EM( 2, 1) = ~,741765E-04
EM( 2, 2) = -.,853680E-04
TRANSFER MATRIX PHI( 4)

EM( 1, 1) = .235559E-0¢4
EM( 1, 2) = .259254E-05
EM( 2, 1) = =-.259254E-05
EM( 2, 2) = .130293E-05
TRANSFER MATRIX PHI( 5)

EM( 1, 1) = .748663E-06
EM( 1, 2) = .651465E-07
Em( 2, 1) = -,651465E-07
EM( 2, 2) = -~.290989E-07

A X(t) + B X(t -%)

Lif
+ D1U(t) + D2U(t - 7;)

SHEEN
- [0
5 - (9]
- [1]

TRANSFER MATRIX DELTA( 0)
DEL( 1, 1) = .000000E
DEL( 2, 1) = .000000E
TRANSFER MATRIX DELTA( 1)
DEL( 1, 1) = .292893E
DEL( 2, 1) = .707107€E
TRANSFER MATRIX DELTA( 2)
DEL( 1, 1) = .758732E
DEL( 2, 1) = ~,308106E
TRANSFER MATRIX DELTA( 3)
DEL( 1, 1) = L453237E
DEL( 2, 1) = .734907E
TRANSFER MATRIX DELTA( 4)
DEL( 1, 1) = .118773E
DEL( 2, 1) = =-,164710E
TRANSFER MATRIX DELTA( 5)
DEL( 1, 1) = .344110E
DEL( 2, 1) = .217073E

71

00
00

00
00

=02

-01

-03

-03

-04

-04

~-06

-06




72

TRANSFER MATRIX PHI( 6)
EM( 1, 1) = .197624E-07
EM( 1, 2) = .150533E-08
EM( 2, 1) = -.150533E-08
EM( 2, 2) = .218458E-09
GIVE THE INITIAL STATE (X(1,1)=--=)
x(1,1)=0,,0.=
TIME X(1) X(2)

.79 .0000E 00 .0000E 00
1.57 .2929E 00 .7071E 00
2,36 .1008E 01 .9692EF 00
3.14 .1758E 01 .5864E 00
3.93 .2125E 01 -.2538E 00
4,71 .18839E 01 -.1100E 01
5.50 .1158E 01 -.1478E 01
6.28 .3207E 00 -.1159E 01
7.07 -.1582E 00 -.2928E 00
7.85 .3256E-02 .6571E 00
8.64 .7401E 00 .1163F 01
9.42 .1663E 01 L9241F 30

10.21 .2263F 01 LLLB67E-01
11.00 .2192E 01 -.1009E 01
11.78 .1462E 01 -.1654E 01
12.57 .4567E 00 -.1514E 01
13.35 -.2735E 00 -.6351E 00
14,14 -.3088E 00 .5194E 00
14.92 «3380E 00 .1315€ 01
15.71 .1481E 01 .1292E 01
16.49 .2349E 01 .4317E 00
17.28 .2503E 01 ~.8188E 00
18.06 .1842E 01 -.1775E 01
18.85 .b8839E 00 -.1890E 01
13.63 ~.32L4E Q0 -.1067E 01
20.42 -.6256E 00 .2718E 00

END OF EXECUTION

TO CONTINUE,

GO TO THE TOP OF A NEW PAGE

AND PRINT AN ASTERISK

TRANSFER MATRIX DELTA( 6)

DEL(
DEL(

1,
2,

1)
1)

Figure 5,18 Console transaction for example 5.3

when time delay =

us
= min

4

.739099E-08
~.367553E-08
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CHAPTER 6

COMMENTS AND SUGGESTIONS FOR FUTURE RESEARCH

In obtaining eAT by the use of a digital computer the virtues of
the series expansion technique are its simplicity and ease in programming.
It is not necessary to find the eigenvalues of A, There is, however, some
computational disadvantage to the series expansion method. This comes from
the convergence requirements for the series. In general, it is reasonable
to compute eAT by the power series when T is small., The running time for
the matrix exponential simulation will be among the longest of various
schemes. Use of the Jordan Canonical form, for example, requires
considerably more programming, but will run in a fraction of time needed
for the series solution,

Some suggestions concerning the bound on the error in the
evaluation of the matrix exponential when the matrix A is known with some
error are given by Levis (10).

