
PROTEUS: A High-Performance

Parallel-Architecture Simulator

by

Eric A. Brewer Chrysanthos N. Dellarocas

Adrian Colbrook

William E. Weihl

September 1991

Abstract

Proteus is a high-performance simulator for MIMD multiprocessors. It is fast, accurate, and
exible:
it is one to two orders of magnitude faster than comparable simulators, it can reproduce results from real
multiprocessors, and it is easily con�gured to simulate a wide range of architectures. Proteus provides
a modular structure that simpli�es customization and independent replacement of parts of architecture.
There are typically multiple implementations of each module that provide di�erent combinations of
accuracy and performance; users pay for accuracy only when and where they need it. Finally, Proteus
provides repeatability, nonintrusive monitoring and debugging, and integrated graphical output, which
result in a development environment superior to those available on real multiprocessors.

Keywords: Execution-driven simulation, parallel algorithmdesign and evaluation, parallel architecture,
parallel debugging

c
 Massachusetts Institute of Technology 1991

This is an electronically reproduced version of Technical Report MIT/LCS/TR-516.

This work was supported in part by the National Science Foundation under grant CCR-8716884, by the
Defense Advanced Research Projects Agency (DARPA) under Contract N00014-89-J-1988, and by an
equipment grant from Digital Equipment Corporation. Eric A. Brewer was supported by an O�ce of
Naval Research Fellowship, Chrysanthos N. Dellarocas by a Starr Foundation Fellowship, and Adrian
Colbrook by a Science and Engineering Research Council Postdoctoral Fellowship.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

2 1 INTRODUCTION

1 Introduction

This paper presents the design of Proteus, a simulator for MIMD multiprocessors. Proteus is an

execution-driven simulator [CMM+88]; it multiplexes a single processor among the various activities

in a simulated parallel machine to provide accurate information about the timing and behavior of an

application and the underlying simulated architecture. Proteus is fast, accurate, and
exible: it is

one to two orders of magnitude faster than comparable simulators, it can reproduce results from real

multiprocessors, and it is easily con�gured to simulate a wide range of MIMD architectures. Proteus'

modular structure allows users to tradeo� accuracy and performance: users pay for accuracy only when

and where they need it. The structure also allows easy customization of the architecture. Finally, Pro-

teus provides repeatability and nonintrusive monitoring and debugging, which result in a development

environment superior to those available on real multiprocessors.

We believe that simulation has a valuable role to play at all levels of the design and analysis of

multiprocessor systems, from architectures to runtime systems to algorithms and applications. Many

projects have used simulation during the development of new architectures to guide the design. We

believe that simulation has an equally vital role to play in the development of software systems for

multiprocessors.

There are two alternatives to simulation: analytical modeling and using real machines. Multiproces-

sor systems are su�ciently complex that analytical modeling is di�cult. On the other hand, using a real

machine to test, debug, and tune a program is problematic. In contrast, simulation allows nonintrusive

monitoring and debugging, and also makes it easy to repeat executions so that di�erent phenomena in

an execution can be studied at a variety of levels of detail.1 Another important advantage of simulation

is
exibility. Using a simulator such as Proteus, we can study the behavior of a program on many dif-

ferent architectures. For example, alternative memory systems can be simulated, giving insight into the

interactions among applications, compilers, and cache-management techniques. Similarly, the number

of processors can be varied, giving insight into the scalability of a program or algorithm (perhaps well

beyond the limits imposed by real machines).

For all its advantages, simulation has potential problems in two areas|speed and accuracy|that can

make it less useful. First, simulators are often slow, making it impossible to run large experiments or sets

of experiments. Second, simulators are often inaccurate, making it di�cult to draw useful conclusions

from the results of a simulation. Proteus is an execution-driven simulator that interleaves the execution

of an application program with the simulation of the underlying architecture; this makes it possible to

achieve very high accuracy. In addition, Proteus avoids interpreting user application code whenever

1Some parallel debuggers support repeatability|e.g., Instant Replay [LM86]|but at the cost of maintaining huge trace

�les and of introducing a signi�cant probe e�ect [Gai86].

3

possible, thus removing the overhead of interpretation for most instructions. Proteus is also designed

so that the entire simulation system, including the application program and the network and memory

simulators, runs in a single address space. These and other factors discussed in Section 6 result in a

performance improvement of one to two orders of magnitude when compared to other simulators with

comparable
exibility such as Tango [DGH91].

Another important feature of Proteus is the ability it provides the user to control the level of

accuracy of the simulation. In general, there is a tradeo� between accuracy and performance: a more

accurate simulation requires more time. Since the level of accuracy desired and the amount of informa-

tion needed from a simulation depend on the application, Proteus provides users with unprecedented

exibility in choosing or customizing the level of accuracy in the network and memory simulations. The

user can also control what monitoring data is produced, both for system-level data (e.g., shared-memory

traces) and user-level data (e.g., the time spent in a code section, or the size of a data structure). As

discussed in more detail below, changing the level of accuracy of the simulation makes a large di�erence

in the running time. For users who need large simulations or sets of simulations, it is important that

they be able to pay only for the accuracy they need.

Proteus was originally designed for evaluating language, compiler, and runtime system mechanisms

to support portability; thus,
exibility, accuracy, and performance are all important. We have also used

it for algorithmic and architectural studies, including concurrent search trees and network and cache

research [CBDW91]. In general, Proteus is an excellent development platform for parallel software: it

supports testing and debugging, performance evaluation and tuning, and graphical output.

Section 2 provides an overview of the simulator, Section 3 discusses Proteus' modular structure, and

Section 4 describes the use of direct execution and augmentation. Support for debugging, monitoring

and graphics is discussed in Section 5, while Section 6 evaluates overall system performance. Section 7

presents evidence on the accuracy of Proteus: it compares simulation results to published empirical

data from an nCUBE multiprocessor. Finally, Section 8 describes related work and Section 9 presents

our conclusions.

2 Overview

Proteus is not actually a simulator; rather, it is an simulation engine that combines with architecture-

speci�c modules and user applications to create a simulator. The resulting executable provides high-

performance simulation of the user's application on the target architecture. This section presents a brief

overview of Proteus, including the basic multiprocessor model, the programming language, and the

steps involved in building and using Proteus simulators.

