
Compiler-Directed Storage Reclamation

Using Object Lifetime Analysis

James E. Hicks, Jr.

MIT/LCS/TR-555
October 1992

c
 James E. Hicks, Jr. 1992

The author hereby grants to MIT permission to reproduce and to

distribute copies of this technical report in whole or in part.

3

Compiler-Directed Storage Reclamation

Using Object Lifetime Analysis

James E. Hicks, Jr.

Technical Report MIT/LCS/TR-555
October 1992

Motorola Cambridge Research Center

One Kendall Square, Building 200

Cambridge, Massachusetts 02139

Abstract

Many heap-oriented languages such as Lisp and Id depend on run-time garbage collection to re-
claim storage. Garbage collection can be a signi�cant run-time expense, especially for functional
languages that tend to allocate structures often. Compiler-directed storage reclamation reduces
the run-time overhead of garbage collection by having the compiler insert deallocation code. Com-
pilers must perform object lifetime analysis in order to insert storage reclamation code. Current
approaches to lifetime analysis assume a strict or sequential interpreter.

We formulate an operational semantics for a parallel, non-strict language in order to precisely
de�ne when it is safe to deallocate an object. Our operational semantics yields exact information
about what objects are allocated, deallocated, and referenced at any point during the execution of
a program. Using this information, we de�ne precise run-time conditions that must be met by safe
deallocation commands.

We use abstract interpretation to yield at compile-time a summary of what objects are allocated
and reachable at any point in a program. We de�ne static conditions that must be met by safe
deallocation commands. We then de�ne an algorithm that uses the abstract interpreter to verify the
safety of deallocation commands already in programs and an algorithm to insert safe deallocation
commands into programs.

We describe our implementation of the lifetime analysis, the veri�cation algorithm, and the insertion
algorithm. We the discuss the e�ectiveness of the compiler at verifying and inserting deallocation
commands in several medium-sized Id programs. We also discuss the performance of each program
in terms of storage allocated and reclaimed. Our implementation is quite e�ective for programs
with simple patterns of sharing between objects.

4

5

Acknowledgments

I would like to thank Professor Arvind, my thesis advisor, for his e�orts to ensure this work is
�rst-rate. We spent many hours together, successively re�ning the ideas presented in this thesis.
As Nikhil once said, \Fixpoint iteration is one path to nirvana." I do not think that I am there
yet. I would also like to thank my thesis readers: Professors Nikhil and Weihl, for their ideas and
their patience. They encouraged me to broaden the focus of my work beyond the scope of Id and
Monsoon.

I would like to thank John Hughes for the discussions he had with Arvind and I that greatly clari�ed
our understanding of abstract interpretation and its relation to lifetime analysis.

I would like to thank Olaf Lubeck for his cooperation in the early portion of my research. We began
this work on storage management so that he could run large programs on Monsoon. Examination
of his programs led us to formulate the safety conditions for deallocation commands. Thanks
to Jonathan Young for starting me down the abstract interpretation path and for helping me
understand some of its thornier issues.

I would like to thank all of the other people who read various drafts of this thesis, including Sharon
Chang, Michael Ernst, R. Paul Johnson, Shail Aditya, and Arthur Lent. They have all helped to
make this a coherent document.

Paul Barth has been a source of great support as he and I worked our way together through thesis
writing, thesis defense, and thesis rewriting.

I could not have done this work without the support of the rest of Computation Structures Group.
I have enjoyed working with all of them for the past �ve years. I especially want to thank all
those who accepted the responsibilities that I delegated so I could �nish my thesis, including Shail
Aditya, Boon Ang, Alex Caro, Derek Chiou, Christine Flood, R. Paul Johnson, and Yuli Zhou. If
only one of them would take over the Id Compiler. Thanks to Andy Boughton, who took me on
as an undergraduate researcher years ago (doing hardware) and who has continued to put faster
and faster computers on my desk ever since. My thanks also to the old guard: David Culler, Steve
Heller, Bob Iannucci, Greg Papadopolous, Richard Soley, and Ken Traub for inspiration, advice
and encouragement along the road to graduation. Thanks also to the other members of CSG.

Finally, I would like to thank my family. Special thanks to Sharon Chang, my wife | she has
been wonderfully supportive and understanding throughout this whole endeavor. Thanks also to
my parents who have always encouraged me on to bigger and better things.

6

| To Sharon

Contents

1 Introduction 17

1.1 Thesis Overview : 18

1.2 Background : 20

1.2.1 Lifetime Analysis : 21

1.2.2 Data
ow Analysis : 21

1.2.3 Analyses Based on Abstract Interpretation : : : : : : : : : : : : : : : : : : : 22

1.2.4 Analysis of Parallel Languages : 23

1.2.5 Analyses Based on Type Deduction : 24

1.3 Storage Management Assumptions : 25

1.4 Cost of Storage Management : 25

1.5 Explicit Storage Deallocation in Id : 27

1.6 Safety of Explicit Deallocation : 30

2 Problem Statement 35

2.1 Notation : 35

2.2 Syntax of KID� : 36

2.3 KID� Domains : 38

2.4 KID� Interpreter : 41

2.4.1 Evaluation Strategy : 42

2.4.2 Interpreter Structure : 46

2.4.3 KID� Program Evaluator : 47

2.4.4 KID� Simple Expression Evaluator : 47

2.4.5 KID� Expression Evaluator : 48

2.4.6 Soundness of Standard Interpreter : 52

2.5 The Deallocation Problem : 54

2.6 Overview of Our Solution : 55

7

8 CONTENTS

3 Instrumented Semantics 57

3.1 Instrumented Interpreter Characteristics : 57

3.1.1 Collecting the Necessary Information : 58

3.1.2 Temporal Ordering of Execution : 58

3.2 An Instrumented Interpreter : 59

3.2.1 Semantic Domains : 59

3.2.2 Semantic Functions : 60

3.2.3 Correctness of the Interpreter : 62

3.2.4 Soundness of the Instrumented Interpreter : 63

3.3 Interpretation of Some Examples : 64

3.3.1 Interpretation of a Non-Recursive Example : : : : : : : : : : : : : : : : : : : 64

3.3.2 Interpretation of a Recursive Example : 68

3.4 Object Deallocation Safety Condition : 68

4 Abstracted Semantics 73

4.1 Using the Abstract Interpreter : 73

4.1.1 Precision of Information : 74

4.1.2 The Abstract Deallocation Safety Condition : : : : : : : : : : : : : : : : : : : 74

4.2 Abstracting the Semantic Domains : 76

4.2.1 Abstract Domains : 76

4.2.2 Least Upper Bound Operators : 78

4.2.3 Reachability : 79

4.2.4 Ordering Operators on Domains : 79

4.3 Abstracting the Interpreter : 79

4.3.1 Computation of Input-Output Mappings : 80

4.3.2 Finiteness of the KID� Abstract Domains : 81

4.3.3 Abstract Interpreter De�nition : 85

4.4 Soundness of the Abstracted Interpreter : 90

4.5 Safety of the Abstracted Interpreter : 92

4.6 Determining Object Lifetimes Statically : 94

CONTENTS 9

5 Verifying and Inserting Deallocation Commands 97

5.1 Object Deallocation Safety : 97

5.2 Choice of Procedure Arguments : 98

5.2.1 Most General Input Values : 99

5.2.2 Desired Properties for Input Values : 100

5.2.3 Representative Input Values : 100

5.3 An Algorithm for Verifying Deallocation Commands : : : : : : : : : : : : : : : : : : 105

5.3.1 Veri�cation of Deallocation within a Program : : : : : : : : : : : : : : : : : : 106

5.3.2 Veri�cation of Deallocation within an Expression : : : : : : : : : : : : : : : : 107

5.3.3 Verifying Some Examples : 108

5.4 An Algorithm for Inserting Deallocation Commands : : : : : : : : : : : : : : : : : : 112

5.4.1 Desired Results of Insertion Algorithm : 112

5.4.2 The Algorithm : 114

5.4.3 Inserting Deallocation Commands in Programs : : : : : : : : : : : : : : : : : 115

5.4.4 Inserting Deallocation Commands in Expressions : : : : : : : : : : : : : : : : 116

5.4.5 Generating Deallocation Statements : 117

5.4.6 Transforming Some Examples : 118

5.5 Summary : 120

6 Improving the Abstract Object Labels 121

6.1 A Better Abstraction of Activation Labels : 121

6.2 Example Abstraction Operators for Activation Labels : : : : : : : : : : : : : : : : : 123

6.3 Extensions to Abstract Interpreter : 124

6.4 Evaluation of Examples Using Improved Activation Labels : : : : : : : : : : : : : : : 124

6.5 Summary : 126

7 Abstracting and Analyzing Arrays 127

7.1 Abstract Interpretation of Arrays : 127

7.1.1 The Abstract Array Domain : 128

7.1.2 Abstracting the Array Primitives : 128

7.1.3 Example Array Programs : 129

7.2 Sharing Analysis in Arrays : 131

7.2.1 Modeling Sharing in the Abstract Array Domain : : : : : : : : : : : : : : : : 132

7.2.2 Abstracting the Array Primitives with Sharing : : : : : : : : : : : : : : : : : 132

7.2.3 Reexamining the Array Examples : 134

10 CONTENTS

7.3 Modeling I-Structures : 135

7.3.1 I-Structures in the Instrumented Interpreter : : : : : : : : : : : : : : : : : : : 135

7.3.2 I-Structures in the Abstract Interpreter : 136

7.3.3 E�ect Of I-Structures on Deallocation Safety Conditions : : : : : : : : : : : : 137

7.3.4 Example I-Structure Program : 137

7.4 Summary : 138

8 Algebraic and Recursive Types 141

8.1 Abstraction of Algebraic Types : 141

8.1.1 Domains for Abstract Algebraic Types : 143

8.1.2 Abstract Interpretation of Algebraic Types : : : : : : : : : : : : : : : : : : : 143

8.2 Abstraction of Recursive Types : 144

8.2.1 Abstraction of Recursive Types by Domain Compression : : : : : : : : : : : : 145

8.2.2 Abstraction of Recursive Types by Ad Hoc Object Compression : : : : : : : : 145

8.2.3 Abstraction of Recursive Types by Object Label Compression : : : : : : : : : 146

8.2.4 Spatial Summarization in Recursively Typed Objects : : : : : : : : : : : : : 146

8.3 Abstraction of Lists in KID� : 147

8.3.1 Abstract List Domains : 148

8.3.2 Additions to Abstract Interpreter : 149

8.3.3 Representative List Inputs : 149

8.3.4 List Examples : 150

9 Higher-Order Functions 153

9.1 Higher-Order Functions in the Instrumented Interpreter : : : : : : : : : : : : : : : : 153

9.1.1 The Closure Domain : 154

9.1.2 Instrumented Interpretation of Closure Primitives : : : : : : : : : : : : : : : 154

9.2 Higher-Order Functions in the Abstract Interpreter : : : : : : : : : : : : : : : : : : : 155

9.2.1 Abstracting The Closure Domain : 155

9.2.2 Termination of Abstract Interpretation : 157

9.2.3 Abstract Interpretation of Closure Primitives : : : : : : : : : : : : : : : : : : 157

9.2.4 Analysis of Higher-Order Programs : 157

9.3 Example of Abstract Interpretation of Higher-Order Functions : : : : : : : : : : : : 159

CONTENTS 11

10 Performance Analysis 161

10.1 Implementation Details : 161

10.1.1 Implementation of the Veri�cation and Insertion Algorithms : : : : : : : : : : 161

10.1.2 Monsoon : 163

10.1.3 Id Run-Time System on Monsoon : 163

10.1.4 Structure of the Experiments : 164

10.2 Performance Measurements : 164

10.2.1 The Wavefront Benchmark : 165

10.2.2 Simple : 166

10.2.3 Gamteb : 167

10.3 Transformation to Frame Allocation : 168

10.4 Handling Possibly Zero-Tripping Loops : 170

10.5 Examples Using Lists : 171

10.6 Explicit Storage Reuse : 173

11 Conclusion 175

11.1 Further Research : 175

11.1.1 Computing Object Lifetimes : 175

11.1.2 Subscript Analysis : 176

11.1.3 Determining Acyclicity of Recursive Objects : : : : : : : : : : : : : : : : : : 176

11.1.4 Deallocating Complex Structures : 177

11.1.5 Interaction with Garbage Collection : 177

11.1.6 M-Structures : 177

11.2 Other Research Directions : 178

12 CONTENTS

List of Figures

1.1 Dealloc in a block expression : 27

1.2 Statically nested control regions : 28

1.3 Dynamically nested control regions : 29

1.4 Procedure compton : 32

1.5 Procedure handle collision : 33

2.1 Labeled deallocation example : 39

2.2 Least upper bound operators on standard value domains : : : : : : : : : : : : : : : 41

2.3 Ordering operators on standard domains : 42

2.4 Simple deallocation example : 54

3.1 Instrumented semantic domains : 59

3.2 Simple expression evaluator : 61

3.3 Evaluation of simple expressions and primitive operators : : : : : : : : : : : : : : : : 61

3.4 Evaluation of conditional expressions : 62

3.5 Evaluation of block expressions : 63

3.6 Evaluation of tuple primitives : 64

3.7 Instrumented evaluation of array primitives : 65

3.8 Instrumented evaluation of oneof primitives : 66

3.9 Instrumented evaluation of list primitives : 67

4.1 Abstract value domains : 77

4.2 De�nition of the abstraction functions : 77

4.3 Least upper bound operators on value domains : 78

4.4 Ordering operators on domains : 80

4.5 A recursive example : 83

4.6 Domain of a function foo : 84

4.7 Procedure to compute function environment : 87

13

14 LIST OF FIGURES

4.8 Abstracted simple expression evaluator : 88

4.9 Evaluation of simple expressions and primitive operators : : : : : : : : : : : : : : : : 88

4.10 Abstract evaluation of function applications : 89

4.11 Evaluation of conditional expressions : 89

4.12 Evaluation of block expressions : 89

4.13 Abstract evaluation of tuple primitives : 90

4.14 Example with non-nested structures : 95

4.15 Example with false sharing : 95

5.1 De�nition of procedure Subst : 102

5.2 Clause to verify deallocation commands in letrec blocks : : : : : : : : : : : : : : : 108

5.3 Procedure to insert deallocation commands into programs : : : : : : : : : : : : : : : 115

5.4 Clause to insert deallocation commands in letrec blocks : : : : : : : : : : : : : : : 117

6.1 Nonrecursive activation tree : 122

6.2 Call graph of a recursive procedure : 122

6.3 Evaluation of procedure calls with improved abstract activation labels : : : : : : : : 124

6.4 Evaluation of tuple allocation with improved abstract activation labels : : : : : : : 125

6.5 Example with false sharing : 125

7.1 Array abstraction operator : 128

7.2 Array least upper bound operator : 128

7.3 Array ordering operator : 128

7.4 Improved array least upper bound operators : 132

7.5 Improved array ordering operators : 133

7.6 Abstraction operator for arrays with sharing : 133

8.1 Oneof abstraction operator : 143

8.2 Oneof least upper bound operators : 143

8.3 Oneof ordering operators : 143

8.4 Abstract interpretation of algebraic type primitives : : : : : : : : : : : : : : : : : : 144

8.5 Abstract list value before and after compression : 146

8.6 List abstraction operator : 148

8.7 List least upper bound operators : 148

8.8 List ordering operators : 148

8.9 Abstracted evaluation of list primitives : 149

LIST OF FIGURES 15

9.1 Closure abstraction operator : 156

9.2 Closure least upper bound operators : 157

9.3 Closure ordering operators : 157

9.4 Abstract evaluation of the closure constructor : 158

9.5 Abstract evaluation of closure application : 158

10.1 The code for multiwave : 165

10.2 The annotated code for multiwave : 165

10.3 Frame allocated tuple example : 168

10.4 Frame allocated tuple example with transformation : : : : : : : : : : : : : : : : : : 169

16 LIST OF FIGURES

Chapter 1

Introduction

Many modern programming languages are oriented towards dynamic storage management. Lisp-
like languages and functional languages such as Id [35, 33, 34] are heap-oriented languages. In
these languages the storage for arrays and other aggregate objects is not necessarily associated
with the invocation of the particular procedure that allocated the object. Storage for an aggregate
is allocated on a heap when the aggregate is created so objects can last longer than the procedure
that created them. The storage in which an object resides can only be reclaimed when the program
no longer uses the object, where a use of an object is a reference to the contents of the object. The
lifetime of an object is the period of time from the object's allocation until the time when the last
reference is made to the object.

Storage in heap-oriented languages is often reclaimed implicitly, by a garbage collector . A garbage
collector intermittently or incrementally traverses the heap, stacks, and other program data struc-
tures to determine which objects are reachable by the program, and then clears all other objects
(the garbage) from the heap.

The standard alternative to garbage collection, explicit storage management, requires the pro-
grammer to insert commands to reclaim storage so that the program does not run out of memory.
Explicitly deallocating structures is often an extremely error-prone process, because it is not always
clear where a structure is passed and when it is no longer referenced. Furthermore, changes to a
program can cause deallocation commands to become incorrect.

It is easier to develop correct programs when using implicitly managed storage, because the pro-
grammer does not have to worry about storage management. Unfortunately, implicit storage man-
agement is typically more expensive than explicit storage management. One source of overhead in
implicit storage management is the determination of which storage is no longer in use. Another
source of overhead is that garbage collected systems typically use more storage at any point in time
than explicitly managed systems because they reserve a signi�cant fraction of memory (up to half)
for use solely during the garbage collection process. Furthermore, storage is usually not reclaimed
as soon as it ceases to be used in a garbage collected system, and so more storage is allocated at
any point in time than in an explicitly managed system.

In this thesis, we present a third possibility: implicitly managed storage without all of the run-time
overhead of garbage collector managed storage. We accomplish this by having the compiler analyze
programs and insert storage deallocation commands, thus lifting the much of the burden of storage
management from the programmer. The compiler will not be able to pick up all of the garbage,
and so the rest will have to be handled by the programmer or by a run-time garbage collector. In

17

18 CHAPTER 1. INTRODUCTION

this thesis we develop and evaluate a method of static analysis of programs to determine object
lifetimes. Our goal is to determine if this analysis is useful and to determine to what extent storage
management can be done by the compiler. General issues of garbage collection and heap-allocation
algorithms are orthogonal to this work.

This thesis makes a number of contributions to the area of lifetime analysis and to the practice of
static program analysis. First, it develops a general framework for the lifetime analysis of a parallel
language using the theory of abstract interpretation. Second, it de�nes abstract representations for
a variety of data types, including tuples, arrays, algebraic types, recursive types, and higher-order
functions. Third, it attempts to characterize the costs and e�ectiveness of these techniques when
applied to real programs.

Past work in lifetime analysis has mostly been on sequential languages. We know of no work which
performs lifetime analysis on either sequential or parallel non-strict languages. The lifetime analysis
method described in this thesis applies to parallel, strongly-typed, single-assignment languages.
Slight variations in the methods we use allow us to analyze either strict or non-strict programs.
We present the work in terms of a non-strict language and discuss the changes necessary to apply
our methods to a strict language.

Our main goal was to develop a framework for lifetime analysis and to determine its e�ectiveness.
In fact, we have developed a general framework for abstract interpretation of parallel and non-
strict languages with a rich variety of types. This abstract interpreter could be used to perform
interference analysis or even strictness analysis instead of lifetime analysis, although we have not
pursued these topics. We do consider a limited form of sharing analysis to determine if the elements
of arrays may be shared. We also discuss extensions to the lifetime analysis of recursive types that
would allow us to determine whether objects form directed acyclic graphs or trees.

We have found our implementation of these methods to be quite e�ective in determining the lifetimes
of objects in real Id programs. We have implemented this work as part of the Id compiler [40] and
applied it to several programs of 100 to 1000 lines. The implementation is structured to support
separate compilation | a program can be compiled in bottom up fashion and each procedure is
veri�ed/transformed individually. The augmented compiler was able to compile these programs into
object code that deallocated 80 to 100 percent of the total storage that they allocated, at a cost
of a factor of 1.5 to 5 increase in compile-times. We have also found that although a programmer
could insert all of the deallocation code that the compiler inserted, it would require a major change
in programming style to do so.

1.1 Thesis Overview

Before we can develop a lifetime analysis algorithm, we must have a well-de�ned notion of the
lifetime of an object. We de�ned the lifetime of an object to be the period of time during the
execution of a program from when the object was allocated until the object was no longer referenced.
Lifetime analysis is the process of determining the range of program points during which the object
bound to a particular variable may be referenced by a program. Thus, lifetime analysis is intimately
related to the operational semantics of a program.

In this thesis, we �rst develop an operational semantics for a non-strict, parallel language. The
operational semantics is de�ned by an interpreter that gives the standard semantics of a program
in terms of its behavior. We then use this semantics to de�ne the lifetimes of objects allocated
by programs. Our de�nition of object lifetimes is exact, but can only be determined at run-time,

1.1. THESIS OVERVIEW 19

as a program is executing. We also use this interpreter to de�ne when deallocation commands
are correct. Correct deallocation commands never lead to run-time errors in which an object is
deallocated before the end of its lifetime.

Because we must be able to determine object lifetimes at compile-time, we need some way of
converting this exact, run-time notion of object lifetimes into a compile-time property. We use an
abstraction of the standard interpreter to give an approximation of the behavior of the program.
The purpose of the abstract interpreter is to generate an approximation of a program's behavior
over all input data, and, in the case of parallel programs, over all execution orders. In addition, the
abstract interpreter must be decidable | we must be able to compute this approximate behavior
in a �nite amount of time.

Given the abstract interpretation of a program, we show how to compute approximate object
lifetimes. We are willing to use approximate object lifetimes in order to develop an algorithm that
terminates, as long as the approximations are all safe. A safe approximation of an object's lifetime
is guaranteed to include the actual lifetime of an instance of that object at run-time.

We present two algorithms that use the information about object lifetimes. The �rst algorithm
veri�es that the deallocation commands in a program are all safe. The second algorithm inserts safe
deallocation commands into programs automatically. This second algorithm allows the programmer
to write programs in which storage is implicitly reclaimed.

For the remainder of this thesis, we talk about the language KID� [3], a speci�c parallel, non-strict,
single-assignment language with higher-order functions. KID, or Kernel Id, is an intermediate
language developed by Ariola and Arvind to express the semantics of Id [35, 33, 34] and to express
the compilation of Id programs. In this thesis, we consider KID� to be KID without higher-order
functions and M-structures [7] (structures with per-element mutual exclusion).

In Chapter 2 we present the syntax and standard semantics of KID� and we discuss the unusual
evaluation strategy used by the KID� interpreter. In Chapter 3 we develop an augmented, or
instrumented , interpreter that allows us to de�ne exactly when deallocation commands are correct
and incorrect.

In Chapters 4 and 5 we restrict KID� programs to operate only on tuples, numbers, and booleans.
In the �rst of these chapters we develop an abstracted interpreter for KID� and show that it is safe
with respect to the instrumented interpreter. Our de�nition of safety is that object reachability
must be preserved by the abstract interpreter. In the second of these chapters we use the abstracted
interpreter to give an algorithm for verifying safe deallocation commands and an algorithm for
inserting deallocation commands. In Chapter 6 we discuss a method for improving the e�ectiveness
of the lifetime analysis by improving the abstract interpreter.

In Chapters 7, 8, and 9 we describe the additions to the abstract interpreter necessary to handle
arrays, algebraic types, recursive types, and higher-order functions.

In Chapter 10, we describe our implementation of the deallocation command veri�cation and in-
sertion algorithms and their e�ectiveness on several programs. Finally, we give our conclusions on
this work in Chapter 11.

The remainder of this chapter gives some background on lifetime analysis and storage management.
Section 1.2 describes previous work relating to lifetime analysis. Section 1.3 describes the assump-
tions we make about storage management. Section 1.4 compares the cost of garbage collection
with the cost of explicit storage management. Section 1.5 describes explicit storage management in
Id programs. Finally, Section 1.6 describes the safety condition that must be met by deallocation
commands in Id programs.

20 CHAPTER 1. INTRODUCTION

1.2 Background

This section gives some background on the problem of storage management. We start by describing
the various storage management strategies, and then we go into more detail about the techniques
used in implicit storage management. There are several ways in which each technique could be
classi�ed, and so the division of techniques into groups is somewhat arbitrary.

The problem of storage management has existed since the �rst computer program was written. In
early programming languages such as Fortran, storage is statically allocated by the programmer.
Under the static management paradigm, the programmer or compiler allocates storage for all
structures by creating a memory map that places each object in a �xed position. In early Fortran
implementations, all procedure activations and all data structures were statically allocated. In
modern computer languages, some data structures may be statically allocated. There is no direct
run-time cost for the management of statically allocated storage | this all occurs at compile-time
when the memory map is constructed.

Static allocation is not always possible: the activation frames for recursive procedures cannot be
statically allocated. A separate activation frame must be allocated for each recursive procedure
invocation. For this reason, procedure activation frames, including storage for procedure-local
objects, are usually stack managed. Temporary structures, declared locally in procedures, may
also be stack allocated.

Under stack management, storage is managed by having a pointer to the next word to be allocated,
incrementing this pointer to allocate storage and decrementing this pointer to deallocate storage.
Under stack discipline, objects must be deallocated in the reverse order from which they were
allocated (last-in-�rst-out). Stack management allows greater
exibility than static allocation,
because the number and size of objects does not have to be known at compile-time.

Objects allocated on the same stack as activation frames are automatically deallocated when the
procedure that allocated them returns to its parent. If a pointer to this object is returned to
the parent procedure, the parent may attempt to refer to the contents of a defunct structure.
This scenario is known as the dangling pointer problem. The danger is that the object may be
overwritten when another procedure call is made, and that the parent will thereafter read spurious
data.

Sometimes it is necessary for objects to survive longer than the procedures that allocated them.
In this case, they must be handled by a heap management algorithm that allows objects to be
allocated and deallocated in an arbitrary order. Heap management increases the expressiveness of
a language but complicates the storage manager by making it more expensive computationally. The
heap manager must keep track of which storage is in use and which storage is free to be allocated,
while trying to minimize wasted storage due to mismatches between the sizes of objects requested
and the sizes of objects actually allocated.

In many languages that support heap allocation, such as C, both allocation and deallocation must
be speci�ed by the programmer. If the programmer does not deallocate structures that are no
longer needed, then the program consumes an inordinate amount of memory, possibly causing the
program to fail. If the programmer deallocates an object too soon, then the program may behave
incorrectly due to a dangling pointer error.

The explicit deallocation of structures whose lifetime is not tied to that of a procedure invocation
is di�cult | the programmer must ensure that no more references to an object are made anywhere
in the program. The di�culty is increased if the pattern of sharing among objects is complex.

1.2. BACKGROUND 21

For this reason, many heap-oriented languages have run-time system support to automatically (or
implicitly) deallocate storage that is no longer in use.

In heap-oriented languages such as Lisp, storage management is implicit: all structures allocated
are typically allocated on a heap, and the run-time system automatically takes care of deallocating
structures that are no longer accessible from the program. Structures that are not accessible from
the program are called garbage. The garbage collector, a part of the run-time system, periodically
scans the heap and invocation stacks, and �nds and reclaims all unreachable objects. In general,
garbage collection is more expensive than explicit heap management; in addition to reclaiming
storage the garbage collector must determine which objects are garbage. The bene�t from using
a garbage collected system is that the user does not have to worry about not deallocating enough
storage or about deallocating storage too early.

1.2.1 Lifetime Analysis

Lifetime analysis was �rst suggested by Barth [5] as an optimization to shift some of the run-time
overhead of garbage collection to compile-time. His approach is to take Lisp programs that had
reference counting code inserted, and to use data
ow (live variable) analysis to determine that
a particular variable in the program will always be associated at run-time with a structure with
reference count 1. When a variable is determined to be dead, then code can be inserted to free
the associated structure. Barth also discusses several local transformations that optimize reference
counting code inserted by the compiler. Although his method only inserts deallocation code if it
determines that there is exactly one reference to a structure, he claims that this optimization is
powerful enough to reclaim a signi�cant amount of temporary storage in Lisp programs, because
studies by Clark [11] show that most structures in Lisp programs are referred to exactly once.

1.2.2 Data
ow Analysis

Barth's method was limited because the analysis could not follow pointers or procedure calls. There
have been several approaches that attempt to solve these problems.

Ruggieri and Murtagh [39] developed an interprocedural lifetime analysis framework for a statically
typed, monomorphic language. Their algorithm computes the set of object sources which may be
bound to each variable before each statement in the program is executed. They represent nested
objects as subvariables, with labeled edges connecting variables with the contents of their various
�elds. Recursively typed objects have a potentially in�nite number of subvariables; so Ruggieri and
Murtagh introduce an operator that summarizes an in�nite graph of subvariables by one in which
the longest path is bounded by n, where n is a parameter of the analysis.

Larus and Hil�nger [29] developed an analysis similar to Ruggieri's which computes the possible
aliases between structure accesses. They show how to use standard data
ow techniques to compute
their alias graphs . They also show that precise computation of alias relations in a single function
is NP-complete.

Hendren and Nicolau [20] take a di�erent approach to solving the �nite representation problem.
They de�ne an analysis framework that uses path matrices to do interference analysis for par-
allelization. These path matrices show the paths of possible interference between two successive
program points. Each element of a path matrix uses a regular expression of �eld names to name an
access path through a recursively typed object. This naming scheme guarantees that access paths

22 CHAPTER 1. INTRODUCTION

are of �nite size. Hendren and Nicolau's method automatically detects non-shared lists and trees
in an imperative language. The interference analysis Hendren and Nicolau developed can be recast
as a lifetime analysis by determining all the statements from which a given structure is reachable
| the control region bounded by those statements bounds the lifetime of the structure.

Chase, Wegman and Zadeck [10] attempt to improve the method by which information about data
structures is summarized. Their method takes programs in static single assignment form [14] and
constructs a storage shape graph (SSG) that represents the interconnectedness of structures in the
heap. Each node in the graph represents a structure allocated by a di�erent allocation statement.
The number of nodes in an SSG is bounded by the sum of the number of allocation statements and
the number of variables in a program. Storage shape graphs are augmented with heap reference
counting to determine the lifetime of a structure and to determine if a structure is acyclic.

1.2.3 Analyses Based on Abstract Interpretation

These techniques all consist of a set of ad hoc rules for analyzing programs. Cousot and Cousot [12]
developed abstract interpretation, a method for simulating the execution of a program in order to
determine the behavior of a program. The use of abstract interpretation allows the derivation of
an analysis framework from the operational semantics of a programming language.

Jones and Muchnik [27] used abstract interpretation to develop a general framework for interpro-
cedural data
ow analysis of programs with recursive data structures. They extend the Cousots'
work on data
ow analysis of
owcharts to work with recursive data structures. They use tokens

to provide local representations of lists. Tokens are labels derived from program states. Their
ow
analyzer constructs a retrieval function that takes a token and reconstructs the list or lists locally
described by that token. This retrieval function is really an abstraction of a store, where a store
maps locations to list values.

Jones and Muchnik describe a version that analyzes a simple �rst-order language. This version uses
node labels as tokens, and divides tokens into atoms and lists. Their general framework could be
adapted to a variety of analyses by plugging in the appropriate domains and operational semantics.
There is a great deal of freedom in choosing tokens. Tokens can be more speci�c, e.g., whole states,
in which case the analysis will be more precise but computationally intractable, or more general,
e.g., node labels, in which case the analysis will converge faster but give less precise information.

Horwitz, Pfei�er, and Reps [22] use the Jones and Muchnik framework to compute an abstraction
of memory where each location is labeled by the program points that modify its contents. They
show that their analysis is correct for all implementations of the underlying operational semantics.
The framework of Horwitz et al does not do interprocedural analysis.

One enhancement to this framework is the ability to handle higher-order functions. Deutsch [15]
develops a static analysis method for determining the aliasing and lifetimes of objects in a strict,
higher-order functional language with �rst class continuations. His work is also based on that of
Jones and Muchnik. Deutsch presents a low-level operational semantics de�ned in terms of state
transition rules, and abstracts this semantics to obtain an analysis algorithm. He uses complete
program states to label objects uniquely in the standard semantics and uses an abstraction of
program states to label objects in the abstract semantics.

Rather than presenting a low-level operational semantics, Harrison [19] presents an analysis in
terms of a high-level operational semantics for Scheme. Harrison develops an analysis that could
be used to make storage management and parallelization decisions about Scheme programs with

1.2. BACKGROUND 23

�rst class continuations, side e�ects and higher-order functions. His work takes an approach similar
to that of Jones and Muchnik. The correct modeling of control
ow in the presence of continuations
adds to the complexity of Harrison's method. He uses procedure strings to name all points in the
execution of a program. A procedure string consists of a sequence of symbols naming the procedure
bodies that have been entered and exited along the execution path to a program point. Harrison
models aggregate objects as higher-order functions.

1.2.4 Analysis of Parallel Languages

All of these techniques were developed for sequential programming languages, even though the orig-
inal work on abstract interpretation was de�ned in terms of
ow graphs, which are not necessarily
sequential. Much of the work on abstract interpretation has been done on functional languages,
which are often touted as being parallel languages. Even so, most of the work on lifetime analysis of
functional languages has been done with respect to a sequential implementation. There have been
a few approaches that do not assume a sequential implementation, which we will describe below.

Hudak [23] describes an analysis based on abstract interpretation of a reference counting interpreter
for a strict, functional language operating on arrays of numbers. Even though the language is
functional, the denotational semantics he presents is sequential, because it performs side e�ects in
the form of reference counting operations.

Thomas Johnsson [26] developed an analysis method for modeling heap contents based on the
framework of Jones and Muchnik. His analysis is to be used in optimizing graph reduction in-
termediate code that resulted from compiling a lazy, functional language. Although the language
being compiled is not sequential, the interpreter of the intermediate code is sequential. The in-
termediate code is imperative and contains explicit code to construct and evaluate closures. The
parallelism in the source language is simulated by interleaving execution of subexpressions in the
intermediate code.

Ranelletti [38] describes an analysis method on data
ow graphs representing parallel programs
written in SISAL [16]. These data
ow graphs only give a partial order on the execution order of
expressions in a program. This method allows the compiler to transform graphs so that storage
is preallocated for arrays that are incrementally de�ned by a program. Preallocation reduces the
number of arrays that need to be allocated and reduces the number of times array elements are
copied from one array to another. Ranelletti's method is very e�cient | it takes O(n) compile-
time, where n is the size of the program being analyzed. Unfortunately, extending it to handle
interprocedural analysis will make it much less e�cient | it will take O(2n) compile-time.

Cann [9] describes an analysis technique on SISAL data
ow graphs that allows arrays or array dope-
vectors to be updated in place whenever it can be shown that the updater is the only consumer of
the array. This method is also based on parallel programs. However, some of his transformation
techniques add dependence edges that increase the sequentiality of the program in order to perform
update-in-place optimizations.

In addition to these graph-based approaches, there have been a number of abstract interpretation-
based analysis frameworks that are interesting because they also do not assume a sequential inter-
preter. The work by Young and O'Keefe [45] and the work by Aiken and Murphy [1] fall into this
category.

Young and O'Keefe developed a type evaluator for a lazy dialect of Scheme. This evaluator computes
an approximation to the set of possible values to which each expression in a program could evaluate.

24 CHAPTER 1. INTRODUCTION

The only data structure that they considered was untyped pairs. In order to analyze recursive
functions on lists, their analyzer approximated in�nite sets of values by cyclic type representations.
Although the evaluator described by Young and O'Keefe yields an approximation of the values
computed by each expression in a program, it is not viable for use in lifetime analysis because there
is no way to determine the sharing or reachability of objects from any expression in the program.

Aiken and Murphy developed a similar type inferencer for the strict functional language FL. Their
approach uses type expressions as the abstract value domain and a set of rewrite rules to give the
operational semantics of FL. The language of type expressions includes a �x operator that de�nes
an in�nite set of regular tree types by a �nite representation. These recursive type expressions are
used when deriving the type of recursive functions.

Aiken and Murphy's type inferencer uses the rewrite rules as constraints in a proof system to derive
the types of FL expressions. In the case of recursive functions, heuristics must be used to choose
which rewrite rule to apply, because more than one rewrite rule may be applicable to a given
instance of a recursive function.