The simulation technique for linear time-invariant dynamic
systems has been tested, and it was found that the use of the augmented A
matrix (i(t) = A X(t) + D U(t) can be expressed as'i(t) - [3 g}g(t), where
!(t)=-Eﬂ ) greatly improved the procedure. The reason is that the actual
reduction of the elements of the augmented matrix times T to values less
than one can be performed successfully. However, this method cannot be
used for calculating the digital version of the control transition matrix,

Another scheme that can be used to check the error bound in the
state is to divide the time region of interest in two or three parts.
Preferably these times should be powers of two times the sampling time,

Next, compute the matrix exponential at the desired sampling time.
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Recursively multiply it until the matrix exponential is found for the other
selected times. The state at those times can be found and saved. Now,

using the recursive process of state evaluation at the sampling time,
compare the state with the selected ones, If the error 1s unacceptable,

the state with less error can be used as a new initial condition, and the
procedure may be continued.

It was found in chapter 3 that the elements Ci,j form an array
of infinite order. The first row ie of main importance because its elements
are the terms of eAT. Therefore, the truncation technique already discussed
can be used.

In a similar fashion, the elements Ci,i are actually the terms of
the infinite series eBT. It is reasonable to expect smaller values of these
norms as "i" grows. Therefore, intuitively the number of terms used to
truncate the first row can be used to truncate &;(1), %2(7), etc. It would
be interesting to make a study about how the truncation terms should be
taken in each row in order to save computation time while maintaining

accuracy.
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TRANS

Purpose: to compute the time response of linear time-invariant

systems.

Inputs: order of system (M = ); sampling time (T = ); final
time (TF = ); number of input signals (R = ); the

augmented A matrix and the initial state (X(1) = ).

Outputs: the transition matrix; the current time; and the state

of the system.

Remarks: main program. Subroutine called by TRANS: EXPMAT, and

DISTUR.
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PROGRAM COMMON A, EMs My RIJs Ry X
DIMENSTON X(2U)sY(2U)sE(2U)sPE(20)eXI(20)
DIMENSION EMP ({400 9H) sAL40CsH) sEM(400sH)
INTEGER T sJsMsRsWISH

FORMAT VARIABLE FM

VECTOR VALUES H=241,0

MAGDA PRINT COMMENT $GIVF ORDER OF SYSTEM (M = )%
PRINT COMMENT $SAMPLING TIME (T = }» FINAL TIME (TF = )%
READ DATA
PRINT COMMENT % %
FM=M

PRINT COMMENT $IS THERE ANY DISTURBING SIGNALS
READ FORMAT S3sWISH
VECTOR VALUES 53 = $ (3%$%
WHENEVER WISH.FE«3YESE
PRINT COMMENT % $
PRINT COMMENT $GIVE NUMBER OF INPUT SIGNALS (R = )%
READ DATA
M=M+R
OTHERWISE
R=N
END OF CONDITIONAL
H{2)=M
PRINT COMMENT % %
PRINT COMMENT $GIVE THE A MATRIX (A{l1s1)=~—3A{2s]1)=~=)%
THROUGH LUPEsy FOR I=191s1aGeM
ILUPE READ DATA
PRINT COMMENT $ 3
PRINT COMMENT $GIVE INITIAL STATE (X(1l)===)%
READ DATA
THROUGH ALICIAs FOR I=1s1sleGe{M=R)
ALICIA XI(I)=X(1)
TA=T
WHENEVER ReNF o0
EXECUTE DISTUR. (TA)
J=M=R+1
THROUGH JULTAs FOR I1=Js19sleGeM
XI(Jr=x(J)
JULIA CONTINUF
END OF CONDITIONAL
THROUGH ALMAs FOR I=151314¢Ge(M)
ALMA E(IY=0.
TZ=T7
EXECUTE EXPMAT(T)
THROUGH FANNYs FOR I=1313s]eGeM
THROUGH FANNYs FOR J=1slsJeGeM
PRINT FORMAT CUATROsIsJsEM{IsJ)
VECTOR VALUES CUATRO = $1H sS893HEM(sIl4s1HssI493H) =sFElbeb*%
FANNY CONTINUE
THROUGH MARTAs FOR I=1319]eGe(M=R)
THROUGH MARTAs FOR J=1ls1sJeGeM
MARTA EMP(I4J)=EM(T,J)
WHENEVER (M=R) L o6
PRINT COMMENT % %
PRINT FORMAT Sls (I=1s1s14Ge{M=~R)s1I)
VECTOR VALUES S1 = $ »sS6s4HTIMEsSBa'FMI(2HX(s1191H) sS512) /%%
END OF CONDITIONAL
TRANSFER TO TERESA
OLGA TA=TA+TZ
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TERFSA