4 3 MODULES

Proteus simulates MIMD multiprocessors in which independent processor nodes are connected via

an interconnection medium. The interconnection medium can be either a bus, a direct network such as

a k-ary n-cube, or an indirect network such as a butter
y. Each processor node consists of a processor,

a network chip, a cache chip, and memory. Conceptually, the processor is a generic sequential processor

extended with instructions for network access and cache coherence. The network chip interfaces the

processor with the interconnection medium. The cache chip, which is optional, handles cache coherence

and works with the network chip for remote memory accesses.

The memory at each node is divided into two sections, a shared section that maps to part of a

global address space, and a private section that is not accessible from the interconnection medium. For

distributed-memory machines, the size of the shared section is zero. Proteus can simulate hardware

cache coherence for global memory and provides primitives for software coherence.

Users write applications in a superset of C. The extensions include keywords for declaring that data

reside in shared memory and for controlling the placement of data structures. Proteus provides library

routines for message passing, thread management, memory management, and data collection.

There are four steps in the creation and use of a Proteus simulator. First, the user speci�es the

architecture using an X-based con�guration tool. Second, the application- and architecture-speci�c

simulator is compiled and linked into an executable. Next, the user runs the executable to produce

screen output and a trace �le. Finally, Proteus includes a sophisticated X-based graph generator,

discussed in Section 5.4, that interprets the trace �le and presents the results of the simulation. 2

3 Modules

Proteus was designed with a modular structure to simplify replacement and customization of speci�c

parts of the simulator. The modular structure provides two very important abilities. First, the structure

simpli�es customizing the target architecture: it is very easy to experiment with part of the architecture

while keeping the rest unchanged. This makes Proteus useful for evaluating architectural design

decisions, and for simulating speci�c multiprocessors. Second, the modular structure promotes multiple

implementations of a given module, which allows users to switch between very accurate versions and very

fast versions. Users pay only for what they need; in particular, the high-performance versions greatly

reduce development time. This section describes the four most important modules, uses the network

module to demonstrate the e�ectiveness of the structure, and discusses the use of modules to tradeo�

accuracy and performance.

The operating system module provides a kernel operating system for the simulated multiprocessor.

2All of the graphs in this paper were produced by Proteus' graph generator.

3.1 The Network Module Interface 5

The kernel interface speci�es procedures for thread scheduling and management, memory management,

and interrupt and trap handling. In addition to the kernel interrupt handlers, users may de�ne their own

interprocessor interrupts (IPIs) and handlers; for example, user-de�ned IPIs are used to build dispatch

routines for message-passing architectures.

The shared-memory module provides access to local shared memory, handles full-empty bits [Smi81],

and provides atomic operations such as test-and-set and compare-and-swap. The shared memory of a

remote processor is not accessed directly via the shared-memory module; instead, a network request is

generated (usually by the cache module) that invokes the shared-memory module when it arrives at the

remote node. Separating the remote access into a network portion and a local-memory portion allows

the network and shared-memory modules to be replaced independently.

The cache module handles memory requests from the local processor and from the local network

chip. It generates calls to both the shared-memory module (for local accesses) and the network module

(for remote accesses). The primary operations provided by the cache module are read, write, and
ush.

In addition, the module de�nes operations for software coherence: soft read and write, and fence [SS87].

The intent of the soft operations is to access the currently cached, possibly stale, data. The fence

operation blocks until all pending protocol transactions for the given cache line have completed and is

used to ensure coherence for that cache line.

The network module, described in detail in the next subsection, simulates the movement of data

within the interconnection medium.

3.1 The Network Module Interface

The network module is a good example of the modular structure of Proteus. It demonstrates the two

key advantages of Proteus' modular structure: the simplicity of customization and the use of multiple

versions to provide a range of accuracy and performance. The user must modify only three procedures to

replace the network module. The multiple versions, which are discussed in Section 3.2, provide orders of

magnitude performance di�erences depending on the required accuracy. Before discussing the network

module, a brief discussion of the simulator engine is in order.

Instructions that a�ect remote nodes are implemented using simulator requests, which are times-

tamped structures stored in a central priority queue. Such a non-local instruction generates a simulator

request and inserts it into the priority queue, which is sorted by timestamp. The engine repeatedly exe-

cutes the request with the lowest timestamp until there are no requests left, at which time the simulation

is complete. Each request type has a associated procedure: the engine executes a request by calling the

associated procedure.

The network module uses three types of requests. The �rst is a send request, which signi�es that the

6 3 MODULES

Request Generation Request Execution

void Send(from, to, time, packet, mode) void send request handler(SimRequest)

void Route(next, time, packet) void route request handler(SimRequest)

void Receive(from, time, packet) void receive request handler(SimRequest)

Table 1: Interface for the network module.

processor is ready to send a packet to the network chip. The second type of request is the route request,

which computes the next node for a packet and computes the arrival time of the packet at that node.

Some versions, such as a bus, do not use this request at all. The third type is the receive request, which

occurs when the packet reaches the target node. The receive request either interrupts the processor or

noti�es the cache chip depending on the packet. Only the network module generates route and receive

requests; all other modules generate only send requests. Table 1 lists the procedures for generating and

executing network requests. New versions of the network module only need to replace the procedures

for executing network requests.

Typically, the send request generates two requests: one to resume the processor at the appropriate

time and a route request to move the packet to the next node or switch. If the network chip uses

DMA to get the packet, then the processor is resumed fairly quickly. Other architectures, such as the

J-machine [D+89], require that the processor feed the packet to the network chip word by word. In this

case, the delay depends on the length of the packet. The mode argument is used to pass
ags to the

module. At the moment, the only
ag determines whether or not to interrupt the processor when the

DMA completes (assuming the network chip uses DMA).

The route request computes the node to which the packet should be forwarded. For example, in

a k-ary n-cube the route request determines which output channel to use, based on the target node,

the incoming channel, and possibly the contention on the output channels of the current node. It then

computes the arrival time of the packet at the next node, using the current time and information about

when the channel will be available. Only the route handler needs to know anything about channels and

contention. It the next node is the target, the route handler generates a receive request.

The receive request looks at the type of the packet, which is either a memory packet or an IPI packet.

Memory packets are handed to the cache module, which de�nes a procedure speci�cally for handling

network packets. An IPI packet causes an interrupt of the local processor.

For a speci�c architecture, it is common to provide additional procedures in the network module

that improve the accuracy of the module. For example, the network chip for the Alewife multiprocessor

provides a way to check if the chip is busy. We added a procedure that returns true if the channel is

3.2 Trading Accuracy for Performance 7

busy; we set its cost to four cycles, which is the time it would take to load and check the busy
ag.