Park and Goldberg [37] developed an analysis framework based on abstract interpretation of a
higher-order functional language. Their framework computes an approximation of how much of a
nested list value passed to a function escapes as part of the result of that function. They did not
precisely de�ne the standard semantics that they were abstracting.

Jones and Le M�etayer [28] developed three analyses framed as abstract interpretations of programs:
sharing, transmission, and necessity analysis. These analyses are de�ned for an expression-oriented
language with lists as the only data structure. Jones and Le M�etayer did not state precisely the
standard semantics corresponding to the abstract semantics used in the analyses, and so it is
di�cult to see how to generalize this method to other data structures.

There are two problems with the last two approaches to determining object lifetimes. The �rst is
that they do not have a good correspondence with any standard semantics. The point of methods
based on abstract interpretation is that the analyses can be shown to be safe with respect to the
standard semantics. The second problem is that objects are not named, and so the analyses fail if
the source languages are made imperative or non-strict, because there is no way to handle cyclic
structures in these frameworks.

1.2.5 Analyses Based on Type Deduction

There is one more semantics-based approach to analysis that de�nes the analysis in terms of type
deduction or type checking using a non-standard type system. Lucassen and Gi�ord [31] de�ne a
type and e�ects system for the FX language [17] that can be used to determine the lifetimes of
objects. FX-87, based on the second-order lambda-calculus, has a kind system consisting of type
and e�ect annotations. The e�ect annotations describe which regions are allocated into, written
to, or read from during the execution of an expression. E�ect annotations on procedure values
describe not only the e�ects incurred by evaluating the procedure value, but also the latent e�ects
incurred by applying the procedure value to arguments. Lucassen and Gi�ord show how the e�ect
descriptions can show that the lifetime of an object resulting from a particular expression has
limited extent.

This approach requires the user to annotate programs with type and e�ect declarations before the
compiler can perform type and e�ect checking and lifetime analysis. Use of this approach would
also allow the compiler to check the safety of explicit storage management in some cases. In later

1.3. STORAGE MANAGEMENT ASSUMPTIONS 25

work Gi�ord et al. [18] extend the FX compiler to perform type and e�ect deduction, but in this
e�ect system they dropped the information about storage regions. It is unclear from the paper
whether there is an e�cient or decidable algorithm for deducing types and e�ects with regions for
FX programs.

Baker [4] describes states that the structure-sharing uni�cation algorithm for Milner-style type
inference already produce a certain amount of sharing information for functional languages. Each
node that represents the type of an expression in a program corresponds to a set of run-time
objects. In a functional language, distinct type nodes represent disjoint sets of run-time objects,
while uni�ed type nodes represent overlapping sets of run-time objects. The advantage of using
type inference for sharing analysis is that the algorithms for type inference are e�cient enough to
be used in production compilers. The disadvantage of this approach is that it cannot be extended
to imperative programming languages without greatly increasing the complexity of the analysis.

1.3 Storage Management Assumptions

Let us assume that objects allocated by a program can be placed either in the activation frame of
the procedure that allocated the object or on an implicitly or explicitly managed heap. Objects
placed in procedure activation frames are automatically deallocated when the procedure terminates;
consequently, the lifetime of these objects must be bounded by the lifetime of the procedure. In
our implementation of Id, only �xed size objects may be frame-allocated because a procedure's
activation frame cannot be extended once it has been allocated.

We believe that the applications in which we are interested would su�er too much of a performance
penalty if they depended solely on run-time garbage collection. One characteristic of these appli-
cations is the use of large amounts of data, often held in large arrays. The behavior of garbage
collectors in the presence of large, shallow or
at data structures is not well understood, but ap-
plications typically manage these structures explicitly even though garbage collection is used to
manage other structures. In these programs, most storage reclamation should be done explicitly,
either by explicit deallocation or explicit reuse of structures. We would like to automate the process
of explicitly managing these large structures. It is very di�cult, and often impossible, for either a
programmer or a compiler to explicitly reclaim all structures allocated, and so we will continue to
have a garbage collector that reclaims the storage that cannot be reclaimed explicitly.

This thesis does not explore the best ways for the heap manager and garbage collector to interact.
The way explicit and implicit storage management interact depends to a large extent on the choice
of garbage collection method and characteristics of the run-time system. One possibility is for the
heap manager to allocate areas that are never garbage collected, and to use these areas for objects
that are guaranteed to be deallocated eventually. The objects in these areas would never have to
be copied by the garbage collector, and so we would save on the overhead of copying these objects.
Another possibility is to use a reference counted garbage collector and to set the reference counts
of objects whose lifetimes can be determined to one upon allocation and to zero when no longer
needed, but not to perform reference counting operations on the objects otherwise.

1.4 Cost of Storage Management

It is not clear that a program will always have better performance running under an explicit storage
manager than it will have running under a garbage collector. Appel [2] makes an argument that

26 CHAPTER 1. INTRODUCTION

garbage collection can be faster than explicit storage management; he claims that it can even be
faster than stack allocation. Appel's claim is that

with enough memory on the computer, it is more expensive to explicitly free a cell than
it is to leave it for the garbage collector | even if the cost of freeing a cell is only a
single machine instruction.

Appel gives the cost per reachable object of copying garbage collection as

g =
(c1 + c2s)A

M=s �A
(1:1)

where c1 is the number of operations required per object copied, c2 is the number of operations
per pointer, s is the average size of an object, A is the number of reachable objects when garbage
collection is performed, andM is the size of the two memory spaces. IfM is made su�ciently large
relative to the other parameters, then the cost per reachable, or non-garbage, object can be made
arbitrarily small.

In the limiting case as the amount available memory approaches in�nity, Appel asserts that it is
cheaper to rely on garbage collection than explicit storage management, even stack management,
because the garbage collector will never have to run. At the other extreme, as the amount of memory
approaches the average amount of memory in use at any time, the cost of garbage collection goes to
in�nity. In order to determine the crossover point where the cost of implicit memory management
is less than the cost of explicit memory management, we must know the average amount of memory
used by a program and the time constants c1 and c2 associate with garbage collection, relative to
the cost of explicit storage management.

Is it reasonable to assume, as Appel does, that we will be operating in the large-memory regime
where the cost of garbage collection is insigni�cant? Although the cost per word of memory
is continuously decreasing, the amount of memory needed for interesting problems seems to be
increasing just as fast. It seems that the cost of garbage collection will be signi�cant for the class of
programs considered in this thesis because large programs will operate in the memory management
regime where most of memory is in use and garbage collection is expensive. Nevertheless, the cost
of explicitly allocating and deallocating an object by a general heap manager is very high, and so
care must be taken to reduce the number of calls to the general heap manager. For this reason,
we will consider some approaches to reusing storage directly or allocating objects in procedure
activation frames.

Appel does not consider the e�ect of locality on program execution time. Moon [32] states that
the most important responsibility of a garbage collector in a system using virtual-memory is to
keep data structures local; actually reclaiming storage is a secondary responsibility in this case. If
a program has little locality of reference because it uses objects spread over a very large amount
of memory, then the performance of the program will be very poor if the virtual-memory system
thrashes.

Is there some way for explicit storage management to cooperate with garbage collection? Many of
the strict, functional languages use a reference counting garbage collector because these languages
cannot create cyclic data structures. If a reference counting garbage collector is used, then reference
counting of objects whose lifetime is known need not be performed. The reference count will be
set to one when the object is created and set to zero when the object's lifetime is over. The Id
run time system is likely to use a copying garbage collector, so that it can reclaim circular objects.

1.5. EXPLICIT STORAGE DEALLOCATION IN ID 27

def f0 () =

{ x = MakeTuple(6,847);

r = Select1(x);

Dealloc(x)

in r }

Figure 1.1: Dealloc in a block expression

A explicit storage allocation and deallocation can cooperate with a copying garbage collector by
allocating and deallocating objects in a separate region. Garbage collection will not be performed
on this region until all objects within it are garbage, in which case, the region may be used as free
storage. Alternatively, this region can be treated as an older generation, and garbage collected
infrequently, with promotion suppressed.

1.5 Explicit Storage Deallocation in Id

The �rst step in this work was to allow programmers to perform explicit storage management in
Id. We introduced an experimental feature into the language for explicit deallocation of structures.
The Dealloc primitive, along with --- (local barrier synchronization) allows Id programmers to
insert commands that deallocate the storage associated with an object when that object is no longer
in use.

Programmer-directed deallocation will be performed to determine the costs and bene�ts of explicit
deallocation in terms of program performance and the problem sizes that may be run without
exhausting memory or invoking the garbage collector.

The Dealloc primitive explicitly deallocates the storage associated with a structure in Id. In order
to use the Dealloc primitive, we must have proper synchronization that prevents the Dealloc from
executing until all uses of the structure to be deallocated have executed. For that reason, we have
also introduced a barrier synchronization construct, denoted by three or more dashes: ---.

In Id, unlike other parallel languages, a barrier is a local synchronization. A barrier can only appear
within a letrec block, and its e�ects are limited to that letrec block. A barrier in Id ensures
that the code in the block bindings before the barrier executes to termination before the code in
the block bindings after the barrier. We will de�ne a control region to be the program region
containing a group of block bindings delimited by barriers. In Id, a control region terminates when
all computation threads have exited the control region. In other words, all values in the region
have been produced and all side e�ects have been performed.

The example in Figure 1.1 contains a block with one control region consisting of the bindings of x
and r. In this example, the object to which x is bound will be deallocated when the computation
in both bindings in the control region have terminated.

Invocation and termination of control regions are partially ordered. Invocation is the point in time
when the interpreter �rst begins executing a portion of a control region, and termination is the
point in time at which the interpreter �nishes executing all code in a control region. Naturally,
termination of any control region always occurs after invocation of that control region.

28 CHAPTER 1. INTRODUCTION

def f0() =

f x = MakeTuple(6; 847);

r = f y = Select1(x);
z = Select2(x);
r1 = y+ z;

cr1

in r1 g
cr0

Dealloc(x)
cr2

in r g

Figure 1.2: Statically nested control regions

Control regions may be composed by enclosing one control region within another or by placing a
barrier between two control regions. If control region cr0 statically encloses control region cr1, then
the invocation of cr0 must precede the invocation of region cr1 and the termination of cr0 must
follow the termination of cr1.

De�nition 1.1 (Barrier Relation) The relation (cr0 --- cr1) holds if control region cr0 is stat-

ically separated from cr1 by a barrier and cr0 comes before the barrier textually.

If control region cr0 is separated statically from control region cr1 by a barrier, and cr0 comes
before cr1, then both the invocation and termination of cr0 must precede the invocation of cr1.

Consider the body of procedure f0 in Figure 1.2. In this example there are three control regions:
region cr0 which is composed of the bindings of x and r, region cr1 which is composed of the
bindings of y and z, and region cr2 which is composed of the deallocation command. Region cr0
encloses region cr1; therefore, the invocation of cr0 precedes that of cr1, and termination of cr1
precedes that of cr0. Region cr0 is separated from region cr2 by a barrier, and so both the invocation
and termination of cr0 must also precede the invocation of cr2. The control region composition
relations are transitive; therefore, the invocation and termination of region cr1, enclosed by cr0,
must precede the invocation of region cr2.

The ordering of the invocation and termination of dynamically composed control regions follows
from that of statically composed control regions. If control region cr0 contains a procedure call,
and cr1 is the control region of the run-time instance of the body of that procedure call, then we
say that cr0 dynamically encloses cr1. Therefore, the invocation of cr0 will precede the invocation
of cr1 and the termination of cr0 will follow the termination of cr1.

The example in Figure 1.3 is similar to Figure 1.2, except that control region cr1 is in the body
of procedure g. In this example, control region cr1 is dynamically enclosed within control region
cr0 because procedure g is called from within control region cr0. Therefore, the partial ordering of
invocation and termination of control regions will be the same as in the previous example. Clearly,
we must be able to name dynamic instances of control regions if we are going to be able to talk about
the ordering of invocation and termination of those regions. This naming of dynamic instances is
one of the topics we will discuss in more detail later in this thesis.

1.5. EXPLICIT STORAGE DEALLOCATION IN ID 29

def f0() =

f x = MakeTuple(6; 847);
r = g(x);

cr0

Dealloc(x)
cr2

in r g

def g(x) =

f y = Select1(x);
z = Select2(x);
r1 = y+ z;

cr1

in r1 g

Figure 1.3: Dynamically nested control regions

If one control region statically or dynamically encloses another, then the lifetime of the outer region
will completely include the lifetime of the inner region. On the other hand, if two control regions
are separated by a barrier, then the lifetime of the �rst will completely precede the lifetime of the
second control region.

30 CHAPTER 1. INTRODUCTION

From these two properties we determine that control regions form a natural tree.

De�nition 1.2 (Ancestor Relation) Control region cr0 is an ancestor of region cr1, or

cr0 = cr1 "

if cr0 statically or dynamically encloses region cr1.

In addition, we say that control region cr1 is a descendent of region cr0 if cr0 is an ancestor of
region cr1. Every control region cr0 will be considered to be an ancestor and a descendent of itself.

cr0 = cr0 "
0

The expression cr0 "
n, where n � 0, refers to the nth ancestor of region cr0.

We will now de�ne two precedence relations on control regions.

De�nition 1.3 (Invocation Precedence) The invocation precedence relation

(cr0 �I cr1) is de�ned as follows:

cr0 �I cr1 �

0B@ 9n: cr0 = cr1 "
n

_

9n0; n1: cr0 "
n0 --- cr1 "

n1

1CA
If (cr0 �I cr1), then control region cr0 must be invoked before cr1 may be invoked.

De�nition 1.4 (Termination Precedence) The termination precedence relation (cr0 �T cr1)
is de�ned as follows:

cr0 �T cr1 �

0B@ 9n: cr0 "
n= cr1

_

9n0; n1: cr1 "
n0 --- cr0 "

n1

1CA
If (cr0 �T cr1), then control region cr0 must terminate before cr1 may terminate.

1.6 Safety of Explicit Deallocation

Note that the use of the Dealloc primitive is inherently unsafe. The programmer may try to
deallocate structures that are shared between various parts of the program, causing all sorts of
errors to occur. Just as in other languages with explicit allocation and deallocation, Dealloc

introduces the possibility of dereferencing dangling pointers. Therefore, the programmer must
analyze his program to verify the safety of each explicit deallocation performed. In this section,
we will see a set of informal conditions that must be met in order to safely deallocate storage in a
program.

Conceptually, there is a single condition that must be satis�ed in order to safely deallocate or reuse
an object. An object may be deallocated when there are no further references to the object. In an
implicitly managed system, an object will be deallocated when there are no live references to the
object. A live reference to a data structure is a reference, or pointer, that is stored in either the
activation frame of a procedure invocation, or in a static variable or in a data structure to which
there is a live reference. In a system in which the programmer must explicitly manage storage, an

1.6. SAFETY OF EXPLICIT DEALLOCATION 31

object may be deallocated as soon it can be guaranteed that no further use will be made of the
object, and so the lifetime of objects may be shorter than in a system with garbage collection.

One way to guarantee that there will be no further references to an object is to put the deallocation
command in a control region or control region that executes after all uses of the object execute.
Here is a condition that describes when it is safe to deallocate an object.

Condition 1.5 (Deallocation Safety) Given two control regions cr0 and cr1 and a variable x

and structure ol bound to x in both regions, it is safe to deallocate the structure ol in control region

cr1 if

1. 8crr: UsedIn (ol; crr)) 9n: cr0 = crr "
n

2. cr0--- cr1,

3. the only use of ol in region cr1 is in the deallocation of ol, and

4. the only deallocation of ol is in region cr1.

where UsedIn (ol; cr) is true if object ol is allocated or dereferenced in control region cr.

The �rst two subconditions of Condition 1.5 guarantees that all uses of the structure bound to
variable x in control region cr0 have terminated before the Dealloc in control region cr1 can
execute. The third subcondition guarantees that there are no references to the contents of x in cr1
that may execute after x is deallocated, and the fourth subcondition guarantees that the structure
bound to x is deallocated only once.

Condition 1.5 is su�cient to ensure the safety of the deallocation of structure x. This condition
is very conservative; it means that the control region containing the producer and all the control
regions containing consumers of the structure have terminated before the deallocation statement
executes.

Figures 1.4 and 1.5 show procedures from the Gamteb [8] photon transport simulation benchmark.
The procedure compton, shown in Figure 1.4, contains a Dealloc command that satis�es Condi-
tion 1.5. The variable new particle is bound to a newly allocated tuple in the �rst binding in
the body of procedure compton; the structure to which new particle is bound is deallocated in
the control region after the barrier. Note that procedure transport particle uses new particle

but does not store it anywhere or return it as a value. Procedure compton allocates nine words of
storage for the new particle. Adding the Dealloc statement allows that storage to be reclaimed as
soon as compton terminates.

The procedure handle collision, shown in Figure 1.5, contains a binding of variable t particle

to a structure allocated in the body of procedure photo elect and used in the body of compton.
The control regions in which this structure is allocated and used are all descendents of the control
region in which t particle is bound. The deallocation of the structure bound to t particle in
the control region after the barrier is safe because the allocation and all other uses of this structure
occurred either in the control region before the barrier or in descendents of that control regions,
and so all of these uses must have terminated before the deallocation command is invoked.

In the rest of this thesis, we show how to verify the safety of a deallocation command at run time.
We show how to check the safety of deallocation commands at compile-time using a conservative
approximation of when objects may be allocated, dereferenced, and deallocated. We also present
an algorithm for inserting safe deallocation commands at compile-time.

32 CHAPTER 1. INTRODUCTION

def transport particle xsect table bins particle prob =

{ x,y,z, u,v,w, wt, e, e bin, cell, seed = particle;

pcompton, ppair, pphoto, ptotal = prob;

� � �

d surf, surface = dist to surface x y z u v w;

rand, rand1 = grand seed;

d coll = dist to collision ptotal rand;

bin counts = if (d coll >= d surf) then

move to surface d surf

else % (d coll < d surf)

handle collision d coll;

in

bin counts};

defsubst compton particle d coll xsect table bins =

{ %% Allocate a new particle, deallocate it in this context.

new particle = (new x,new y,new z, � � � new seed);

� � �

r =

if e kill then

� � �

else

(transport particle xsect table bins

new particle new prob)

Dealloc new particle ;

in r };

Figure 1.4: Procedure compton

1.6. SAFETY OF EXPLICIT DEALLOCATION 33

defsubst handle collision d coll =

{ %% t particle is allocated within photo elect,

%% and deallocated in handle collision.

t particle, absorb, wt kill =

photo elect particle d coll pphoto ptotal ;

counts =

if (not wt kill) and (rand1 < p compton) then

compton t particle d coll xsect table bins

else

� � �

r = add counts counts col counts ;

Dealloc t particle ;

in r }

Figure 1.5: Procedure handle collision

34 CHAPTER 1. INTRODUCTION

Chapter 2

Problem Statement

In order for the compiler to verify or insert explicit storage deallocation code in programs, it must
be able to determine the lifetimes of the objects being deallocated. Thus, the compiler must have
some notion of the run-time behavior of the program being compiled. In this thesis, the compiler
will use an abstraction of the operational semantics to determine the lifetimes of objects.

This thesis develops a method for lifetime analysis that is directly applicable to parallel, single-
assignment languages. In particular, we will be using the language KID� as the basis for the
analysis.

The �rst step in developing our lifetime analysis algorithm is to de�ne a standard operational
semantics for the language of interest. One can de�ne the operational semantics in terms of an
abstract machine, in terms of a term rewrite system, or in terms of an interpreter. We de�ne the
operational semantics in terms of an interpreter because that allows us to stay close to the original
source code of the program, rather than compiling into object code for the abstract machine.

This chapter describes KID� syntax and gives its semantics in terms of an interpreter. In the
�rst section, we de�ne the notation used throughout this thesis. In the second section, we de�ne
the syntax of KID� programs and the value domains over which KID� programs operate. In the
third section, we de�ne the standard KID� interpreter and give examples of its operations. In the
fourth section, we de�ne the deallocation problem in terms of the KID� interpreter, and in the
�fth section we will give an overview of the development of our solution in the rest of this thesis.

2.1 Notation

We will adopt the convention of using double brackets, [[e]], around program text. Environments
will be represented by �, looking up variable x in environment � will be represented by �[x],
and binding variable x to value v in environment � by �[v=x]. Stores will be represented by �,
dereferencing a location l in store � will be written as �[l], and binding location l to value v in store
� will be written as �[l ! v]. The expression P(X) indicates the powerset, or set of all subsets,
of X. Tuples will be written with angle-brackets and elements separated by commas: hv1; � � � ; vni.
Tagged structures will be written with a subscript tag, hFoo v1; � � � ; vni, and x:Tag will be used to
refer to the tag of such a structure. The expression D? constructs a new domain that consists of
the elements of domain D plus a new element ? which is less than all elements of D.

35

36 CHAPTER 2. PROBLEM STATEMENT

F ::= f0 j f1 j : : : User Function Names
X ::= x0 j x1 j x2 j : : : Identi�ers
SE ::= 1 j 2 j 3 j True j False j X Simple Expressions
L ::= l0 j l1 j l2 j : : : Expression Labels
tag 2 Tag = f1; 2; 3 � � �g Oneof Tags
OP ::= + j � j And j Or j : : : Primitive Operators

j MakeTuple j Selecti

j MakeArrayF j Fetch

j MakeOneofTag;N j SelectTag;N j Is?Tag
j Cons j Nil j Hd j Tl j Nil?

E ::= SE j
LOP(SE ; : : : ; SE) Expressions

j
LF (SE ; : : : ; SE) Function Applications
j if (SE ;BE ;BE) Conditionals

Bs ::= X = BE ; � � � ;X = BE Block Bindings
Ds ::= Dealloc (X); � � � ; Dealloc (X) Deallocation Commands
BE ::= fBs---Ds in Xg j E Letrec Blocks
pr 2 Prog ::= f : : :F (X; : : : ; X) = BE ; : : : ; g Programs

Table 2.1: KID� syntax

We use the adjective concrete to refer to values from the standard and instrumented value domains.
These are values that arise during actual execution of a program. We use the adjective abstract

to refer to values that arise during abstract interpretation of a program. These values summarize
all the possible values that could arise during the execution of a program under the standard or
instrumented interpreters. Hats on values (bv) or functions (bf) will be used to denote the abstraction
of some value whenever it is not clear from the context that we are talking about an abstract value.

The metalanguage in which the interpreter is written has strict semantics. Letrec blocks in the
metalanguage are written \f x = e in z g" and have recursive, i.e., letrec, scoping rules. The
metalanguage can be viewed as a mathematical notation, in which there is no notion of order
of evaluation. It can also be viewed as an abstract syntax for a functional language. All of the
de�nitions written in this thesis could be written in a strict, functional language.

2.2 Syntax of KID�

KID� is intended to be an intermediate language used when compiling Id programs. For this
reason, it lacks some features that Id has, such as pattern matching, and so KID� programs can
be rather verbose. KID� does not have loop expressions | in this work, we interpret and analyze
them by translating them into tail recursive functions.

KID� is a sugared form of the lambda calculus. Functions are named, and a program consists of
a top-level recursive block de�ning the functions in the program. This allows a concise expression
of simple programs. The recursive scoping of the program block obviates the need for the Y

combinator in the language. Expressions are either constants, variables, conditional expressions,
or applications of functions or primitive functions. The syntax of KID� is shown in Table 2.1.

A program consists of a recursively scoped block of function de�nitions. A program must de�ne
a function named f0 that takes no arguments | this corresponds to the main function in a C

2.2. SYNTAX OF KID� 37

program. Interpretation of a program begins by invoking this function. Nested functions are not
allowed in this language. For a treatment of how to transform a set of nested function de�nitions
to a
at set of function de�nitions, see [25] for a description of lambda lifting . Also, no currying,
or partial application, of functions is supported. Hochheiser [21] describes the compilation of a
language with currying into a KID-like intermediate form with no currying. Higher-order functions
and closures will be discussed in Section 9.1.

Because KID� is a �rst-order language, identi�ers are separated into function identi�ers F and
value identi�ers X . Simple expressions are either constants or identi�ers. Expressions can be simple
expressions, primitive operator applications, function applications, conditional or block expressions.
Primitive and user function applications are labeled with a static label drawn from domain L, the
set of static expression labels. This expression label will be used in the interpreter to identify
objects and procedure activations.

KID� expressions are divided into two major categories: simple expressions (SE) and expressions
(E). The division simpli�es many of the clauses of the interpreter, because simple expressions
cannot modify or reference the store; they can only reference the environment. All expressions,
except block and conditional expressions, consist of an operator and a number of simple expression
parameters. In these expressions, each of the parameters can be evaluated by the simple expression
evaluator, which does not take or return a store, thus reducing the number of stores that are
de�ned. This reduces the clutter in the evaluator de�nition. Use of SE is even more pronounced
in the instrumented and abstracted interpreters, where more values are returned by the expression
evaluator.

Block expressions consist of a set of recursively scoped bindings, a synchronization barrier, and a
set of deallocation statements. The interpretation of block expressions is rather involved because
KID� is non-strict and because the scoping of variables in blocks is recursive, i.e., block expressions
are letrec blocks. The result of a block expression is the value of the �nal identi�er x in the block's
inner environment and the block's inner store. The return value may be returned as soon as it is
available | block expressions are non-strict and the result value is una�ected by the synchronization
barrier. After all computation in the bindings has terminated, each of the deallocation statements
is executed | the deallocation statements are hyperstrict in each of the bound variables.

Anyplace a block expression is expected, a single expression may be used instead. This allows
expressions such as

f x =e;
in x g

to be written simply as e whenever x is not a free variable of expression e.

The predicate of a conditional is a simple expression, but both branches must be block expressions.
Also, the bodies of function de�nitions must be block expressions. This formulation of the syntax
ensures that every structure that is allocated is initially bound to an identi�er, because the only
place that a structure allocation primitive can occur is on the right-hand side of a block binding.

KID� has primitives for constructing and manipulating three types of aggregate objects. The
primitive MakeTuple takes n arguments and constructs an n-tuple from their values. The primitive
Selecti takes a tuple and returns the ith component. The primitive MakeArrayF takes a length
parameter n and some additional arguments, and constructs an array of n elements where each
element of the array is the value of function F applied to the index and the additional argument
values. Fetch takes an array and an index and returns the corresponding element of the array.

38 CHAPTER 2. PROBLEM STATEMENT

n 2 N = f1; 2; 3 � � �g Integers
b 2 B = True+ False Booleans
l 2 L = fl0; l1; l2; � � �g Expression Labels
� 2 AL = � +AL:L Activation Labels
ol 2 OL = AL : L Object Labels
v 2 V = (N +B +OL)? Denotable Values
tuple 2 Tuple = hTuple V; � � � ; V i Tuples

varray 2 Array =

*
Array n; V; � � � ; V| {z }

n

+
Arrays

voneof 2 Oneof = hN ;N V; � � � ; V i Oneofs
vlist 2 List = hCons V;OLi+ hNil i Lists
sv 2 SV = (Tuple+Array +Oneof + List)? Storable Values
� 2 Store = OL! SV Stores

Table 2.2: Standard value domains

Algebraic types are tagged sums of types. In KID� we represent algebraic types by oneofs, which
are tagged sums of tuples. MakeOneofj ;ntags takes m arguments and constructs a oneof tagged with
j and m components that belongs to a type with ntags di�erent disjuncts. The tag j of a oneof
must be in the range 0 � j < ntags . Selectj;i takes a oneof and returns the ith component of that
oneof, if the tag of that oneof was j. Isj? takes a oneof and returns True if the tag of that oneof
was j.

2.3 KID� Domains

KID� has the usual types of values: integers, booleans, tuples, arrays, algebraic types (oneofs),
and lists. These value domains are de�ned in Table 2.2. Figure 2.2 contains the de�nitions of the
least-upper-bound operators on the standard value domains. Figure 2.3 contains the de�nitions of
the ordering operators on the standard value domains. The domains are all naturally ordered.

In order to model sharing of objects properly we will use a store that maps unique labels to tuples.
A label unbound in a store will map to ?. Tuples will be passed by reference; We will refer to
tuples by their object labels. The actual tuple will reside in an associated store. A denotable value
that is a label of an object makes no sense without an associated store. Denotable values, drawn
from domain V , are either numbers, booleans, object labels or ? (unde�ned).

Object Labels

In order to determine the lifetime of objects, we must be able to distinguish one object from another.
Therefore, when objects are created they must be assigned a unique label. We will always refer to
the objects by this label.

There are many ways a unique label could be allocated for an object. We could use something
like gensym to create arbitrary new, unique labels. However, in order to implement the non-strict
interpreter, we must be able to deterministically generate a unique label for each instance of each
allocation command. We will see later in this chapter that evaluating non-strict, recursive letrec

2.3. KID� DOMAINS 39

{ def f(x,y) =

{ t = l0MakeTuple(x,y)

result = k0g(t);

Dealloc(t);

in result };

def g(t) =

Select1(t)

}

Figure 2.1: Labeled deallocation example

blocks involves �xpoint iteration over successive approximations of the recursive environment. Each
time we improve the approximation of the environment and store of a letrec expression, we must
get the same object labels for each object allocated in the block. Therefore the structure of labels
must be tied to the structure of the program in some manner so that when we summarize labels
we summarize information about particular parts of the program.

In order to name objects uniquely in our interpreter, we will use both a static label from the
allocation primitives and a dynamic label identifying the particular invocation of that primitive.
Therefore, the domain OL of object labels will consist of two components: a unique activation label
and a static label that denotes the expression in the program that allocated the structure.

Static labels are assigned to each expression in a KID� program. We will only display the pertinent
labels on allocation primitives and function applications. These labels will be placed to the left and
above the expression that they annotate. In Figure 2.1, we have labeled the MakeTuple primitive
with l0 by placing l0 to the upper left of the MakeTuple expression. This label forms the static
portion of the object label of any tuple allocated by executing this particular expression.

Activation Labels

We will call the dynamic portion of object labels their activation labels . Activation labels are drawn
from the domain AL, whose structure will be described below. Our scheme for labeling activations
is similar to that of Harrison.

In [19], Harrison uses a pair consisting of a variable name and a procedure string to uniquely
name variable instances. In his system, every function expression (lambda abstraction) is uniquely
named statically, e.g., ��0 . The language he is modeling has call-cc and this must be re
ected
in procedure strings, which name a sequential execution path through a program. A procedure
string consists of a sequence of lambda names with a superscript of d or u to indicate the entrance
or exit from an instance of that procedure, e.g., the procedure string �d0�

d
1�

u
1 indicates entering

the body of lambda �0, entering the body of lambda expression �1 followed by exiting the body
of lambda expression �1. Harrison shows that these labels uniquely name every instance of every
object allocated in the program.

Harrison's scheme works well in a sequential language in which there is only a single thread of
control that can be named by the procedure string. However, in a parallel language such as KID�,

40 CHAPTER 2. PROBLEM STATEMENT

there is no sequential thread of control that can uniquely identify each object. Therefore, we will
use a variation of procedure strings based on the hierarchical rather than sequential ordering of
procedure activations. In this scheme, every expression within a function de�nition will be uniquely
labeled. An instantiation of a procedure f called from a procedure g executing in activation � can
be uniquely named by � followed by kj, where kj is the label of the expression within procedure g
which calls procedure f . Thus, an activation label is the concatenation of the names of the edges
in the run-time call-tree, where each edge is labeled by the application expression that created that
edge. An important feature of these labels is that the label assigned to a particular instantiation of
a procedure invocation will always be the same regardless of the execution order of subexpressions.
Since object labels consist of an activation label paired with the expression label of the allocation
primitive expression, this feature carries over to object labels.

Our activation labels uniquely identify a particular invocation of a procedure during the execution
of a program. Activation labels AL denote a path down the call tree of a program. Activation
labels consist of a string of expression labels:

�:k1: � � � :km

where � is the empty activation label and each of the ki is the expression label of a user function
application expression. We use strings of expression labels instead of strings of function names be-
cause we must be able to distinguish two invocations of a single procedure within a given procedure
activation. Activation label � is used as the activation label of the main body of the program. Each
time a procedure is called from activation �, we construct a new activation label by concatenating
the expression label k of the function application to � with a \.", yielding �:k.

For example, consider the de�nition of procedure fib, shown below. Procedure fib is recursive; it
contains two calls to itself within the body.

def fib(i) =

{ p = i < 2;

r = if p then 1

else { n1 = k2fib(i-1);

n2 = k1fib(i-2);

n3 = n1 + n2

in n3 }

in r };

If we invoke fib(3) in activation �, then we get the following activation tree:

fib(3)

�s

s�
�

�
�

fib(1)

�:k0 s@
@

@
@

fib(2)

�:k1

s�
�

�
�

fib(0)

�:k1:k0 s@
@

@
@

fib(0)

�:k1:k1

2.4. KID� INTERPRETER 41

v t ? = v

? t v = v

v t > = >

> t v = >

v1 tV v2 =

(
v1 if v1 = v2
> otherwise

hTuple v1; � � � ; vn1i tSV hTuple w1; � � � ; wn2i =(
hTuple (v1 tV w1); � � � ; (vn1 tV wn2)i if n1 = n2
> otherwise

hArray n1; v1; � � � ; vn1i tSV hArray n2; w1; � � � ; wn2i =(
hArray n1; (v1 tV w1); � � � ; (vn1 tV wn2)i if n1 = n2
> otherwise

tag1 ;m1
v1; � � � ; vn1

�
tSV

tag2 ;m2

w1; � � � ; wn2

�
=(

tag1 ;m1
(v1 tV w1); � � � ; (vn1 tV wn2)

�
if tag1 = tag2 ^m1 = m2 ^ n1 = n2

> otherwise

hCons v1; v2i tSV hCons w1; w2i = hCons (v1 tV w1); (v2 tV w2)i

hNil i tSV hNil i = hNil i

�1 tStore �2 = �ol:

(
�1[ol]tSV �2[ol] if ol 2 OL

? otherwise

Figure 2.2: Least upper bound operators on standard value domains

Note that the activations labeled �:k0, �:k1, �:k1:k0 and �:k1:k1 can all proceed in parallel with
the parent. The only information we get from the activation labels is that parent activations
are initiated before their child activations and that parent activations terminate after their child
activations terminate.

2.4 KID� Interpreter

In this section we give an operational semantics for KID� in terms of a standard interpreter. First,
we discuss the evaluation strategy used by the interpreter, then we present the overall structure of
the interpreter, then we present the program evaluator, simple expression evaluator, and expression
evaluator. Next we discuss the correctness of the interpreter. Finally, we discuss the deallocation
problem and give an overview of our solution.

42 CHAPTER 2. PROBLEM STATEMENT

? v v 8v

v v > 8v

v1 vV v2 �

8><>:
True if v1 = ?

True if v1 = v2
False otherwise

�1 vStore �2 �

^
li2L

�1[li] vSV �2[li]

hTuple v1; � � � ; vn1i vSV hTuple w1; � � � ; wn2i �8<:
^
i

(vi vV wi) if n1 = n2

False otherwise

hArray n1; v0; � � � ; vn1�1i vSV hArray n2; w0; � � � ; wn2�1i �8<:
^

0�i<n1

(vi vV wi) if n1 = n2

False otherwise

tag1 ;m1

v1; � � � ; vn1
�
vSV

tag2 ;m2

w1; � � � ; wn2

�
�8<:

^
i

(vi vV wi) if tag1 = tag2 ^m1 = m2 ^ n1 = n2

False otherwise

hCons v1; v1i vSV hCons w1; w2i �

(v1 vV w1) ^ (v2 vV w2)

hNil i vSV hNil i � True

Figure 2.3: Ordering operators on standard domains

2.4.1 Evaluation Strategy

This interpreter is somewhat novel in that it evaluates each expression more than once in order to
implement the non-strictness of the KID� language. Typically, an interpreter will evaluate each
expression exactly once.

Consider the following KID� fragment, which uses non-strictness to de�ne the second component
of the tuple in terms of the �rst component of the tuple.