MARTA
FLENA

ROSA

FSTHER
ROSANA

SARA

CARMEN

ILILTA

WHENFVER ReNFO

EXFCUTF DISTURS (TA)

FND OF CONDITICNAL

THROUGH ELENAs FOR I=1s1s1eGe(M=R)
PE(TI)=0,

Y(])=0a

THROUGH MARIAs FOR J=1s1lsJeGeM
YOI)=Y(II+EMP (T )X ()
PE(I)=(EMP(IsJ)+RIUIHE(IIHRII*X(II+PE(T)
CONT INUF

CONT INUF

ENORM=0,

THROUGH ROSAs FOR I=1s191eGe(M=R)
ENORPM=FENORM+4,ABS+(PE{ 1))

WHENEVFR FNORMeGFa(10eePe=07)

T=TA

EXECUTE EXPMATL(TY

THROUGH ROSANAs FOR I=13s1sleGal(M=R)
PE(T1)=0,

Y(I)=0,

THROUGH ESTHERs FOR J=1s1sJeGeM
YOTIY=Y (I )+EM T o J)RXT(J)
PECII=PF(I)4+RTIUXXT(J)

CONT INUF

CONT INUF

OTHERWISE

TRANSFER TO SARA

END OF CONDITIONAL

THROUGH CARMENSs FOR I=131s1eGe(M=R)
X(I)y=Y(1)

F{I)=PE(T])

J=M~-R+1

THROUGH LILIAs FOR I=JslsleGeM
F{J)=0.

WHENEVER (M=R) el o6

PRINT FORMAT S2sTAsX(1l)eaeX(M=R)

VECTOR VALUES S2 = $ »sS543sF6429'FM1(S33E1446) %3

OTHERWISE

PRINT RESULTS TA

PRINT RESULTS X{l)eseX(M=R)

END OF CONDITIONAL

WHENFVER TAsLeTFs TRANSFER TO OLGA
PRINT COMMENT $END OF EXECUTIONY
PRINT COMMENT $TC CONTINUE, GO TO THE TOP OF
PRINT COMMENT BAND PRINT AN ASTERISKS
READ DATA

TRANSFER TO MAGDA

EMD OF PROGRAM

A NEW PAGESD



Furpose:

Remarks:

EXPMAT

... compute the matrix exponential.