Using this structure, most network changes, including routing algorithm and topology changes, re-

quire modi�cations to only the route request handler. Most detailed network modules are only a few

hundred lines total, and often much of the code can be inherited from existing network modules. The

nCUBE network module used for the experiments described in Section 7 took less than a day to imple-

ment.

3.2 Trading Accuracy for Performance

Depending on the end goals of a simulation, some modules may have to be very accurate while others

can be less accurate. For example, users studying scheduling require very accurate costs in the operating

systems module but may not need detailed network simulation. Furthermore, during development,

users generally prefer to avoid the lower performance of the most accurate modules. The ability to

replace modules provides a simple way to trade accuracy for performance: Proteus provides both a

very accurate version of a module and a high-performance version with the same semantics but lower

accuracy.3 Currently, the network module and the cache module exploit this tradeo�.

The accurate version of the k-ary n-cube network module simulates the progress of each packet hop by

hop. This allows complete simulation of network contention, including hot spots. It correctly simulates

uni- and bidirectional edges, end-around connections, internal switch delays, and virtual channels [DS87].

The high-performance version uses an analytical model developed by Agarwal [Aga91]. Instead of

simulating each hop, it computes the arrival time at the target using a formula presented in the paper and

a contention factor based on a sliding-window view of recent network tra�c. This version is acceptable

when the tra�c is mild. Although the high-performance version has limited accuracy, it is more than

an order of magnitude faster than the exact version.

The analytical model used in the high-performance module produces incorrect arrival times both

when there are hot spots and when there is no contention at all. As an example of the latter, consider

a pipeline application that has high network tra�c but no contention. The high tra�c leads to a high

contention factor, even though none of the packets contend for an edge. Thus the model-based version

arti�cially in
ates network delays when there is no contention.4

The accurate cache module simulates Chaiken's cache-coherence protocol for direct networks [Cha90].

It simulates all of the cache states and protocol packets. The less accurate module simply provides

coherent shared memory by not caching at all: it always goes over the network for remote memory

3Versions with intermediate performance and accuracy are possible: the cache module currently provides three versions.
4Although easy to see in hindsight, the inaccuracy at zero contention was �rst noticed in Proteus simulations; it was

a surprise even to the author of the model.

8 3 MODULES

Analytical Network Model Hop-by-hop Network

Uniform Cost 1,500,000 700,000

No Caching 1,000,000 400,000

Coherent Cache 500,000 120,000

Numbers are in simulated cycles per second.

Table 2: This table shows the relative system performance of the six combinations of network and cache
modules. The numbers are for the 8-queens application running on an 8x8 mesh. The simulations
were run on a DECstation 5000. These numbers vary quite a bit depending on the application and the
architecture, but the relative magnitudes are typical.

accesses. Although this increases network tra�c, the overall system performance improves substantially.

A third version runs even faster: it accesses global memory directly, that is, without using the network.5

It assigns all global memory accesses a single �xed cost. Note that all three versions have the same

semantics, the only di�erence is the cost of accesses.

Table 2 shows the relative system performance of the six combinations of cache and network modules

for an 8-queens application running on an 8x8 mesh. There is more than a ten-fold di�erence in perfor-

mance between the least and most accurate combinations. Most simulations achieve well over one million

simulated cycles per second, since the accuracy is usually not needed during application development.

In summary, the modular structure of Proteus allows easy replacement and customization of indi-

vidual parts of the simulator. This allows users to tailor Proteus to a particular architecture. We have

exploited this ability to reproduce both the nCUBE [FJL+88], a message-passing multiprocessor, and

Alewife [A+91], a shared-memory multiprocessor. (Section 7 describes the correspondence between the

nCUBE version of Proteus and the real nCUBE.) The modular structure also allows selection of mod-

ules based on required accuracy, which allows users to maximize performance for a particular simulation

by trading unneeded accuracy for increased performance. In particular, users can exploit more than a

ten-fold gain in performance during development by forfeiting detailed simulation of the network and

cache. Later, when their code is debugged, they can switch to more accurate modules without modifying

their code.

5This is possible because Proteus runs in a single address space.

9

4 Direct Execution

A primary factor in the performance of Proteus is the use of direct execution to provide very low-

overhead simulation of most instructions. The key idea is to execute local instructions directly and

augment the code with cycle-counting instructions to time the code. This section presents an overview

of direct execution with augmentation and discusses the
exibility it provides and the assumptions it

requires.

Proteus directly executes local instructions. An instruction is local if it only a�ects the local

processor. For example, all register-to-register instructions are local instructions. An instruction that

might a�ect another part of the system is a non-local instruction. All shared-memory accesses and

network instructions are non-local. Proteus simulates local instructions by directly executing the

instruction on the host workstation; non-local instructions are simulated via a procedure call.

Although direct execution provides the correct functionality of local instructions, it ignores the

simulated time required to execute them. Proteus uses code augmentation to count the cycles required

by local instructions. For each basic block of local instructions, code is added to increment a global cycle

counter by the number of cycles required to execute that block. Because the counter is incremented

every time a block executes, the counter correctly tracks the required cycles for any path through the

control-
ow graph.

The use of direct execution with augmentation was used �rst by Mathieson and Francis [MF88] and

by Covington et al. [CMM+88]. The technique has been used in several other simulators [DGH91, Che89,

SF89]. We extend the work in this area in three ways. First, Proteus provides support for nonintrusive

monitoring, which is discussed in Section 5.1.

Second, pro�ling information, similar to the Unix tool prof [DECb], can be generated by using a

procedure-speci�c cycle counter in addition to the global cycle counter. This produces very accurate

counts of the simulated cycles spent in each procedure. As with prof, the pro�ling information guides

tuning and aids debugging. Unlike prof, which uses periodic sampling to collect pro�ling data, Proteus

pro�ling data is exact.