{ a = l0MakeTuple(x,y);

x = 2;

y = Select1(a);

in a }

There is no order in which we can evaluate the three bindings of this expression in order to com-
pletely specify the expression. The evaluation strategy used by this interpreter is to repeatedly

2.4. KID� INTERPRETER 43

evaluate subexpressions in successively improved environments and stores until a limit is reached
and the expression is fully evaluated. The interpreter will �rst approximate the environment of the
body of the block expression by creating and environment in which each of the bound variables is
bound to ?. Then it will evaluate each of the right-hand-side expressions in that environment to
yield new approximations to the values of the bound variables and new approximations to the value
of the store. This process is repeated until both the environment and the store have stabilized.

For this example, the interpreter would start with environment �0 and store �0:

�0 =

264 a! ?

x! ?

y! ?

375
�0 = ?Store

After evaluating each of the right-hand-sides in environment �0 and store �0 and combining the
results into a new environment and store, we get �1 and �1:

�1 =

264 a! � : l0
x! 2
y! ?

375
�1 =

h
� : l0 ! hTuple ?;?i

i
in which variables a and x have non-bottom bindings and label � : l0 is bound to a tuple containing
? and ?.

One more iteration would yield �2 and �2:

�2 =

264 a! � : l0
x! 2
y! ?

375
�2 =

h
� : l0 ! hTuple 2;?i

i
Now the �rst component of the tuple labeled � : l0 contains 2.

Yet one more iteration would yield �3 and �3:

�3 =

264 a! � : l0
x! 2
y! 2

375
�3 =

h
� : l0 ! hTuple 2;?i

i
in which variable y is now bound to 2.

Finally, we would reach the environment �4 and store �4 of the completely evaluated block expres-
sion:

�4 =

264 a! � : l0
x! 2
y! 2

375
�4 =

h
� : l0 ! hTuple 2; 2i

i

44 CHAPTER 2. PROBLEM STATEMENT

in which all three variables have non-bottom bindings and the tuple has no bottom components.

We can tell that environment �4 and store �4 have reached the �xpoint by iterating the process
one more time. This iteration yields the same result as the previous iteration; therefore, �4 and �4

must be the complete value.

�5 =

264 a! � : l0
x! 2
y! 2

375
�5 =

h
� : l0 ! hTuple 2; 2i

i
The important thing to notice is that each expression was evaluated �ve times in order to reach
the �xpoint. The evaluation strategy we have chosen had some e�ect on how we named objects.
We had to be able to deterministically assign a label to an object in order to evaluate MakeTuple
expressions multiple times.

Most interpreters for non-strict languages use a rewrite system, where subexpressions are rewritten
when they are evaluated. We chose this evaluation strategy because when we abstract the inter-
preter we want the compiler to analyze programs by recursively descending the program, evaluating
as it goes along. We want the program being evaluated to have the same text as the program being
annotated or veri�ed; so we do not want to use a rewriting interpreter.

Arrays

Here is an example of the use of MakeArray.

{

def g1 (i, x, y) =
l0MakeTuple(x,y,i);

def f1 (n, x, y) =
l1MakeArrayg1(n, x, y);

}

This example consists of two procedures. Procedure g1, which takes three values, allocates a three-
tuple containing the three values and returns the value as its result. Procedure f1 uses MakeArray
to construct an n-element array with vi as the ith element of the matrix:

vi = g1(i; x; y)

where (0 � i < n).

The value v and store � resulting from a call to procedure f1 with values 3, 17 and 22 in activation
� would be:

v = � : l1

� =

26664
� : l1 ! hArray 3; �:l1:0 : l0; �:l1:1 : l0; �:l1:2 : l0i
�:l1:0 : l0 ! hTuple 22; 23; 0i
�:l1:1 : l0 ! hTuple 22; 23; 1i
�:l1:2 : l0 ! hTuple 22; 23; 2i

37775

2.4. KID� INTERPRETER 45

Please note that procedure g1 is invoked with the index i of the array element as well as the values
of the two extra parameters passed to MakeArray. Any number of additional parameters may be
passed to the element creation function through the extra parameters to MakeArray. These extra
parameters increase the expressiveness of the language without having higher-order functions.

Algebraic Types

In some cases, we would like to represent a value whose type is one of a number of di�erent types.
In this case, we use an algebraic type, which is a disjoint union of the types. We will refer to
algebraically typed objects as oneofs. In order to maintain type safety, a disjunct tag is maintained
on these objects, and special operators are provided to construct and manipulate them.

For example, consider the transaction algebraic type de�ned below.

type transaction = deposit I | withdrawal I

A transaction is either a deposit or a withdrawal.

Transactions are represented by tagged structures in the standard semantics. A transaction object
is either a deposit:

h0 ;2 ni

where the subscript 0; 2 indicates the 0th disjunct of a type with two disjuncts, or a withdrawal:

h1 ;2 mi :

where the subscript 1; 2 indicates the 1th disjunct of a type with two disjuncts. Any particular
transaction value will be either a deposit or a withdrawal.

The KID� code to create and manipulate structures of the transaction type using these primitives
would look like:

def make deposit(n) =
l0MakeOneof0;2(n);

def make withdrawal(m) =
l0MakeOneof1;2(m);

def deposit amount(d) =

if Is0(d)

then Select0;1(d);

else Error();

def withdrawal amount(w) =

if Is1(w)

then Select1;1(w);

else Error();

def deposit?(t) =

Is0(t);

46 CHAPTER 2. PROBLEM STATEMENT

where Error is a primitive that always returns bottom (and presumably drops the user into the
debugger).

Some algebraic types are de�ned recursively. These types are used to represent things such as lists,
trees, and graphs. Because lists are used so often in functional programs, KID� has primitives
speci�cally de�ned to create and manipulate list objects.

2.4.2 Interpreter Structure

This section introduces the structure of the standard interpreter and de�nes several properties that
the interpreter satis�es. The interpreter consists of three semantic functions, SE , E and PE , which
together interpret KID� programs. The following are the signatures of the semantic functions that
make up the interpreter.

SE : SE!Env!V Evaluates simple expressions
E : E!Env!Store!AL!(V � Store) Evaluates expressions
PE : Prog!(V � Store) Evaluates programs

where Env, the domain of environments, is de�ned as:

Env = X ! V:

Environments map identi�ers, or variables, to values. An identi�er that is unbound in an environ-
ment maps to ?.

The function PE evaluates a program and returns a denotable value and a store as the result. The
function E takes an expression e, an environment �, a store �, and an activation label � and returns
the denotable value and new store resulting from evaluating the expression e in �, �, and �. We
call a triple consisting of an environment, a store, and an activation label a context | it contains
the contextual information necessary to interpret an expression.

De�nition 2.1 (Dynamic Context) A dynamic context is a triple consisting of an environment,
a store, and an activation label.

In order to show that the interpreter is sound, i.e., it terminates on well-behaved (non-looping)
programs, we must show that procedures SE and E are monotonic. Monotonicity is required to
show the existence of the �xpoints computed during evaluation of letrec blocks. The monotonicity
of E depends on a property called extensionality .

De�nition 2.2 (Extensionality) A function f is extensive if,

8x 2 Domain (f): x v f(x)

In other words, the result of f(x) always includes x | function f only adds information to its
argument.

We will have to show that E is extensive, that is, E only adds to the bindings of the store that it
takes as input. The set of locations bound in the store resulting from a call to evaluator E will be
a superset of the set of locations bound in the input store.

2.4. KID� INTERPRETER 47

Proposition 2.3 (E is extensive)

8� 2 Env; �0 2 Store; � 2 AL;

9 h v; �1 i = E [[e]]� �0 � ;
) �0 v �1

The extensionality of E is used in the proof of the monotonicity of E .

Proposition 2.4 (E is monotonic)

8�0; �1 2 Env; �0; �1 2 Store; � 2 AL;

9 h v0; �
0
0 i = E [[e]]�0 �0 � ;

9 h v1; �
0
1 i = E [[e]]�1 �1 � ;

(�0 v �1)^ (�0 v �1)) (v0 v v1)^ (�00 v �01)

2.4.3 KID� Program Evaluator

The program evaluator PE evaluates the main function by invoking the expression evaluator with
the text of the body of the function, an empty environment, an empty store, and an empty activation
label. The de�nition of the program evaluator is given below:

PE [[pr]] =

f f � � �fi(xi;1; : : : ; xi;ni) = ei; � � �g= pr;
in E [[e0]]?Env ?Store � g

where
f0() = e0

is the de�nition of the main procedure f0 in program pr.

The purpose of the program evaluator is to provide the initial environment to the expression
evaluator so that it may evaluate the body of the program. Function identi�ers are handled
specially; they are not bound in the environment. A di�erent model of program evaluation would
yield an environment of functions, and one could invoke any of the procedures in the program
with arbitrary arguments. We chose the whole program view because it is simple and because it
is consistent with the approach of many systems where programs are compiled and run as a single
unit with a single entry point.

2.4.4 KID� Simple Expression Evaluator

The simple expression evaluator takes a simple expression and an environment and returns a deno-
table value. It is used by the expression evaluator. Numeric and boolean literals are evaluated to
numeric and boolean constants. Identi�ers, or variables, are evaluated by looking them up in the
environment.

SE [[n]]� = n where n is a number
SE [[b]]� = b where b is a boolean
SE [[x]]� = �[x] where x is a variable

Simple expressions cannot modify the store, so no store is passed into or returned from procedure
SE .

48 CHAPTER 2. PROBLEM STATEMENT

2.4.5 KID� Expression Evaluator

The expression evaluator will now be de�ned as a dispatch function on the structure of the input
term. Remember that the expression evaluator takes an expression, an environment, a store, and
an activation label, and returns a value and a new store.

Evaluation of Simple and Primitive Expressions

The �rst three clauses of the interpreter de�ne the semantics of constants and variables:

E [[n]]� �� = h SE [[n]] � ; � i where n is a number
E [[b]]� � � = h SE [[b]]� ; � i where b is a boolean
E [[x]]� �� = h SE [[x]]� ; � i where x is a variable

All three of these clauses call the simple expression evaluator, and in these clauses the input store
is returned unchanged because simple expressions cannot modify the store.

The next clause shows the evaluation of a simple arithmetic expression.

E [[+ (se1; sen)]] � �� = f v1 = SE [[se1]]� ;
v2 = SE [[se2]]�
in h v1 + v2; � i g

The two operands are evaluated �rst, then the primitive operator + is applied to those values,
and the result is returned. These primitive operators do not modify the store; consequently, it is
returned unchanged.

Evaluation of Function Applications

We evaluate an application expression by evaluating its arguments and forming environment �0

and activation label �0. Environment �0 is obtained by extending the empty environment with
bindings from each of the formal parameters to their actual values. We concatenate activation
label � with the expression label k of the activation expression to form the new activation label �0.
Then we evaluate the body of the function in environment �0, store �, and activation label �0. The
non-strictness of functions and data structures is handled by the implementation of letrec blocks,
shown later in this section. So if we evaluate the body of a procedure before all of its arguments
have been evaluated, those arguments will be unde�ned (?) or partially de�ned (if they are bound
to labels of data structures).

E [[kf(se1; � � � ; sen)]]� �� = f v1 = SE [[se1]] � ;
...

vn = SE [[sen]]� ;
�0 =?Env [v1=x1; � � � ; vn=xn];
�0 = �:k;
in E [[e]] �0 � �0 g

where f(x1; � � � ; xn) = e is a de�nition in the program

Note that the body of function f is evaluated in a new environment and a new activation �:k con-
sisting of the current activation label � concatenated with the expression label k of the application
expression.

2.4. KID� INTERPRETER 49

Evaluation of Conditionals

Conditionals are evaluated by �rst interpreting the predicate, and then interpreting one of the
branches of the conditional depending on the value of the predicate.

E [[if (se0; e1; e2)]]� �� = if SE [[se0]]� = True

then E [[e1]] � ��
else E [[e2]]� ��

Evaluation of Block Expressions

Evaluation of KID� letrec blocks is rather complex because they have recursive scope and because
KID� is non-strict. They are evaluated by solving the recursive equations resulting from interpret-
ing each of the binding right-hand-sides in an environment that has the letrec block variables
bound to the values of the binding right-hand-sides. This recursive equation is solved by �xpoint
iteration of function EvalBindings, starting with an initial approximation of the environment that
binds each of the xi to bottom and an initial approximation of the store equal to the incoming
store.

After the bindings have been evaluated completely, the deallocation statements are executed. The
deallocation statements have no e�ect in the standard interpreter, but they will be modeled more
precisely in the instrumented interpreter in Chapter 3.

E [[f Bs---Ds in xg]]� �� =

f [[x1 = e1; : : : ; xn = en]] =Bs;
[[Dealloc (y1); � � � ; Dealloc (yk)]] =Ds;
�0 = �[?=x1; � � � ;?=xn];
h �0; �0 i = EvalBindings (Bs; �0; �; �);
in h �0[x]; �0 i g

where

EvalBindings ([[x1 = e1; : : : ; xn = en]] ; �; �; �) =

f h v1; �1 i = E [[e1]]� �� ;
...

h vn; �n i = E [[en]]� �� ;
�0 = �[(v1 t �[x1])=x1; � � � ; (vn t �[xn])=xn];
�0 =

F
i

�i;

h �00; �00 i = if �0 = �^ �0 = �

then h �0; �0 i

else EvalBindings ([[x1 = e1; : : : ; xn = en]] ; �0; �0; �)
in h �00; �00 i g

Evaluation of Tuple Primitives

The next two clauses give the evaluation rules for tuple data structures. The primitive MakeTuple
takes m values and returns a structure containing those m values. This clause constructs a unique

50 CHAPTER 2. PROBLEM STATEMENT

object label ol by pairing the current activation label and the expression label of the MakeTuple

expression, and returns a store that has ol bound to the new tuple in the incoming store. The
object label is returned as the value of the expression. This clause only adds information to the
store, thus preserving the extensionality of E .

E [[lMakeTuple (se1; � � � ; sem)]]� �� = f v1 = SE [[se1]]� ;
...

vn = SE [[sem]]� ;
ol = � : l;
vtuple = hTuple v1; � � � ; vmi ;
�0 = �[ol! (vtuple t �[ol])];
in h ol; �0 i g

Tuple selection is accomplished by evaluating the argument to the Selecti primitive, yielding an
object label, and looking up the value of that object label in the current store. The ith component
of that tuple is returned as a value, along with the current store.

E [[Selecti (se)]]� �� = f ol = SE [[se]]� ;
hTuple v1; � � � ; vni= �[ol];
in h vi; � i g

Evaluation of Array Primitives

The following three clauses give the evaluation rules for array data structure operators: MakeArray,
Fetch, and Bounds. The primitive MakeArrayfi takes a simple expression that evaluates to length
n and r simple expressions that evaluate to values to pass to function fi, and makes an array of
length n where the jth component is fi(j; v1; � � � ; vr). Note that this clause only adds information
to the store, thus preserving the extensionality of E .

E [[kMakeArrayfi (se0; se1; � � � ; ser)]]� �� =

f ol = � : k;
n = SE [[se0]]� ;
v1 = SE [[se1]]� ;

...
vr = SE [[ser]]� ;
h u0; �0 i = E [[ei]] (?Env [0=x0; v1=x1; � � � ; vr=xr]) � (�:k:0) ;

...
h un�1; �n�1 i = E [[ei]] (?Env [n� 1=x0; v1=x1; � � � ; vr=xr]) � (�:k:(n� 1)) ;
varray = hArray n; u0; � � � ; un�1i ;

�0 = �[ol! (varray t �[ol])]t

 F
0�i<n

�i

!
;

in h ol; �0 i g

where fi(x0; x1; � � � ; xr) = ei is a de�nition in the program.

The primitive Fetch takes an array a and an index i, and returns the ith component of a.

E [[kFetch (se1; se2)]]� �� =

2.4. KID� INTERPRETER 51

f ol = SE [[se1]]� ;
i = SE [[se2]]� ;
hArray n; v0; � � � ; vn�1i = �[ol];
in h vi; � i g

The primitive Bounds takes an array and returns the length of the array.

E [[kBounds (se)]]� �� =

f ol= SE [[se]]� ;
hArray n; v0; � � � ; vn�1i = �[ol];
in h n; � i g

Evaluation of Algebraic Type Primitives

The following three clauses de�ne the behavior of the interpreter on the primitives that allocate
oneofs, select components from oneofs, and test the tags of oneofs. The primitive MakeOneoftag;ntags
allocates a oneof whose tag is tag and which belongs to a type with ntags tags and whose elements
are the values of simple expressions se1 through sem. The primitive Istag? returns True if the
tag of the oneof to which simple expression se evaluates is tag. The primitive Selecttag;i returns
the ith component of the oneof to which se evaluates if the tag of that object is tag; otherwise it
returns ?.

E [[lMakeOneoftag;ntags (se1; � � � ; sem)]]� �� =

f v1 = SE [[se1]]� ;
...

vni = SE [[seni]]� ;
ol = � : l;

voneof =
D
i;ntags v1; � � � ; vm

E
;

�0 = �[ol! (voneof t �[ol])];
in h ol; �0 i g

E [[Istag? (se)]]� �� =

f ol= SE [[se]]� ;D
tag 0;ntags v0; � � � ; vm

E
= �[ol];

b = if tag = tag0

then True

else False;
in h b; � i g

E [[Selecttag;i (se)]]� �� =

f ol = SE [[se]] � ;D
tag 0;ntags v1; � � � ; vm

E
= �[ol];

v = if tag = tag0

then vi
else?

;

in h v; � i g

52 CHAPTER 2. PROBLEM STATEMENT

Evaluation of List Primitives

The following �ve clauses give the semantics of the list manipulation primitives. The primitive
constructor Cons takes an element x and a list vlist and constructs a new list with x as its head
and vlist as its tail. The primitives Hd and Tl take a list and return the head and tail, respectively,
of the list. The constructor Nil returns a new empty list. The predicate Nil? returns True if the
value is Nil and False otherwise.

E [[lCons (se1; se2)]]� � � = f v1 = SE [[se1]]� ;
v2 = SE [[se2]]� ;
ol = � : l;
vcons = hCons v1; v2i ;
�0 = �[ol! (vcons t �[ol])];
in h ol; �0 i g

E [[Hd (se)]]� � � = f ol = SE [[se]]� ;
hCons v1; v2i = �[ol];
in h v1; � i g

E [[Tl (se)]]� � � = f ol = SE [[se]]� ;
hCons v1; v2i = �[ol];
in h v2; � i g

E [[lNil ()]]� � � = f ol = � : l;
�0 = �[ol! (hNil i t �[ol])];
in h ol; �0 i g

E [[Nil? (se)]]� � � = f ol = SE [[se]]� ;
b = if �[ol]:tag= Nil

then True

else False;
in h b; � i g

2.4.6 Soundness of Standard Interpreter

Theorem 2.3 The interpreter E is extensive with respect to the store.

8� 2 Env; �0 2 Store; � 2 AL;

9v 2 V; �1 2 Store

h v; �1 i = E [[e]]� �0�) �0 v �1

Proof:

By structural induction:

{ The clauses that interpret simple expressions and arithmetic primitives return the store
unchanged, and so these clauses are extensive with respect to the store.

{ The clauses that interpret conditional and function application expressions call the in-
terpreter on their subexpressions with their input store. Assuming that interpretation
of subexpressions (the inductive case) is extensive, then the interpretation of conditional
and function application expressions is extensive with respect to the store.

2.4. KID� INTERPRETER 53

{ To prove the extensionality of the clause that interprets letrec blocks, we have to show
that EvalBindings is extensive with respect to the store. This function computes the
solution to the set of recursive equations formed by the block bindings. The solution
consists of an environment �0 and a store �0. The store �0 must include the input store
�, because EvalBindings calls the interpreter on the binding right-hand sides with the
input store �, and then takes the least upper bound of the resulting stores. Both of
these steps are extensive.

{ Each of the clauses that allocate structures are extensive because they only add a binding
to the store.

{ Each of the clauses that fetch values from structures are extensive because they return
the input store unchanged.

Theorem 2.4 The interpreter functions SE and E are monotonic. Given simple expression se,

expression e, and activation label �, we show monotonicity with respect to the environment and

store:
8�0; �1 2 Env ; �0; �1 2 Store;

�0 v �1) SE [[se]]�0 v SE [[se]]�1

�0 v �1 ^ �0 v �1) E [[e]]�0 �0 � v E [[e]]�1 �1 �

Proof:

First SE , by structural induction:

{ The clauses that evaluate numeric and boolean literals always return the values of those
literals; therefore, SE [[c]]�0 v SE [[c]]�1 , because the values of those literals are
independent of the environment.

{ The clause that evaluates identi�ers looks up the identi�er in the environment. If �1 is
more de�ned than �0, then the value of x in �1 must be at least as well de�ned as the
value of x in �0. Therefore, SE [[x]] �0 v SE [[x]] �1 .

Now E , by structural induction:

{ The clauses that evaluate constants and literals are all monotonic because the values
they return are from calls to the simple evaluator, which is monotonic, and the stores
they return are the incoming stores.

{ The clauses that evaluate arithmetic and relational operators are all monotonic because
these operators are monotonic (e.g., (? + 2) v (3 + 2)) and the values passed to these
operators are obtained from the simple expression evaluator, which is monotonic.

{ In the clause that evaluates function applications, the argument values are obtained from
the simple expression evaluator, so they increase monotonically as the environment gets
more de�ned. We use our induction hypothesis to show that evaluation of the function
body is monotonic, because recursive calls to E are assumed to be monotonic.

{ If we assume that the semantic conditional returns ? if the predicate is unde�ned, then
as the predicate gets more de�ned the result of the conditional gets more de�ned. If the
predicate is either True or False, then the behavior is monotonic because we assumed
that the subsequent calls to E are monotonic.

54 CHAPTER 2. PROBLEM STATEMENT

{ def f(x,y) =

{ t = l0MakeTuple(x,y)

result = k0g(t);

Dealloc(t);

in result };

def g(t) =

Select1(t)

}

Figure 2.4: Simple deallocation example

{ To show that evaluation of letrec blocks is monotonic, we must show that function
EvalBindings is monotonic. Because E is extensive, each of the new stores created in
EvalBindings is at least as de�ned as the incoming store, so EvalBindings is monotonic
in the return store. EvalBindings is monotonic in the return environment because the
new environment is created by binding each variable xi to the least upper bound of the
new approximation of its value and its binding in the previous environment. Evaluation
of letrec blocks is monotonic because EvalBindings is monotonic and because we do
not remove the binding of a label from the store when it is deallocated.

{ Evaluation of each of the allocation primitives is monotonic because they are extensive
with respect to the stores, and because they use the simple expression evaluator to
evaluate their arguments.

{ Evaluation of each of the selection primitives is monotonic because they return the value
of a structure from the input store. If the store becomes more de�ned then the value of
a structure in the store must stay at least as well de�ned as it was before.

2.5 The Deallocation Problem

We are trying to solve two related problems. One problem is: given a program with deallocation
statements in it, verify the correctness of those deallocation statements. The second problem is to
insert deallocation statements into a program automatically.

In either case, we must know when a deallocation command is correct. In the program in Figure 2.4,
procedure f contains a statement deallocating the object bound to variable t. This statement is
correct only if the structure to which t is bound was allocated within the body of f, the structure
does not escape from the result of f, and there is no other statement deallocating that structure.

Thus, we are interested in four important bits of information for any program or procedure in a
program:

� the identities of the objects to which variables are bound;

� the identities of the objects that procedures allocate;

2.6. OVERVIEW OF OUR SOLUTION 55

� the identities of the objects that procedures return; and

� the identities of the objects that procedures deallocate.

The �rst bit of information is used to determine the other three and to associate lifetime information
with the program once it has been analyzed. The second and third bits let us determine which
objects are reachable, and potentially live, outside of the current procedure activation. These two
pieces of information are also used to determine which objects have lifetimes completely bounded
by the lifetime of a procedure's activation frame. Given more precise information about the order
of execution of a procedure body, its arguments, and its child procedure calls, we could perform
better dependence analysis that would tell us which objects that are live in this procedure activation
frame are needed after termination of this activation frame. The last bit of information is necessary
in order to prevent errors that can occur if the heap manager is requested to deallocate the same
object more than once.

2.6 Overview of Our Solution

The goal of this thesis is to develop an analysis that yields the necessary information to verify or
insert storage reclamation code. In the next three chapters, we develop a solution to the problem
of determining object lifetimes at compile-time. Chapter 3 describes an interpreter for KID�

that allows us to determine the unique identities of objects at run-time and to determine exactly
when these objects are allocated and when they are no longer reachable. Chapter 4 describes
an abstraction of this semantics that allows us to compute a generalization of the lifetimes of
objects over all executions of a program. Chapter 5 gives algorithms for verifying and inserting
deallocation statements using information from lifetime analysis. Chapters 6, 7, 8, and 9 extend
the value domains and the standard, instrumented, and abstract interpreters to handle arrays,
lists, and I-structures. Chapter 10 will describe the compile and run-time performance of programs
automatically annotated by the compiler and Chapter 11 presents the conclusions we have reached
during this work.

56 CHAPTER 2. PROBLEM STATEMENT

Chapter 3

Instrumented Semantics

Before we can formalize the conditions that must be satis�ed statically by a correct storage deal-
location command, we must know the conditions that must be satis�ed dynamically for that deal-
location command to be correct. The standard KID� interpreter treats the deallocation primitive
as a no-op, and so it is not su�cient for our purposes.

In order to determine that a deallocation command is correct, we must be able to determine that
no reference is made to an object after it is deallocated. In a sequential interpreter, we could mark
the location when it was deallocated, and any further reference to that location would produce an
error. In our interpreter, however, we cannot mark an object as deallocated because of the way we
evaluate letrec blocks | stores are repeatedly passed through all subexpressions of the block.

In this chapter, the standard semantics will be augmented to collect information about which
objects were allocated, dereferenced or deallocated by each expression. These collections of events
can be examined after a program has been interpreted to see if any object was dereferenced after
it was deallocated.

The activation labels de�ned in Chapter 2 give a partial order on the time of execution of the
instances of each subexpression in a program. In this chapter, we will assign new activation labels
for the body of each letrec block as well as for each procedure application, so that we can measure
�ner di�erences in execution times. Activation labels as de�ned earlier are su�cient to distinguish
each object that is created by a program, but they are not su�cient to distinguish in which control
region a particular deallocation takes place.

In the �rst section of this chapter, we will see how the information we would like to gather a�ects
the structure of the instrumented interpreter. In the next section, we will present the instrumented
interpreter. Following that, we will discuss the correctness of the interpreter with respect to the
standard interpreter given in Chapter 2. Finally, we will work through the interpretation of a few
examples.

3.1 Instrumented Interpreter Characteristics

The four pieces of information needed to verify the correctness of the deallocation of the structure
bound to a variable during the execution of a program will help us de�ne the domains of the
instrumented interpreter and the signatures of its functions.

57

58 CHAPTER 3. INSTRUMENTED SEMANTICS

3.1.1 Collecting the Necessary Information

First, we must be able to identify individual objects in a program in order to determine when two
variables are bound to the same object. We use the object labels de�ned in Chapter 2 to name
objects uniquely. Although the activation label component of the object label has structure that
allows us to determine the relative timing of object allocation and deallocation, we only consider
equality of labels, not ordering on the structure of labels, when we manipulate sets of object labels.
For instance, when we take the union of two sets of labels, we return a set containing all of the
di�erent labels. We do use the structure of individual labels as our notion of time of execution,
though.

Second, we must collect the labels of objects allocated during the evaluation of an expression. In the
standard interpreter for KID�, each expression evaluates to a single complete value: a denotable
value and a store. In our instrumented interpreter, each expression evaluates to a denotable value,
a store, and three sets of events. These event collections name the objects that were allocated,
deallocated, and referenced, and the activations in which the event occurred.

Finally, we can examine the values to which expressions evaluate in order to see what locations
may be reachable from the result of an expression. The result of interpretation of an expression is
a denotable value and a store. We can traverse the value with respect to the store to determine
the set of reachable locations. This information will be used to formulate a conservative safety
condition for deallocation statements. We will be able to test this condition in the context of the
deallocation statement, rather than during a postmortem after execution occurs (as is required
when examining the allocation, deallocation, and reference events).

3.1.2 Temporal Ordering of Execution

Once we have collected sets of allocation, deallocation, and dereferencing events, the next step is to
give a partial order on the execution of these events. Activation labels have structure that allows
us to use the hierarchical termination of activations as a measure of execution time. We use that
to order events in time.

In the instrumented interpreter, every distinct activation label names a di�erent control region.
We extend the invocation and termination precedence relations from control regions to activation
labels. Thus, we say that an activation labeled �0 terminates before an activation labeled �1
if the termination of the control region labeled �0 must precede the termination of the control
region labeled �1. In other words, �0 is a pre�x of �1, that is, the control region, or activation,
named by �0 is an ancestor of the activation named by �1. In the KID� interpreter, termination
proceeds hierarchically | parent activations cannot terminate until all of their child activations
have terminated.

Every letrec block in KID� has a group of bindings, a barrier, and a group of deallocation
commands. If the block expression has label k and is executing in activation �, then �:k will be
the label of the control region containing the group of bindings, and �:k� will be the label of the
group of deallocation commands. These two activation label satisfy the relation: (�:k --- �:k�).

De�nition 3.1 (Activation Label Termination Order) The relation �0 �T �1 means that

activation �0 must terminate before activation �1 and is de�ned as follows:

�0 �T �1 � (�0 = �1:�)

where � is a string of zero or more expression labels.

3.2. AN INSTRUMENTED INTERPRETER 59

n 2 N = f� � � ;�1; 0; 1; � � �g Integers
b 2 B = True + False Booleans
l 2 L = fl0; l1; l2; � � �g Expression labels
� 2 AL = � + AL:L Activation Labels
ol 2 OL = AL : L Object labels
v 2 V = (N + B +OL)? Denotable values
t 2 Tuple = hTuple V; � � � ; V i Tuples
varray 2 Array = hArray N; V; � � � ; V i Arrays
voneof 2 Oneof = hN ;N V; � � � ; V i Oneofs
vlist 2 List = hCons V;OLi+ hNil i Lists
sv 2 SV = (Tuple +Array + Oneof + List)? Storable Values
� 2 Store = OL! SV Stores
� 2 Env = X ! V Environments

Figure 3.1: Instrumented semantic domains

In other words, activation �1 must terminate before activation �0 terminates if �0 is an ancestor
of �1. If activation �0 is preceded by �1, then we will say that �0 is an ancestor of �1, or that �0
is higher in the call tree than �1.

We will use this notion of termination order to catch dangling pointer errors, and to give correctness
conditions on programs to guarantee that no such errors will occur at run-time.

3.2 An Instrumented Interpreter

Now that we have formulated some of the criteria that the instrumented interpreter must satisfy,
let us develop the interpreter and its value domains in more detail. In this section we de�ne an
instrumented interpreter for KID� based on the ideas presented earlier in this chapter and in the
previous chapter.

3.2.1 Semantic Domains

As in the standard semantics, the instrumented semantics operates over integers, booleans, tuples,
arrays, and lists. We will use the domains from Chapter 2, which are shown again for reference in
Figure 3.1. The domain ordering and least upper bound were shown in Figure 2.2.

In addition to the values and stores computed by the standard interpreter, the instrumented inter-
preter three sets of events . An object event pairs the object label of an object that was allocated,
deallocated, or dereferenced, and the activation label in which the allocation, deallocation, or
dereferencing occurred.

The domains of allocation events (AEVs), deallocation events (DEVs), and dereferencing events
(REVs) are de�ned as follows:

AEVs = P(OL� AL)

DEVs = P(OL� AL)

REVs = P(OL� AL)

60 CHAPTER 3. INSTRUMENTED SEMANTICS

Each type of event consists of an object label paired with the activation label denoting when that
event occurred. We will refer to allocation, deallocation, and dereferencing events collectively as
object events . The interpreter will collect sets of events, rather than sequences, because not all
events can be ordered.

3.2.2 Semantic Functions

This section presents the de�nition of the instrumented interpreter, which augments the standard
interpreter with mechanisms to collect object events.

The following are the semantic functions that make up the instrumented interpreter:

EI : E!Env!Store!AL!(V � Store �AEVs � DEVs � REVs)
PEI : Prog!(V � Store � AEVs �DEVs � REVs)

The three extra values returned by the interpreter: �+ 2 AEVs, �� 2 DEVs, and �R 2 REVs,
tell us exactly which objects were allocated, deallocated, and dereferenced in each instance of each
expression.

The function EI takes an expression, an environment, a store and an activation label, and returns the
resulting value, the resulting store and the sets of allocation, deallocation, and dereferencing events
yielded by the interpretation of that expression. The function PEI takes a complete program and
returns the result value and store and the set of allocation, deallocation, and dereferencing events
from the execution of the program.

Note that EI , like E , is extensive with respect to stores and also monotonic. These properties are
necessary in order to prove that the instrumented interpreter terminates with a unique result.

Program Evaluator De�nition

The de�nition of the program evaluator is almost exactly like that of the standard program evalua-
tor, except that it returns three sets of object events. Here is the de�nition of PEI , which interprets
programs.

PEI [[f � � �fi(xi;1; : : : ; xi;ni) = ei � � � g]] =

f h v; �;�+;��;�R
i = EI [[e0]]?Env?Store � ;

in h v; �;�+;��;�R i g

where expression e0 is the body of the main procedure f0.

Simple Expression Evaluator De�nition

The instrumented interpreter uses the simple expression evaluator from the standard interpreter.
This is shown for reference in Figure 3.2.

3.2. AN INSTRUMENTED INTERPRETER 61

SE [[n]]� = n where n is a number
SE [[b]]� = b where b is a boolean
SE [[x]]� = �[x] where x is a variable

Figure 3.2: Simple expression evaluator

EI [[n]]��� = h SE [[n]] � ; �; ;; ;; ; i

EI [[b]]��� = h SE [[b]]� ; �; ;; ;; ; i

EI [[x]]��� = h SE [[x]]� ; �; ;; ;; ; i

EI [[+ (se1; se2)]] ��� = h SE [[se1]]� + SE [[se2]]� ; �; ;; ;; ; i

Figure 3.3: Evaluation of simple expressions and primitive operators

Expression Evaluator De�nition

In this section we discuss the de�nition of the instrumented expression evaluator.

Simple expressions and primitive arithmetic and boolean operators are evaluated in a manner
similar to that of the standard interpreter. The result is a quintuple consisting of the value,
the incoming store, and three empty sets because simple expressions cannot update the store, or
allocate, deallocate or dereference locations. These four clauses of the interpreter are shown in
Figure 3.3.

The clauses for evaluation of function applications and conditionals are shown in Figure 3.4. These
clauses are the same as the corresponding clauses from the standard interpreter, except that evalu-
ation of the body of the function and the taken branch of a conditional yield sets of object events.

Evaluation of letrec blocks in the instrumented interpreter is similar to evaluation of letrec
blocks in the standard interpreter, except that this interpreter must collect the sets of labels of
objects allocated and deallocated by each binding right-hand-side. In addition, the body of the
letrec block in the instrumented semantics will be evaluated in a new activation, whose label is the
letrec block's expression label concatenated to the current activation label. This new activation
label gives us a more precise notion of when objects are allocated, deallocated, and dereferenced.
This information will be used to determine if any dangling pointer errors occur. The labels of
objects deallocated by the deallocation statements of a letrec block are returned with the set of
labels of objects deallocated during execution of the bindings. The interpreter clause for letrec
expressions is shown in Figure 3.5.

Figure 3.6 gives the evaluation rules for tuple data structures. These are similar to the corresponding
clauses of the standard interpreter, except that they return object events. MakeTuple returns the
same value and store in the instrumented interpreter as in the standard interpreter, but it also
returns three sets of object events. The dereferencing and deallocation event sets are both empty,
but the allocation event set consists of a single element: the object label paired with the current
activation label. The primitive Selecti returns the ith component of the tuple, the incoming store,
empty sets of allocation and deallocation events, and a dereferencing event set consisting of a single
element: the object label of the argument paired with the current activation label.