subroutine called by TRANS,

83
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EXTERNAL FUNCTION (T)
PROGRAM COMMON As EMs My RIJs Ry X
DIMENSION A(400sH)Y sEMI4OUsH) s TERMI4GOOsH) s NTERM(4009H)
DIMENSION X{20U)sB(4U0sH)
VECTOR VALUES H=2s1,0
INTEGER KoelsJobLaMslLaYsQ
ENTRY TO EXPMAT,
H(2)=M
THROUGH ELENAs FOR I=191s1eGeM
THROUGH ELENAs FOR J=1s1lsJeGeM
B(IsJ)=A(1sJ)
FLENA BUTIsJI=R(IsJ)*T
AMIN=R(1s1)
THROUGH DIANAs FOR [=2s13]eGeM
WHENEVER R(IsIl)alLeAMINY AMIN=B(I,s1)
DIANA CONTINUE
FAC=zEXPa (AMIN)
THROUGH OLGAs FOR I=191914GeM
OLGA B(IsI)=B(Is])-AMIN
Y=eABSeB(1s1)
THROUGH SARAs FOR I=19191aGeM
THROUGH SARAs FOR J=1s1sJeGeM
WHENFVER .ABS.(B(I’J))'G.(Y+O.)9 Y=0ABS.(B(IQJ))
SARA CONT INUF
TAP=1,
YE=Y40o,
THROUGH ALMAs FOR Q=1+19Q4Gel0
TAP=2 %TAP
WHENEVER TAPGE«YEs TRANSFER TO ESTHER
ALMA CONT INUF
ESTHER Y=TAP
THROUGH YOLISs FOR I=13131eGeM
THROUGH YOLISs FOR J=191steGeM
B{IsJ)=B(1sJ)/(Y+0,)
YOLIS TERM(TIsJ)=B(1sJ)
LL=0
GLORTIA MAXH=0.
MAXV=0,
THROUGH MARIAs FOR I=19191eGeM
SUMH=0,
SuMv=0,
THROUGH ROSANAs FOR J=1s1sJeGeM
SUMH=SUMH++ABS«TERM( I s J)
SUMV=SUMV+4ABSTERM(Js 1)
ROSANA CONTINUE
WHENEVER SUMHeGesMAXHIMAXH=SUMH
WHENEVER SUMVeGeMAXVIsMAXV=SUMV
MARTA CONTINUFE
NORM=MAXH
WHENEVER MAXVeL ¢« NORMsNORM=MAXYV
WHENEVER {LeNEeUs TRANSFER TO DELIA
SOLO=NORM
K=20*NORM
WHENEVER KelL o2y K=2
IN=K/2
VECTOR VALUES CINCO = $1H +2HK=s14%%
THROUGH SUSANAs FOR I=1915]1eGeM
THROUGH SUSANAs FOR J=1919JeGeM
UNIT=0,.




SUSANA 4
ISABEL

EVA

LILTA

AURORA

DELIA

JULTA

MAGUE
MARTA

OLIVIA
ALICIA

CARMEN
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WHENEVER JeEals UNIT=1,
EM(TsJ)=UNIT+B(I+J)

CONTINUE

WHENEVER LLeGE«Ks TRANSFER TO GLORIA
LL=LL+1

THROUGH LILIAs FOR L=131sLeGeM
THROUGH LILIAs FOR I=19191eGeM
NTERM(Ls1)=0,

THROUGH EVAs FOR J=1lslsJeGeM
NTERM(L s I )=NTERM(LsI)4+B(LsJI*TERM(Js1)
CONTINUF

EM(LosI)=EMILs I)+NTERMIL» 1)/ (LL+1s)
CONTINUE

THROUGH AURORAs FOR I=1s1s1eGeM
THROUGH AURORAs FOR J=1ls1lsJeGeM
TERM( I o J)=NTERM(IsJ)/(LL+1s)
TRANSFER TO ISABEL

EPS=S0LO/(K+2)

RIJ=NORM*SOLO/ ((K+1e)¥(1e-EPS))
THROUGH JULIAs FOR I=1s1s1eGeM
THROUGH JULIAs FOR J=lsl9JeGeM
WW=e ABSo (EM{ I 9J) %106 ePe=7)
WHENEVER RIJeGeWW

K=K+IN

TRANSFER TO ISABEL

OTHERWISE

TRANSFER TO JULIA

END OF CONDITIONAL

CONTINUE

THROUGH ALICIAs FOR LL=1s19LLeGeQ
THROUGH MARTAs FOR L=1slsLeGeM
THROUGH MARTAs FOR I=19191e4GeM
TERM(Ls1)=0,

THROUGH MAGUFs FOR J=1s1sJeGeM
TERM(L sT)=TERM(L oI }+EMI{L s J) *#EM(J» 1)
CONTINUF

CONT INUF

THROUGH OLIVIAs FOR I=131sTeGeM
THROUGH OLIVIAs FOR J®lslsJeGeM
EM(TsJ)=TERM(IsJ)

CONT INUE

PRINT COMMENT & $

PRINT COMMENT $ TERMS OF THE MATRIX EXPONENTIALS
THROUGH CARMENs FOR I=1lslsleGeM
THROUGH CARMENs FOR J=1s1lsJeGeM
EM(TIsJ)=FAC*EM(I5J)

FUNCTION RETURN

END OF FUNCTION
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TIMDEL

Purpose: to compute the time response of linear systems with

lumped parameters and time delays.