Third, we use augmentation to limit the number of cycles a single thread can execute without

returning control to the simulator engine. This limit, called the quantum, keeps processors close together

in simulated time. Normally, processors are kept close together simply because they perform non-

local instructions, which always return control to the engine. However, without the quantum, loops

containing only local instructions can cause a thread to get thousands of cycles ahead. This a�ects

arriving interrupts, which may get arti�cially delayed thousands of cycles. The quantum also prevents

in�nite loops in user code from hindering debugging: since the simulator regularly regains control, the

user can enter debugging mode and easily determine which processors and which procedures are in

10 4 DIRECT EXECUTION

Program Normal Cycles Augmented Cycles Overhead Factor

Queue 65,876,631 144,581,647 2.2

Sieve 52,483,384 130,868,590 2.5

augment 11,670,316 24,578,648 2.1

Minimum ASIM overhead 200

Table 3: Measuring the overhead of augmentation. This table compares several sequential programs
with and without augmentation. The cycles were determined by pixie [DECa], a pro�ling tool available
on MIPS-based workstations. The overhead factor is the ratio of the pixie cycle count for the aug-
mented version over that of the normal version. The overhead is consistently a small factor. ASIM is a
multiprocessor simulator developed for the Alewife project at MIT [A+91, CLN90]; it is representative
of instruction-interpreting simulators.

in�nite loops.

The simulation overhead incurred by code augmentation is much lower than that incurred by in-

struction interpretation, which is used in most processor simulators. Table 3 shows the overhead due

to augmentation for three sequential programs. As discussed by Davis et al. [DGH91], the overhead

for augmentation is about a factor of two, which is about one hundred times lower than the overhead

for instruction interpretation. Unfortunately, these numbers only apply for local instructions; non-local

instructions must still be interpreted. Thus the overall performance of Proteus, which is discussed in

Section 6, is rarely one hundred times faster than instruction-interpreting simulators.

The hundred-fold performance gain for local instructions does not come for free. Using direct execu-

tion with augmentation requires several assumptions that are not required by simulators that interpret

every instruction. First, because Proteus determines the cost of each basic block at compile time, the

cost of a block is a �xed number of cycles. In reality, the cost of an instruction depends on cache hits

and sometimes on the operands. Thus, we use the expected cost of the instruction, taking into account

both the expected number of cycles for the instruction and the expected delay due to cache misses. In

essence, we assume uniform cache hit rates for instructions and data in private memory. (Shared-memory

accesses are simulated in detail and thus avoid this assumption.) This assumption is reasonable because

uniprocessor cache hit rates are very high, and because small periodic errors in instruction costs rarely

a�ect overall simulation results.

A second and related assumption is that code and stacks reside in private memory. If code resides in

shared memory, Proteus must simulate the cache-coherence protocol for every instruction fetch, which

removes most of the performance bene�t of direct execution. Likewise, if stacks reside in shared memory,

11

every stack access must be simulated in detail, which again results in a severe loss of performance.

Section 8 discusses future plans regarding this assumption.

The errors due to these assumptions are small and localized; in practice, they have had negligible

e�ect. Section 7 compares Proteus results with those of real multiprocessors; for these applications,

our assumptions are validated.

5 Monitoring and Debugging

In addition to performance, a primary asset of Proteus is its support for monitoring and debugging.

Proteus provides nonintrusive monitoring and debugging: users can add monitoring code that does

not a�ect the behavior or timing of the simulation. Proteus also provides repeatability: users can

rerun simulations to pinpoint bugs. Real multiprocessors generally provide neither of these abilities.

Because Proteus runs as a single process, it works well with sequential debuggers such as dbx [Lin90].

This extends the power of advanced sequential debuggers to the parallel development arena. Further-

more, Proteus provides an internal debugging mode that allows users to examine the states of threads,

processors, locks, and memory. Combining the Proteus debugger with a sequential debugger such as

dbx results in a very e�ective development environment.

Proteus also provides an integrated subsystem for data collection and display. Data collection is

supported by primitives for recording data to a trace �le and by user-de�ned data types. Data display

is performed by an X-based graph program that uses a simple but powerful graph language to interpret

the trace �le data.

This section examines Proteus' support for nonintrusive monitoring and discusses repeatability and

nondeterminism. It then examines the primitives for data collection and concludes with a discussion of

the graph-generation program.

5.1 Nonintrusive Monitoring

Nonintrusive monitoring, combined with repeatability, greatly simpli�es the development of concurrent

programs. Real multiprocessor systems su�er from the probe e�ect: the addition of monitoring code may

cause the monitored e�ect to disappear [Gai86]. This prevents programmers from collecting additional

data for debugging. Proteus allows users to add arbitrary monitoring or debugging code without

changing the behavior of the simulation.

For non-cycle-counted code, the addition is trivial. Since the cost of the code is not determined

by cycle counting, the monitoring code does not a�ect the cost, which ensures no change in behavior.6

6The monitoring code may alter costs if desired, but this is unusual since it could change the system behavior.

12 5 MONITORING AND DEBUGGING

Thus for engine code and most architectural modules, the addition of nonintrusive monitoring code is

straightforward.

Adding nonintrusive code to cycle-counted code can be more di�cult. In this case, a simple addition

will change the behavior since the cost of the code increases. To resolve this problem, Proteus allows

users to turn o� cycle counting temporarily within cycle-counted code. Thus, a typical nonintrusive

addition would �rst turn o� cycle counting, then add the extra code, and then turn on cycle counting.7

It is conceivable that even with cycle counting turned o�, the addition may change the behavior of

the application. This is because the additional code may a�ect the surrounding code indirectly. For

example, if the additional code uses several registers, the surrounding code may spill more registers than

the previous version. This would increase the cost and thus could change the behavior of the system.

We have rarely observed this problem in practice; the addition of monitoring code to cycle-counted

code has not caused the e�ects being studied to disappear. Should it occur, however, it is possible to

adjust the cost of the monitored code so that it matches the cost it had prior to the addition. Proteus

provides primitives for increasing and decreasing the cycle counter by a delta, so it is easy to subtract out

the extra cycles due to the monitoring code.8 Section 8 discusses future work on nonintrusive monitoring.

5.2 Repeatability

Nonintrusive monitoring is only useful if the platform ensures repeatability: the whole point of nonin-

trusive monitoring is to allow repeatability in the presence of additional code. Repeatability is perhaps

the single most important feature of Proteus; its presence provides a debugging environment that is

not available on real multiprocessor systems.

Nondeterministic systems, such as multiprocessors, rarely provide any form of repeatability; some

bugs may occur only once every ten thousand executions. For deterministic programs, such as Proteus,

repeatability is the rule rather than the exception. Thus, Proteus simply extends the repeatability

inherent in sequential programs to multiprocessor applications.