62 CHAPTER 3. INSTRUMENTED SEMANTICS

EI [[
kf(se1; � � � ; sen)]]��� =

f v1 = SE [[se1]]� ;
...

vn = SE [[sen]] � ;
�0 = �:k;
h v; �0;�+;��;�R

i = EI [[e]] (�[v1=x1; � � � ; vn=xn])��
0 ;

in h v; �0;�+;��;�R
i g

where f(x1; � � � ; xn) = e is a de�nition in the program

EI [[if (se0; e1; e2)]]��� =

if SE [[se0]]�
then EI [[e1]]���
else EI [[e2]]���

Figure 3.4: Evaluation of conditional expressions

Figure 3.7 contains the clauses of EI for the array primitives. These clauses are the same as the
clauses from the standard interpreter except that they return sets of allocation, deallocation, and
dereferencing events in addition to a value and store. The primitive MakeArrayfi collects the
allocation, deallocation, and dereferencing events from each of the calls to fi and augments the
set �+ of allocation events to include the allocation of object ol in activation �. The Fetch and
Bounds primitives record that the label ol of the array passed to them was referenced in the current
activation � in �R, the set of reference events that they return.

The evaluator clauses for algebraic types, given in Figure 3.8, and the evaluator clauses for list
primitives, given in Figure 3.9, are similar to the corresponding clauses from the standard inter-
preter, except that the constructors return non-empty allocation event sets, and the selectors and
predicates return non-empty dereferencing event sets.

3.2.3 Correctness of the Interpreter

We will consider the instrumented interpreter to be correct if the denotable value and the store
returned from the execution of a program under the instrumented interpreter are always equal
to the denotable value and store returned by the execution of the program under the standard
interpreter.

Theorem 3.2 The instrumented interpreter is correct with respect to the standard interpreter.

8 pr 2 Prog;

9 h vs; �s i = PE [[pr]] ;
9 h vt; �t;�

+;��;�R
i = PEI [[pr]] ;

(vs = vt) ^ (�s = �t)

Proof:

Informally: The instrumented interpreter computes the same values and stores as the stan-
dard interpreter, because all portions of the interpreter that compute values and stores are
the same as the standard interpreter.

3.2. AN INSTRUMENTED INTERPRETER 63

EI [[
k
f Bs|Ds in xg]]��� =

f [[x1 = e1; : : : ; xn = en]] = Bs;
[[Dealloc (y1); � � � ; Dealloc (yk)]] = Ds;
�0 = �[?=x1; � � � ;?=xn];
�0 = �:k;

h �0; �0;�+0;��0;�R0 i = EvalBindingsI (Bs; �0; �; �
0);

��00 = ��0
[fh �0[yi]; �

0
i j1 � i � kg ;

in h �0[x]; �0;�+0;��00;�R0
i g

where

EvalBindingsI ([[x1 = e1; : : : ; xn = en]] ; �; �; �) =

f h v1; �1;�
+
1;�

�
1;�

R
1 i = EI [[e1]] ��� ;

...

h vn; �n;�
+
n;�

�
n;�

R
n i = EI [[en]]��� ;

�0 = �[(v1 t �[x1])=x1; � � � ; (vn t �[xn])=xn];
�0 =

F
i

�i;

�+0 =
S
i

�+
i;

��0 =
S
i

��
i;

�R0 =
S
i

�R
i;

h �00; �00;�+00;��00;�R00
i =

if �0 = �^ �0 = �

then h �0; �0;�+0;��0;�R0
i

else EvalBindingsI ([[x1 = e1; : : : ; xn = en]] ; �0; �0; �)

in h �00; �00;�+00;��00;�R00
i g

Figure 3.5: Evaluation of block expressions

3.2.4 Soundness of the Instrumented Interpreter

Theorem 3.3 The instrumented interpreter EI is extensive with respect to stores.

8e 2 E; 8�inAL; 8� 2 Env ; 8�0 2 Store;

9 h v; �1;�
+;��;�R

i = EI [[e]]��0� ;

�0 v �1

Proof:

Similar to the proof of the extensionality of the standard interpreter.

Theorem 3.4 Interpreter function EI is monotonic with respect to the context:

8e 2 E; 8� 2 AL; 8�0; �1 2 Env ; 8�0; �1 2 Store;

�0 v �1 ^ �0 v �1) EI [[e]] �0�0� v EI [[e]]�1�1�

64 CHAPTER 3. INSTRUMENTED SEMANTICS

EI [[
lMakeTuple (se1; � � � ; sem)]]��� =

f v1 = SE [[se1]]� ;
...

vn = SE [[sen]]� ;
ol = � : l;
vtuple = hTuple v1; � � � ; vmi ;
�0 = �[ol! vtuple];
in h ol; �0; fh ol; � ig; ;; ; i g

EI [[Selecti (se)]] ��� =

f ol = SE [[se]]� ;
hTuple v1; � � � ; vmi= �[ol];
in h vi; �; ;; ;; fh ol; � ig i g

Figure 3.6: Evaluation of tuple primitives

Proof:

Similar to the proof of the monotonicity of the standard interpreter.

3.3 Interpretation of Some Examples

In this section we will evaluate a couple of examples under the instrumented interpreter to illustrate
its behavior.

3.3.1 Interpretation of a Non-Recursive Example

We will start with a non-recursive example:

{ def f(w) =
k2{ t = k0g(w);

a = Select1(t);

b = Select2(t);

r = (a * b);

in r };

def g(x) =
k3{ y = (x-21);

t = l0MakeTuple(x,y) ;

in t }

def f0 () =
k1f(68);

};

If we execute the program using the instrumented interpreter, we get the following call tree:

3.3. INTERPRETATION OF SOME EXAMPLES 65

EI [[
kMakeArrayfi (se0; se1; � � � ; ser)]] ��� =

f ol = � : k;
n = SE [[se0]]� ;
v1 = SE [[se1]]� ;

...
vr = SE [[ser]]� ;
�0 = �:k:(0);

h u0; �0;�
+
0;�

�
0;�

R
0 i =

EI [[ei]]?Env [0=x0; v1=x1; � � � ; vr=xr]��0 ;
...

�n�1 = �:k:(n� 1);

h un�1; �n�1;�
+
n�1;�

�
n�1;�

R
n�1 i =

EI [[ei]]?Env [(n� 1)=x0; v1=x1; � � � ; vr=xr]��n�1 ;

�0 = �[ol! hArray n; u0; � � � ; un�1i] t

�F
i

�i

�
;

�+ = fh ol; � ig [(
S
i�

+
i) ;

�� =
S
i�

�
i;

�R =
S
i�

R
i;

in h ol; �0;�+;��;�R i g

where fi(x0; x1; � � � ; xr) = ei is a de�nition in the program

EI [[
kFetch (se1; se2)]]��� =

f ol = SE [[se1]] � ;
i = SE [[se2]] � ;
hArray n; v0; � � � ; vn�1i = �[ol];
in h vi; �; ;; ;; fh �; ol ig i g

EI [[
kBounds (se)]]��� =

f ol = SE [[se]]� ;
hArray n; v0; � � � ; vn�1i = �[ol];
in h n; �; ;; ;; fh �; ol ig i g

Figure 3.7: Instrumented evaluation of array primitives

f0()

�s

s@
@

@
@

f(68)

�:k1

s@
@

@
@

g(w)

�:k1:k2:k0

t = �:k1:k2:k0 : l0

66 CHAPTER 3. INSTRUMENTED SEMANTICS

EI [[
lMakeOneoftag;ntags (se1; � � � ; sem)]]��� =

f v1 = SE [[se1]]� ;
... ;

vni = SE [[seni]]� ;
ol = � : l;

voneof =
D
tag;ntags v1; � � � ; vm

E
;

�0 = �[ol! (voneof t �[ol])];
in h ol; �0; fh ol; � ig; ;; ; i g

EI [[Istag? (se)]]��� =

f ol= SE [[se]]� ;D
tag 0;ntags v0; � � � ; vm

E
= �[ol];

b = if tag = tag0

then True

else False;
in h b; �; ;; fh ol; � ig; ; i g

EI [[Selecttag;i (se)]]��� =

f ol = SE [[se]] � ;D
tag 0;ntags v1; � � � ; vm

E
= �[ol];

v = if tag = tag0

then vi
else?

;

in h v; �; ;; fh ol; � ig; ; i g

Figure 3.8: Instrumented evaluation of oneof primitives

Each node in the call tree is labeled with the expression that invoked the procedure corresponding
to that node and with the activation label of that node. We also show the binding of variable t in
procedure f to the tuple allocated within g, labeled �:k1:k2:k0:k3 : l0.

The result under the instrumented semantics is:

h 3196;
?Store [�:k1:k2:k0:k3 : l0 ! hTuple 68; 47i];
fh �:k1:k2:k0:k3 : l0; �:k1:k2:k0:k3 ig;
;;

fh �:k1:k2:k0:k3 : l0; �:k1:k2 ig i

The �rst component of the result indicates that the answer was the number 3196. The second
component of the result, the store, indicates the store at the end of the evaluation of the example.
The third component indicates that a single location, �:k1:k2:k0:k3 : l0, was allocated, the fourth
component indicates that no locations were deallocated, and the �nal component indicates that
location �:k1:k2:k0:k3 : l0 was dereferenced during execution in activation �:k1:k2.

In this program, the lifetime of the tuple that g allocates is from the time that g allocated the tuple
until procedure f terminates, because that is the last time that there is a pointer to the tuple. We

3.3. INTERPRETATION OF SOME EXAMPLES 67

EI [[
lCons (se1; se2)]] ��� = f v1 = SE [[se1]]� ;

v2 = SE [[se2]]� ;
vlist = hCons v1; v2i ;
ol = � : l;
�0 = �[ol! vlist];
in h ol; �0; fh ol; � ig; ;; ; i g

EI [[Hd (se)]] ��� = f ol = SE [[se]]� ;
hCons v1; v2i = �[ol];
in h v1; �; ;; ;; fh ol; � ig i g

EI [[Tl (se)]] ��� = f ol = SE [[se]]� ;
hCons v1; v2i = �[ol];
in h v2; �; ;; ;; fh ol; � ig i g

EI [[
lNil ()]] ��� = f ol = � : l;

vlist = hNil i ;
�0 = �[ol! vlist];
in h ol; �0; fh ol; � ig; ;; ; i g

EI [[Nil? (se)]] ��� = f ol = SE [[se]]� ;
b = if �[ol]:tag = Nil

then True

else False;
in h b; �; ;; ;; fh ol; � ig i g

Figure 3.9: Instrumented evaluation of list primitives

can also say that the lifetime of the tuple labeled �:k1:k2:k0:k3 : l0 is bounded by the lifetime of
activation �:k1:k2.

68 CHAPTER 3. INSTRUMENTED SEMANTICS

3.3.2 Interpretation of a Recursive Example

Now let us evaluate a recursive example.

{ def foo(t) =
k2{ a = Select1(t);

b = Select2(t);

p = (a == 5);

r = if p then a

else k3{ t' = l0MakeTuple(5,7);

v = k0foo(t');

in v }

in r }

def f0 () =
k4{ t0 = l1MakeTuple(3,4)

result = k1foo(t0)

in result }

}

Evaluation of this program under the instrumented interpreter yields the following call tree:

f0()

�t0 = �:k4 : l1
s

s@
@

@
@

f(t0)

�:k4:k1t' = �:k4:k1:k2:k3 : l0

s@
@

@
@

f(t')

�:k4:k1:k2:k0

The result under the instrumented semantics is:

h 5;
?Store [�:k4:k1:k2:k3 : l0 ! hTuple 4; 5i; �:k4 : l1 ! hTuple 3; 4i];
fh �:k4:k1:k2:k3 : l0; �:k4:k1:k2:k3 i ; h �:k4 : l1; �:k4 ig;
;;

fh �:k4 : l1; �:k4:k0:k2 i ; h �:k4:k1:k2:k3 : l0; �:k4:k1:k2:k3:k0:k2 ig i

which shows that the result was the number 5 and that two tuples, labeled �:k4 : l1 and �:k4:k1:k2:k3 :
l0, were allocated. Neither of these tuples is reachable from the result, and no tuples were deallo-
cated. The two labels were dereferenced; the object labeled �:k4 : l1 was dereferenced in activation
�:k4:k1:k2 and the object labeled �:k4:k1:k2:k3 : l0 was dereferenced in activation �:k4:k1:k2:k3:k2.

3.4 Object Deallocation Safety Condition

A number of de�nitions are needed before we can give a safety condition for object deallocations.

3.4. OBJECT DEALLOCATION SAFETY CONDITION 69

Given a denotable value v and a store �, we must be able to determine the labels of the objects
reachable from value v in store �. The following de�nition de�nes which objects are reachable from
a given dynamic value and store.

De�nition 3.5 (Object Reachability) Reachable (v; �), the set of labels of objects reachable

from value v with respect to store �, is de�ned as follows:

Reachable (?; �) = ;

Reachable (n; �) = ;

Reachable (b; �) = ;

Reachable (ol; �) = folg [SVReachable (�[ol]; �)

SVReachable (?; �) = ;

SVReachable (hTuple v1; � � � ; vni ; �) =
[
i

Reachable (vi; �)

SVReachable (hArray n; v1; � � � ; vni ; �) =
[
i

Reachable (vi; �)

SVReachable (htag;n v1; � � � ; vmi ; �) =
[
i

Reachable (vi; �)

SVReachable (hCons v1; v2i ; �) = Reachable (v1; �)[Reachable (v2; �)

SVReachable (hNil i ; �) = ;

We also need to know what objects are reachable from the context surrounding an expression. We
will call these objects the inherited objects. These are the objects that an expression can use that
were allocated outside of the expression.

De�nition 3.6 (Inherited Objects) The function Inherited (e; �; �) returns the set of labels of

objects reachable from FV (e) given environment � and store �:

Inherited (e; �; �) =
[

w2FV (e)

Reachable (�[w]; �)

Remember that if variable w is unbound in environment �, then �[w] is bottom.

Previously, we de�ned a dangling reference, or dangling pointer, to be a pointer that was deref-
erenced after it was deallocated. A pointer will also be considered dangling if the activation in
which the object is deallocated may terminate before the activation in which the object is allocated
(because an allocation is another form of dereferencing a pointer). To be more precise, the activa-
tion in which an object is allocated or dereferenced must always terminate before the activation in
which the object is deallocated.

De�nition 3.7 (Dangling Reference) For a program pr, let

h v; �;�+;��;�R
i = PEI [[pr]]

R = Reachable (v; �)

Then DP [[pr]], the set of dangling pointers after the execution of program pr, is de�ned by:

DP [[pr]] =

70 CHAPTER 3. INSTRUMENTED SEMANTICS

8>>><>>>: h ol; �� i

���������
h ol; �� i 2 ��

^(ol 2 R

_(h ol; �r i 2 �R
^ :(�r �T ��))

_(h ol; �+ i 2 �+
^ :(�+ �T ��)))

9>>>=>>>;
The set of dangling pointer events is the set of all pairs of object labels ol and activation labels
�� such that: (1) a reference to ol is returned as part of the result of the program, (2) there
is a reference to ol in some activation �r that does not terminate before activation ��, or (3)
the activation in which ol was allocated does not terminate before activation ��. Either of these
conditions counts as a dangling pointer error.

The deallocation of an object ol in program pr at activation label �� is considered correct if the
pair h ol; �� i does not show up in the set of dangling pointer events resulting from the execution
of program pr.

Condition 3.8 (Deallocation Correctness) The deallocation of object ol upon termination of

activation �� is correct if the following condition holds:

h ol; �� i 62 DP [[pr]]

where pr is the program.

Condition 3.8 is exact, in that any deallocation command that does not lead to dangling pointer
errors will be considered correct. However, we have to execute the whole program before we can
determine if any deallocation command is correct.

The reason we cannot verify Condition 3.8 as we evaluate each letrec block is that an object
may be deallocated in some letrec block, and returned as part of the result of that block. This
deallocation is correct as long as no attempt is ever made to dereference the object once it has
been deallocated. To be more precise, the letrec block corresponds to one control region, or
activation, and we can deallocate the structure in this control region as long as the structure is
never dereferenced in a control region that is an ancestor of this one.

When we verify that deallocation commands are correct, we are willing to be a little less precise
and to only accept deallocation commands that deallocate objects in the highest control region
from which the objects are reachable. This property we call safety | if a deallocation command is
safe, then it is guaranteed to be correct, although some correct deallocation commands are unsafe.

There are two reasons to use the deallocation safety condition rather than the deallocation correct-
ness condition when we test deallocation commands. One is that safety is a local property, and so
this allows us to verify the safety of a deallocation command in a procedure without considering
all of the places in which the procedure might be called. This point is especially important if
the algorithm is to be generalized to an environment including separate compilation. The second
reason is that the simplest version of our abstract interpreter summarizes all activation labels by
the empty activation label, and so we cannot tell the relative ordering of subexpressions.

An object deallocation is safe, or guaranteed to be correct, if the deallocation occurs in the highest
dynamic context from which the object is reachable.

Condition 3.9 (Object Deallocation Safety) It is safe to deallocate object ol in context h ��; ��; �� i
where

h v; �0;�+;��;�R
i = EI [[e]]������

R = Reachable (v; �0)

3.4. OBJECT DEALLOCATION SAFETY CONDITION 71

if the following condition holds:

h ol; �� i 2 ��

^ ol 62 R

^ 8 h ol; �r i 2 �R: (�r �T ��)
^ 8 h ol; �+ i 2 �+: (�+ �T ��)

and if there is only one deallocation of ol, which is in activation ��.

This condition is correct whenever an object is deallocated in the highest control region from which
it is reachable. For instance, it is always safe to deallocate an object that is not part of the result
of a program upon termination of the main procedure f0, although this may not be of much use.

Unlike Condition 3.8, Condition 3.9 can be checked at the time the deallocate is performed by
examining the current program state: the environments of enclosing contexts and the objects
reachable from those contexts and the current block expression. For this reason, this condition will
be used in Chapters 4 and 5 to develop a static analysis for verifying and inserting deallocation
commands.

Theorem 3.10 (Deallocation Safety Theorem) If an object deallocation satis�es Condition 3.9

(Deallocation Safety), then it satis�es Condition 3.8 (Deallocation Correctness).

Proof:

Sketch of proof: If an object ol is deallocated in activation ��, the highest activation from
which ol is reachable, then the allocation of ol and all dereferencing of ol must take place in
activations labeled �r such that each �r terminates before ��.

In the next two chapters, we abstract the instrumented interpreter and restate the safety condition
in terms of the abstract interpreter. The next two chapters restrict storable values to include only
tuples so that we can concentrate on the process of abstraction and how to state and test the
deallocation safety condition. Later in the thesis we add the abstraction of other types of objects
to our abstract interpreter.

72 CHAPTER 3. INSTRUMENTED SEMANTICS

Chapter 4

Abstracted Semantics

The purpose of abstract interpretation is to capture information about the execution of an ex-
pression or program over all possible data. We summarize, or abstract the values produced by a
program over all executions of a program. For instance, if a program evaluates to a number un-
der the standard or instrumented interpreters, our abstract interpreter summarizes its result as N ,
meaning any number. Similarly, our abstract interpreter evaluates both branches of all conditionals
in order to summarize the behavior of the conditionals. In this way, the behavior over all control
paths and over all data can be approximated.

The abstract semantics that we use captures information about the shape and identities of objects
that are allocated and the dynamic reachability of these objects from the variables and structures
to which they are bound. In the Chapter 5, we use this information about reachability and ob-
ject identities to develop algorithms to verify the safety of deallocation commands and to insert
deallocation commands in KID� programs.

In the rest of this chapter, we develop an abstracted interpreter that summarizes the behavior of
programs in such a way that we can determine object lifetimes. In the �rst section, we brie
y
describe how the abstract interpreter is used. In the second section, we de�ne the abstract value
domains for this abstract interpreter. In the third section, we describe the evaluation strategy
used by our abstract interpreter. In the fourth section, we de�ne the abstract interpreter itself. In
the �nal section, we show some examples of using this interpreter to determine that lifetimes of
particular objects are bounded by the lifetimes of given procedure invocations.

4.1 Using the Abstract Interpreter

Our abstract interpreter does not directly yield lifetime information. It computes the shape of
the objects that a program may allocate and how they may be interconnected rather than the
actual values that may �ll those objects. However, a lifetime analyzer uses the connectivity, or
reachability, information to determine the approximate lifetimes of objects. This intuition lead to
the development of our abstract interpreter and is also the reason why our abstract interpreter is
general enough to be used for other analyses.

To perform lifetime analysis on a procedure, we need to know all the possible values to which each
variable may be bound and all possible values each object may contain. The questions we ask to
determine object lifetimes are, \When is the �rst possible time that this object is reachable from

73

74 CHAPTER 4. ABSTRACTED SEMANTICS

the running program?" and, \When is the last possible time that this object is reachable from the
running program?" Thus, we must be able to know all possible places from which we can reference
an object. In the remainder of this section we discuss the precision of this reachability information
and how to use that information to determine that deallocation commands are safe.

4.1.1 Precision of Information

The reachability information generated by the abstract interpreter is approximate. However, the
imprecision is asymmetrical | a negative result is de�nite, while a positive result is inde�nite.
The most precise fact we can determine is that an object is not reachable from a given variable.
If the abstract interpreter determines that an abstract object is not reachable from the result of a
procedure invocation, then under no circumstances will that object be reachable during execution
of the procedure invocation under the standard interpretater. We must be very careful to base all
of our decisions on precise negative information rather than approximate positive information. For
example, if we determine that variable x may be bound to some set of abstract objects labeled ls,
then x may be bound to ?, or to one of the locations in ls, but x will de�nitely not be bound to a
location outside of ls.

Given this insight into the kinds of questions we may ask about object reachability, let us reexamine
the three conditions that an object must satisfy in order to be safely deallocated within a dynamic
context. First, the object must have been allocated within the context. In other words, the object
must not have been inherited, or passed in from a surrounding context. We verify this by testing
that the object cannot be reached from a surrounding context. Since we are talking about the
binding of a variable, we must actually test that none of the objects to which the variable could
be bound can be reached from a surrounding context. Next, the object must not escape from this
context. We verify this by testing that none of the object labels to which this variable could be
bound are reachable from the result of the context of interest. Finally, this object must not be
deallocated more than once. We test this by verifying that none of the object labels to which this
identi�er may be bound are in the set of object labels that may be deallocated by other deallocation
commands.

4.1.2 The Abstract Deallocation Safety Condition

The canonical form of a block expression is shown below:

{ x0 = e0;

...

xn�1 = en�1;

Dealloc(y0);

...

Dealloc(ym�1);

in x }

We use xi for the names of the bound variables, yi for the variables in deallocation commands,
and wi as the free variables of a letrec expression. Here, each variable xi is bound in the block
expression. The object to which each of the yi's is bound will be deallocated once the bindings
have completely evaluated, and the value of x is returned as the result of the block expression.

4.1. USING THE ABSTRACT INTERPRETER 75

The context in which an expression is evaluated provides the environment, store, and activation
label in which the expression is executed. Let us consider a block expression e evaluated in the
standard context c = h �; �; � i. If there are deallocation commands for y1; � � � ; yn in the top level
of the block expression, then we can verify that these deallocation commands are correct under
the standard interpreter as follows. First, we determine what locations are passed into e from the
context. Call this set I .

I =
[

w2FV (e)

Reachable (�[w]; �) (4.1)

We can use either � or �0 here because the language is functional. If side e�ects were added we
would have to use �0, although we would still use environment �.

We evaluate the bindings of the block expression, yielding the environment and store for the eval-
uation of the body of the expression | call these �0 and �0. The resulting value of this evaluation
is h �0[x]; �0 i, where variable x is the result of the block expression.

Now, we must also determine the set R, which is the set of objects reachable from the result of the
evaluation of e in context c.

R = Reachable (�0[x]; �0) (4.2)

where x is the result of the block expression above.

Given this exact information from the standard evaluator | �, �, I , R, �0, and �0 | we can
determine that it is safe to execute each of the deallocation commands in e in a particular dynamic
context.

Safe? ([[Dealloc (yi)]]) =

0B@ �0[yi] 62 I

^�0[yi] 62 R

^
V
yj 6=yi

�0[yi] 6= �0[yj]

1CA (4.3)

In other words, each deallocation is guaranteed to be correct if the value of yi | the object being
deallocated | is not inherited from the context (it must have been allocated within e), is not
returned as part of the result of e, and is not deallocated by any other deallocation command.

In order to verify deallocation safety in the abstract interpreter, we must perform a similar test.
So, starting with an abstract context h b�; b�; b� i, we must evaluate the bindings of e to obtain the
environment and store (b�0 and b�0) of the body of the block expression, and then compute sets I
and R:

I =
[

w2FV (e)

Reachable (b�[w])b� (4.4)

R = Reachable (b�0[x])b�0 (4.5)

Given all of these abstract values, we can conservatively determine safety using the following pro-
cedure:

dSafe? ([[Dealloc (yi)]]) =

0B@ b�0[yi] \ I = ;

^b�0[yi] \R = ;

^
V
yj 6=yi

b�0[yi] \ b�0[yj] = ;

1CA (4.6)

Note that instead of testing for object ol not being in sets I and R, we now must test that none of
the labels in the value of yi are in sets I or R. Also, we must test for pairwise disjointness of the
values to be deallocated rather than testing for pairwise inequality of object labels.

In Chapter 5, we develop algorithms for verifying and inserting object deallocation commands. In
that chapter we see how all of the necessary values are computed using the abstract interpreter.

76 CHAPTER 4. ABSTRACTED SEMANTICS

4.2 Abstracting the Semantic Domains

The abstract interpreter is supposed to allow us to compute or approximate the value of a useful
property of a program. We are interested in knowing which objects can be reached from each of
the variables in the program.

4.2.1 Abstract Domains

Figure 4.1 contains the de�nition of the domains used by the abstract interpreter. We describe
these domains in more detail in the remainder of this section.

Activation Labels

We summarize all activation labels in the standard domain of activation labels by the empty
activation label �. This abstraction of activation labels is the most extreme way of ensuring a �nite
domain. In Chapter 9 we investigate more precise abstractions of this domain.

The domain L is the set of static labels attached to expressions in a program. This domain is �nite;
its size is determined by the number of MakeTuple expressions appearing in the program.

Object Labels

Abstract object labels are composed of an abstract activation label and a static expression label.
Since both the AL and L domains are �nite, the domain of object labels OL must also be �nite.

Under abstract interpretation, a variable may have a set of objects to which it may be bound
because execution of an expression in di�erent contexts may bind variables to di�erent object.
Thus, object references must be sets of object labels.

Denotable Values

The domains N and B of integers and booleans have been compressed to a single element each
because we are uninterested in the actual values computed | only in the shape and connectedness
of the values computed.

Values are either scalars, e.g., integers or booleans, or references to aggregates, e.g., tuples. An
aggregate value consists of a reference to the tuple and a store containing the value of the aggregate.
A reference consists of a set of object labels ls. The domain V of denotable values therefore consists
of the sum of abstract integers, booleans and sets of object labels, all lifted over a bottom element
?. Note that no objects are reachable from ?.

Stores

Stores map individual labels to tuples. Location ol being unbound in a store � is the same as
having ol bound to ? in �. In the abstract semantics, we use sets of labels ls as references to an
object. We dereference such a set of labels as follows:

hTuple c1; � � � ; cni =
G
ol2ls

�[ol]

4.2. ABSTRACTING THE SEMANTIC DOMAINS 77

n 2 N = N Numbers
b 2 B = B Booleans
� 2 AL = � Abstract Activation Labels
l 2 L = fl0; l1; l2; � � �g Expression Labels
ol 2 OL = AL : L Object Labels
ls 2 Ls = P(OL) Object Label Sets
v 2 V = (N +N + Ls)? Denotable Values
vtuple 2 Tuple = hTuple V; � � � ; V i Tuples
� 2 Store = OL! Tuple Stores

Figure 4.1: Abstract value domains

Abs (?) = ?

AbsAL (�) = �

AbsOL (� : l) = � : l

AbsLS (ls) =
[
ol2ls

fAbsOL (ol)g

AbsV (v) =

8>>>>><>>>>>:

? if v = ?

N if v is a number
B if v is a boolean
fAbsOL (v)g if v is a location
> otherwise

AbsTuple (hTuple v1; � � � ; vn1i) = hTuple AbsV (v1); � � � ;AbsV (vn1)i

AbsStore (�) =
G

ol2OL

?Store [AbsOL (ol)! AbsTuple (�[ol])]

Additional abstraction operators we require are de�ned below:

AbsAEV (�+) = ;

AbsDEV (��) =
�
AbsOL (ol)

��8 h ol; � i 2 ��	
AbsREV (�R) = ;

Figure 4.2: De�nition of the abstraction functions

We are determining the tuple to which store � maps the object labels in ls by taking the least
upper bound of the tuples to which � maps each label in ls.

Please remember that denotable values that are object references, or labels, are meaningless without
an associated store. Although the labels themselves are very important in this semantics, the
true meaning of a denotable value is tied to the object in the store named by the value's set of
labels. Similarly, the set of labels of objects allocated and deallocated only has any meaning when
accompanied by a store in which the allocated and deallocated objects reside.

Abstraction Functions

78 CHAPTER 4. ABSTRACTED SEMANTICS

v t ? = v

? t v = v

ls1 tLs ls2 = ls1 [ls2

v1 tV v2 =

8>>><>>>:
N if v1; v2 are both numbers
B if v1; v2 are both booleans
v1 [v2 if v1; v2 are both Ls
> otherwise

hTuple v1; � � � ; vn1i tTuple hTuple w1; � � � ; wn2i =(
hTuple (v1 tV w1); � � � ; (vn tV wn)i if n1 = n2
> otherwise

�1 tStore �2 = �ol:

(
�1[ol]tTuple �2[ol] if ol 2 OL

? otherwise

Figure 4.3: Least upper bound operators on value domains

Figure 4.2 contains the de�nitions of the abstraction functions that map values in the standard
domains to values in the abstract domains. We need these functions in order to show the correctness
of the abstract interpreter.

4.2.2 Least Upper Bound Operators

Figure 4.3 contains the de�nitions of the least-upper-bound operators on the abstract domains.
The domains are all naturally ordered.

4.3. ABSTRACTING THE INTERPRETER 79

4.2.3 Reachability

The abstract interpretation of a program yields a model of what objects are created and what
objects are reachable from the bindings of a letrec block. Because the abstract interpreter sum-
marizes information about all executions of an expression, we must represent references to objects
as sets of abstract object labels. To restate the invariant on abstract reachability, we say that if
variable x is bound to a set of locations ls then, in any given execution, x can be bound to no other
locations. This reachability invariant is a constraint on the structure of the abstract object label
domain. The abstraction function AbsOL that maps object labels to abstract object labels must
enable us to preserve this constraint.

We need a precise notion of reachable objects in the abstract domains. Given a denotable value
and a store, we must be able to determine which objects are reachable from that value and store.

De�nition 4.1 (Abstract Object Reachability) dReachable (v; �), the set of labels reachable

from value v in store �, is de�ned as follows:

dReachable (?; �) = ;dReachable (N; �) = ;dReachable (B; �) = ;

dReachable (ls; �) = ls [

0@ [
ol2ls

dSVReachable (�[ls]; �)

1A

dSVReachable (?; �) = ;dSVReachable (hTuple v1; � � � ; vni ; �) =
[
i

dReachable (vi; �)

4.2.4 Ordering Operators on Domains

Figure 4.4 contains the de�nitions of the ordering operators for each of the abstract domains.
All of the domains are naturally ordered. These operators are necessary to show correctness and
termination of the abstract interpreter.

The domain orderings on labels are by name. We consider the set fl0g to be less than fl0; l1g

regardless of what those locations may be bound to in a given store.

We say store �1 is less than store �2 if, for all labels ol in the universe of object labels OL, the tuple
to which ol is bound in �1 is less than the tuple to which ol is bound in �2. Tuples are compared
element-by-element using the value ordering described above. Again, sets of labels are ordered by
name, not by the values to which they may refer.

4.3 Abstracting the Interpreter

In the abstract interpreter, we cannot evaluate procedure calls by unfolding the body of the called
procedure because this would never terminate if any of the procedures were recursive. Instead, the
abstract interpreter constructs an input-output mapping for each procedure in a program. This

80 CHAPTER 4. ABSTRACTED SEMANTICS

? v v 8v

ls1 vLs ls2 � ls1 � ls2

v1 vV v2 �

8>>>>><>>>>>:

True if v1 = ?

True if v1; v2 are both numbers
True if v1; v2 are both booleans
v1 � v2 if v1; v2 are both in Ls
False otherwise

�1 vStore �2 �
^

li2OL

�1[li] vTuple �2[li]

where

hTuple v1; � � � ; vn1i vTuple hTuple w1; � � � ; wn2i �(V
i(vi vV wi) if n1 = n2

False otherwise

Figure 4.4: Ordering operators on domains

mapping describes the behavior of a procedure over each possible set of inputs. We stress that the
function mapping only approximately describes the behavior of the function.

When we abstract the interpreter, we make a major change to the clause that evaluates procedure
applications so that it looks up the result of a procedure application in the input-output mapping
corresponding to the procedure being applied. The job of the program evaluator, the procedure that
interprets programs, is to compute the input-output mappings for each procedure. The program
evaluator iterates a function that improves the approximation of the input-output mappings of each
procedure until this iteration reaches �xpoint. We describe this process in the remainder of this
section.

4.3.1 Computation of Input-Output Mappings

A KID� program can be viewed as a set of recursive function de�nitions. These de�nitions may
be viewed as a set of equations de�ning the values of the functions, where the value of a function
fi is a mapping from values in the domain of fi to values in the range of fi. A typical system of
function de�nition equations is shown below.

f1(x1; � � � ; xn) = � � �fi(� � �) � � �

...
...

...

fm(x1; � � � ; xn) = � � �fi(� � �) � � �

If the system of equations is monotonic with respect to the values of the functions, and the heights
of all chains in the domains of the functions are bounded, then we can solve this system of equations

4.3. ABSTRACTING THE INTERPRETER 81

by using �xpoint iteration. We start with an initial approximation to the solution and generate
successively improved approximations until we reach an approximation equal to its improved ap-
proximation | this is the exact solution to the system of equations.

We start the �xpoint iteration by using an initial approximation of each function that returns
bottom for all input values.

f01 (x1; � � � ; xn) = ?

...
...

...

f0m(x1; � � � ; xn) = ?

We can use bottom as the initial approximation to function fi because it is a safe approximation
to the behavior of unfolding each function application zero times. In general, the value of fki is a
safe approximation of the behavior of each function unfolded k times, even though it might not be
a safe approximation of unfolding each function k + 1 times. The value of f1i , however, is a safe
approximation to the behavior of function fi over any depth of unfolding.

At the k + 1th step in the �xpoint iteration, we substitute the kth approximation to function fi,
fki , for each use of fi in each equation. The substitution yields the k + 1th approximation to the
functions, as shown below:

fk+11 (x1; � � � ; xn) = � � �fki (� � �) � � �

...
...

...

fk+1m (x1; � � � ; xn) = � � �fki (� � �) � � �

Fixpoint iteration terminates when fk+1i = fki for all functions fi and all possible input values. It
is guaranteed to terminate when the domains and ranges of the functions are all �nite and all the
functions are monotonic.

We can view this process as �nding the solution to the following equation:

hf1; � � � ; fni = Y (F)

where F is the function that takes an approximation of each of the functions fi and returns a
re�ned approximation to each of the functions, and Y is the least �xpoint operator.

4.3.2 Finiteness of the KID� Abstract Domains

Although the domain of tuples is not �nite, the domains of any particular function must be �nite
because the functions are strongly typed (monomorphically typed). The set of labels L is �nite
because programs are �nite, and the depth of nesting of tuples passed as an argument to a function
depends on the type of that function. The same is true of the result of each function | the depth of
nesting of the tuples returned and the size of the sets of labels returned are both �nite. Therefore,
the �xpoint iteration described above must terminate. The solution to the recursive set of equations
exists because the �xpoint iteration described above must terminate.

82 CHAPTER 4. ABSTRACTED SEMANTICS

Representing Values of Functions

In the KID� abstract interpreter, function values are represented by mappings from products of
denotable values and a store to pairs consisting of a denotable value and a store. The signature of
these mappings is

Fcn = (V �
� Store)!(V � Store)

These mappings can be thought of as a table, or set of tuples, consisting of input values and the
corresponding output values.