Inputs: order of system (M = ); sampling time (T = ); time
delay (TD = ); final time (TF = ); number of input
signals (R = ); the A matrix; the B matrix; the D1

matrix; the D, matrix; the initial state (X(1,1) = ),

2

Outputs: the plant transition matrices, the control transition
matrices if desired; the current time; and the state

of the system,

Remarks: main program. Subroutines called by TIMDEL: DELFOR,

and PERTUR,




MAGDA

MELA

MALENA

ALMA

BFERTA
JULTA

PROGRAM COMMON EMsDELFsMsRsWsAsBsD1sD2HU

DIMENSION FM{4000sH) sDELF(4000sH) sX(4005sG)sA(400+G)
DIMENSICN B(40U0sG)sN11400+G)sD2(4005G)sU(4V0SE)
INTEGER I1sJsKsl sMaNsLLsZsWesRsREL sMMaWISHJJ

FORMAT VARIABLE FM

VECTOR VALUES
VECTOR VALUES
VECTOR VALUES

G=23%1+0
E=231s0
H=39190s0

$GIVE ORDER OF SYSTEM (M = )%
$DESIRED SAMPLING TIME (T = )%
$TIME DELAY (TD = ) FINAL TIME (TF = )3

PRINT COMMENT
PRINT COMMENT
PRINT COMMENT
READ DATA
FM=M

PRINT COMMENT § %

PRINT COMMENT $1S5 THERE ANY DISTURBING SIGNALS
READ FORMAT S3sWISH
VECTOR VALUES 83 = %
WHENFVER WISHeE«$SYESS
PRINT COMMENT % %
PRINT COMMENT S$NUMBER OF INPUT SIGNALS (R = )3
READ DATA

OTHERWISE

R=0

FND OF CONDITIONAL

REL=TD/T+0.?

G(2)=M

H{2)=M

H(3)=M

C3%%

PRINT COMMENT
PRINT COMMENT
THROUGH MELA>
READ DATA

PRINT COMMENT
PRINT COMMENT

THROUGH MALFNA,

$ %
$GIVE THE A MATRIX
FOR I=1s1s1eGeM

{A(ls1)===sA(25]1)===)%

3%
$GIVE THE B MATRIX
FOR 1=19191eGeM

(Bl{1s1)===3B(2s1)}=-=)3%

RFAD DATA

WHENEVER ReFEeQOsTRANSFER TO JULIA
PRINT COMMENT % %

PRINT COMMENT $GIVE THE D1 MATRIX
THROUGH ALMAs FOR I=1s1514GeM
READ DATA

PRINT COMMENT $ 9%

PRINT COMMENT $GIVE THE D2 MATRIX
THROUGH BERTAs FOR I=151s]eGeM
RFAD DATA

EXECUTE DELFORs (T)

(D1€1s1)===sD1(2s1)===)3

(D2(151)===»D2(251)=~-)"

89

PRINT COMMENT $DO YOU WISH TO HAVFE THE TRANSITION MATRICESS

RFAD FORMAT S3sWISH

WHENEVFR WISHWFe3$YFSS

THROUGH DULCEs FOR L=1s1sLeGeW
Lt=L-1

WHENEVFR ReEWO

PRINT FORMAT OCHOsLL
VECTOR VALUES OCHO =
14HPHI (9 141H) *3
OTHERWISE

PRINT FORMAT SEISsLLsLL

VECTOR VALUES SEIS= $1H »S8»15HTRANSFER MATRIX»S52»
14HPHI (914 91H) 3583 22HTRANSFER MATRIX DELTA(sT4s1H)*3

$1H 9589 15HTRANSFER MATRIXsS2»