Given that Proteus is deterministic, it might seem reasonable to assume that it can reproduce only

one of the many possible executions of a fundamentally nondeterministic application. In fact, however,

Proteus can reproduce multiple executions of a nondeterministic application, an ability unique to

Proteus among multiprocessor simulators. The multiple executions arise because Proteus chooses

randomly between two requests with the same timestamp; Proteus views two such requests as a race

7Turning on and o� cycle counting is done with macros that allow nesting; it is legal to embed non-cycle-countedmacros

into code that already has cycle counting turned o�.
8The number of extra cycles can be determined by looking at the assembly code or by printing out the cycle counter

with and without the change. Guessing a small number would probably work as well, since the cost only needs to be

accurate enough to prevent the monitored e�ect from disappearing.

5.3 Data Collection 13

condition. A pseudo-random number generator is used to decide the race condition; this provides the

determinism required for repeatability. At the same time, using pseudo-random numbers implies that

changing the seed changes the outcome of some of the race conditions and thus leads to a di�erent

execution of the same nondeterministic application.

For most applications, the ability to reproduce multiple executions is not critical. However, some

applications, such as concurrent branch-and-bound search algorithms, exhibit vastly di�erent behavior

depending on the outcome of race conditions. In the case of a concurrent search algorithm, the ability

to investigate multiple executions allows a researcher to collect a distribution of execution times, which

provides a much more accurate view of the e�ectiveness of the algorithm. As expected, some Proteus

applications exhibit a wide distribution of execution times when the random number seed is varied.

5.3 Data Collection

The ability to collect exactly the desired data greatly enhances the usefulness of simulation. Proteus

provides a framework for generating trace �le data that allows users to generate their own data in

addition to the statistics collected by the engine and the modules.

The simulator uses two basic kinds of data, time-dependent and time-independent. The time-

dependent data records, called events, include a value, an index, and a timestamp. For example, a

concurrency graph can be generated using events: each point is an event consisting of the number of

busy processors and the timestamp.9 Any graph that plots something versus time uses events. The

index �eld is used when generating data for a set of event versus time graphs; Figure 2 is an example.

Time-independent data records, called metrics, summarize one aspect of a simulation with a single

value. For example, the execution time is a metric. An array metric is simply an array of metrics.

Processor utilization graphs, for example, use an array metric with one metric for each processor. Metrics

are often used to compare the results of several simulations. For example, the nCUBE graphs in Section 7

plot execution time versus the number of processors; each point is a metric from one simulation.

In addition to several prede�ned data types, users can de�ne their own event types and metrics. The

interpretation of user data is speci�ed in a simple graph language used by the graph generator. User-

de�ned data types allow researchers to generate high-quality application-speci�c graphs in very little

time. Typically, it takes only a few minutes to de�ne a new event type and specify the interpretation

using the graph language.

9In practice, we use two events for concurrency graphs, one that indicates a processor became busy and a second that

indicates a processor became idle. The index �eld contains the processor number. This allows us to determine exactly

which processors are busy; recording the count directly hides this information.

14 5 MONITORING AND DEBUGGING

Map state map f "Compute" 0, "Send" 1, "Receive" 2 g

ArrayGraph state (p, 0, NO OF PROCESSORS - 1) f
menu <- "Processor State", ; name in menu

usemap <- state map, ; name-value map

x axis <- "Time", ; x-axis label

y axis <- "Processor", ; y-axis label

action f
EV STATE: VALUE(p) ; use the value of events with index p

g
g

Figure 1: Graph speci�cation for a processor state graph. The Map statement de�nes a set of name-value
pairs. The ArrayGraph keyword indicates that this is an array of event versus time graphs: the local
variable p iterates over the valid processor numbers, and the resulting graph has one timeline for each
processor. The action clause says to ignore all but EV STATE events; the VALUE action sets the y value
to the value of the event. The \(p)" notation indicates that the index �eld of the event must match the
current value of p, so that only events from the relevant processor a�ect the timeline for this iteration.
A graph with this speci�cation appears in Figure 2.

5.4 Graphics

Proteus provides integrated graphics capabilities that are not available with comparable simulators

and are often not available with real multiprocessors. Proteus' graphics capabilities make it simple to

evaluate algorithms and architectures: users can quickly create graphs that answer their key questions

and provide new insight. The key is a simple but powerful graph-speci�cation language that tells the

graph generator how to interpret the trace �le.

The data for the graphs comes from the events and metrics stored in the trace �le. An individual

graph speci�cation gives meaning to the events and metrics by determining which events and metrics

are relevant and by specifying how to build a graph from the relevant elements. Figure 1 shows a typical

graph speci�cation. Like most graph speci�cations it is simple and very short.

The graph generator produces line graphs, bar graphs, and tables, and can combine multiple graphs

onto the same axes. It can also merge data from multiple simulations; this simpli�es comparison of an

algorithm across a range of architectures, machine sizes, or other architectural parameter. The generator

uses the X Window system and can produce PostScript hardcopy. It can also produce PostScript �les

for inclusion in documents such as this paper.

We have found the ability to create new graphs quickly to be an excellent debugging aid. The

most e�ective approach is to graph the state of each processor versus time and then combine all of

the timelines into one graph. De�ning new event types, adding the data collection statements, and

15

Time (x 100)

P
ro

ce
ss

o
r

Compute
Send
Receive

7950 7960 7970 7980 7990 8000 8010 8020 8030 8040 8050 8060 8070 8080 8090 8100
0

1

2

3

Figure 2: This graph shows the state of four processors in a pipeline search tree application [CBDW91].
The state graph is generally periodic; the width of the period reveals the throughput of the pipeline. A
single operation has a \slope" of about 60 degrees from the positive time axis: the pipeline latency can
be measured directly from this slope. More importantly, this graph reveals that this particular algorithm
is spending all of its time performing communication: very little of the graph is white. A change to
bu�ered asynchronous message passing resolved this problem.

specifying the graph typically require a total of about ten minutes. Many interesting e�ects are visible

on these graphs including livelock and deadlock. Excessive lock-holding times are readily apparent, as

are violations of mutual exclusion. In addition to debugging, these graphs are useful for program tuning

since they indicate how long di�erent states last. Figure 2 shows one of these graphs.

The data collection and display subsystem gives Proteus a unusual level of e�ectiveness. Users

can collect and display the data they need to answer their questions. The support for user-de�ned data

collection and user-speci�ed graphs gives users of Proteus full access to the insight available through

simulation.

6 Performance

Proteus substantially outperforms comparable multiprocessor simulators. By providing one to two

orders of magnitude improvement in performance, Proteus allows researchers to investigate applica-

tions and machine sizes prohibited by the performance of other simulators. Table 4 summarizes the

performance of three multiprocessor simulators.