Let us consider an example function, f, whose type and function mapping type are given below.
If f has type hTuple N; hTuple N;Nii!N , then the Fcn mapping associated with procedure f will
have type (V � Store)!(V � Store).

f : hTuple N; hTuple N;Nii!N

fMapping : (V � Store)!(V � Store)

Assume that there are only two locations, l0, of type hTuple N; hTuple N;Nii and l1, of type hTuple N;Ni:

L = fl
hTuple N;hTuple N;Nii

0 ; l
hTuple N;Ni

1 g

Given this knowledge, we can enumerate all values in the domain of f :

;

fl0g
� ?Store

2666664
l0 ! ?

l0 ! hTuple ?;?i

l0 ! hTuple ?; fl1gi

l0 ! hTuple N;?i

l0 ! hTuple N; fl1gi

�

l1 ! ?

l1 ! hTuple ?;?i

l1 ! hTuple N;?i

l1 ! hTuple ?; Ni

l1 ! hTuple N;Ni

3777775
The `�' signs should be read as the cross product of the possibilities for the three portions of the
input domain: the value, the binding of label l0 in the store, and the binding of label l1 in the store.
For example, the least de�ned element in the domain of f 's mapping is:

h ;; ?Store i

and the most de�ned element is:

h fl0g; ?Store [l0 ! hTuple N; fl1gi ; l1 ! hTuple N;Ni] i

Here is the range of possible results returned by function f:

?

N
�?Store

2666664
l0 ! ?

l0 ! hTuple ?;?i

l0 ! hTuple ?; fl1gi

l0 ! hTuple N;?i

l0 ! hTuple N; fl1gi

�

l1 ! ?

l1 ! hTuple ?;?i

l1 ! hTuple N;?i

l1 ! hTuple ?; Ni

l1 ! hTuple N;Ni

3777775
Note that because f is an extensive function with respect to the store, the result store must contain
the input store. For example, if f was applied to the store:

?Store [l0 ! hTuple N;?i ; l1 ! hTuple N;Ni]

4.3. ABSTRACTING THE INTERPRETER 83

{ def foo(t) =

{ a = Select1(t);

b = Select2(t);

p = (a == 5);

r = if p then b

else { t' = l0MakeTuple(5,7);

v = k0foo(t');

in v }

in r }

def f0 () =

{ t0 = l1MakeTuple(3,4)

result = k1foo(t0)

in result }

}

Figure 4.5: A recursive example

then the only possible result stores are:

?Store [l0 ! hTuple N;?i ; l1 ! hTuple N;Ni]

and
?Store [l0 ! hTuple N; fl1gi ; l1 ! hTuple N;Ni]

because all other stores in the range of f are less than or incomparable to the input store.

Computation of Function Mapping for an Example

Now let us go through the steps of constructing a mapping for the recursive example described in
the previous section. Figure 4.5 contains a program consisting of a recursive procedure foo and a
call to foo from the main expression of the program. First, let us examine the domain of foo and
the type of the mapping we will construct for foo. Then we will work informally through the steps
of building the mapping. Because this program diverges if we try to unfold the procedure calls each
time the interpreter encounters a procedure application, we have to compute the �xpoint of the
function that takes the initial input-output mapping of the function (the empty function mapping)
and produces the �nal function mapping.

Figure 4.6 contains the domains of foo. Let us walk through the computation of the function
mapping for foo, step by step. We start by computing the value of foo on its least de�ned input,
and iterate until we reach �xpoint.

We only compute the value of foo on an input value if that value arises during the abstract
interpretation of the program. This set of values is what we consider the interesting portion of the
domain of foo. During each iteration we compute a new approximation of the mapping of foo,
and we keep track of all values to which foo has been applied.

In order to compute the function mapping for foo, we start with an initial approximation that maps
all inputs to bottom, then we use our current approximation to compute successively improved
approximations until our approximation does not change.

84 CHAPTER 4. ABSTRACTED SEMANTICS

foo : (N �N)!N

fooMapping : (V � Store)!(V � Store)

L = flN�N0 ; lN�N1 g

;

fl0g

fl1g

fl0; l1g

�

2666664
l0 ! ?

l0 ! hTuple ?;?i

l0 ! hTuple ?; Ni

l0 ! hTuple N;?i

l0 ! hTuple N;Ni

�

l1 ! ?

l1 ! hTuple ?;?i

l1 ! hTuple N;?i

l1 ! hTuple ?; Ni

l1 ! hTuple N;Ni

3777775
Figure 4.6: Domain of a function foo

To compute a better approximation, we evaluate the body of procedure foo with each set of inputs
that appears in the current approximation of the mapping to compute new output values. We
record the new output values in the improved approximation of foo's mapping. As we evaluate the
body of foo, if we encounter applications of foo to input values that do not occur in the interesting
domain, we add these values to the set of values in the interesting domain.

The initial approximation for foo returns ? for all input values. We can then initiate the abstract
interpretation of foo by evaluating the body of the main procedure f0. We encounter a call with
arguments:

h fl1g; [l1 ! hTuple N;Ni] i

The result from this application is approximated by ?, and we add this value to the interesting
domain of foo.

To compute our next approximation to the mapping for foo, we evaluate its body on the single
value in the interesting domain. We get the following mapping:"

h fl1g; [l1 ! hTuple N;Ni] i !
h N; [l0 ! hTuple N;Ni ; l1 ! hTuple N;Ni] i

#

and we add the input value

h fl0g; ?Store [l0 ! hTuple N;Ni ; l1 ! hTuple N;Ni] i

to foo's interesting domain, because a call to foo with these input values was encountered during
the computation of the previous approximation.

And after one more iteration we reach the following approximation for foo:26664
h fl0g; [l0 ! hTuple N;Ni ; l1 ! hTuple N;Ni] i !

h N; [l0 ! hTuple N;Ni] i
h fl1g; [l1 ! hTuple N;Ni] i !

h N; [l0 ! hTuple N;Ni ; l1 ! hTuple N;Ni] i

37775
One more iteration yields the same value. Since we are not adding more entries to the interesting
portion of the domain, and the values of each of the mapping entries have not changed, we have
reached the �xpoint for foo projected onto the domain consisting of those inputs with the bindings
shown in the mapping above.

4.3. ABSTRACTING THE INTERPRETER 85

Function Environments

The abstract interpreter constructs a function environment for a program. Function environments,
members of domain FEnv, map function names to function values. Function names are drawn
from domain F , and function values are input-output mappings.

� 2 FEnv = F ! ((V n
� Store)! (V � Store))

Because KID� allows recursive function de�nitions, the interpreter must solve the set of recursive
equations denoted by the program text that de�nes the function environment of the program.

The way we keep track of the interesting domains of each function in the program is with a domain
map, or DMAP . Each D in DMAP is a mapping from function names to the interesting portions
of the domains of those functions. We also collect the change, or delta (�D), in the interesting
portion of the domain of a function.

D;�D
2 DMAP = F!P(V �

� Store)

The expression evaluator returns a domain map delta as one of its results.

4.3.3 Abstract Interpreter De�nition

This section describes an algorithm for abstract interpretation of programs. The algorithm makes
use of the fact that we are interested in only a few of the elements from the domains of the abstract
functions de�ned in a program. This interpreter computes the function environment of a program
sparsely. That is, the interpreter only computes the elements of the mapping corresponding to the
input values in which we are interested and to any other inputs that are needed to compute the
function environment for those interesting inputs.

The function SEA takes a simple expression, and an environment, and returns the value of the
expression in that environment. The function EA takes an expression, an environment, a store,
and a function environment, and returns the resulting value and store. The function PEA takes a
complete program and returns the value and store resulting from the execution of the program.

Note that the set of labels of objects allocated and deallocated during the execution of an expression
or program is necessarily inexact. Under the abstract interpreter, these sets contain the abstraction
of the object labels that may be allocated or deallocated under the standard interpreter. The most
de�nite thing we can say is which labels were not allocated or deallocated | we cannot say that
a given location was de�nitely allocated or deallocated. In the abstract interpreter, we do not
compute the set of labels of objects that may be allocated or referenced within an expression |
this is not needed to verify or insert deallocation commands. We do need to know which locations
may be deallocated by an expression, however.

The following are the signatures of the semantic functions:

SEA : SE!Env!V

EA : E!Env!Store!FEnv!(V � Store�DEV s �DMAP)
PEA : Prog!(V � Store�DEV s� FEnv �DMAP)

where
� 2 Env = X ! V Environments
�� 2 DEV s = P(OL�AL) Deallocation Events

86 CHAPTER 4. ABSTRACTED SEMANTICS

Environments, members of domain Env, map variables, X , to denotable values. The empty envi-
ronment, ?Env , maps all variables to ?. Bindings are added to an environment when we evaluate
the body of a function or a letrec block. Domain maps and domain map deltas map function
names to sets of values in the interesting domains of those functions. Abstract deallocation events
track the labels of the objects that were deallocated during the interpretation of an expression.

Program Evaluator De�nition

Evaluation of a program, which is performed by PEA, de�ned below, consists of computing the
function environment � for the program, and then evaluating the main expression of the program
in that function environment. The following is the de�nition of the program interpreter.

PEA [[pr]] = f h �0; D0 i= InitialFEnv (pr);
h �; D i = ComputeFenv (pr;�0;D0);

h v; �;��;�D
i = �[f0][h�i];

in
D
v; �;��;�;�D

E
g

The abstract interpreter �rst constructs a function environment (�) that, for each function f in the
program, maps particular input values of f to the result of applying f to those inputs. Whenever
we encounter an application of a procedure f we fetch its input-output mapping from the incoming
function environment. Then we determine the output value corresponding to the set of input values
provided (including the store and activation label) and use that value as the result of the activation.
We also make sure that the entry for function f and this set of inputs is non-bottom by adding
these input values to the domain map for f .

Once the abstract program interpreter has computed the function environment for the program,
it evaluates the body of the main procedure f0 of the program, and returns the result of this
evaluation, along with the function environment, as the result of abstract interpretation of the
program.

Computing the Function Environment of a Program

The function InitialFEnv takes a program and returns a function environment and a domain map.
The initial function environment takes each function and returns bottom. The initial domain map
takes a function name and returns the set containing bottom.

InitialFEnv (pr) =

f �0 = ?FEnv ;
8 fi 2 F :
D0[fi] = f?g; 8 fi 2 F

in h �0; D0 i g

The function ComputeFEnv , shown in Figure 4.7, iteratively improves the approximations of the
function environment and the domain map until no further information is added. It does this
by computing a new entry in the function map of each function f0 to fk for each value in the
interesting domain of the function. It also gathers new approximations to the interesting domain
of the function. The process of computing new approximations is monotonic; so this is guaranteed
to reach a stable value. It returns the most precise approximation as its result.

4.3. ABSTRACTING THE INTERPRETER 87

ComputeFEnv (pr;�;D) =

f [[f� � �fi(xi;1; � � � ; xi;ni) = ei � � �g]] = pr;

h �0f0 ; D
0
f0
i =

G
hv1;���;vn0 ;�i2D[f0]

f h v; �0;��;�D
i =

EA [[e0]]?Env [v1=x1; : : : ; vn0=xn0]�� ;

� = ?FEnv

"
f0 !

"
hv1; � � � ; vn0 ; �i

! h v; �0; ��
i

##
;

in h �; �D
i g

...

h �fk ; Dfk i=
G

hv1;���;vnk ;�i2D[fk]

f h v; �0;��;�D
i =

EA [[ek]]?Env [v1=x1; : : : ; vnk=xnk]�� ;

� =?FEnv

"
fn !

"
hv1; � � � ; vnk ; �i

! h v; �0; ��
i

##
;

in h �; �D
i g

�0 =
G
fi

�fi ;

D
0 =

G
fi

Dfi ;

h �00; D00 i = if �0 = � ^ D0 = D

then h �0; D0 i

else ComputeFEnv (pr;�0;D0);
in h �00; D00 i g

Figure 4.7: Procedure to compute function environment

Simple Expression Evaluator De�nition

The simple expression evaluator is de�ned in Figure 4.8. Because the integer and boolean domains
have been summarized by single values, N representing any number andB representing any boolean,
evaluation of constants returns less information than in the instrumented and standard interpreters.
However, evaluation of variables is the same | the value of the variable is found in the current
environment.

Expression Evaluator De�nition

This section develops the de�nition of the abstracted expression evaluator. We can think of the
expression evaluator as providing the rules for simplifying the right-hand-sides of the equations
that de�ne the function environment of a program.

88 CHAPTER 4. ABSTRACTED SEMANTICS

SEA [[n]]� = N where n is a number
SEA [[b]]� = B where b is a boolean
SEA [[x]]� = �[x] where x is a variable

Figure 4.8: Abstracted simple expression evaluator

EA [[n]]��� = h SEA [[n]] � ; �; ;;?DMAP i

EA [[b]]��� = h SEA [[b]]� ; �; ;;?DMAP i

EA [[x]]��� = h SEA [[x]]� ; �; ;;?DMAP i

EA [[+ (se1; se2)]]��� = h N; �; ;;?DMAP i

Figure 4.9: Evaluation of simple expressions and primitive operators

The �rst four clauses of the interpreter de�ne the semantics of numbers, booleans, variables and
arithmetic primitives. These three clauses all invoke the simple expression evaluator. These clauses
are shown in Figure 4.9. The �rst three clauses describe how the evaluator handles simple expres-
sions | it calls the abstract simple expression evaluator to produce the result values. The fourth
clause shows how primitive arithmetic operations are interpreted | either N or B is returned, de-
pending on the type of the operator. The evaluation of primitive arithmetic and logical operations
can proceed without examining the arguments to the operator because the values of integers and
booleans are ignored. These four clauses do not modify the store, so � and ; are returned, and do
not add any elements to the delta domain map, so ?DMAP is returned.

The �rst major di�erence between the abstract expression interpreter and the instrumented inter-
preter is in the handling of function applications. When we interpret a procedure application in
the abstract interpreter, we look up the result values in the incoming function environment rather
than directly evaluating the body of the function, as we did in the standard interpreters. First, we
compute the input value to function f . We use the values and current store � as input into the
function map for f . The clause of the interpreter for function applications is shown in Figure 4.10.
Note that we return a delta-domain-map �D with the singleton set containing the current input
value for procedure f . This ensures that we compute the value of function f applied to this input
value in future iterations of ComputeFEnv.

The evaluation of conditionals, shown in Figure 4.11, computes a summarization of the value that
the conditional could yield under any execution of the program. In the abstracted interpreter, the
predicate is ignored and both branches of the conditional are executed. The least upper bound of the
values returned by the conditional branches is returned as the result of the conditional expression.

Abstract evaluation of block expressions is nearly the same as instrumented evaluation of block
expressions. Figure 4.12 shows the clause of the abstract interpreter for block expressions.

The abstract evaluation rules for tuple primitives are shown in Figure 4.13. The evaluation of the
MakeTuple primitive is similar to the instrumented interpreter clause, except that a singleton set
containing the abstract object label is returned as the result. Note that the new abstract object
label is just � : l, the label on the MakeTuple primitive.

4.3. ABSTRACTING THE INTERPRETER 89

EA [[
kf(se1; � � � ; sen)]] ��� =

f v1 = SEA [[se1]]� ;
...

vn = SEA [[sen]]� ;

h v0; �0; ��0
i=�[f][v1; � � � ; vn; �];

�D =?DMAP [f ! fhv1; � � � ; vn; �ig];

in h v0; �0;��0;�D
i g

Figure 4.10: Abstract evaluation of function applications

EA [[if (se0; e1; e2)]]��� = f h v1; �1;�
�
1;�

D
1 i = EA [[e1]] ��� ;

h v2; �2;�
�
2;�

D
2 i = EA [[e2]] ��� ;

in h v1 t v2; �1 t �2;��
1 t��

2;�D
1 t�D

2 i g

Figure 4.11: Evaluation of conditional expressions

EA [[f Bs|Ds in xg]]��� =

f [[x1 = e1; : : : ; xn = en]] =Bs;
[[Dealloc (y1); � � � ; Dealloc (yk)]] =Ds;
�0 = �[?=x1; � � � ;?=xn];
h �0; �0;��;�D

i = EvalBindingsA (Bs;�; �0; �);

��0 =��
t
F
yi

�0[yi];

in h �0[x]; �0;��0;�D
i g

where

EvalBindingsA ([[x1 = e1; : : : ; xn = en]] ;�; �; �) =

f h v1; �1;�
�
1;�

D
1 i = EA [[e1]] ��� ;

...

h vn; �n;�
�
n;�

D
n i = EA [[en]]��� ;

�0 = �[(v1 t �[x1])=x1; � � � ; (vn t �[xn])=xn];
�0 =

F
i

�i;

��0 =
F
i

��
i;

�D0 =
F
i

�D
i;

h �00; �00;��00;�D00
i =

if �0 v � ^ �0 v �

then h �0; �0;��0;�D0
i

else EvalBindingsA ([[x1 = e1; : : : ; xn = en]] ;�; �0; �0)

in h �00; �00;��00;�D00
i g

Figure 4.12: Evaluation of block expressions

90 CHAPTER 4. ABSTRACTED SEMANTICS

EA [[
lMakeTuple (se1; � � � ; sem)]]��� =

f v1 = SEA [[se1]]� ;
...

vm = SEA [[sem]]� ;
vtuple = hTuple v1; � � � ; vmi ;
ol = � : l;
v0tuple = �[ol];

�0 = �[ol! (vtuple t v
0
tuple)];

in h folg; �0; ;;?DMAP i g

EA [[Selecti (se)]]��� =

f ls = SEA [[se]] � ;
hTuple v1; � � � ; vmi=

F
ol2ls

�[ol];

in h vi; �; ;;?DMAP i g

Figure 4.13: Abstract evaluation of tuple primitives

In the clause for primitive Selecti, note that we took the least upper bound of all the tuples that
may be referred to by ls, and then returned the ith component of that tuple. We could also have
selected the ith components of all the tuples to which the set ls refers, and then returned the least
upper bound of these values. We can see that the two methods are equivalent by examining the
de�nitions of least upper bound on values and tuples.

4.4 Soundness of the Abstracted Interpreter

This section shows that our abstract interpreter is sound.

4.4. SOUNDNESS OF THE ABSTRACTED INTERPRETER 91

Theorem 4.2 The abstracted interpreter EA is extensive with respect to stores.

8� 2 Env; �0 2 Store;� 2 FEnv;

9 h v; �1;�
�;�D

i = EA [[e]]��0�
�0 v �1

Proof:

Similar to the proof of the extensionality of the standard interpreter.

Theorem 4.3 The interpreter functions SEA and EA are monotonic.

8se 2 SE ; 8�0; �1 2 Env ;

�0 v �1) SEA [[se]]�0 v SEA [[se]] �1
8e 2 E; 8�0; �1 2 Env ; 8�0; �1 2 Store; 8�0;�1 2 FEnv ;

�0 v �1 ^ �0 v �1 ^ �0 v �1) EA [[e]]�0�0�0 v EA [[e]]�1�1�1

Proof:

Similar to the proof of the monotonicity of the standard interpreter.

92 CHAPTER 4. ABSTRACTED SEMANTICS

Finally, we require that the abstract interpreter always terminates in a �nite amount of time.

Theorem 4.4 The abstract program evaluator PEA always terminates in a �nite amount of time.

Proof:

The simple evaluator SEA terminates because it either returns the value of a literal constant
or else looks up a variable in the environment.

We use structural induction to show that the expression evaluator EA terminates in a �nite
amount of time. The expression evaluator EA has three cases: function application expres-
sions, letrec block expressions, and all other expressions.

{ The evaluation of function applications takes a �nite amount of time because the ex-
pression evaluator makes a �nite number of calls to the simple expression evaluator, and
then looks up the result of the function application in the function environment.

{ The evaluation of letrec blocks consists iterating to re�ne the environment and store of
the body of the block. Each iteration consists of evaluating a �nite number of expressions,
so each iteration takes a �nite amount of time (using our induction hypothesis). The
size of all chains in our domains are �nite, so it takes only a �nite number of iterations
for the values of the environment and store to climb to their limits.

{ The evaluation of all other expressions consists of evaluating a �nite number of subex-
pressions and combining the results in some way. Evaluating the subexpressions and
combining the results each take a �nite amount of time.

Finally, we require the computation of the function environment to take a �nite amount
of time. Each iteration of this process consists of evaluating each function over value in
the interesting portion of that function's domain. All of our value domains are bounded by
program size, so the functions' domains must be �nite. Evaluation of the body of the function
uses the expression evaluator, so that must take a �nite amount of time. The �xpoint iteration
used to compute the function environment must also terminate in a �nite number of steps
because the sizes of all domains are �nite.

4.5 Safety of the Abstracted Interpreter

In this section we show that the abstract interpreter PEA preserves the behavior of the instrumented
interpreter.

An abstract interpretation is considered to be safe if the abstraction of a function preserves the
behavior of the concrete function.

De�nition 4.5 (Abstract Interpretation Safety) Given domains A, bA, B, and bB, and ab-

straction functions AbsA : A ! bA and AbsB : B ! bB, we say an abstract function bf : bA ! bB is

safe for concrete function f : A! B if the following condition holds:

8a 2 A; 8ba 2 bA:
AbsA (a) vA baAbsB (f(a)) vB

bf(ba)
If our abstract interpreter is safe by this de�nition, then it must preserve object reachability.

4.5. SAFETY OF THE ABSTRACTED INTERPRETER 93

Theorem 4.6 SEA is safe for SE:

8se 2 SE ; 8� 2 Env ; 8b� 2 EnvA :
AbsEnv (�) v b�) AbsV (SE [[se]]�) v SEA [[se]] b�

Proof:

By structural induction over SE :

{ If se is a boolean, then SE returns either True or False, which abstract to B, and SEA
returns B.

{ If se is a number, then SE returns a number, which abstracts to N , and SEA returns N .

{ If se is a variable x, then SE returns �[x] and SEA returns b�[x]. By our de�nition of
AbsEnv ,

AbsEnv (�) v b�) AbsV (�[x]) v b�[x]

Theorem 4.7 EA is safe for EI . Given function environment � for program pr:

8e 2 pr; 8� 2 AL; 8� 2 Env ; 8b� 2 EnvA; 8� 2 Store; 8b� 2 StoreA :
AbsEnv (�) v b�^ AbsStore (�) v b�) Abs (EI [[e]] ���) v EA [[e]] b�b��

Proof:

By structural induction over E:

{ If e is a simple expression, then EI and EA call the corresponding simple evaluators, so
EA is safe for EI .

{ If e is a primitive arithmetic expression, then EA returns either N or B, depending on
its type. These values contain the abstraction of all possible values that EI could return.

{ If e is a function application, then EA calls SEA to evaluate the arguments. These
abstract argument values contain the abstractions of the corresponding calls to SEI
made by EI . The function environment for a program maps a set of abstract inputs
to the most general value a function could return when applied to any concrete inputs
contained in the abstract inputs. Therefore, EA is safe for EI for function applications
because it looks up the result in the function environment.

{ If e is a conditional, then EA returns the least upper bound of the evaluation of both
branches of the conditional. This value is greater than the result of evaluating either of
the branches of the conditional, so it must contain the value of EI applied to the branch
of the conditional that is taken under the instrumented interpreter.

{ If e is a letrec block, then evaluation consists of �xpoint iteration to compute the
block's environment and store. For each iteration, we take an approximation of the
environment and store and generate re�ned approximations. This process is safe, by our
induction hypothesis, because we call EA and EI on the subexpressions to compute the
contributions to the new approximations to the environment and store. The �nal result
must be safe, because each iteration is safe and because both EA and EI are monotonic.

94 CHAPTER 4. ABSTRACTED SEMANTICS

{ If e is a tuple primitive, then the simple expression evaluators are called to evaluate the
arguments and a tuple is constructed or dereferenced. The object label constructed by
EA is an abstraction of the object label constructed by EI . Any tuple allocated by EA is
an abstraction of a tuple allocate by EI because each of the components under EA is an
abstraction of the corresponding values under EI .

Theorem 4.8 PEA is safe for PEI .

8pr 2 Prog;

Abs (PEI [[pr]]) v PEA [[pr]]

Proof:

In order to show that the abstract program interpreter is safe for the instrumented program
interpreter, we must show that the abstract interpreter constructs a function environment
that is safe with respect to the behavior of each of the functions in the program.

We do this by induction on the depth of nesting of function calls.

{ Base case: The initial function environment �0 maps all functions to input-output tables
that map all inputs to bottom. �0 is safe for all expressions that do not call procedures.

{ Induction Hypothesis: We assume that function environment �k is safe for the abstract
interpretation of expressions that expand to a call depth of k. To compute the value of
the �k, the k+1st approximation to the function environment, we evaluate the body of
each function applied to each value in the interesting domain of the function using EA
and function environment �k. This yields �k+1 that is safe for expressions that expand
to a call depth of k + 1, because EA is safe for EI .

4.6 Determining Object Lifetimes Statically

We can apply the abstract interpreter to a program prog to get a value, a store, and a set of
deallocation events. Consider the example shown in Figure 4.14. The result of evaluating the
program is a number and a store containing one tuple. If we follow the execution of the application
of f to 68, we see that its result is

h N;

?Store [� : l0 ! hTuple N;Ni];
;;

�D i

meaning that a number is returned as the result and that a tuple labeled � : l0 was allocated during
the execution of the application. Because the tuple is not reachable from the result we know that
the lifetime of the tuple ends when the invocation of f ends. With a little more information about
which identi�ers in f are bound to the tuple, we could transform the program so that the storage
associated with the tuple is reclaimed when f terminates.

4.6. DETERMINING OBJECT LIFETIMES STATICALLY 95

{ def f(w) =

{ t = k0g(w);

a = Select1(t);

b = Select2(t);

r = (a * b);

in r };

def g(x) =

{ y = (x-21);

t = l0MakeTuple(x,y) ;

in t }

def f0() =
k1f(68)

};

Figure 4.14: Example with non-nested structures

{ def f(w) =

{ t1 = k0g(w);

w2 = w * 2;

t2 = k1g(w2);

r = (w * w2);

t3 = l1MakeTuple(t1,t2,r);

in t3 };

def g(x) =

{ y = (x-21);

t = l0MakeTuple(x,y) ;

in t };

def f0() =
k2f(68);

};

Figure 4.15: Example with false sharing

The example shown earlier in this chapter in Figure 4.5 is slightly more complicated than the
one we just did. It consists of a recursive procedure, foo, that allocates a tuple in each recursive
iteration. We went through the steps of abstract interpretation in detail in Section 4.3.2, obtaining
the following value:

h N;

?Store [� : l0 ! hTuple N;Ni ; � : l1 ! hTuple N;Ni];
;;

�D
i

One thing we can conclude by examining the program and this result is that both tuples allocated
are no longer in use at the end of the program, because the program returns a number as its result.

The example in Figure 4.15 is interesting because it shows how the abstraction of labels can cause

96 CHAPTER 4. ABSTRACTED SEMANTICS

apparent sharing of structures, when in the standard or instrumented semantics there actually
would be no sharing. The result of this program under abstract interpretation is:

h fl1g;

?Store

"
l0 ! hTuple N;Ni

l1 ! hTuple fl0g; fl0g; Ni

#
;

;;

�D ; i

That is, the result of the program is the structure contained in locations fl1g, which is a three tuple
containing a reference to location l0, another reference to location l0, and a number. Note that while
the tuples allocated by the two calls to g would have been allocated in di�erent locations �:k2:k0 : l0
and �:k2:k1 : l0 under the instrumented semantics, they have been assigned the same location under
the abstract semantics. Thus, any analysis performed using this abstraction of activation labels will
not be able to distinguish the tuples allocated by distinct calls to a procedure. Chapter 6 discusses
an improved approximation of activation labels that solves this problem.

Chapter 5 presents two algorithms that use the abstract interpreter de�ned in this chapter. The
�rst algorithm veri�es the safety of deallocation commands in programs, and the second inserts
deallocation commands into programs. The basic approach is similar to what we have done in
this section. The compiler uses the abstract interpreter to compute input-output mappings of
all procedures. Then the compiler processes the body of each procedure, computing the possible
bindings of all variables in the body of the procedure and using our deallocation safety criteria to
verify or insert deallocation commands.

Chapter 5

Verifying and Inserting Deallocation

Commands

We have seen how to interpret KID� programs in such a way as to determine what objects are cre-
ated by the program (or each procedure in the program) and what objects passed into a procedure
are reachable from the result of that procedure. We now investigate how to turn our abstract inter-
preter into an algorithm to verify deallocation commands and an algorithm to insert deallocation
commands.

The veri�cation and insertion algorithms compute the function environment for a whole program
and then operate on each procedure of the program. Both algorithms compute the function en-
vironment for the program and then recursively traverse the body of each procedure, calling the
abstract expression evaluator EA to provide a summary of the value to which each identi�er could
be bound.

Both the veri�cation and insertion algorithms must analyze procedure bodies with respect to a set
of arguments provided to that procedure. In this chapter we discuss how the choice of input values
a�ects the performance of the analysis of procedure bodies. We also describe how we choose input
values for use in the veri�cation and algorithms.

As we did in Chapter 4, we restrict our discussion in this chapter to programs using tuples as
their only data structure. In the next two chapters we discuss both the additions to the abstract
interpreter, and the insertion and veri�cation algorithms needed to handle arrays, algebraic types,
and lists.

The �rst section of this chapter presents formal conditions for the correctness of a deallocation
statement. The second section discusses the choice of input values used during the analysis of
a procedure and presents an algorithm for choosing these values. The third section presents a
mechanical algorithm for verifying the correctness of deallocation statements in KID� programs.
The �nal section of this chapter presents a simple algorithm for inserting correct deallocation
statements into a program.

5.1 Object Deallocation Safety

Let us consider a deallocation statement in block expression e, shown below, and use the abstract
semantics to show the conditions under which this deallocation statement can never lead to a run-

97

98 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

time error. Expression e is a generic letrec expression containing several deallocation commands.

e = f x1 = e1;
...

xn = en;
|
Dealloc (y1)

...
Dealloc (ym)
in xj g

where the environment, store, and function environment in which e is to be evaluated are �, �, and
�, respectively.

We can compute environment �0 and store �0, the resulting environment and store for the block
bindings, ��, the set of labels deallocated by the block bindings, and v, which is the result of the
evaluation of the expression, as shown below:

�0 = �[?=x1; � � � ;?=xn]

h �0; �0;��0;�D
i = EvalBindingsA ([[x1 = e1; : : : ; xn = en]] ;�; �0; �;?DMAP)

v = �0[xj]

R = dReachable (v; �0)

I =
[

y2FV (e)

dReachable (�0[y]; �)

Consider each variable yi whose value is deallocated in the above block expression. If the value of
yi is to be deallocated safely upon termination of the letrec block, then the value to which yi is
bound, �0[yi], must be a reference ls to a tuple. Furthermore, that tuple must have been allocated
within the execution of expression e. Therefore, none of the labels to which yi could be bound may
be in the set of labels inherited from the context in which this expression is executed. Also, none
of the labels in �0[yi] can be reachable from the result �0[xj] of the block expression. Finally, none
of those labels can be in the set of objects deallocated by other deallocation commands.

Condition 5.1 (Deallocation Command Safety) The deallocation statement

Dealloc (yi), shown in the code fragment above, is safe, if the following three conditions hold:

1. �0[yi] \ I = ; (yi is not inherited)

2. �0[yi] \R = ; (yi does not escape)

3. 8yj 6= yi : �0[yi]\ (�0[yj] [��) = ; (yi is not deallocated elsewhere)

If Condition 5.1 is satis�ed, then Theorem 3.10 from Chapter 3 applies and it is guaranteed that
this deallocation command will not lead to dangling pointer errors.

5.2 Choice of Procedure Arguments

We need to determine the behavior of a procedure over all possible values to which the procedure
could be applied in order to verify that the deallocation commands in that procedure are safe or in

5.2. CHOICE OF PROCEDURE ARGUMENTS 99

order to insert safe deallocation commands. One way to do this is to analyze a procedure when it is
applied to the least upper bound of all the abstract values in the domain of that procedure. Another
choice of input values would be the least upper bound of the values in the interesting portion of
the domain of the procedure. We discuss the use of the interesting domain of the procedure in
this section, discuss how it sometimes prevents us from verifying deallocation commands that are
actually correct, and then develop a better set of input values for use during analysis.

5.2.1 Most General Input Values

Let us consider the analysis of the body of a procedure when applied to the least upper bound of
the values in the interesting domain of that procedure. For example, let us analyze the procedure
foo, de�ned below:

def foo (w,n) =

{ a = Select1(w);

b = Select2(w);

c = a + 1;

p = c < n;

r = if p then

{ w' = l0MakeTuple(c,b);

r' = k0foo(w');

in r' };

else b;

in r };

where the interesting portion of the domain of foo might be:8><>:
h?;?;?Storei ;

hfl1g; N; [l1 ! hTuple N;Ni]i ;
hfl0g; N; [l1 ! hTuple N;Ni ; l0 ! hTuple N;Ni]i

9>=>;
where the tuple labeled l1 was allocated somewhere else in the program.

The least upper bound of these values is the triple:

hfl0; l1g; N; [l1 ! hTuple N;Ni ; l0 ! hTuple N;Ni]i

If we examine this program by hand, we see that the lifetime of the object bound to w' is contained
in the lifetime of the letrec block in the then side of the conditional, because foo never returns
its input | so w' does not escape | and w' is always bound to a freshly allocated tuple { so w'

is allocated within the letrec block.

However, if we apply the procedure foo to the most general input value that we constructed above,
we �nd the following possibilities for the bindings of variables w, w' and r' in environment �0 within
the body of foo:

�0[w] = fl0; l1g

�0[w0] = fl0g

�0[r0] = N

100 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

The set I of labels that may be inherited by procedure foo is the set fl0; l1g, and the set of labels
that may escape from foo is empty. Thus, even though we can determine by inspection that w' is
never bound to an object that escapes from the letrec block, we �nd that w' may be bound to
an object inherited by procedure foo. We cannot determine that the lifetime of w' is contained in
the inner letrec block using this approach to lifetime analysis.

In this example, we have come to a safe conclusion. It is always safe to overestimate the lifetime
of an object, but if the overestimates are too large we will never be able to verify or insert any
deallocation commands. In fact, if we we follow this strategy of using the most general input value
we analyze a procedure, we will never be able to verify the deallocation of a structure that is created
by a procedure, passed to a recursive call, but not returned from the procedure. The reason is that
passing an object label to a recursive call guarantees that the label is in the most general input
value; therefore, the label will always be considered inherited by the procedure.

5.2.2 Desired Properties for Input Values

What are the important properties of the input values to which we apply a procedure during
analysis? From the standpoint of lifetime analysis, the most important thing we know about these
values is that they came from outside the procedure, and that if some variable within the procedure
may be bound to one of these values, then the lifetime of the object to which that variable is bound
may not be enclosed by the lifetime of the procedure. So we desire to choose input values in
such a way that we can determine which variables are \contaminated" by input values, without
getting any spurious contamination signals. We must also choose input values so that we never
miss any contamination signals. Therefore, we cannot use bottom as an input value when analyzing
a procedure.

The input values we choose must also have the right type. We cannot apply a function to a number
if it expects a tuple.

Finally, we must be able to show that analysis of the body of a function with respect to some input
value yields correct values for all possible values to which the function could be applied under the
standard interpreter.

5.2.3 Representative Input Values

In this section we present a method for creating representative input values that allow us to avoid
the false contamination we found in Section 5.2.1. We show that analysis performed with respect
to these input values is safe for all possible inputs, up to renaming of the inputs.

Let us analyze procedure foo when applied to the following representative value ~vrep :

hfl�1g; N; [l�1 ! hTuple N;Ni]i

where label l�1 is a new label that does not occur anywhere in the program.

Now if we evaluate the body of foo and determine the bindings of w, w' and r' we get the following
values:

�0[w] = fl�1g

�0[w0] = fl0g

�0[r0] = N

5.2. CHOICE OF PROCEDURE ARGUMENTS 101

The set I of labels that may be inherited by procedure foo is the set fl�1g, and the set of labels
that escapes from foo is empty. In this case, the lifetime of the object to which w' is bound is
contained in the lifetime of the inner letrec block.

Name Invariance

The question we must now answer is whether the behavior of foo when applied to this input value
tells us anything about the behavior of foo when applied to other values. If we want to determine
the behavior for an input vector that contains li instead of l�1, such as the following input vector
~v:

hflig; N; [li ! hTuple N;Ni ; � � �]i ;

then we can take the bindings computed for foo applied to input vector ~vrep, rename all occurrences
of l�1 to li, and end up with the bindings for foo applied to l�1. For instance, we rename l�1 to
li in our analysis of foo with respect to the representative value ~vrep , we obtain the following
information about the environment in the body of foo:

�0[w] = flig

�0[w0] = fl0g

�0[r0] = N

which is exactly the result if we directly analyzed procedure foo applied to ~v.