CFLIA
GLORIA

ALICIA

MARTA

SILVIA
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CONTINUF

WHENEVFR ZesEels L=L-1

THROUGH ALICIAs FOR K=1s1sKeGeW*REL
THROUGH ALICIAs FOR I=191s1e4GeM
B{KeI)=X(K+1s1)

WHENEVER KeEeWs TRANSFER TO ALICIA
AlKs1)=U(K+1s1)

CONT INUFE

THROUGH MARTAs FOR K=1ls1sXeGeW*¥REL
THROUGH MARTAs FOR I=13191eGeM
X(KeI)=B{KsI)

WHENEVER KeFaeWs TRANSFER TO MART*
UIKsI)=A(Ks1)

CONTINUE

TRANSFER TO SONIA-

PRINT COMMENT $END OF EXECUTIONS
PRINT COMMENT $TO GCONTINUEs GO TO THE TOP OF A NEW PAGES$
PRINT COMMENT SAND PRINT AN ASTERISKS$
READ DATA

TRANSFER TO MAGDA

END OF PROGRAM
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DELFOR

Purpose: to compute the plant transition matrices and the

control transition matrices.

Remarks: subroutine called by TIMDEL.



DELIA
YOLIS

MAGUE

ROSANA

MARTA

SALOME
ISABEL
FANNY
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EXTERNAL FUNCTION (T)

PROGRAM COMMON EMsDELFsMsRsWsAsBsD19D2sU
DIMENSION C{11000sH) sA{4005sG}sB(4002G) sEM(4000sH) +XX(4005G)
DIMENSTION TERM(400+G)sNTERM(4009G)sUU(4005G)sD1(4005G)
DIMENSION DELF(4000sH)sD2(400+G) sU(4005E)
INTEGER I9sJsKoL sMsNsYsQsRoW

VECTOR VALUES H=3413050

VECTOR VALUES G=2s140

VECTOR VALUES E=251,0

ENTRY TO DELFOR.

G(21=M

H(2)=M

H(3)=M

LINDA=O,

ROSA==1.

THROUGH YOLISs FOR I=13191eGeM

THROUGH YOLISs FOR J=1913JeGeM

WHENEVER JeGeRs TRANSFER TO DELIA
DI(I9J)=D1(1sJ)*T

D2(TeJ)=D2(1s D) *T

AlTsJ)=AlTsJ)*T

TERM(IsJ)=A(19J)

B(lsJ)=B([eJ)*T

N=0

MAXH=0.

MAXV=0e.

THROUGH MARIAs FOR I=1s1s1eGeM

SUMH=0,

SUMV=0,

THROUGH ROSANAs FOR JslslsJeGeM
SUMH=SUMH+eABS+TERM(IsJ)
SUMV=SUMV+4ABS«TERM(Js 1)

CONTINVUE

WHENEVER SUMHeGeMAXHsMAXH=SUMH

WHENEVER SUMVeGsMAXVsMAXV=SUMV

CONTINUE

NORM=MAXH

WHENEVER MAXVel « NORMsNORM=MAXYV

WHENEVER LINDAeNE«Oes TRANSFER TO CARMEN
WHENEVER NeNEsOs TRANSFER TO CHELA
SOLO=NORM

K=2 o #*NORM

WHENEVER KelL e2s K=2

wW=1

IN=K/2

THROUGH SALOMEs FOR I=1s1s1eGeM

THROUGH SALOMEs FOR J=1ls1sJeGeM
Cl1s15J)=00

WHENEVER JeEolsCl{laled)=1,
EM{WslsJ)=Cl1lslsJ)

XX{ToJ)=EM(Ws1sJ)

UU(IsJ)=0.

TERM(IsJ)=Cl1lsIs M)

N=0

WHENEVER NeGEeKsANDsLINDAsE«Qes TRANSFER TO MAGUE
WHENEVER NeGEeKeANDeLINDAeNE«Os s TRANSFER TO ELENA
N=N+1

THROUGH HILDA» FOR L=151sLeGaM

THROUGH HILDAs FOR I=1351s1.GeM
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ILILTA

HILDA

JULTA

CHELA

EVA
FLENA

AURORA
MARTA

IRMA
PATY

SONTA

CARMEN

JOSEFA
Yoco

ELISA

NTERM(Ls1)=0.