16 6 PERFORMANCE

Program Slowdown Per Processor

Simulator Best Typical

Proteus 2 35-100

ASIM 200 1,000-5,000

Tango 2 500-2,000

Table 4: Overall system performance for several multiprocessor simulators.

The ASIM simulator [CLN90], which was developed for the Alewife project at MIT, is a fairly

representative instruction-interpreting simulator. The overhead of instruction interpretation is re
ected

in the \Best" column of Table 4, and limits the typical performance substantially.

Tango [DGH91] is very similar to Proteus in its use of direct execution with augmentation. Thus,

its peak performance has an overhead factor of about two. The typical performance, however, is far

worse than that of Proteus. This seems surprising, since Tango has similar overhead for augmentation.

In practice, augmentation overhead is an insigni�cant part of simulation overhead; simulating non-local

instructions and context switching dominate the cost of simulation. It is in these areas that Proteus

outperforms Tango.

Tango uses Unix processes for each simulated thread, which results in a context switch time of 180

to 250 microseconds according to the authors. Proteus uses a custom lightweight-threads package

that provides context switching times of about 3 microseconds. Even with lightweight threads, context

switching accounts for several percent of the total running time; thus, using Unix processes would greatly

reduce the performance of Proteus.10

Proteus' lightweight threads exploit \partial" context switches if the switch occurs at a procedure

call boundary. Invariants hold at procedure boundaries that limit the amount of context that must be

saved. Because we use procedures to implement non-local instructions, it is quite common to switch at

procedure call boundaries; typically, 98% of all context switches involve the limited context.11

Tango uses Unix semaphores for synchronization, which further limits performance. The semaphores

used in Proteus are signi�cantly faster. In addition, Proteus simulates spinning by internally blocking

the spinning thread, but still generating the correct network tra�c. This allows Proteus to simulate

spinlock contention without su�ering from contention delays itself. Tango performance drops an order

10The authors of Tango are developing a version that uses lightweight threads; its performance should be much more

competitive.
11Because of the di�erent size contexts, we must save the size of the context to avoid excess copying when the context

is restored.

17

of magnitude in the presence of high contention.

There are also indirect performance bene�ts from running in a single address space, such as reduced

memory requirements and direct access to all parts of the simulator. In particular, the global priority

queue, which is accessed for every non-local operation, has a tuned implementation that provides access

speed that would not be possible with multiple Unix processes.

All of these decisions combine to give Proteus a level of performance that is consistently at least

an order of magnitude faster than other multiprocessor simulators. During application development,

the performance is typically two orders of magnitude better due to the performance-accuracy tradeo�

provided by Proteus' modular structure.

7 Validation

This section compares Proteus' results with published results from a real multiprocessor. If the simu-

lator produces valid data, then its results should match those of the real multiprocessor. We have used

published results to validate Proteus several times; here we reproduce results from a comparison of

sorting algorithms on an nCUBE multiprocessor.

The nCUBE is a message-passing multiprocessor with a hypercube topology; that is, there are 2n

processors with each processor connected to n other processors. Communication is in the style of

CSP [Hoa85]: every send must have a matching receive. The primitives transfer data blocks via DMA

over the network to the target processor. There is no cache coherence.

The algorithm comparison comes from Quinn's paper \Analysis and Benchmarking of Two Parallel

Sorting Algorithms: Hyperquicksort and Quickmerge" [Qui89]. Quinn compares two sorting algorithms

on a 64-processor nCUBE/7. Both algorithms mix local sorting with communication; they di�er in their

strategies for dividing the values among the processors. In general, quickmerge requires fewer but larger

messages than hyperquicksort.

Figure 3 graphs Quinn's hyperquicksort times along with times for the nCUBE version of Proteus

and a version with a generic network module. The nCUBE version provides procedures that implement

the nCUBE communication primitives and uses costs adjusted to re
ect the actual communication costs

of the nCUBE, which are much higher than those assumed by the generic network module.12

Since we use direct execution, all of the local sorting compiled to MIPS code, not nCUBE code.

The di�erences in local instructions and compilers implies that we must scale Proteus cycle counts to

correspond to nCUBE seconds. For the hyperquicksort graph, we simply picked the scaling factor that

12Thanks to David Culler at the University of California at Berkeley for providing nCUBE timing data.

18 7 VALIDATION

Dimension

T
im

e
(s

ec
o

n
d

s)

Quinn Hyperquicksort
nCUBE Proteus Hyperquicksort
Generic Proteus Hyperquicksort

0 1 2 3 4 5 6
0

.2

.4

.6

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Figure 3: Hyperquicksort Times

provided the best match; thus, for hyperquicksort (only) the match between Quinn's data and our data

is deceptively good.

The scaling factor, however, should be independent of the application, so we used the same scaling

factor for quickmerge. Figure 4 graphs Quinn's results and Proteus' results for quickmerge. The key

point is that although the hyperquicksort data has been scaled to �t, the quickmerge data has not: we

�rst established the ratio of Proteus cycles to nCUBE seconds, then we ran the quickmerge simulations.

The fact that the quickmerge data matches Quinn's data well validates both the scaling factor and the

nCUBE version of Proteus as a whole. Figure 5 presents a di�erent view of the quickmerge data; the

data has been normalized to Quinn's results so that the error in individual Proteus points is more

visible.

The nCUBE Proteus results match the published results extremely well, especially when compared

to the generic network module. The modi�cations for the nCUBE version took less than one day to

implement, but resulted in substantially more accurate simulations { these facts con�rm the importance

of the modular structure. Further re�nements would improve the accuracy of the nCUBE version, but

the �rst order modi�cations were su�cient to obtain results consistently within four percent.

Evidence for the accuracy of Proteus comes from other sources as well. In our research on con-

current search trees [CBDW91], we found that Proteus was able to reproduce published search tree

19

Dimension

T
im

e
(s

ec
o

n
d

s)

Quinn Quickmerge
nCUBE Proteus Quickmerge

0 1 2 3 4 5 6
0

.2

.4

.6

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Figure 4: Quickmerge Times

Dimension

N
o

rm
al

iz
ed

 V
al

u
es

Normalized Quinn Quickmerge
Normalized nCUBE Proteus Quickmerge

0 1 2 3 4 5 6
93

94

95

96

97

98

99

100

101

102

103

104

Figure 5: Proteus error in quickmerge times. The data has been normalized to Quinn's data to clarify
the error in the Proteus results.

20 8 RELATED WORK

results [CS90] that were measured on a Supernode multiprocessor [Nic88].