If more than one location was passed as an argument, then we substitute the set of labels for the
set containing l�1, and duplicate the bindings of l�1 in the store for each of the labels in the desired
input value.

We would like to show that we can take an appropriate representative input value, analyze a
function with respect to that input value, and determine safe behavior for that function applied to
any input value given the behavior of the function over the representative input value. In order for
the behavior of a function over its representative input value to tell us anything about the behavior
of the function over other input values, the representative input value must satisfy the following
three conditions:

1. The representative value must have the same type as all other input values to this function.

2. None of the values reachable from the representative input values may be bottom.

3. The labels used in the representative input value must be distinct from all labels occurring
statically in the program.

The �rst condition is almost redundant; all values to which a function is applied must have the
same type.

The second condition is required because the result of a function applied to any value that is in
some way \less than" the representative input value will be less than the result of the function
applied to the representative input value. If some component of the representative input value
is bottom, then any input that has a non-bottom value for that component will cause di�erent
behavior.

The third condition is required because we would like to be able to perform a substitution on the
result of a function applied to the representative input value in order to obtain the result of the

102 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

SubstV (ls; lo; N) = N

SubstV (ls; lo; B) = B

SubstV (ls; lo; fls
0
g) =

(
(ls0 � flog)[ls if lo 2 ls0

ls0 otherwise

SubstLs (ls; lo; fls
0
g) =

(
(ls0 � flog) [ls if lo 2 ls0

ls0 otherwise

SubstEnv (ls; lo; �) = �x: SubstV (ls; lo; �[x])

SubstSV (ls; lo; hTuple v1; � � � ; vmi) = hTuple SubstV (ls; lo; v1); � � �SubstV (ls; lo; vm)i

SubstStore (ls; lo; �) = �l:

(
SubstSV (ls; lo; �[lo]) if l 2 ls

SubstSV (ls; lo; �[l]) otherwise

SubstFEnv (ls; lo;�) =G
fi

0@ G
~v s:t: �[fi][~v]6=?

?FEnv [fi ! [Subst (ls; lo; ~v)! Subst (ls; lo;�[fi][~v])]]

1A

Subst� (fh ls1; l1 i ; � � � ; h lsn; ln ig; v) =

Subst� (fh ls1; l1 i ; � � � ; h lsn�1; ln�1 ig; Subst (lsn; ln; v))

Subst� (;; v) = v

Figure 5.1: De�nition of procedure Subst

function applied to some other value. We will not get a correct result if we rename the objects
allocated within the procedure call; we only want to rename or substitute for values passed as input
to the function. After all, the most important thing we know about the representative input values
is that they came from outside the procedure.

We de�ne procedure Subst in Figure 5.1. This procedure takes a set of labels ls, a label lo, and a
value v, and substitutes ls for all occurrences of label lo in v. We de�ne version of Subst to operate
on denotable values, storable values, environments, stores, and function environments.

5.2. CHOICE OF PROCEDURE ARGUMENTS 103

Let RIV be a procedure that takes a function's type and constructs a representative input vector
for that function that satis�es the three conditions given above. Let Match be a procedure that
takes an input vector ~iv to a function and a function's representative input vector ~riv , and produces
a substitution � such that

~iv v Subst� (�; ~riv):

Theorem 5.2 (Name Invariance) Given program pr and the function environment � for that

program:

8fi 2 pr; 9 ~riv = RIV [[TypeOf (fi; pr)]] ;

8~iv 2 Domain (fi); 9� = Match (~iv ; ~riv);
~iv v Subst� (�; ~riv)) �[fi][~iv] v Subst� (�;�[fi][~riv])

Proof:

Sketch of Proof by Contradiction:

Let:

~riv = �[fi][~iv]

~rriv = �[fi][~riv]

Assume that: �[fi][~iv] 6v Subst� (�;�[fi][~riv])

Every portion of the results of function applications, in this case ~riv and ~rriv , either came
from the input to the function or was created within the function.

{ The representative input vector ~riv is at least as well de�ned as the input vector of
interest ~iv , and so execution of the body of the function should have proceeded at least
as far in the case of ~riv as in the case of ~iv . Therefore, all portions of the result should
be at least as well de�ned. For that reason, all portions of the result that came from
the input should be at least as well de�ned in the case of Subst� (�; ~rriv) as in the case
of ~riv , unless some of the inputs reachable under one case were not reachable under the
other. But the abstract interpreter preserves reachability, so all of the components of
Subst� (�; ~rriv) that were inherited from the input vector ~riv must contain the portions
of the result ~riv that came from the input ~iv , because input Subst� (�; ~riv) contained all
of input ~iv .

Contradiction.

{ Again, all code in the body of function fi must have executed at least as far when
applied to ~riv as it did when applied to ~iv , because ~riv is more de�ned (has more non-
bottom components). Therefore all portions of result ~rriv that were created within the
function body should be at least as well de�ned as the portions of result ~riv that were
created within the function body. Furthermore, all of these values that are object labels
must be the same in both cases, because all object labels depend solely on the text of
the program, not the inputs to the function. Therefore, it must be the case that the
portions of result ~rriv that were created within the function must contain the portions
of ~riv that were created withing the function, even before substitution. Furthermore,
none of the labels being renamed by substitution � are created within the body of the
function | the contract of RIV is to use labels from outside of the program.

Contradiction.

104 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

Both of these paths lead to contradiction, so our assumption must be false.

There remains the question of determining if label l0 can ever, under the concrete interpreter, both
be allocated within the inner letrec block and be inherited by the body of the same instance
of procedure foo. The only way an object can be allocated within an activation of a procedure
procedure and passed into the same activation of the procedure is if the object is returned as
part of the result and the caller of the procedure passes that value back into the procedure as
an argument. Under this condition, the object's lifetime cannot be bounded by the lifetime of
the procedure, because the object escapes as part of the procedure's result. If the object is never
returned as part of the result, then any object passed into the procedure with the same label as an
object allocated within the procedure must be an instance of an object allocated within a di�erent
activation of the same procedure.

Theorem 5.2 has two consequences. First, it allows us to construct a representative input value for
each function and analyze the function applied to that representative input in order to verify or
insert deallocation commands in the body of the function. It shows us that the representative input
vector is equivalent to the most general input vector in the most important way: distinguishing the
values that came from outside the function from those that were created within the function. The
use of representative input vectors in many cases allows us to avoid the false aliasing problem that
reduces the e�ectiveness of the deallocation safety veri�cation and deallocation insertion algorithms.

Second, it allows us to derive a conservative approximation of the result of a function applied
to a particular input value from the result of the function applied to the representative input.
Theorem 5.2 guarantees that if the representative input is chosen appropriately, then the result
after substitution will be an approximation of the actual result.

Two problems remain: how to choose the representative input for a given function and how to
choose substitutions.

Constructing Representative Input Values for Functions

Our approach is to generate an input value for each procedure based on its type so that if we
analyze or transform the function for that input value the result will be correct for all input values.
This allows us to ask more precise questions about the function because we can guarantee that
there is no false aliasing between the inputs to the function and any structures it may allocate.

The type of a function is a member of the domain FunctionType, de�ned below. Argument and
result types of a function are drawn from the domain Type.

FunctionType = (Type� � � � � Type)!Type

� 2 Type = N j B j hTuple Type� � � � � Typei

The function RIV takes a function type and returns a representative input value: a tuple of abstract
values and an abstract store. This procedure makes use of function CV, which constructs a single
value-store pair from a single type. The signatures of functions RIV and CV are given below:

RIV : FunctionType! (V � � � � � V � Store)

CV : Type! (V � Store)

5.3. AN ALGORITHM FOR VERIFYING DEALLOCATION COMMANDS 105

Finally, we need a function, TypeOf , which gives us the type of a procedure in the program pr.
TypeOf takes a function identi�er and a program and returns the type of that function.

TypeOf : F!Prog!FunctionType

The procedure CV, in the case of a scalar type, returns N or B, as appropriate, and the empty
store. In the case of a tuple type, CV is called recursively on each of the component types, a new
label l is allocated, and the set containing l is returned as the value. The resulting store is the least
upper bound of each of the component stores with location l bound to the tuple of the component
values.

CV [[N]] = h N; ?Store i

CV [[B]] = h B; ?Store i

CV [[hTuple �1; � � � ; �ni]] = f h v1; �1 i = CV [[�1]] ;
...

h vn; �n i= CV [[�n]] ;
�0 =

F
i

�i;

l =Newloc ();
in h flg; �0[l! hTuple v1; � � � ; vni] i g

We call function Newloc to give us a label that cannot appear in the program | this guarantees
that we do not get any false aliasing between the initial arguments to a function and the object
labels allocated within the function.

The function RIV takes the tuple of function argument types and calls function CV to construct a
value and store for each of those types. It returns a tuple containing each of the values and the least
upper bound of the stores. Note that because we construct these stores with disjoint locations, the
least upper bound of these stores is the same as the concatenation of the stores.

RIV [[(�1 � � � � � �n)!�r]] = f h v1; �1 i = CV [[�1]] ;
...

h vn; �n i= CV [[�n]] ;
�0 =

F
i

�i;

in hv1; � � � ; vn; �0i g

5.3 An Algorithm for Verifying Deallocation Commands

This section de�nes VP, an algorithm that takes a program pr and returns a set of the expression
labels of possibly incorrect deallocation commands in the program. This algorithm errs on the
conservative side, returning labels of deallocation commands that may never cause dangling pointer
errors at run-time, but it never returns the empty set for programs that are incorrect.

Procedure VP veri�es programs using monotonic reasoning: it �rst assumes all procedures are
correct and iteratively improves this approximation until it �nds all the procedures that could
have dynamic errors deallocating structures. We use a new mapping | a correctness map | that
gives the most up-to-date information about the correctness of each procedure. A correctness map

106 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

takes a procedure name and returns either ; if the procedure contains only correct deallocation
commands or a non-empty set of incorrect deallocation command labels otherwise.

	 2 CMAP = F!P(L)

The function VE veri�es that all deallocation commands within an expression are correct with
respect to a given environment, store, and function environment.

Here are the signatures of the veri�cation procedures:

VP : Prog ! P(L)

VE : E!Env!Store!FEnv!CMAP!P(L)

These functions are de�ned in the following two sections.

5.3.1 Veri�cation of Deallocation within a Program

The function VP veri�es that all of the deallocation statements in the main body of the program
and in each of the functions of the program cannot lead to dereferencing a deallocated location
under any execution of the program. The de�nition of VP is shown below:

VP [[pr]] = (5.1)

f [[f� � �fi(x1; � � � ; xn) = ei � � � in eg]] = pr;
h �0; D0 i= InitialFEnv (pr);
h �; D i = ComputeFEnv (pr;�0;D0);

	0[fi] = ;; 8 fi;
	 = ComputeCMAP (pr;�;D;	0);

ds = VE [[e0]]?Env?Store�	 ;
in ds g

where expression e0 is the body of the main function f0. Procedure VP calls procedure Com-

puteFEnv to compute the function environment and the interesting domain map of the program.
Then it calls ComputeCMAP to compute the correctness map for the program. The CMAP 	
takes function names and returns the list of expression labels of deallocation commands that may
be incorrect. Finally, procedure VP calls procedure VE to verify the correctness of expression e0,
the body of the main procedure f0. If there are no incorrect deallocation commands that may be
called from the main body of the program, then all deallocation commands in the program must
be correct (or else unreachable from the main procedure).

We revise the function InitialFEnv that takes a program and returns a function environment and
a domain map. The empty function environment is returned as the initial function environment.
The domain map we return maps each function name to the set containing the representative input
value for that function.

InitialFEnv (pr) =

5.3. AN ALGORITHM FOR VERIFYING DEALLOCATION COMMANDS 107

f �0 =?FEnv ;
8 fi 2 F :
�fi = TypeOf (fi; pr);
hvi;1; � � � ; vi;n; �ii=RIV [[�fi]] ;
D0[fi] = fhvi;1; � � � ; vi;n; �iig; 8 fi 2 F

in h �0; D0 i g

The function ComputeCMAP iteratively improves the approximations of the correctness map until
no further information is added. It returns the most precise approximation as its result.

ComputeCMAP (pr;�;D;) = (5.2)

f 	0 = �fi:
S
hv1;���;vn;�2D[fi]i

VE [[ei]]?Env [v1=x1; � � � ; vn=xn]��	 ;

	00 = if 	0
v 	

then	0

else ComputeCMAP (pr;�;D;	0);
in 	00 g

5.3.2 Veri�cation of Deallocation within an Expression

This section gives a de�nition of algorithm VE , which takes an expression e, an environment, a
store, and a function environment, and returns the set of labels of deallocation commands in e that
cannot be proven safe statically.

The following four clauses of VE show that VE returns the empty set for simple expressions and
primitive expressions because none of these expressions can deallocate objects.

VE [[n]]���	 = ; (5.3)

VE [[b]]���	 = ; (5.4)

VE [[x]]���	 = ; (5.5)

VE [[+ (se1; se2)]]���	 = ; (5.6)

Function VE looks in the correctness map 	 to see if an application of procedure f is correct with
respect to deallocation.

VE [[f(se1; � � � ; sen)]] ���	 = 	[f] (5.7)

Veri�cation that a function has correct deallocation statements only is performed by procedure VP,
which tests the correctness of each function over all points in the function's domain.

Conditional statements have correct deallocation statements if both branches of the conditional
are correct. The predicate cannot have any deallocation statements. The following clause veri�es
conditional expressions.

VE [[if (se0; e1; e2)]]���	 = (5.8)

VE [[e1]] ���	 [VE [[e2]]���	

The essence of the veri�cation procedure for expressions is in the clause shown in Figure 5.2.
This clause veri�es the deallocation commands in letrec blocks. This clause must compute the

108 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

VE [[f Bs|Ds in xg]] ���	 = (5.9)

f [[x1 = e1; : : : ; xn = en]] = Bs;

[[d1Dealloc (y1); � � � ;
dkDealloc (yk)]] = Ds;

�0 = �[?=x1; � � � ;?=xn];

h �0; �0;��0;�D0
i = EvalBindingsA (Bs;�; �0; �;?DMAP);

I =
[

w2FV (Bs)

dReachable (�[w]; �);

R = dReachable (x; �0);

dsBs =
[

1�i�n

VE [[ei]] �
0�0�	 ;

dsDs =
[

[[diDealloc(yi)]]2Ds

8>>>>>>>>>><>>>>>>>>>>:

; when
; = �0[yi] \ I
^ ; = �0[yi] \R

^
V
yj 6=yi ; =

�0[yi]

\(�0[yj][��0)

!

fdig otherwise

r

in dsBs [dsDs g

Figure 5.2: Clause to verify deallocation commands in letrec blocks

environment �0 and store �0 of the letrec block bindings. It calls VE on each of the right-hand-side
expressions with respect to �0 and �0, collecting the results into dsBs. Then, it checks whether
each deallocation statement labeled di in Ds is safe. If VE cannot prove that the deallocation
statement labeled di is safe, it collects the di into the set dsDs. The result is the union of the unsafe
deallocation statement labels in the body of the block and the unsafe deallocation statement labels
in Ds. While computing set I , the set of object labels reachable from the surrounding context of
a block expression, note that we use the incoming environment and store: � and �, instead of the
current environment and store: �0 and �0. We can use either � or �0 here because the language is
functional.

Procedure VE returns the empty set for tuple allocation and selection primitives, as shown below,
because they cannot contain deallocation statements.

VE [[lMakeTuple (se1; � � � ; sem)]]���	 = ; (5.10)

VE [[Selecti (se)]]���	 = ; (5.11)

5.3.3 Verifying Some Examples

Now let us apply the above algorithm to both a correct and an incorrect example so that we may
observe its operation.

5.3. AN ALGORITHM FOR VERIFYING DEALLOCATION COMMANDS 109

A Correct Example

In this example, we apply procedure VP to pr, the following KID� program:

{ def f(x,y) =

{ t = l0MakeTuple(x,y)

result = k0g(t);

d1Dealloc(t);

in result };

def g(t) =

Select1(t)

def f0() =
k1f(6,847)

}

Here are the domains of the abstracted versions of f and g.

Domain (f) = N �N � ?Store

Domain (g) = f;; fl0gg � f[l0 ! hTuple N;Ni] ; [l0 ! ?]g

where the following are the program dependent domains:

OL = fl0g

Ls = f;; fl0gg

In order to verify the correctness of the deallocation commands in program pr, we must verify the
deallocation commands in each procedure in the program for all input vectors in the domains of
those procedures (Equation 5.1). For expository purposes, we short cut the iterative computation
of the correctness map 	.

First, we verify the correctness of procedure f. There is only one input vector of interest for
procedure f, so the value of 	[f] is the result of VE applied to the body of f and this input vector.

	[f] = VE [[ef]]?Env [N=x; N=y]?Store�	

ef = { t = l0MakeTuple(x,y)

result = k0g(t);

d1Dealloc(t);

in result };

First, let us compute the value of dsBs, the labels of the incorrect deallocation commands in the
body of the letrec block. We �nd:

dsBs = VE [[l0MakeTuple (x; y)]]�0�0�	
[VE [[k0g(t)]] �0�0�	

110 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

by Equation 5.9, where ef is the body of procedure f and �0, �0, ��0, I , R and lst are computed
by procedure VE :

�0 = ?Env

26664
N=x;

N=y;

fl0g=t;

N=result

37775
�0 = ?Store [l0 ! hTuple N;Ni]

��0 = ;

I = Reachable (�0[x]; �)[Reachable (�0[y]; �) = ;

R = Reachable (�0[result]; �0) = ;

lst = �0[t] = f� : l0g

Using these values, we can check the correctness of the two expressions from the body of the block
expression. There are no incorrect deallocation commands in the MakeTuple expression, so VE
returns the empty set. To apply VE to the application of procedure g, we must compute the entry
	[g].

If we apply procedure VE to the body of procedure g, VE returns the empty set because there are
no deallocation commands or procedure applications in the body of g. Consequently, the entry in
	 for g contains the empty set.

	[g] = ;

Going back to the veri�cation of the body of procedure f, we �nd:

VE [[l0MakeTuple(x; y)]]�0�0�	 = ;

VE [[k0 g(t)]]�0�0�	 = 	[g]

by Equations 5.10 and 5.7. Therefore, the bindings of the letrec block in f contain no unsafe
deallocation commands.

Now let us consider the deallocation command in the body of f. Using the values computed above,
we see that the set of labels that may be deallocated, fl0g, has a null intersection with both I and
R, which are the sets of inherited and escaping locations. Therefore, this deallocation command
satis�es the safety condition, so we can conclude that it will never lead to a run-time error.

Since both dsBs and dsDs are empty, the result of the call to VE on the body of f is the empty set,
and the entry in 	 for f also contains the emptyset.

	[f] = ;

An Incorrect Example

Now let us apply the veri�cation algorithm to a program containing an incorrect deallocation
command. The program is a slight variation of the program from the previous example, in which
procedure g returns its argument. We apply VP to the following program pr:

{ def f(x,y) =

{ t = l0MakeTuple(x,y)

5.3. AN ALGORITHM FOR VERIFYING DEALLOCATION COMMANDS 111

result = k0g(t);

d1Dealloc(t);

in result };

def g(t) = t

def f0() =
k1f(6,847)

}

Again, we verify the correctness of the deallocation commands in the program by verifying each of
the procedure bodies over each input in the domains of the function. The procedures in program
pr have the same domains as in the previous example.

Procedure g still contains no deallocation commands or procedure applications, so VE returns the
empty set when applied to the body of g. Therefore, the entry in 	 for g is the empty set.

	[g] = ;

We proceed to verify the safety of the deallocation commands in procedure f. There is one input
value in the domain of f to consider. We call VE on expression ef and input value hN;N;?Storei.

VE [[ef]] [N=x; N=y]?Store�	

where ef is the body of procedure f:

ef = { t = l0MakeTuple(x,y)

result = k0g(t);

d1Dealloc(t);

in result };

To apply VE to the body of procedure f, we �rst compute �0 and �0:

�0 =

26664
N=x;

N=y;

fl0g=t;

fl0g=result

37775
�0 = [l0 ! hTuple N;Ni]

��0 = ;

Then we compute dsBs, the labels of the incorrect deallocates in the bindings of the letrec block.

dsBs = VE [[l0MakeTuple(x; y)]] �0�0�	
[VE [[k0g(t)]]�0�0�	

by Equation 5.9. Using these values, we can see that the deallocations in the bindings of the letrec
block are correct, as in the previous example. Then we compute the other values needed:

I = Reachable (�0[x]; �0) [Reachable (�0[y]; �0) = ;

R = Reachable (�0[result]; �0) = f� : l0g

lst = �0[t] = fl0g

112 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

If we consider the deallocation command labeled d1, we see that set of locations it may deallo-
cate, fl0g, intersects the set R of locations reachable from the result of the letrec block. This
deallocation command violates the safety condition | it may lead to a dangling pointer error at
run-time | so VE returns the set containing d1 for the letrec block. Consequently, the entry in
map 	 for procedure f is fd1g.

	[f] = fd1g

5.4 An Algorithm for Inserting Deallocation Commands

This section describes a simple algorithm for inserting correct deallocation commands into KID�

programs. This algorithm only deallocates objects that are directly named in the control region
that bounds the lifetimes of the object. To be more complete, the algorithm would have to insert
bindings from new variables to the nested components of dead structures in order to deallocate
them. The details of this are left to the reader.

First, we look at the transformations we expect the deallocation insertion algorithm to perform.
Then in the next four sections we develop the actual algorithms for inserting deallocation code.

5.4.1 Desired Results of Insertion Algorithm

Let us look at a few examples. In the following code fragment, we should be able to determine
that variable x3 can name the same objects as x1 and x2, but that x1 and x2 must be bound to
di�erent objects. Therefore, the best transformation would be to deallocate x1 and x2 but not x3,
as shown:

{ x1 = l1MakeTuple(3,4);

x2 = l2MakeTuple(3,4);

x3 = If p then x1 else x2;

in 7 }

)

{ x1 = l1MakeTuple(3,4);

x2 = l2MakeTuple(3,4);

x3 = If p then x1 else x2;

Dealloc(x1);

Dealloc(x2);

in 7 }

There is another correct way to transform this program. We could have inserted a deallocation
command for identi�er x3 instead of the commands put in for identi�ers x1 and x2, as follows:

{ x1 = l1MakeTuple(3,4);

x2 = l2MakeTuple(3,4);

x3 = If p then x1 else x2;

Dealloc(x3);

in 7 }

This transformation is not as good as the previous one because it only deallocates one of the tuples
that are allocated when both could be deallocated. When inserting deallocation commands, we
should try to �nd as many variables that are bound to non-overlapping sets of labels as possible,
and insert deallocation commands on these variables.

5.4. AN ALGORITHM FOR INSERTING DEALLOCATION COMMANDS 113

It is not always possible to insert deallocation commands that deallocate all dead structures if we do
not insert conditional deallocation commands. In the following example, we can insert deallocation
commands for x1 and x2, but not x3, because it may be bound to the same tuple as x1.

{ x1 = l1MakeTuple(3,4);

x2 = l2MakeTuple(3,4);

x3 = If p then x1

else l3MakeTuple(68,47);

in 7 }

)

{ x1 = l1MakeTuple(3,4);

x2 = l2MakeTuple(3,4);

x3 = If p then x1

else l3MakeTuple(68,47);

Dealloc(x1);

Dealloc(x2);

in 7 }

However, if we insert a conditional deallocation command, then we can deallocate all of the tuples
that are allocated, as shown below:

{ x1 = l1MakeTuple(3,4);

x2 = l1MakeTuple(3,4);

x3 = If p then x1

else l3MakeTuple(68,47);

Dealloc(x1);

Dealloc(x2);

if (x3 6= x1) then

{ ---

Dealloc(x3) }

else { };

in 7 }

In fact, we can always take the set of all of the variables in a letrec block which are bound to
objects whose lifetime is de�nitely contained in the lifetime of the block, and insert conditionals
to guarantee that each distinct object to which the variables are bound at run time is deallocated
exactly once.

Yet another way we can transform this example is to insert a call to copy on the true side of the
conditional, so that the object bound to x3 is always di�erent from that bound to variable x1. This
may not make sense in this particular case, because it costs more to allocate an object than to
perform an equality test (as we did in the previous transformation of this example). Inserting a call
to copy makes sense if this expression is executed many times and it is much more likely to take
the else branch than the then branch of the conditional. Then the amortized cost of the extra
copy will be much less than the cost of the conditional before the deallocation command.

{ x1 = l1MakeTuple(3,4);

x2 = l1MakeTuple(3,4);

x3 = If p then
k1copy(x1)

else l3MakeTuple(68,47);

Dealloc(x1);

Dealloc(x2);

114 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

Dealloc(x3);

in 7 }

The following example shows that we may have to insert code in order to name all of the objects
that may be deallocated. We can insert a deallocation on variable x directly, but we must insert
a binding to name the second component of the object named by x, which is also a structure that
may be deallocated in the outer block expression.

{ x = { y = l1MakeTuple(3,4);

z = l2MakeTuple(4,y);

in z }

in 7 }

)

{ x = { y = l1MakeTuple(3,4);

z = l2MakeTuple(4,y);

in z }

w = Select2(x);

Dealloc(x);

Dealloc(w);

in 7 }

5.4.2 The Algorithm

This section presents a simple algorithms for inserting deallocation commands in KID� programs.
This algorithm only inserts commands to deallocate tuples that are named by variables in the
program. It does not insert bindings to name components of tuples whose lifetimes are bounded by
that of the block. It also does not insert conditionals after the barrier. Once the basic algorithm is
understood it is straightforward to increase its e�ectiveness by having it insert code to deallocate
the components of dead structures and insert conditional deallocation commands to deallocate all
structures bound to identi�ers that may be aliased.

The algorithm works in a greedy fashion on the set of identi�ers bound in a block. It inserts
deallocation commands for each identi�er that is bound to a set of labels that satis�es these three
conditions:

1. The lifetime of each of the labels in the set is enclosed by that of the block.

2. None of the labels are deallocated by one of the deallocation commands inserted earlier.

3. None of the labels are deallocated elsewhere in the program.

This algorithm is implemented by four procedures: TP and TE , which transform programs and
expressions, and DS and DX which return a list of deallocation statements for lists of bound
variables and single bound variables in a given letrec block.

Here are the signatures of procedures used in the insertion algorithm:

TP : Prog!Prog

TE : Exp!Env!Store!FEnv!Exp

DS : X�
!Env!Store!Ls!Ls!Ls!DS

DX : V!X!Ls!Ls!Ls!(DS � Ls)

Procedure TP takes a program, computes the function environment for the program, and calls
procedure TE to insert the appropriate deallocation statements in the body of each procedure in

5.4. AN ALGORITHM FOR INSERTING DEALLOCATION COMMANDS 115

TP [[pr]] = (5.12)

f [[f� � �fi(x1; � � � ; xn) = ei � � �g]] = pr;

D0 = InitialDMAP (pr);
h �; D i = ComputeFEnvA (pr;?FEnv ;D0);

...
8fi 2 ff0; � � � ; fkg;

�fi = TypeOf (fi; pr);
hvi;1; � � � ; vi;n; �ii =RIV [[�fi]] ;
[[e0i]] = TE [[ei]]?Env [vi;1=x1; � � � ; vi;n=xn]�i� ;

...

in [[f� � �fi(x1; � � � ; xn) = e0i � � �g]] g

Figure 5.3: Procedure to insert deallocation commands into programs

the program. Procedure TE takes an expression e and the most general environment, store, and
function environment in which that expression executes. It returns a transformed expression e0.

The procedures DS and DX are used by procedure TE when translating letrec blocks. Procedure
DS takes the set of variables bound by the letrec block, and the environment and store that are
active in the bindings of the letrec block. In addition to the environment and store, it takes the
set of inherited, escaping, and previously deallocated object labels. The inherited labels are those
that are reachable from the context of the letrec block, the escaping labels are those reachable
from the result of the letrec block, and the previously deallocated labels are those deallocated in
the bindings of the letrec block. Procedure DS returns the set of deallocation commands for the
identi�ers that are determined to be safely deallocatable.

Procedure DS calls procedure DX on each bound identi�er. Procedure DX is the procedure that
actually generates a deallocation command for an identi�er x when it is safe to deallocate the
value of that identi�er in a particular context. If procedure DX is applied to a variable x, and
the deallocation safety condition is met for x, then DX returns a deallocation command for x.
Procedure DX takes as input the binding of x, the variable x, and the sets of inherited, escaping,
and previously deallocated object labels, and returns a set of deallocation commands and the set
of object labels that would be deallocated by those commands.

5.4.3 Inserting Deallocation Commands in Programs

Procedure TP, shown in Figure 5.3, takes a program pr and returns a new programwith deallocation
statements added to the bodies of each of the procedures in pr and the main expression of pr.
Procedure TP calls procedure TE on each function body and the main expression of the program
with the most general environment and store in which those expressions could be evaluated. It
then reassembles the transformed expressions into a new program pr0.

116 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

5.4.4 Inserting Deallocation Commands in Expressions

The procedure TE, which inserts deallocation commands into expressions, takes an expression, an
environment, a store, and a function environment, and returns a new expression and the new set
of labels that are deallocated during the execution of the new expression.

Procedure TE does not insert any deallocation statements in simple expressions and primitive
expressions. The clauses shown below handle the processing of these expressions. The result
returned from the function TE is a syntactic expression. These values are surrounded with syntax
brackets, i.e., [[x]], to show that they are new program text.

TE [[n]]��� = [[n]] where n is a number
TE [[b]]��� = [[b]] where b is a boolean
TE [[x]]��� = [[x]] where x is a variable

TE [[+ (se1; se2)]]��� = [[+ (se1; se2)]]

As shown below, no changes are made to function application expressions. All changes will be made
to the body of the function fi when it is transformed.

TE [[kf(se1; � � � ; sen)]]��� = [[kf(se1; � � � ; sen)]]

Procedure TE processes conditional expressions by generating a new conditional with both branches
transformed, as shown below:

TE [[if (se0; e1; e2)]]��� =

f [[e01]] = TE [[e1]]��� ;
[[e02]] = TE [[e2]]��� ;

in [[if (se0; e
0
1; e

0
2)]] g

No changes need to be made to tuple manipulation primitives:

TE [[lMakeTuple (se1; � � � ; sem)]]��� = [[lMakeTuple (se1; � � � ; sem)]]

TE [[Selecti (se)]]��� = [[Selecti (se)]]

As in the procedure for veri�cation, the processing of letrec blocks is where most of the work
is done during program transformation. First, the environment, store, and set of object labels
deallocated by the let block must be computed. Then new binding right-hand-sides must be
generated by transforming the old bindings. Then the set of labels reachable from the result must
be computed. A new set of deallocation statements is generated by calling procedure DS with the
set of identi�ers bound by the letrec block, the environment, the store, and the sets of reachable,
allocated, and deallocated labels. Finally, the new right-hand-side expressions and deallocation
statements are assembled into a new letrec block and returned. The de�nition of this clause is
shown in Figure 5.4.

Procedure DS takes a list of the identi�ers of a letrec block, the environment, and store of the
body of the block, the set of labels of objects reachable from the context of the block, the set of
labels of objects reachable from the result of the block, and the set of labels deallocated by the

5.4. AN ALGORITHM FOR INSERTING DEALLOCATION COMMANDS 117

TE [[f Bs|Ds in xg]]��� =

f [[x1 = e1; : : : ; xn = en]] = Bs;
[[Dealloc (y1); � � � ; Dealloc (yk)]] = Ds;

�0 = �[?=x1; � � � ;?=xn];

h �0; �0;��;�D
i =

EvalBindingsA (Bs;�; �0; �;?DMAP);

[[e01]] = TE [[e1]]�0�0� ;
...

[[e0n]] = TE [[en]]�0�0� ;
[[Bs0]] = [[x1 = e01; : : : ; xn = e0n]] ;

��
1 = �0[y1];

...
��

k = �0[yk];

��0 = ��
[
S
i�

�
i;

I =
[

w2FV (Bs)

dReachable (�[w]; �);

R = dReachable (�0[x]; �0);

[[Ds0]] = DS [[x1; � � � ; xn]] �0�0IR��0

in [[f Bs0|Ds;Ds0 in xg]] g

Figure 5.4: Clause to insert deallocation commands in letrec blocks

block bindings. It returns a deallocation statement for each bound identi�er whose value satis�es
Condition 5.1, and the set of labels deallocated by those deallocation commands. It calls procedure
DX on each identi�er. Procedure DX generates a deallocation command for each identi�er that
satis�es the safety condition.

DS [[x1; � � � ; xn]]��IR�� =

f h [[Ds1]] ; ��
1 i =DX (�0[x1]) [[x1]] IR�� ;

...

h [[Dsn]] ; ��
n i=DX (�0[xn]) [[xn]] IR

�� [

 [
i<n

��
i

!!
;

in [[Ds1; � � � ;Dsn]] g

5.4.5 Generating Deallocation Statements

Procedure DX takes the value of a bound variable xi, the variable xi, and the set of labels inherited
by, escaping from, and deallocated by the surrounding letrec block. It returns a deallocation
command for xi if it is safe to deallocate the value of xi upon termination of the surrounding

118 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

letrec block. The value of xi may be safely deallocated if xi is bound to a reference to a structure
and that structure is allocated within the current letrec block, is not reachable from the result of
that letrec block, and cannot be deallocated by any other deallocation command.

DX (?) [[x]] IR�� = h [[]] ; ; i

DX (N) [[x]] IR�� = h [[]] ; ; i

DX (B) [[x]] IR�� = h [[]] ; ; i

DX (ls) [[x]] IR�� = if ; = ls \ I

^ ; = ls \R

^ ; = ls \��

then h [[Dealloc (x)]] ; ls i
else h [[]] ; ; i

The �nal clause of DX actually inserts all of the deallocation commands. The set of object labels
to which x may be bound is ls, the set of locations passed into the current expression from the
surrounding context is I , the set of locations reachable from the result of the expression is R, and
the set of locations deallocated elsewhere is ��. A deallocation is only inserted if ls is disjoint
from I , if ls is disjoint from R and if ls is disjoint from ��. If these three conditions are met, then
a deallocation command is returned, along with the set ls of locations it may deallocate.

A more aggressive algorithm for inserting deallocation commands would examine the contents of
any tuple it might deallocate to see if any of its components was also a structure that could be
deallocated. If so, then more deallocation commands could be inserted, along with corresponding
bindings of new variables to selection expressions in order to name the appropriate tuple compo-
nents.

We do not present a more aggressive algorithm here. A more aggressive algorithm is basically the
same as the one just discussed but augmented in places to track more information and to generate
more complicated deallocation code. In Chapter 10, we discuss the deallocation command insertion
algorithm that we implemented.

5.4.6 Transforming Some Examples

In this section we apply function TP to an example to see the process of inserting deallocation
commands. We will walk through the transformation of the example from Section 5.3.3 with the
deallocation statement removed. For reference, here is the text of the modi�ed program pr:

{ def f(x,y) =

{ t = l0MakeTuple(x,y)

result = k0g(t);

in result };

def g(t) =

Select1(t)

def f0() =
k1f(6,847);

}

5.4. AN ALGORITHM FOR INSERTING DEALLOCATION COMMANDS 119

First, we determine the types of f and g in program pr:

TypeOf (f; pr) = (N �N)!N

TypeOf (g; pr) = hTuple N;Ni!N

We use these types to construct representative input vectors:

RIV [[(N �N)!N]] = hN;N;?Storei

RIV [[(hTuple N;Ni!N]] = hfl�1g; [l�1 ! hTuple N;Ni]i

Procedure TP (Equation 5.12) computes the function environment for the program and then con-
structs the following program:

{ def f(x,y) = e0f
def g(t) = e0g
def f0() = e0f0

}

where

e0f = TE [[ef]]?Env [N=x; N=y]?Store�

e0g = TE [[eg]]?Env [fl�1=t]g[l�1 ! hTuple N;Ni]�

e0f0
= TE [[ef0]]?Env?Store�

and ef is the body of procedure f, and eg is the body of procedure g, and ef0 is the body of
procedure f0.