THROUGH LILIAs FOR J=1s19JeGeM
WHENEVER LINDAGE«OesC{N+1sJs1)=0,
NTERM(Ls I)=NTERM(LsI)+A(LsJI*TERMIJo 11 +B(LsJ)I*CIN+1sJs])
CONTINUE
EM(WsLosT)=EM{WsLsT)+NTERM(L 1)/ (N+LINDA)
WHENEVER ReEeOs TRANSFER TO HILDA
XX(LsI)=XX(L,I)+NTERM(LvI)/((N+LINDA)*(N+LINDA+10))
CONT INUE

THROUGH JULIAs FOR I=1519T4GeM
THROUGH JULIAs FOR J=1slsJeGeM
C(N+1s15J)=NTERM(IsJ)/ (N+LINDA)
TERM{I9J)=C(N+1s1sJ)

TRANSFER TO FANNY

EPS=SOLO/(K+24)
RIJ=NORM*SOLO/((K+le)*(1le~EPS))
THROUGH EVAs FOR I=1s1s1eGeM

THROUGH EVAs FOR J=1sl9JeGeM
ww=.ABS.(EM(W-I;J)*}O..P.—-ON
WHENEVER RIJeGeWW

K=K+IN

TRANSFER TO FANNY

OTHERWISE

TRANSFER TO EVA

END OF CONDITIONAL

CONTINUF

LINDA=LINDA+1.

ROSA=ROSA+1,

WHENEVFR ResE«Os TRANSFER TO PATY
THROUGH MARTAs FOR L=1s1lsLeGeM
THROUGH MARTAs FOR 1=1s1s1eGaR
TERM(Ls11)=0,

THROUGH AURORAs FOR J=1s1sJeGeM
TERM(L 9T )=TERM{L s 1) +XX(L3J}¥D1(JsI)+UU(L»II%D2(J> 1)
CONTINUE

CONTINUE

THROUGH IRMAs FOR I=131s1,GeM

THROUGH IRMAs FOR J=1ls1sJeGeR
DELF(WsI s J)=TERM(IsJ)

THROUGH SONITAs FOR I=1ls1sleGeM
THROUGH SONIAs FOR J=1319JeGeM
TERM(IsJ)=EM{WsTsJ)}

UULTsJ)=XX(TeJ)

TRANSFER TO MAGUE

WHENEVER NORMelLEe10eePe—07sTRANSFER TO DIANA
THROUGH YOCOs FOR L=191sL eGeM

THROUGH YOCOs FOR I=1313s14GeM
NTERM(L,sI)=0,

THROUGH JOSEFAs FOR J=1319JeGeM
NTERM(Ls I)=NTERM(L oI )+B(LsJI¥Cl1sJdsl)
CONTINUF

W=W+1

THROUGH ELISAs FOR I1=19191eGeM
THROUGH ELISAsy FOR J=1313sJeGeM
Cl1919J)=NTERM(IsJ)/(ROSA+1)
XX(T9J)=C(1s19J)/{ROSA+2,)
EM{Welsd)=CllslsJ}

TERM(1sJ)=Cl1lslsJ)}

TRANSFER TO ISABEL
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PERTUR

Purpose: to compute the forcing signal vector at the current

time., The program keeps track of the past.

Remarks: subroutine called by TIMDEL.
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EXTERNAL FUNCTION (TAsLL)

PROGRAM COMMON EMsDELFsMsRsWsAsBsD1sD25U

DIMENSION EM(4000sH) sDELF(4000sH)sA{400+G) »B(400+G)
DIMENSION D1(400+G)sD2(400+G)sU(4005E)

INTEGER IsLLsRsWsM

VECTOR VALUES G=25150

‘VECTOR VALUES E=2s1+0

VECTOR. VALUES H=35150+0
ENTRY TO PERTUR.

G(2)=M

H(2)=M

E(2)=W

H(3) =M

U(LLsl)ow=m=
UlLL92)=~=e-

-
4

U(LLIR )= ===
FUNCTION RETURN
END OF FUNCTION
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