Proteus also reproduced the results published in \Synchronization without Contention" by Mellor-

Crummey and Scott [MCS91]. This paper compared locking algorithms on both a Sequent Symmetry

and a BBN Butter
y.

In general, any e�ect that we expected to see has actually appeared. More importantly, all unexpected

results have (so far) proven to be real e�ects rather than inaccuracies introduced by Proteus. For

example, we noticed excessive communication problems in David Chaiken's cache-coherence protocol

that severely hindered performance [Cha90]. In his thesis, Chaiken predicted the possibility of cache

thrashing, but he did not know if it would be a problem in practice. The solutions he suggested resolved

our problem, con�rming that the excessive communication was due to thrashing in the cache. The

thrashing problems and solutions were con�rmed by Chaiken's own simulations using ASIM [CLN90].

8 Related Work

Augmentation was �rst used to pro�le sequential programs by Weinberger [Wei84]; direct execution with

augmentation for multiprocessor simulation was developed by Mathieson and Francis for their Threads

simulator, and by Covington et al. for the Rice Parallel Processing Testbed (RPPT) [CMM+88], and is

used in several simulators [DGH91, Che89, SF89]. Section 4 discusses our extensions to this work.

Among these simulators, only the RPPT provides substantial support for debugging. It provides some

form of \parallel debugger/tracer" that interprets and controls the simulation. In contrast, Proteus

was designed to work well with sequential debuggers in addition to providing a debugging mode that

interprets the state of the simulation and allows single stepping. Debugging in Proteus is simple and

straightforward, primarily because we support sequential debugging techniques.

The support for integrated data collection and display is unique to Proteus among execution-driven

simulators, although Tango provides some form of general monitoring. The CARE simulator [DSNB87],

which simulates LISP code using direct execution and a hardware timer, provides integrated monitoring

and graphics. The TESS simulator [Sta85], a commercial discrete-event simulation system, provides very

general data collection and display abilities, but is not very useful for multiprocessor simulation.

The modular structure of Proteus extends the separation of functionality introduced by Tango.

In Tango, it is easy to replace the memory system simulator as a whole, but the cache, network, and

memory systems cannot be replaced independently. The RPPT provides several architectural models,

but does not seem to support customization or independent replacement.

The ability to trade accuracy for performance is exploited to a small extent by Tango, which provides

multiple versions of the memory system. Proteus makes this tradeo� a fundamental part of the

8.1 Future Work 21

simulator. It provides multiple implementations of modules, and also provides several parameters, such

as the quantum, that tradeo� accuracy and performance.

The ability of Proteus to reproduce published results provides a level of con�dence in simulation

results that is absent in published results about comparable simulators. The execution-driven simulation

literature makes no attempt to reproduce results from real multiprocessors.

Proteus also extends the performance of execution-driven simulation by combining simulation and

analytical models. The use of Agarwal's network model as the base of one of the network module imple-

mentations provides more than an order of magnitude increase in performance in network simulation.

Although simulation is always based on some model, our use of analytical models is novel in that we

make no attempt to simulate what actually occurs in the network. Instead, we merely attempt to com-

pute the correct costs for network operations. We believe that the explicit use of analytical models has

an important place in the tradeo� between performance and accuracy: when used within their limits

they provide tremendous performance and su�cient accuracy.

8.1 Future Work

One of the primary limitations of Proteus is the restriction that code and stacks reside in private (local)

memory. This assumption prevents Proteus from having to simulate cache e�ects for every instruction

fetch and stack access. Although removing this restriction would greatly reduce the performance of

Proteus, we would like to o�er the increased accuracy as an option.

We would probably simulate the cache e�ects on a basic-block basis; that is, each block would be

augmented with calls that simulate the cache e�ects for the instruction fetches and stack accesses in

that block. The implementation is complicated by the dynamic nature of the addresses: some of the

addresses cannot be determined statically.

We would also like to provide some form of virtual-memory simulation. Although most research

multiprocessors do not use virtual memory, many of the smaller commercial machines do.

Finally, we hope to implement fully nonintrusive debugging. As described in Section 5.1, there are

some cases in which the \nonintrusive" code indirectly a�ects the monitored code, usually by changing

register allocation. We can eliminate these e�ects by automatically setting the cost of the monitored

code to its value before the monitoring was added. Thus, the augmentation program would read the

previous version of the monitored code to obtain the correct costs, then it would adjust the cost of the

new version to be identical, which makes the monitoring code truly nonintrusive. Since the current

approach works most of the time, and users can adjust the costs themselves in the cases that fail, this

change has lower priority than the others.

22 9 CONCLUSION

9 Conclusion

Proteus provides a unique combination of
exibility, performance, and accuracy. Its modular structure

simpli�es customization and independent replacement of individual parts of the simulator; this promotes

modules for particular architectures and multiple implementations that provide a variety of performance

and accuracy combinations. The division into independent modules also clari�es and simpli�es each

module, which makes it easier to tune performance.

The overall performance of Proteus is typically an order of magnitude higher than comparable

simulators; this is due primarily to the use of direct execution, a high-performance lightweight-threads

package, and e�cient simulation of synchronization. When the high-performance versions of modules

are in use, which is typical during development, the system performance increases an additional order

of magnitude over other multiprocessor simulators.

The accurate versions of modules allow Proteus to reproduce published results; we have performed

such validations several times in addition to the experiment described in Section 7. The validation

experiments provide a signi�cantly increased level of con�dence in Proteus' results. In general, every

e�ect that we expected to see has actually appeared, and every unexpected e�ect turned out to be real.

The primary use of Proteus so far has been the design and implementation of a portable parallel

language and runtime system. It has also been used for research on concurrent algorithms, operating

system network overhead, and fault tolerance. The fault tolerance application consists of roughly 10,000

lines and runs for hundreds of millions of cycles.

Proteus provides several key features that make it an exceptional platform for research on parallel

systems:

Flexibility: Proteus can simulate a wide variety of MIMD multiprocessors, including both

shared-memory and message-passing machines.

Performance: Proteus' performance allows simulation of applications and machine sizes

that are prohibited by other simulators.

Performance/Accuracy Tradeo�: By providing only the required accuracy, Proteus

maximizes performance; this allows exceptional performance during development since

users can simply switch to accurate modules when needed.

Repeatability: Proteus provides repeatability, which is critical to quality debugging, but

rarely available on real multiprocessors. It lets users rerun simulations until they have

pinpointed a problem.