Let us follow the transformation of the body of procedure f. First we need to compute a number
of values:

[[fBS --- DS inxg]] = ef

[[t = e1; result = e2]] = BS

[[]] = DS

�0 = [fl0g=t; N=result; N=x; N=y]

�0 = [l0 ! hTuple N;Ni]

��0 = ;

where �0 and �0 are the environment and store of the body of expression ef and ��0 is the set of
labels of objects deallocated in ef.

These values are computed by applying EvalBindings to the bindings of the letrec block, the
current activation label, and the current function environment. This procedure �nds the �xpoint
of the resulting environment, store, and set of deallocated objects' labels. From these values, we
compute the additional values necessary to test the safety of deallocating the value bound to each
identi�er at run-time:

I = ;

R = ;

120 CHAPTER 5. VERIFYING AND INSERTING DEALLOCATION COMMANDS

No labels are inherited by the body of procedure f from the surrounding context, and no labels are
returned from f.

Now we apply function DS to the bound identi�ers of the letrec block. This procedure calls DX
on variables t and result and the value to which that identi�er is bound, along with I , R, and
��0:

DX (fl0g) [[t]] IR�� = h [[Dealloc (t)]] ; fl0g i

This call returns a deallocation command for identi�er t and a set containing object label l0 because
it is safe to deallocate the value bound to t upon termination of the control region containing the
block bindings.

The call to DX on identi�er result follows:

DX (N) [[result]] IR�� = h [[]] ; ; i

No deallocation command is returned in this case because result is not bound to any objects.

The other two procedures in the program, g and f0, are unchanged because there are no objects
safe to deallocate in those procedures.

The transformed program is:

{ def f(x,y) =

{ t = l0MakeTuple(x,y)

result = k0g(t);

Dealloc(t)

in result };

def g(t) =

Select1(t)

def f0() =
k1f(6,847);

}

as we expected.

5.5 Summary

In this chapter we developed algorithms for performing object lifetime analysis and used this lifetime
information to verify or insert object deallocation commands. This analysis technique is based on
an abstraction of the operational semantics of KID�.

In the next few chapters, we extend the analysis framework to handle more data types and higher-
order functions. We also improve the modeling of activation labels to yield more precise information
about the sharing of objects.

Chapter 6

Improving the Abstract Object

Labels

In this section we look at a more informative abstraction of activation labels that yields better
information about the identity and lifetime of objects allocated by programs. First, we introduce
a new abstraction based on regular expressions that partitions standard activation labels into
equivalence classes. Next, we present the changes to the abstract interpreter de�nition necessary
to use these activation labels. Finally, we analyze an example using these activation labels.

6.1 A Better Abstraction of Activation Labels

In Chapter 4, we saw one way to abstract activation labels so that abstract interpretation was
guaranteed to terminate. However, we lost a great deal of information about the identities of
objects that is very useful in the analysis of programs. In this section, we examine more precise
abstractions of activation labels that yield better results in the analysis of programs.

In Chapter 3, we saw that activation labels were composed of a sequence of expression labels
separated by `.', where each expression label was the label of a particular function application in
the program.

�:ki: � � � :ki0

The abstraction of activation labels should preserve some information about the standard activation
labels. In fact, we would like abstract activation labels to be exactly the same as standard activation
labels except in recursive invocations of functions. Figure 6.1 shows an activation tree consisting
solely of non-recursive procedure calls. It is safe to do so because the set of such labels is bounded
by the size of the static call graph of a program.

Figure 6.2 shows the static call-graph of three procedures, f, g, and h, where g is a recursive
procedure, and the corresponding activation tree showing the structure of the activation labels of
recursive calls to g. We would like to distinguish the activations of the initial application of g
inside procedure f from the recursive applications of g inside procedure g. We can capture this
by abstracting sets of standard activation labels as regular expressions. For example, the abstract
activation label 1:2+ would represent the following set of activation labels:

f1:2; 1:2:2; 1:2:2:2; : : :g

121

122 CHAPTER 6. IMPROVING THE ABSTRACT OBJECT LABELS

Call Graph:

q

2

s4

3

5 r

p
1

1
1.2 1.3

1.2.5

1.2.4 1.3.5

1.3.4

Activation Tree:

Figure 6.1: Nonrecursive activation tree

Figure 6.2: Call graph of a recursive procedure

Likewise, the abstract activation label 1:2�:3 represents

f1:3; 1:2:3; 1:2:2:3; : : :g

which are the activation labels of the calls to procedure h.

We can think of the program's call graph (which can be statically determined because KID� is
a �rst order language) as a �nite automaton that accepts some set of strings. These strings are
the standard activation labels. Every function represents a state in the automaton, and every
application primitive represents a labeled edge. Every state in the automaton is an accept state.
Our improved abstract activation labels for a program are the minimal regular expressions accepted
by the �nite automaton derived from the program's call-graph.

The improved AL domain, shown below, consists of regular expressions that match all possible
concrete activation labels. Abstract activation labels consist of an activation label paired with an
expression label using \.", the disjunction of two activation labels, or the zero or more repetitions
of an activation label.

� 2 AL = � j (AL:L) j (AL+AL) j (AL)�

6.2. EXAMPLE ABSTRACTION OPERATORS FOR ACTIVATION LABELS 123

As in the standard domain of activation labels, the abstract activation label domain is a
at
domain | all abstract activation labels are above the bottom element, but each one is incomparable
with all of the others. The abstraction function that maps a standard activation label into an
abstract activation label chooses the regular expression that accepts that particular activation
label.

Abstract object labels will now consist of pairs of our new abstract activation labels and the static
MakeTuple labels. Abstract object references are still sets of abstract object labels.

We also extend the function environment domain to map function names to mappings from products
of abstract values, stores, and activation labels to pairs of an abstract value and a store.

� 2 FEnv = F ! ((V n
� Store� AL)! (V � Store))

6.2 Example Abstraction Operators for Activation Labels

The function that abstracts activation labels depends on program structure. Abstract activation
labels form equivalence classes for di�erent paths through the call graph. The domain of abstract
activations corresponds to the minimal set of regular expressions that name all the paths that start
at the root of the call graph and end at each node in the call graph.

We can de�ne an abstraction function for the program whose call graph is shown in Figure 6.1.
This program has four procedures, p, q, r, s, and f0 and �ve function application expressions with
labels k1, k2, k3, k4 and k5.

The function that we need in the abstract interpreter takes an abstract label and the expression
label of an application expression, and returns a new abstract activation label. This function
simulates a DFA where there is a state for each acyclic path to each function, and transitions are
taken on the labels of application expressions. For example, the next activation label function NAL
for the program in Figure 6.1 looks like:

NAL (�; k1) = k1

NAL (k1; k2) = k1:k2

NAL (k1; k3) = k1:k3

NAL (k1:k2; k4) = k1:k2:k4

NAL (k1:k2; k5) = k1:k2:k5

NAL (k1:k3; k4) = k1:k3:k4

NAL (k1:k3; k5) = k1:k3:k5

NAL (�; k) = > otherwise

Essentially, procedure q was split into two states, depending on whether it had been reached by
the application labeled k2 or the one labeled k3.

The next activation label function for the program whose call graph is shown in Figure 6.2 is more
interesting, because this program contains recursive calls. We cannot split nodes to distinguish
di�erent paths through recursive calls, because this would lead to an in�nite number of nodes. The
function NAL for this graph is:

NAL (�; k1) = k1

124 CHAPTER 6. IMPROVING THE ABSTRACT OBJECT LABELS

EA [[
kf(se1; � � � ; sen)]]���� =

f v1 = SEA [[se1]]� ;
...

vn = SEA [[sen]]� ;
�0 =NAL (�; k);
h v; �0; ��

i=�[f][v1; � � � ; vn; �; �
0];

in h v; �0;��;�D
i g

Figure 6.3: Evaluation of procedure calls with improved abstract activation labels

NAL (k1; k2) = k1:k
�
2

NAL (k1:k
�
2; k2) = k1:k

�
2

NAL (k1:k
�
2; k3) = k1:k

�
2:k3

NAL (�; k) = > otherwise

In this example, all activations of procedure g have activation label k1:k
�
2. If there were more than

one non-recursive path to invoke procedure g, then these would have distinct activation labels.

6.3 Extensions to Abstract Interpreter

This section describes the way to revise the abstract interpreter to compute improved activation
labels. The expression evaluator now takes an abstract activation label in addition to the environ-
ment, store, and function environment that it took before.

The new evaluation rule for function applications is shown in Figure 6.3. Note that the function
NAL is used to create a new abstract activation label given the current activation label � and the
expression label k. We look in the function environment � to �nd the value of the body of the
function evaluated with activation label �0, which is the abstraction of the current activation label
concatenated with k.

The revised abstract interpreter clause that evaluates the MakeTuple primitive is shown in Fig-
ure 6.4. This clause constructs a new object label from the current abstract activation label � and
the expression label l. Other than that it is the same as the original abstract interpreter clause for
MakeTuple. All other clauses of the abstract interpreter remain the same, except that activation
labels are passed to the expression evaluator.

6.4 Evaluation of Examples Using Improved Activation Labels

Figure 6.5 contains an example that we saw earlier where sharing is falsely detected by the abstract
interpreter using completely static object labels. Let us reexamine this example using our improved
abstraction of activation labels and object labels.

Let us examine the input-output behavior of procedure g �rst. If g is applied to a number in context
h �; �; � i, it returns a reference to an object in location � : l0 and a store �0 which is derived from

6.4. EVALUATION OF EXAMPLES USING IMPROVED ACTIVATION LABELS 125

EA [[
lMakeTuple (se1; � � � ; sem)]]���� =

f v1 = SEA [[se1]]� ;
...

vm = SEA [[sem]]� ;
vtuple = hTuple v1; � � � ; vmi ;
ol = � : l;
v0tuple = �[ol];

�0 = �[ol! (vtuple t v
0
tuple)];

in h folg; �0; ;;?DMAP i g

Figure 6.4: Evaluation of tuple allocation with improved abstract activation labels

{ def f(w) =

{ t1 = k0g(w);

w2 = w * 2;

t2 = k1g(w2);

r = (w * w2);

t3 = l3MakeTuple(t1,t2,r);

in t3 };

def g(x) =

{ y = (x-21);

t = l0MakeTuple(x,y) ;

in t }

def f0() =
k2f(68);

};

Figure 6.5: Example with false sharing

store � as follows:

�0 = �[� : l0 ! (�[� : l0] t hTuple N;Ni)]

Now, let us study the internal behavior of function f when applied to a number and the empty
store in activation �. We evaluate the bindings of the letrec block in the body of f to yield the
environment �0 and store �0:

�0 = ?Env

266666666664

w ! N

t1 ! f�:k0 : l0g
w2 ! N

t2 ! f�:k1 : l0g
r ! N

t3 ! f� : l3g

377777777775

126 CHAPTER 6. IMPROVING THE ABSTRACT OBJECT LABELS

�0 = ?Store

264 �:k0 : l0 ! hTuple N;Ni

�:k1 : l0 ! hTuple N;Ni

� : l3 ! hTuple N;N;Ni

375
Using the more precise abstraction of activation labels, we can distinguish between the tuples to
which t1 and t2 are bound. We can tell that they must be di�erent objects. Therefore, in the
body of procedure f0, we can insert code to deallocate all three tuples allocated, rather than only
two. This degree of precision can be very useful.

6.5 Summary

There are many ways in which we can abstract activation labels. In this chapter we discussed one
way to abstract activation labels that improves the e�ectiveness of the analysis compared to the
abstracted activation labels that we used in Chapter 4. We use this abstraction for the remainder
of the thesis, and we use a variation of these abstract activation labels in our implementation of
the lifetime analysis.

Chapter 7

Abstracting and Analyzing Arrays

The abstract interpretation of arrays is di�erent from that of tuples: the size of an array is computed
at run-time, while the size of a tuple is �xed at compile-time. Section 7.1 discusses our approach
to abstracting arrays | we summarize all elements of an array by one abstract value.

This array abstraction leads to problems determining whether there is sharing among the elements
of the arrays. Section 7.2 discusses an improved array abstraction that contains an annotation
informing whether any elements in the array are shared.

Sometimes it is di�cult to de�ne an array using MakeArray, even though the program �ts nicely in
the single-assignment paradigm. Id has I-structure arrays to extend the single-assignment paradigm
beyond the functional subset. I-structures are non-functional, single-assignment arrays whose pres-
ence greatly increase the expressiveness of the language, and only slightly increase the complexity
of lifetime analysis. For example, writing a function that �nds the inverse of a permutation takes
O(n2) space and time when written using MakeArray, but can easily be written in O(n) time and
space using I-structures. Section 7.3 discusses the addition of I-structures to our instrumented and
abstract interpreters and their impact on the deallocation safety condition.

7.1 Abstract Interpretation of Arrays

Arrays are aggregate objects whose size is not determined until run-time. In the interpreter,
the objects must be represented by structures with a �xed number of components because we
require abstract interpretation to take a �nite amount of time. We summarize the value of an
array of arbitrary size as an abstract array with a single element. Our array abstraction has a
single component that represents all of the elements of the concrete array. This single abstract
element is the least upper bound of the abstraction of all of the concrete array elements. We call
this summarization spatial summarization. Spatial summarization combines information about an
uncertain reference or spatial path, not about an uncertain control path.

For example, consider the following concrete array of tuples:

hArray 3; l1; l2; l3i

where 3 denotes the length of the array and l1, l2 and l3 are the labels of concrete tuples. The
abstraction of this array would be an abstract array with one element summarizing all of the

127

128 CHAPTER 7. ABSTRACTING AND ANALYZING ARRAYS

AbsArray (hArray n; v1; � � � ; vni) =

*
Array

G
i

vi

+

Figure 7.1: Array abstraction operator

hArray v0i tArray hArray v1i = hArray v0 tV v1i

Figure 7.2: Array least upper bound operator

hArray v0i vArray hArray v1i = v0 vV v1

Figure 7.3: Array ordering operator

elements of the standard array: D
Array fl̂1; l̂2; l̂3g

E
:

The element fl̂1; l̂2; l̂3g indicates that the components of the standard array could be any one of
the abstract tuples named by l̂1, l̂2 or l̂3.

If we had subscript range information, we might be able to abstract the elements of an array into
a small number of elements that represent the values that could be present in subregions of the
array under the standard interpretation. In that case, an array would be represented as a set of
intervals and the abstract values that summarize the components of the standard array contained
in those intervals. The use of range information during abstract interpretation is an area for further
research.

7.1.1 The Abstract Array Domain

We add the following de�nition of arrays to our abstract domains, and revise the de�nition of the
abstract store and storable value domains.

varray 2 Array = hArray V i Arrays
sv 2 SV = Tuple + Array Storable Values
� 2 Store = L! SV Stores

Figure 7.1 contains the function AbsArray , which maps standard array values into abstract array
values. Figure 7.2 contains the least upper bound operator on abstract arrays, and Figure 7.3
contains the ordering operator for abstract arrays.

These domains, along with the added ordering and abstraction operators, allow us to revise the
abstract interpreter to model arrays.

7.1.2 Abstracting the Array Primitives

The following two clauses, 7.1 and 7.2, give the abstracted evaluation rules for the array primitives.
As in the standard interpreter, the MakeArray primitive is subscripted with the name of a function

7.1. ABSTRACT INTERPRETATION OF ARRAYS 129

fi and takes a length value n and r values to be passed to the calls to fi. The length n is ignored,
because abstract arrays all contain a single component. The abstract interpretation of this primitive
uses the static label l of the primitive directly as the object label of the abstract array created. In
this way, it resembles the abstract interpretation of the MakeTuple primitive.

First, we compute the value of the application of function fi to the input value consisting of
the values N , the r input values, and the current store. As with the interpretation of function
applications, we look up the returns value of the function application in the function environment
and add the input value to the interesting domain of function fi in the new domain map delta �D.
We use the result value of the function application as the representative element value of the array.

EA [[
lMakeArrayfi (se0; se1; � � � ; ser)]]���� = (7.1)

f v1 = SEA [[se1]]� ;
...

vr = SEA [[ser]]� ;
�0 =NAL (�; l);
h u; �0; �� i=�[fi][N; v1; � � � ; vr; �; �

0];
varray = hArray ui ;
ol = � : l;
v0array = �0[ol];
�00 = �0[ol! (varray t v

0
array)];

�D[fi] = fhN; v1; � � � ; vr; �; �
0ig;

in h folg; �00;��;�D i g

The abstract interpretation of the Fetch primitive is very similar to the abstraction of the Selecti
primitive. Fetch takes two values: a set ls of labels and an index. Fetch takes the least upper
bound of the arrays to which each of the labels in ls is bound in store �, and then returns the
element value of that array.

EA [[
kFetch (se1; se2)]] ���� = (7.2)

f ls = SEA [[se1]]� ;
hArray vi=

F
ol2ls

�[ol];

in h v; �; ;;?DMAP i g

The abstraction of the Bounds primitive is very simple. It ignores its argument and returns an
abstract integer as its result.

EA [[
kBounds (se)]]���� =

f in h N; �; ;;?DMAP i g

Now that we have an abstraction of array values and have augmented the abstract interpreter with
clauses for the array primitives, let us examine some array program examples and see how our
lifetime analysis algorithm performs.

7.1.3 Example Array Programs

The �rst example we look at is shown below. It consists of a function f1 takes three numbers and
constructs an array containing a di�erent tuple in each element. The function g1 is the function
that de�nes each of the array elements.

130 CHAPTER 7. ABSTRACTING AND ANALYZING ARRAYS

def g1 (i, x, y) =
l0MakeTuple(x,y,i);

def f1 (n, x, y) =
l1MakeArrayg1(n, x, y);

Our abstract interpretation of this example computes the following representation for the value of
� and � within f1's body:

�[a] = fl1g

�[l1] = hArray fl0gi

�[l0] = hTuple N;N;Ni

That is, variable a is bound to an array labeled l1 which contains a a three-tuple of numbers labeled
l0 as its element.

We can determine that the lifetime of the array labeled l1 is bounded by the lifetime of f1, because
l1 is not reachable from the labels inherited by f1 (the empty set) and because l1 is not returned
as part of the result of f1 | a single number is returned. The same is true of the tuple labeled
l0 | its lifetime is bounded by that of procedure f1.

7.2. SHARING ANALYSIS IN ARRAYS 131

Now consider the following example, which is similar to the previous one, except that the tuple
labeled l0 is allocated by procedure f2 and passed to the procedure g2 that computes the elements
of the array l1. Thus, f2 allocates an array where a tuple is shared by each of the elements.

def f2 (n, x, y) =

{ t = l0MakeTuple(x,y,4);

a = l1MakeArrayg2(n, t);

in 3 };

def g2 (i, t) = t;

The representation computed for the value of a is the same as in the �rst example:

a = fl1g

�[l1] = hArray fl0gi

�[l0] = hTuple N;N;Ni

The variable a is bound to an array labeled l1 containing a tuple or tuples labeled l0. In this
example, we can determine that the lifetimes of array l1 and tuple l0 are bounded by the lifetime
of procedure f2.

In both of these examples, we can verify that it is safe to deallocate the array bound to a when
either f1 or f2 terminate, because label l1 is allocated within the body of f1 and f2, l1 does not
escape, and l1 cannot be deallocated elsewhere.

There is one fact we have not been able to uncover using our lifetime analysis, and that is that in
the �rst example, each element of the concrete array is distinct, and that in the second example,
each element of the concrete array is the same. If there is no sharing, then the compiler may insert
code to deallocate each element of the array. If there is sharing, then deallocation of the elements
becomes a little more di�cult because we cannot deallocate any element more than once. We can
work around this problem with run-time support. The run-time code that deallocates the elements
of an array must keep track of the objects it has deallocated to ensure that it deallocates each
unique element of the array exactly once.

The �rst example actually has no sharing. But because the abstraction does not yield sharing
information, the compiler must generate code that carefully deallocates each distinct element of
the array a for both f1 and f2. This strategy of code generation is safe, but is less e�cient than if
we could determine that there was no sharing of elements in procedure f1.

7.2 Sharing Analysis in Arrays

In the previous section, we de�ned an abstraction of arrays and showed how to perform lifetime
analysis on programs containing arrays. We also saw that the analysis does not capture an impor-
tant fact about the arrays, namely, whether the elements of the array are shared are not.

This section investigates a change to the representation of abstract arrays in the abstract interpreter
so that the analysis yields sharing information. The approach we take enables us to determine
whether two elements of an array are completely distinct or whether they may be shared at some
level.

132 CHAPTER 7. ABSTRACTING AND ANALYZING ARRAYS

hArray s0; v0i tArray hArray s1; v1i = hArray (s0 tS s1); (v0 tV c1)i

UnShared tS UnShared = UnShared

UnShared tS Shared = Shared

Shared tS UnShared = Shared

Shared tS Shared = Shared

Figure 7.4: Improved array least upper bound operators

7.2.1 Modeling Sharing in the Abstract Array Domain

In order to track the sharing of array elements, we add an annotation to each abstract array that
indicates whether the array components may be shared or not. This sharing annotation is drawn
from domain S, which consists of two values: Shared and Unshared , where Unshared v Shared .

s 2 S = Shared +Unshared Sharing Predicate
varray 2 Array = hArray S; V i Arrays
sv 2 SV = Tuple +Array Storable Values
� 2 Store = L! SV Stores

If we have an array of nested structures, we take Unshared to mean that the structures stored
in each element of the array are completely unaliased from the structures stored in every other
element of the array.

Figure 7.4 contains the least upper bound operator on abstract arrays, Figure 7.5 contains the
ordering operator for abstract arrays and Figure 7.6 contains the abstraction operator for arrays
with sharing.

7.2.2 Abstracting the Array Primitives with Sharing

The clauses of the interpreter must be augmented to compute the proper sharing information.
The only change is to MakeArray, which generates either a shared array or an unshared array. A
call to MakeArrayfi generates an unshared array only if all of the labels reachable from the the
application of procedure fi are disjoint from the locations reachable from the arguments to the call
to MakeArray. Since none of the inherited labels are reachable from the element value resulting
from the application of fi, all of the labels reachable from the element value must be allocated
within the application, and none may be shared among elements of the array.

EA [[
kMakeArrayfi (se0; se1; � � � ; ser)]]���� =

7.2. SHARING ANALYSIS IN ARRAYS 133

hArray s0; v0i vArray hArray s1; v1i = (s0 vS s1) ^ (v0 vV v1)

UnShared vS UnShared = True

UnShared vS Shared = True

Shared vS UnShared = False

Shared vS Shared = True

Figure 7.5: Improved array ordering operators

AbsArray (hArray n; v1; � � � ; vni) = f s = if

0@ ^
1�i;j�n

vi 6= vj

1A
then Unshared

else Shared ;
v =

F
1�i�n

vi;

in hArray s; vi g

Figure 7.6: Abstraction operator for arrays with sharing

f v1 = SEA [[se1]]� ;
...

vr = SEA [[ser]]� ;
�0 =NAL (�; l);
h u; �0; �� i=�[fi][N; v1; � � � ; vr; �; �

0];

I =
S
vi

dReachable (vi; �);

R = dReachable (u)�0;
varray = if R \ I = ;

then hArray Unshared; ui

else hArray Shared; ui ;
ol = � : k;
v0array = �0[ol];
�00 = �0[ol! (varray t v0array)];
�D[fi] = fhN; v1; � � � ; vr; �; �

0ig;
in h folg; �00;��;�D

i g

The only change to the Fetch evaluation clause is to make it fetch components from abstract arrays
annotated with sharing information.

EA [[
kFetch (se1; se2)]]���� =

f ls = SEA [[se1]]� ;
hArray s; vi=

F
ol2ls

�[ol];

in h v; �; ;;?DMAP i g

No change is needed in the clause for the Bounds primitive.

134 CHAPTER 7. ABSTRACTING AND ANALYZING ARRAYS

7.2.3 Reexamining the Array Examples

The �rst example we considered in Section 7.1.3 had no sharing in it. The example is shown below
for reference.

def g1 (i, x, y) =
l0MakeTuple(x,y,i);

def f1 (n, x, y) =

{ a = l1MakeArrayg1(n, x, y);

in 3 };

Our new abstract interpretation should discover that there can be no sharing in this example. The
arguments to the call to MakeArray are:

n = N

vx = N

vy = N

assuming that variables x and y are bound to integers. Thus, there are no locations reachable from
the arguments to the call to MakeArray.

I = ;

The result of the call to g1 is a reference to a tuple in location l0, so the set of reachable locations
is fl0g:

R = fl0g

and the intersection of the inherited locations and the reachable locations is the empty set. There-
fore, there can be no sharing between elements of the array. There is no way, without side e�ects,
that di�erent elements of the array could end up sharing the same location.

We end up computing the following representation for the value of a:

�[a] = fl1g

�[l1] = hArray Unshared; fl0gi

�[l0] = hTuple N;N;Ni

That is, a is bound to an array labeled l1, containing a tuple or tuples labeled l0 as its elements,
and the tuples in di�erent elements of the array are guaranteed to be distinct.

If we determine that the above array and its components are dead in some context, then we can
insert code that deallocates the array and all of its components without having to insert any run-
time code to detect sharing among the components.

The second example from Section 7.1.3, which created an array containing shared elements, follows:

def f2 (n, x, y) =

{ t = l0MakeTuple(x,y,4);

a = l1MakeArrayg2(n, t);

in 3 };

def g2 (i, t) = t;

7.3. MODELING I-STRUCTURES 135

In this case, the arguments to the MakeArray are:

�[n] = N

�[vt] = fl0g

Therefore, the inherited locations are the set fl0g:

I = fl0g

The application of procedure g1 yields a reference to location l0, so the set of reachable locations
R is:

R = fl0g

Since the intersection of I and R is non-empty, the array representation is shared.

a = fl1g

�[l1] = hArray Shared ; fl0gi

�[l0] = hTuple N;N;Ni

The variable a is bound to an array labeled l1 containing a tuple or tuples labeled l0, where there
is some sharing among the elements of the array.

In this example, we can still insert code to deallocate the array and its components if we determine
that they are dead in some context, but we have to insert run-time code to detect sharing.

7.3 Modeling I-Structures

This section extends the instrumented and abstracted interpreters with I-structure array data types
primitives. Although Id has both I-structure algebraic types and arrays, we discuss only I-structure
arrays| the implementation of other I-structure types follows directly from the model of I-structure
arrays. We use the array value domain, but add two new array operators: MakeIArray and Store

to KID�. The �rst subsection presents the standard semantics of I-structure arrays, and the second
subsection presents the abstract semantics extended with I-structure array operators.

In KID�, I-structures are created using the primitive MakeIArray with all slots empty, or bound
to ?. Elements of the array may be �lled in using the primitive Store and dereferenced using the
primitive Fetch. It is an error to store more than one value into a a single I-structure array slot,
although we do not check this in the interpreter.

7.3.1 I-Structures in the Instrumented Interpreter

This section de�nes the interpreter clauses for the primitives MakeIArray and Store. The primitive
MakeIArray takes one value: a simple expression that evaluates to length n. It returns a newly
allocated array of length n where each component is initially unbound.

EI [[
kMakeIArray (se)]]��� =

136 CHAPTER 7. ABSTRACTING AND ANALYZING ARRAYS

f ol = � : k;
n = SE [[se]]� ;
v0 =?;

...
vn�1 =?;
�0 = �[ol! hArray n; v0; � � � ; vn�1i];
in h ol; �0; fh �; ol ig; ;; ; i g

The primitive Store takes three values: a reference ol to an I-structure array a, an index i, and a
value v, and returns the reference to the array and a store that has the ith component of a bound to
v. The interpreter records the fact that a side-e�ect was done on the object labeled ol by returning
a reference event for ol in activation �.

EI [[
kStore (se1; se2; se3)]]��� =

f ol = SE [[se1]]� ;
i = SE [[se2]]� ;
v0i = SE [[se3]]� ;
hArray n; v0; � � � ; vi; � � � ; vn�1i = �[ol];
�0 = �[ol! hArray n; v0; � � � ; vi t v0i; � � � ; vn�1i];
in h ol; �0; ;; ;; fh �; ol ig i g

Now that we have seen the de�nition of the instrumented interpreter clauses for handling I-
structures, we can go on the de�nition of the abstracted I-structure domains and the abstracted
I-structure interpreter clauses.

7.3.2 I-Structures in the Abstract Interpreter

In the abstracted interpreter, we use the array domains with sharing information. Whenever we
store into an I-structure array, we make that array be a shared array.

The following two clauses give the abstracted evaluation rules for I-structure array data structure
primitives. The primitive MakeIArray constructs an abstract array with no sharing whose compo-
nents are unde�ned. The primitive Store updates the component of the array to the least upper
bound of the current array element and the new value. Storing into an I-structure array may
potentially introduce sharing, so we upgrade the sharing indicator of the array to Shared when a
Store is performed.

EA [[
kMakeIArray (se1)]] ���� =

f varray = hArray Unshared ;?i ;
ol = � : l;
v0array = �[ol];
�0 = �[ol! (varray t v0array)];

in h folg; �0; ;;?DMAP i g

EA [[
kStore (se1; se2; se3)]]���� =

f ls = SEA [[se1]]� ;
v = SEA [[se3]]� ;

�0 = �ol:

(
�[ol]t hArray Shared ; vi if ol 2 ls

�[ol] otherwise

in h ls; �0; ;;?DMAP i g

7.3. MODELING I-STRUCTURES 137

7.3.3 E�ect Of I-Structures on Deallocation Safety Conditions

The introduction of I-structures into KID� has introduced a new mechanism by which objects can
escape from a given activation. Previously, objects could be passed into an activation through the
environment as inherited values or arguments, or they could be passed out of the activation as part
of the results. Now, an I-structure with empty slots can be passed into an activation, and objects
allocated within the activation can be stored into the empty slots and escape from the activation.
Thus it is now possible for objects allocated within an activation to escape via the inherited objects.

However, this new path for escaping objects does not signi�cantly change the criteria that we use
to decide that a particular activation contains an object's lifetime. We now must determine that
an object is not reachable from the result of an expression or from the objects inherited from the
surrounding environment after the expression has executed . The only change in the tests is which
store is used to determine reachability from inherited objects. Previously, we used the incoming
store to determine reachability; now we must use outgoing store to determine reachability.

Let us again consider the canonical letrec block with deallocation commands that we would like
to verify:

e = f x1 = e1;
...

xn = en;
|
Dealloc (y1)

...
Dealloc (ym)
in xj g

where the environment, store, and function environment in which e is to be evaluated are �, �, and
�, respectively.

We compute environment �0 and store �0, the resulting environment and store for the block bindings,
��, the set of labels deallocated by the block bindings, and v, which is the result of the evaluation
of the expression, as shown below. In addition, we compute R, the set of object labels reachable
from the result of the expression, and I , the set of object labels reachable from the free variables
of the expression.

�0 = �[?=x1; � � � ;?=xn]

h �0; �0;��0;�D
i = EvalBindingsA ([[x1 = e1; : : : ; xn = en]] ;�; �0; �;?DMAP)

v = �0[xj]

R = dReachable (v; �0)

I =
[

y2FV (e)

dReachable (�0[y]; �0)

Previously, I was computed with respect to �, the incoming store, and now it is computed with
respect to �0, the result store.

7.3.4 Example I-Structure Program

We will now execute an example I-structure program to see how lifetime analysis performs in the
presence of side-e�ects. In the following I-structure program, procedure f0 allocates an empty

138 CHAPTER 7. ABSTRACTING AND ANALYZING ARRAYS

I-structure and passes it to procedure g, which �lls it in with two tuples.

def g (a) =
k2/ t1 = l1MakeTuple(6.823, 6.847);

t2 = l2MakeTuple(6.847, 6.823);

x1 = Store(a, 0, t1);

x2 = Store(a, 1, t1);

x3 = Store(a, 2, t2);

in True /;

def f0 () =
k0{ a = l0MakeIArray(3);

v = k1g(a);

r = Fetch(a, 0);

in r };

The tuples allocated in procedure g and bound to variables t1 and t2 are not returned as part of
g's result, yet they escape from the body of g. They are stored into the I-structure passed in as g's
argument.

The result yielded by executing this program under the instrumented interpreter would be:

h �:k0:k1:k2 : l1;264 �:k0 : l0 ! hArray 3; �:k0:k1:k2 : l1; �:k0:k1:k2 : l1; �:k0:k1:k2 : l2i ;
�:k0:k1:k2 : l1 ! hTuple 6:847; 6:823i ;
�:k0:k1:k2 : l2 ! hTuple 6:847; 6:823i ;

375 ;
fh �:k0 : l0; �:k0 i ; h �:k0:k1:k2 : l1; �:k0:k1:k2 i ; h �:k0:k1:k2 : l2; �:k0:k1:k2 ig;
;;

fh �:k0 : l0; �:k0 i ; h �:k0 : l0; �:k0:k1:k2 ig i

The abstract interpreter, using our improved activation labels, would yield the following:

h f�:k0:k1:k2 : l1; �:k0:k1:k2 : l2g;264 �:k0 : l0 ! hArray Shared ; f�:k0:k1:k2 : l1; �:k0:k1:k2 : l2gi ;
�:k0:k1:k2 : l1 ! hTuple N;Ni ;

�:k0:k1:k2 : l2 ! hTuple N;Ni ;

375 ;
;;

?DMAP i

We lose some information in the abstract domain, because it appears that both tuples escape from
the result of procedure f0. This approximation is safe, because nothing that is reachable under
the instrumented semantics appears unreachable under the abstracted semantics. Lifetime analysis
using the abstract interpreter correctly determines that the two tuples may escape from the body
of procedure g, even though neither of them is directly returned as part of g's result.

7.4 Summary

This chapter described the abstraction of the array domains and how we have to use spatial sum-
marization to obtain a �nite representation of arrays at compile-time. We used this abstract array

7.4. SUMMARY 139

domain to extend our lifetime analysis algorithm to handle programs containing arrays. We then
extended the abstracted array domains and abstract interpreter in order to perform sharing analysis
on array elements, because the compiler can generate more e�cient deallocation code if it knows
that no element of an array is shared.

We also added I-structure arrays to KID� in this chapter. I-structures increase the expressiveness
of the language and allow us to write some programs more e�ciently than if we had to use the
functional MakeArray construct. I-structures also introduce a new path for objects to escape from
a control region | objects may escape by being stored into I-structures that were inherited from
the surrounding context. We showed that our lifetime analysis algorithm correctly handles this
case.

140 CHAPTER 7. ABSTRACTING AND ANALYZING ARRAYS

Chapter 8

Algebraic and Recursive Types

In Chapters 4 and 5 we saw how to summarize the behavior of KID� over tuples, numbers, and
booleans. In Chapter 7 we introduced the notion of spatial summarization which was necessary
to generalize the values of arrays. Spatial summarization was introduced because, in general, the
size of an array can only be determined at run-time, and we needed to be able to summarize the
behavior of a program over all possible arrays.

In this chapter, we develop an abstraction of algebraic types. The abstraction of non-recursive
algebraic types is very straightforward. This abstraction is discussed in the �rst section of this
chapter.

The abstraction of recursive algebraic types in many abstract interpreters is very di�cult because
the size of the representation of a recursively typed object can grow without bound. We see in
the second section of this chapter; however, that our abstract interpreter does not su�er from this
problem.

Our abstraction of non-recursive algebraic types is adequate for recursive algebraic types as well.
This abstraction involves a form of spatial summarization because the number of nodes composing
an object of recursive type can only be known at run-time, but our abstraction compresses it into
a �nite number of nodes at compile-time.

Although our abstraction of algebraic types is general enough to model any recursive algebraic
type safely, the only recursive type for which our implementation of the deallocation code insertion
algorithm can generate deallocation code is lists. We discuss our abstraction of lists in the third
section of this chapter and compare our abstraction with that of other researchers.

The spatial summarization that occurs in the abstraction of recursive types makes it di�cult to
insert code to deallocate these objects because there may be sharing between the nodes of the
objects. We need a better idea about the sharing that occurs between the elements of a recursively
typed object. We discuss a way to approach this problem in Section 11.1.3.

8.1 Abstraction of Algebraic Types

In Chapter 2 we saw that oneofs, or algebraic types, are represented by tagged structures in the
standard interpreter. The tags distinguish instances of the di�erent disjuncts of the algebraic type.