REFERENCES 23

Nonintrusive Monitoring: To ensure repeatability despite the presence of additional mon-

itoring code, Proteus allows users to add nonintrusive monitoring code. This allows

users to gain more information without causing an e�ect of interest to disappear due to

changes in timing.

Use of Sequential Debuggers: Proteus is designed to work well with standard debuggers

such as dbx; this brings the power of advanced sequential debuggers to parallel software

development.

Data Collection: Users can collect exactly the data they need, including user-de�ned data

types.

Graphical Output: A simple but powerful graph-speci�cation language allows users to cre-

ate application- or architecture-speci�c graphs quickly and easily.

Availability: Proteus allows parallel-systems research to take place on standard worksta-

tions, thus avoiding the cost and limitations of real multiprocessors.

We believe that these advantages will make Proteus (and tools like it) a fundamental part of

parallel-systems research|the
exibility and the ease of development are not available on real machines.

Proteus' high-quality development environment, combined with its
exibility, accuracy and perfor-

mance, produce not only a high-performance simulator, but a powerful tool for parallel research and

development in general.

References

[A+91] A. Agarwal et al. The MIT Alewife machine: A large-scale distributed-memory multipro-

cessor. In Scalable Shared-Memory Multiprocessors. Kluwer Academic Publishers, 1991.

[Aga91] A. Agarwal. Limits on interconnection network performance. IEEE Transactions on Parallel
and Distributed Systems, 2(4), October 1991.

[Bre91] E. A. Brewer. Aspects of a high-performance parallel-architecture simulator. Master's thesis,
Massachusetts Institute of Technology, December 1991.

[CBDW91] A. Colbrook, E. A. Brewer, C. N. Dellarocas, and W. E. Weihl. An algorithm for concurrent
search trees. In Proceedings of the 1991 International Conference on Parallel Processing
(ICPP '91), pages III138{III141, August 1991.

[Cha90] D. Chaiken. Cache coherence protocols for large-scale multiprocessors. Technical Report
MIT/LCS/TR-489, MIT Laboratory for Computer Science, September 1990.

[Che89] D.-K. Chen. MaxPar: An execution-driven simulator for studying parallel systems. Technical
Report CSRD 917 and UILU-ENG-89-8013, University of Illinois, October 1989.

24 REFERENCES

[CLN90] D. Chaiken, B.-H. Lim, and D. Nussbaum. ASIM Users Manual. ALEWIFE SYSTEMS
MEMO #13, August 1990.

[CMM+88] R. G. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair. The Rice par-
allel processing testbed. In Proceedings of the 1988 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, May 1988.

[CS90] A. Colbrook and C. Smythe. E�cient implementation of search trees on parallel distributed-
memory architectures. In IEE Proceedings Part E, volume 137, pages 394{400, 1990.

[D+89] W. J. Dally et al. The J-machine: A �ne-grain concurrent computer. In G.X. Ritter, editor,
Proceedings of the IFIP Congress, pages 1147{1153. North-Holland, August 1989.

[DECa] Digital Equipment Corporation. pixie(1). Ultrix 4.0 General Information, Vol. 3B (Com-
mands(1): M-Z).

[DECb] Digital Equipment Corporation. prof(1). Ultrix 4.0 General Information, Vol. 3B (Com-
mands(1): M-Z).

[Del91] C. N. Dellarocas. A high-performance retargetable simulator for parallel architectures. Tech-
nical Report MIT/LCS/TR-505 (Master's Thesis), Massachusetts Institute of Technology,
June 1991.

[DGH91] H. Davis, S. R. Goldschmidt, and J. Hennessy. Multiprocessor simulation and tracing using
Tango. In Proceedings of the 1991 International Conference on Parallel Processing (ICPP
'91), pages II99{II107, August 1991.

[DS87] W. J. Dally and C. L. Seitz. Deadlock free message routing in multiprocessor interconnection
networks. IEEE Transactions on Computers, C-36(5):547{553, May 1987.

[DSNB87] B. A. Delagi, N. Saraiya, S. Nishimura, and G. Byrd. An instrumented architectural sim-
ulation system. Technical Report KSL 86-36, Knowledge Systems Laboratory, Stanford
University, January 1987.

[FJL+88] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker.
Solving Problems on Concurrent Processors, Volume 1: General Techniques and Regular
Problems. Prentice Hall, Englewood Cli�s, NJ, 1988.

[Gai86] Jason Gait. A probe e�ect in concurrent programs. Software { Practice and Experience,
16(3):225{233, March 1986.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Englewood Cli�s, NJ,
1985.

[Lin90] M. A. Linton. The evolution of dbx. In Proceedings of the 1990 USENIX Summer Conference,
pages 211{220, June 1990.

[LM86] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with Instant Re-
play. Technical Report TR194, University of Rochester, Computer Science Department,
September 1986.

[MCS91] J. M. Mellor-Crummey and M. L. Scott. Synchronization without contention. In Proceedings
of the Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IV), pages 269{278, April 1991.

REFERENCES 25

[MF88] I. Mathieson and R. Francis. A dynamic-trace-driven simulator for evaluating parallelism.
In Proceedings of 21st Hawaii International Conference on System Sciences, volume 1 (Ar-
chitecture), pages 158{166, January 1988.

[Nic88] D. A. Nicole. Esprit Project 1085: Recon�gurable transputer processor architecture. In
Proceedings of CONPAR '88, pages 81{89, September 1988.

[Qui89] M. J. Quinn. Analysis and benchmarking of two parallel sorting algorithms: Hyperquicksort
and quickmerge. BIT, 29(2):239{250, 1989.

[SF89] C. B. Stunkel and W. K. Fuchs. TRAPEDS: Producing traces for multicomputers via
execution driven simulation. In Proceedings of ACM Sigmetrics 1989, pages 70{78, May
1989.

[Smi81] B. J. Smith. Architecture and applications of the HEP multiprocessor computer system.
SPIE, 298:241{248, 1981.

[SS87] Dennis Shasha and Marc Snir. E�cient and correct execution of parallel programs that
share memory. Technical Report 58037, Courant Institute, July 1987.

[Sta85] Charles R. Standridge. Performing simulation projects with The Extended Simulation Sys-
tem (TESS). SIMULATION, 45(6):283{291, December 1985.

[Wei84] P. J. Weinberger. Cheap dynamic instruction counting. AT&T Bell Laboratories Technical
Journal, 63(8):1815{1826, October 1984.