141

142 CHAPTER 8. ALGEBRAIC AND RECURSIVE TYPES

Evaluation of a given expression in di�erent contexts may return di�erent disjuncts of an algebraic
type. For this reason, an abstract oneof value must be a product of each of the possible disjuncts,
rather than a sum, as in the instrumented interpreter. The abstracted value must capture informa-
tion about the values resulting from evaluation in all possible contexts. For instance, an expression
that results in an object of type transaction, where:

type transaction = deposit I | withdrawal I

might return either a reference to a deposit of 19:92, represented by:

h0 ;2 19:92i

or a withdrawal of 353:0, represented by:

h1 ;2 353:0i :

The abstract interpreter must represent both possibilities in a single value. This expression would
return a reference to the following abstract oneof:

hOneof h0 Ni ; h1 Nii

which represents either a oneof with tag 0 (a deposit) or a oneof with tag 1 (a withdrawal).

The above abstract transaction value is the most de�ned abstract transaction value. This abstract
value represents standard values that are either deposits or withdrawals. We can also represent
transactions that could only be deposits as follows:

hOneof h0 Ni ; ?i

We represent transactions that can only be withdrawals as follows:

hOneof ?; h1 Nii

Either or both of the components of an abstract transaction structure can be bottom. If an
expression e evaluated in some context Ĉ under the abstract interpreter yields a transaction

structure with bottom for the deposit component, then the same expression could never yield a
deposit structure if it was evaluated under the standard interpreter in a context compatible to Ĉ.

The following are the abstraction functions that map standard transactions into abstract transac-
tions:

ABSTransaction (h0 ;2 ni) = hOneof h0 Ni ;?i

ABSTransaction (h1 ;2 ni) = hOneof ?; h1 Nii

This method of summarizing information about algebraic types is very general. As we shall see in
Section 8.2, it even handles recursive types appropriately.

8.1. ABSTRACTION OF ALGEBRAIC TYPES 143

AbsOneof (htag;n v0; � � � ; vmi) =

hOneof ?; � � � ; htag AbsV (v0); � � �ABSV (vm)i ; � � � ;?i

Figure 8.1: Oneof abstraction operator

hOneof d0; � � � ; dni tOneof

Oneof d

0
0; � � � ; d

0
n

�
=

Oneof (d0 tDisjunct d0); (d
0
n tDisjunct d

0
n)
�

hi v0; � � � ; vmi tDisjunct hi u0; � � � ; umi =

hi (v0 tV u0); � � � ; (vm tV um)i

Figure 8.2: Oneof least upper bound operators

hOneof d0; � � � ; dni vOneof

Oneof d

0
0; � � � ; d

0
n

�
=

^
i

di vDisjunct d
0
i

hi v0; � � � ; vmi vDisjunct hi u0; � � � ; umi =
^
i

v0 vV u0

Figure 8.3: Oneof ordering operators

8.1.1 Domains for Abstract Algebraic Types

We add the following de�nitions of the abstract Disjunct and Oneof domains and revise the storable
value domain SV as shown:

Disjunct = hN V; � � � ; V i?

Oneof = hOneof Disjunct ; � � � ;Disjuncti

SV = (Tuple +Array + Oneof)?

Each value in the Disjunct domain is either a tagged tuple of denotable values or bottom. Each
value in the Oneof domain is a tuple of Disjunct's, and storable values (SV) are either tuples,
arrays, oneofs, or bottom. Stores still map abstract object labels to storable values.

Figure 8.1 contains the function AbsOneof , which maps standard oneof values into abstract oneof
values. Figure 8.2 contains the least upper bound operator on abstract oneofs, and Figure 8.3
contains the ordering operator for abstract oneofs.

8.1.2 Abstract Interpretation of Algebraic Types

Figure 8.4 contains the clauses of the abstract interpreter that evaluate the primitives that cre-
ate and manipulate oneof objects. These clauses are similar to the ones from the instrumented
interpreter, except that they manipulate abstract oneof values.

144 CHAPTER 8. ALGEBRAIC AND RECURSIVE TYPES

EA [[
lMakeOneoftag;ntags (se1; � � � ; sem)]]���� =

f v1 = SEA [[se1]]� ;
... ;

vni = SEA [[seni]]� ;
ol = � : l;
d0 =?;

...
dtag = htag v1; � � � ; vmi ;

...
dntags =?;
voneof =

Oneof d0; � � � ; dntags�1

�
;

�0 = �[ol! (voneof t �[ol])];
in h folg; �0; ;;?DMap i g

EA [[Istag? (se)]]���� =

h b; �; ;;?DMap i

EA [[Selecttag;i (se)]]���� =

f ls = SEA [[se]]� ;

Oneof d0; � � � ; dtag�1; dtag; dtag+1; � � � ; dntags�1

�
=G

ol2ls

�[ol];

htag v1; � � � ; vmi= dtag;
in h vi; �; ;;?DMap i g

Figure 8.4: Abstract interpretation of algebraic type primitives

8.2 Abstraction of Recursive Types

Recursive types are a special case of algebraic types. Even though the individual nodes of a
recursively typed object are of �xed size, the object can have a size that is unbounded. In the
abstract interpreter, we need some form of spatial summarization that collapses a list or tree object
of potentially unbounded size into a representation with bounded size. As we see later in this
section, the spatial summarization of recursive types naturally follows from our abstraction of
locations and stores.

Consider the de�nition of copy list, shown below. This procedure takes a list and returns a copy
of the list.

8.2. ABSTRACTION OF RECURSIVE TYPES 145

def copy list(l) =

if Nil?(l)

then l0Nil

else { a = Hd(l);

as = Tl(l);

l' = k0copy list(as);

bs = l1MakeCons(a, l');

in bs };

The result of a call to copy list under the standard interpreter is a list whose length is the same
as the length of the input list l.

Abstract interpreters that do not use a store or retrieval function to model structures have di�culty
abstracting recursive types. Under these interpreters, the result from a call to copy list would be
a potentially in�nite representation of a list because all procedure calls and both branches of all
conditionals are evaluated. Consequently, the abstract interpretation would not terminate unless
some action was taken to bound the size of the representation of the list.

There are three ways we can bound the sizes of the representations of recursive types in abstract
interpretation. First, we can compress the domain a priori , as we did with the integer and boolean
domains. Second, we can apply a generalization, or summarization, operator to such representa-
tions. Third, we can structure our domains and interpreter so that we can guarantee that no values
of unbounded size are ever constructed.

8.2.1 Abstraction of Recursive Types by Domain Compression

Much of the functional language community has taken the �rst approach to abstracting recursive
types. For instance, Wadler compresses the abstract list domain into the following four elements
for strictness analysis [42]:

>� | any �nite list, no member of which is ?
j

?� | any �nite list, some member of which is ?
j

1 | any in�nite list or approximation to one, except ?
j

? | ?

This list domain ensures that the abstract interpretation terminates in a �nite amount of time,
because all list objects have �xed size.

The list domain de�ned by Wadler can only capture information about uniform lists. It cannot
capture information about lists that may begin with a �nite sequence of cons cells with non-uniform
properties followed by a uniform list. Furthermore, it is di�cult to see how to de�ne appropriate
abstract domains for other algebraic types based on this abstraction of lists.

8.2.2 Abstraction of Recursive Types by Ad Hoc Object Compression

The second approach to limiting the size of the abstract representation of a recursively typed object
is to apply a compression operator to the representation: the operator generalizes the abstract value

146 CHAPTER 8. ALGEBRAIC AND RECURSIVE TYPES

(a) (b)

nil

nil

nilvhd

vhd

vhd

nil

nilvhd

vhd

Figure 8.5: Abstract list value before and after compression

representation and limits the number of nodes in the representation to some arbitrary bound k.
Figure 8.5 shows a representation of a list (a) before, and (b) after compression. The compressed
abstract list contains only two nodes.

The drawback to this approach is that it is di�cult to choose the bound k on the object represen-
tation's size that yields the best information for a particular program. In some cases the value of k
may be too large, resulting in extra overhead during analysis but not providing more information.
In other cases, the value of k is too small and useful information is obscured.

8.2.3 Abstraction of Recursive Types by Object Label Compression

The third approach, and the approach taken in this thesis, is to structure the domains and in-
terpreter in order to guarantee the �niteness of the representation of any list or algebraic type.
The use of stores (or other retrieval functions) that map a �nite number of abstract object labels
to abstract storable values guarantees that the size of a recursively typed object representation
remains �nite. All nodes with identical labels are coallesced into a single node. Thus, there will
only be a �nite number of distinct nodes in the representation of any object or group of objects.

We de�ned our abstract activation labels, object labels, denotable values, storable values and stores
so that we could analyze programs containing only tuples. We then augmented the storable value
domains so that we could analyze arrays and non-recursive algebraic types. With this abstraction
we can also analyze programs that use recursive types because the number of distinct abstract
objects in a program is bounded by the size of the object label domain. The abstract object label
domain is bounded in size by the number of paths through the call-graph of a program (disregarding
cycles).

8.2.4 Spatial Summarization in Recursively Typed Objects

The abstraction of recursively typed objects involves a form of spatial summarization, as did the
abstraction of arrays. In arrays, we summarized a single object whose size was known only at run

8.3. ABSTRACTION OF LISTS IN KID� 147

time by an abstract object by a single component. In recursive types, we summarize a concrete
graph or tree containing an unknown number of nodes by a graph with a �xed number of abstract
nodes. Any two nodes in the concrete graph whose object labels map to the same abstract object
label will be summarized by a single abstract object.

For example, consider the type tree:

type tree = node tree tree | leaf N;

and the following value and store that represent a concrete tree object:

� : l0;2666666666666664

� : l0 ! h0 ;2 �:k1 : l0; �:k2 : l0i ;
�:k1 : l0 ! h0 ;2 �:k1:k1 : l1; �:k1:k2 : l1i ;
�:k2 : l0 ! h0 ;2 �:k2:k1 : l1; �:k2:k2 : l0i ;
�:k2:k2 : l0 ! h0 ;2 �:k2:k2:k1 : l1; �:k2:k2:k2 : l0i ;
�:k1:k1 : l1 ! h1 ;2 1i ;
�:k1:k2 : l1 ! h1 ;2 2i ;
�:k2:k1 : l1 ! h1 ;2 3i ;
�:k2:k2:k1 : l1 ! h1 ;2 4i ;
�:k2:k2:k2 : l1 ! h1 ;2 5i

3777777777777775
:

This tree consists of 4 interior nodes and 5 leaf nodes.

If we abstract the activation labels appearing in this representation to the following set:

f�:(k0 + k1)
�
g;

then the abstract tree representation collapses to the following 2-node abstract value and store:

f�:(k0 + k1)
� : l0g;26664

�:(k0 + k1)
� : l0 !*

Oneof

*
0

(
�:(k0 + k1)� : l0;
�:(k0 + k1)

� : l1

)
;

(
�:(k0 + k1)� : l0;
�:(k0 + k1)

� : l1

)+
;?

+
;

�:(k0 + k1)
� : l1 ! hOneof ?; h1 Nii

37775 :
This representation consists of only two abstract nodes. The abstraction of activation labels is
normally derived from the call-graph of a program.

We do not add anything to the abstract domains or the abstract interpreter in this section. The
complexity we added in the basic framework has paid o� by being general enough to handle recur-
sively typed objects. In the following section, we describe an extension to the abstract interpreter
to model lists as a special case of Oneofs.

8.3 Abstraction of Lists in KID�

The list type, which is a particular recursive algebraic type, could be modeled using our Oneof
domain. However, our implementation of the deallocation command insertion algorithm generates
specialized code to deallocate lists, so we model lists separately in our abstract interpreter.

148 CHAPTER 8. ALGEBRAIC AND RECURSIVE TYPES

AbsList (hCons v0; v1i) = hList hCons AbsV (v0);ABSV (v1)i ;?i

AbsList (hNil i) = hList ?; hNil ii

Figure 8.6: List abstraction operator

hList c0; n0i tList hList c1; n1i = hList (c0 tCons c1); (n0 tNil n1)i

hCons v0; v1i tCons hCons w0; w1i = hCons (v0 tV w0); (v1 tV w1)i

hNil i tNil hNil i = hNil i

Figure 8.7: List least upper bound operators

hList c0; n0i vList hList c1; n1i = (c0 vCons c1) ^ (n0 vNil n1)

hCons v0; v1i vCons hCons w0; w1i = (v0 vV w0) ^ (v1 vV w1)

hNil i vNil hNil i = True

Figure 8.8: List ordering operators

8.3.1 Abstract List Domains

The de�nition of the abstracted list domain that we use follows:

vlist 2 List = hList hCons V;Lsi? ; hNil i?i Lists
sv 2 SV = (Tuple + Array +Oneof + List)? Storable Values

Abstract lists, like abstract oneofs, are represented by a pair of tagged disjuncts. If one of these
components is bottom, that indicates that none of the concrete values represented by this abstract
list could evaluate to Cons or Nil. If both of these are non-bottom, then the corresponding standard
values could be either Cons or Nil.

Figure 8.6 contains the function AbsList, which maps standard list values into abstract list values.
Figure 8.7 contains the least upper bound operator on abstract lists, and Figure 8.8 contains the
ordering operator for abstract lists.

This list abstraction is safe, in that it preserves the reachability of the list elements. Abstract
list representations may su�er from spatial summarization and lose information about whether the
cons cells are shared. If a list is constructed from distinct invocations of Cons, then the analysis
will obtain complete information (as with tuples). However, if a list is constructed by a recursive
procedure, then the calls to Cons will not have distinct activation labels, and a cyclic representation
will be constructed.

The compiler must assume that any list whose abstract representation is cyclic may represent a
cyclic list. The compiler must also assume that the objects pointed to by a cyclic abstract list may
be shared. Therefore, if the compiler inserts code to deallocate a list, it must ensure that each
distinct cons cell in the list is deallocated only once.

8.3. ABSTRACTION OF LISTS IN KID� 149

EA [[
lCons (se1; se2)]] ���� = f v1 = SEA [[se1]]� ;

v2 = SEA [[se2]]� ;
vlist = hList hCons v1; v2i ;?i ;
ol = � : l;
v0list = �[ol];
�0 = �[ol! (vlist t v0list)];
in h folg; �0; ;;?DMAP i g

EA [[Hd (se)]] ���� = f ls= SEA [[se]]� ;
hList hCons v1; v2i ; hNil ii =

hList hCons ?;?i ;?i t
F

ol2ls
�[ol];

in h v1; �; ;;?DMAP i g

EA [[Tl (se)]] ���� = f ls= SEA [[se]]� ;
hList hCons v1; v2i ; hNil ii =

hList hCons ?;?i ;?i t
F

ol2ls
�[ol];

in h v2; �; ;;?DMAP i g

EA [[
lNil ()]] ���� = f vlist = hList ?; hNil ii ;

ol = � : l;
v0list = �[ol];
�0 = �[ol! (vlist t v0list)];
in h folg; �0; ;;?DMAP i g

EA [[Nil? (se)]] ���� = h B; �; ;;?DMAP i

Figure 8.9: Abstracted evaluation of list primitives

8.3.2 Additions to Abstract Interpreter

Figure 8.9 contains the evaluation rules for list primitives in the abstract interpreter. They are
similar to the instrumented evaluation rules, except that labels are abstracted and lists are products
of Cons and Nil objects.

8.3.3 Representative List Inputs

To use our deallocation command safety veri�cation algorithm and deallocation command insertion
algorithm, we must have a method to construct representative input values for objects of recursive
types. This section de�nes the clause of procedure CV that constructs representative list arguments.

The inputs we pass as inputs to procedures under analysis must be of the correct type and must be
detectable wherever they are passed within the procedure. This constrains the abstract list values
that we may use as representative inputs to a function expecting a list. We cannot tell a priori how
many of the cons cells in a list input are dereferenced by a procedure; consequently, the abstract
list must either have in�nitely many cons cells or be circular. We use circular list representations
as representative inputs. The clause of procedure CV that constructs representative list values,

150 CHAPTER 8. ALGEBRAIC AND RECURSIVE TYPES

shown below, returns a circular abstract list whose head contains an element of the correct type.

CV [[List �1]] = f h v; �0 i= CV [[�1]] ;
l = Newloc ();
�00 = �0[l! hList hCons v; flgi ; hNil ii];
in h flg; �00 i g

The rationale for the safety of using circular lists as inputs is that any particular list under the
standard interpreter composed of a �nite number of cons cells labeled l0 through ln and containing
values v0 through vn in the heads of each cons can be contained by a cyclic abstract list. We say
list representation r0 contains r1 if (r0 vA bsr1). The abstraction of such a list is contained by the
following abstract value-store pair:

h fl0; � � � ; lng; ?Store

264 l0 ! hList hCons bv; fl0; � � � ; lngi ; hNil ii
...

ln ! hList hCons bv; fl0; � � � ; lngi ; hNil ii
375 i ;

where bv is the least upper bound of the elements of the concrete list: v0 through vn and fl0; � � � ; lng
is the abstraction of the locations where the concrete list resides.

Therefore, we can show that the analysis of a function using a circular abstract list representation
is safe for any list to which the function is actually applied. We show this by substituting the set of
labels of the Cons cells in the actual list for the label of the Cons in the circular list and substituting
the least upper bound of the elements of the actual list for the element of the representative list.

8.3.4 List Examples

Now let us examine a couple of examples that use lists, in order to see what information we can
gather and how far we can go with them. Procedure scale list takes a number and a list of
numbers and returns a new list of scaled numbers; procedure inc list takes a number and a list
of numbers and returns a list of incremented numbers.

def scale list (s, l) =

if nil?(l) then l0nil

else { x = hd(l);

xs = tl(l);

x' = s * x;

sl = k0scale list(s, xs);

r = l1Cons(x', sl);

in r };

def inc list (delta, l) =

if nil?(l) then l2nil

else { x = hd(l);

xs = tl(l);

x' = delta + x;

sl = k1inc list(s, xs);

r = l3Cons(x', sl);

in r };

8.3. ABSTRACTION OF LISTS IN KID� 151

The representative input vector for scale list is

h N; fl�1g; ?Store [l�1 ! hList hCons N; fl�1gi ; hNil ii] i

This represents a number and a list whose head is a number and whose tail is either nil or the list
itself.

The value returned from scale list is another list, consisting of a cons in location l1 or nil in
location l0:

h fl0; l1g; ?Store

264 l�1 ! hList hCons N; fl�1gi ; hNil ii

l0 ! hList ?; hNil ii

l1 ! hList hCons N; fl0; l1gi ;?i

375 i
From this value we can determine that the list passed into function scale list cannot be reached
from its result. Furthermore, we know that the result is a list that must have been allocated within
the call to scale list.

We obtain similar results when we analyze procedure inc list. What is the behavior if we compose
these two functions, as in procedure inc scale list?

def inc scale list (delta, s, x) =

{ x' = k2scale list(s, x);

r = k3inc list(delta, x');

in r };

If we evaluate the bindings in the body of inc scale list when applied to the following input
vector:

h N;N; fl�2g; ?Store [l�2 ! hList hCons N; fl�2gi ; hNil ii] i

we obtain the following values:

�0 =

2666664
delta! N

s! N

x! fl�2g

x0 ! fl0; l1g

r! fl2; l3g

3777775

�0 =

26664
l�2 ! hList hCons N; fl�2gi ; hNil ii l0 ! hList ?; hNil ii

l1 ! hList hCons N; fl0; l1gi ;?i

l2 ! hList ?; hNil ii

l3 ! hList hCons N; fl0; l1gi ;?i

37775
I = fl�2g

R = fl2; l3g

The set I of labels reachable from the body of inc scale list contains l�2, and R, the set of labels
reachable from the result of inc scale list's body contains l2 and l3. From this we can conclude
that the object to which x0 is bound, consisting of locations l0 and l1, must have been allocated
within the body of inc scale list and that this object does not escape from there. Consequently,
we can insert a deallocation command for variable x0.

What should this deallocation command do? The whole list that has been allocated is garbage, but
we cannot determine the size of the list from the abstract values. Nor can we determine if there is

152 CHAPTER 8. ALGEBRAIC AND RECURSIVE TYPES

any sharing in the list. We can insert code to deallocate this whole list as long as the code checks
that it never deallocates the same cons cell twice along the spine of the list.

Consider the following example, which constructs a circular list:

def cyclic list (elt) =

{ r = l4Cons(elt, r);

in r };

Procedure cyclic list, applied to N , returns the value

h fl4g; ?Store [l4 ! hList hCons N; fl4gi ;?i] i

Because the nil component of the list in location l4 is bottom, we can conclude that this list never
has a null tail | it is either in�nite or cyclic. However, we still cannot tell how many cons cells
the list will have under the standard interpreter.

Whenever we determine that the lifetime of a list is bounded by some control region, we will insert
code that recursively deallocates all distinct cons cells of the list upon termination of that control
region. In Chapter 10, we discuss the run-time performance of the code that deallocates potentially
cyclic lists compared to the code that deallocates acyclic lists.

Chapter 9

Higher-Order Functions

Many modern programming languages have higher-order functions. That is, one can pass pro-
cedures around as values. Procedures can take procedures as arguments and return procedures
as values. This ability to pass procedures around provides a great deal of
exibility in writing
programs.

Unfortunately, many approaches to lifetime analysis that use abstract interpretation do not model
higher-order functions. One of the main di�culties in the abstraction of procedure values is how
to take the least upper bound of two functions. The least upper bound is well-de�ned theoretically
as long as the two functions have the same domains and ranges. If we have functions f0 and f1,
then the least upper bound can be de�ned as a new function:

f0 t f1 � �x:(f0(x)t f1(x))

However, this de�nition is not always conducive to an implementation. The key here is to separate
out the text of the function from the object being passed around as a value. The approach taken
in this thesis is to represent functions as closures which consist of the name of a function and the
values the function is closed over. The name of a function points to the text of the function | its
de�nition in the program. We allow a pre�x of a function's arguments to be provided in a closure
of the function (a partial application), and the rest must be provided when the closure is applied.

The second major di�culty in the abstraction of procedure values is that the domain of functions
of a given type is in�nite, and so it is no longer possible to enumerate the input-output behaviors
of a function that takes procedures as arguments over all possible procedures in the domain. We
limit the domains of functions to contain only closures of functions that are de�ned in the program.
There can only be �nitely many functions de�ned in a program, and only �nitely many points
where those functions are closed over values.

In this chapter, we see how to add higher-order functions to KID� and to improve the abstraction of
activation labels. In the �rst two sections we discuss the implementation of higher-order functions
in the KID�interpreters. In the �nal section we present an analysis example using higher-order
functions.

9.1 Higher-Order Functions in the Instrumented Interpreter

In this section, we discuss the changes that need to be made to the domains and interpreters in
order to add higher-order functions to KID�. We do this for the instrumented and abstracted

153

154 CHAPTER 9. HIGHER-ORDER FUNCTIONS

interpreters. In order to add higher-order functions, we need to add primitives to the language
to create and apply function values, and we need to add value domains for representing function
values.

9.1.1 The Closure Domain

A higher order function consists of the text of a procedure plus the lexical environment in which
the function was de�ned. Higher order functions are most interesting when these functions can be
de�ned in lexical environments other than the global environment. Rather than extending KID�

with nested function de�nitions; however, we preserve the
at structure of de�nitions, and introduce
a primitive that binds together a particular procedure de�nition and values from the desired lexical
environment. We represent functions as closures . Closures are a new kind of storable value.

cls 2 Cls = hCls F; V; � � � ; V i Closure
sv 2 SV = Tuple+ Array + List+ Cls Storable Values

A closure consists of a tuple of a procedure name fi and n values. If a function fi has r arguments,
then a closure of fi over n values, where n < r, may be applied to exactly (r� n) values.

9.1.2 Instrumented Interpretation of Closure Primitives

We add two primitives to KID� for creating and manipulating closures:
MakeClosurefi which closes the procedure named fi over some set of argument values, and Apply,
which applies a closure to a set of values. We are not supporting currying directly with these
primitives. The compiler can generate a sequence of intermediate functions that use MakeClosure
and Apply to implement currying. This is described fully in Hochheiser [21].

The primitive MakeClosure is subscripted with the name fi of the function being closed, and takes
n values over which fi is being closed. MakeClosure is similar to the MakeTuple primitive in that
the expression label is used to construct a unique label ol of the structure being allocated. Note
also that the set of allocation events is augmented to show that ol was allocated in the current
activation �.

EI [[
lMakeClosurefi (se1; � � � ; sen)]]��� =

f v1 = SE [[se1]]� ;
...

vn = SE [[sen]]� ;
ol = � : l;
�0 = �[ol! hCls fi; v1; � � � ; vni];
in h ol; �0; fh ol; � ig; ;; ; i g

The primitive Apply takes as its �rst argument a closure of a function fi with arity r and n values
over which the function is closed. There must be (r�n) more values supplied to Apply, so that it can
make a full-arity application of function fi. This primitive is similar to user function applications.
First, we evaluate the arguments and dereference the closure from the incoming store. Then we
evaluate the body of the closed function fi in that activation �0 and the proper environment,

9.2. HIGHER-ORDER FUNCTIONS IN THE ABSTRACT INTERPRETER 155

constructed from the values from the closure and from the inputs to Apply.

EI [[
kApply (se; sen+1; � � � ; ser)]]��� =

f ol = SE [[se]]� ;
vn+1 = SE [[sen+1]]� ;

...
vr = SE [[ser]]� ;
hCls fi; v1; � � � ; vni = �[ol];
�0 = �:k;
h v; �0;�+;��;�R

i = EI [[ei]] (�[v1=x1; � � � ; vn=xn; vn+1=xn+1; � � � ; vr=xr])��
0 ;

�R0 = �R
[fh ol; � ig;

in h v; �0;�+;��;�R0 i g

where fi(x1; � � � ; xr) = ei is a de�nition in the program

We return a reference event for the closure object ol in activation �.

9.2 Higher-Order Functions in the Abstract Interpreter

This section de�nes the abstract closure domains and the clauses of the abstract interpreter that
interpret the MakeClosure and Apply primitives.

9.2.1 Abstracting The Closure Domain

Abstraction of the closure domain is rather straightforward. We do not attempt to abstract the
code text of a closure. Rather, we generalize a closure to the set of possible closures that it could be.
This abstraction �ts in nicely with our abstraction of storable values: a reference to the abstraction
of a closure is a set of abstract object labels, each of which refers to an abstract closure. An
abstract closure storable value consists of a single function name and a tuple of values over which
that function is closed. The number of components in the tuple must be less than the number of
arguments that the function takes.

v 2 V = (N + B + Ls)? Denotable values
cls 2 Cls = hCls F; V; � � � ; V i Abstract Closure
sv 2 SV = Tuple +Array + List + Cls Storable Values

An application of a reference to a set of abstract closures has to return the least upper bound of
the values returned by applying each of the abstract closures to the abstract argument values.

In addition to abstracting the closure domain, we must choose a domain of activation labels. We
have seen two choices for AL so far, the simple one from Chapter 4 and the more detailed one
from Chapter 6. The more detailed abstraction requires the knowledge of the complete call graph
in order to de�ne a function NAL that takes an abstract activation label and an expression label
and returns a new abstraction label. We cannot compute the call-graph of a program that uses
higher-order functions statically, because the names of the functions that will be invoked by an
application primitive are not known, in general, until run-time.

156 CHAPTER 9. HIGHER-ORDER FUNCTIONS

AbsCls (hCls fi; v1; � � � ; vni) =

hCls fi;AbsV (v0); � � � ;ABSV (vn)i

Figure 9.1: Closure abstraction operator

For programs with higher-order functions, we use a simpler de�nition of the AL domain and a
simple function NAL to compute the next activation label. The de�nition of the domain, shown
below, is the same as the AL domain used in the standard and instrumented interpreters.

AL = � j AL:L

However, the next activation label function guarantees that the set of activation labels remains
�nite. The set of activation labels is �nite except for recursive functions; so NAL treats the
activation labels of recursive function calls specially:

NAL(�; k) =

(
�0:k if � = �0:k:�

�:k otherwise

The motivation for this de�nition of NAL is that the activation labels of procedures that are
called recursively will contain repeated expression labels. Under the standard interpreter, the next
activation label from �0:k:� given expression label k would be:

� = �0:k:�:k

so the function NAL limits this to one occurrence of k:

� = �0:k

by eliding the sequence of expression labels: k:�. Note that � is empty for singly recursive functions,
and it is non-empty for functions that contain multiple recursive calls or for groups of mutually
recursive functions.

An alternative de�nition of NAL which may be more desirable because it further restricts the size
of the activation label domain is de�ned below.

NAL(�; k) = k

This de�nition may yield detailed enough activation labels for most purposes.

Of course, one could use the original de�nition of abstract activation labels from Chapter 4, which
corresponds to the following de�nition of NAL.

NAL(�; k) = �

This de�nition yields the smallest possible domain of activation labels.

Figure 9.1 contains the function AbsCls , which maps standard closure values into abstract closure
values. Figure 9.2 contains the least upper bound operator on abstract closures, and Figure 9.3
contains the ordering operator for abstract closures.

9.2. HIGHER-ORDER FUNCTIONS IN THE ABSTRACT INTERPRETER 157

hCls f; v1; � � � ; vni tCls hCls g; w1; � � � ; wni =(
hCls f; (v1 tV w1); � � � ; (vn tV wn)i if f = g

> otherwise

Figure 9.2: Closure least upper bound operators

D
Cls f; v1; � � � ; vnf

E
vCls

Cls g; w1; � � � ; wng

�
=8<:

^
i

(vi vV wi) if f = g and nf = ng

> otherwise

Figure 9.3: Closure ordering operators

9.2.2 Termination of Abstract Interpretation

The KID�type system guarantees that all closures that are created are of �nite depth, where the
maximum depth can be �xed at compile-time. This fact, plus the fact that there are only a �xed
number of procedure texts and MakeClosure expressions in a given program, guarantees that there
can be only a �nite number of possible values for any given abstract closure arising during the
abstract interpretation of a program. Thus, abstract interpretation of a program still takes a �nite
number of iterations to compute the function environment.

9.2.3 Abstract Interpretation of Closure Primitives

We also add the clauses to the abstract interpreter for the two primitives that create and manipulate
closures: MakeClosurefi which closes the procedure named fi over some set of argument values, and
Apply, which applies a closure to a set of values. The clause for MakeClosure, shown in Figure 9.4,
uses the static expression label l alone as the object label of the allocated closure.

The clause for Apply, shown in Figure 9.5, �rst interprets the �rst argument to yield a set ls of
references to abstract closures. The result is the least upper bound of the result of invoking each
of these closures with the arguments supplied to Apply as well as the values carried in the closures.
Each abstract closure is invoked by determining the function name fi and the argument values,
and then looking up the entry for fi and those values in the function environment �. In addition,
these values are added to the domain map �D0 for function fi.

9.2.4 Analysis of Higher-Order Programs

Now that we have seen how to extend the abstract domains and the abstract interpreter in order
to handle higher-order functions, let us see how this a�ects analysis of programs containing higher-
order functions. There are a number of ways this can a�ect the analysis and transformation of
such programs. It can cause loss of information, because we have less idea what computation will
be performed by an expression. It can also cause added complexity in the analysis, because it
is harder to construct representative input values. But, by exposing a higher-order function as a

158 CHAPTER 9. HIGHER-ORDER FUNCTIONS

EA [[
lMakeClosurefi (se1; � � � ; sen)]]���� =

f v1 = SEA [[se1]]� ;
...

vn = SEA [[sen]]� ;
vcls = hCls fi; v1; � � � ; vni ;
ol = � : l;
�0 = �[ol! �[ol]t vcls];
in h folg; �0; ;;?DMAP i g

Figure 9.4: Abstract evaluation of the closure constructor

EA [[
kApply (se; sen+1; � � � ; ser)]] ���� =

f ls = SEA [[se]] � ;
vn+1 = SEA [[sen+1]]� ;

...
vr = SEA [[ser]] � ;
�0 =NAL(�) k;

h v0; �0;��0;�D0
i =

G
ol2ls

f hCls fi; v1; � � � ; vni = �[ol];

h v0; �0; ��0
i =

�[fi][hv1; � � � ; vn; vn+1; � � � ; vr; �; �0i];

�D0[fi] = fhv1; � � � ; vn; vn+1; � � � ; vr; �; �
0
ig;

in h v0; �0;��0;�D0 i g

in h v0; �0;��0;�D0
i g

where each fi(x1; � � � ; xr) = ei is a de�nition in the program

Figure 9.5: Abstract evaluation of closure application

closure | a data structure | we have enabled the compiler to perform storage management on
closures themselves.

We may lose information about the lifetime of an object created within a procedure if it is passed to
a higher-order function because we may have to make worst case assumptions about the behavior
of the function passed as an argument.

In the algorithms described in Chapter 5, we began computation of the function environment by
computing the value of the application of each function in the program to a representative input
value. What representative values should we use for functions which take closures as input? What
values should we use when analyzing the body of a function and verifying or inserting deallocation
commands?

During the analysis of a function body, we really do want to pass in some function value that
captures the behavior of any function that could be passed in at run-time. Either we use the least
upper bound of all possible values that arise under abstract interpretation, or we make a worst-case
assumption about the behavior of the function. This value must satisfy the constraints of the type

9.3. EXAMPLE OF ABSTRACT INTERPRETATION OF HIGHER-ORDER FUNCTIONS159

system, but all input values could conceivably be carried in the result of the application. Even
worse, if I-structures or other side-e�ecting operations are supported, all input values (of the right
type) could be side-e�ected or stored o� in some structure reachable from the input values.

The approach of constructing representative input values for higher-order inputs to functions only
pays o� it it allows us to manage the storage of closures. Otherwise, we may as well use the least
upper bound of all possible values that could be passed as input to this function.

If we look at the whole program, then we can actually determine the types of all the closures created
in the program (assuming monomorphic typing), and use the set of all closures of the correct type
as the input value to a function that takes closures as arguments. This process may be equivalent
to taking the least upper bound of all possible inputs to a function that arise in the abstract
interpretation described above, and analyzing the function when applied to this least upper bound.
This process is similar to the behavior of collecting interpreters [24, 44].

It seems that it is better to use the most general function value that could ever be passed as input
to a procedure during the analysis of that procedure than to construct representative closure values.
We are likely to lose too much information if we use worst-case representative closure values rather
than the closure values that arise during abstract interpretation.

9.3 Example of Abstract Interpretation of Higher-Order Func-

tions

Let us consider the abstract interpretation of the following program. In the main procedure f0, one
of two higher-order functions is called depending on the value of predicate p. What is the behavior
of this program under the abstract interpreter?

{

def f0 () =

{ p = e0;

f = if p

then l0MakeClosurefoo(10)

else l1MakeClosurebar(True, 3);

z = e1;

r = k0Apply(f, z)

in r };

def foo (n,m) =
l2MakeTuple(n,n+m);

def bar (b,n,m) =

{ x = if b then 3 else 4;

t = l3MakeTuple(x,n-m);

in t };

}

We would like to know what the result of the invocation of function f0 is under the abstract
interpreter. The function, or closure, to which variable f is bound is dependent on the value of
variable p, a run-time value. Therefore, we must abstract the behavior of f over all executions.

160 CHAPTER 9. HIGHER-ORDER FUNCTIONS

If we evaluate the bindings of the letrec block in the body of f0, we get the following environment
and store:

�0 = ?Env

26664
p ! B

f ! fl0; l1g

z ! N

r ! fl2; l3g

37775

�0 = ?Store

26664
l0 ! hCls foo; Ni

l1 ! hCls bar; B;Ni

l2 ! hTuple N;Ni

l3 ! hTuple N;Ni

37775
��0 = ;

We can see by examining �0 and �0 that f can be bound to a value which is either a closure of foo
over a number or a closure of bar over a boolean and a number. In order to obtain the value of
variable r, the interpreter had to evaluate the application of foo applied to two numbers and the
application of bar applied to a boolean and two numbers.

Chapter 10

Performance Analysis

This chapter discusses the performance of an implementation of the analysis and transformations
described in this thesis. The �rst section discusses our implementation of the veri�cation and
insertion algorithms, and Monsoon [36], the machine on which we ran our benchmarks. The second
section presents the experiments themselves. The third section presents an optimization that
generates code to allocate structures in procedure activation frames whenever possible and discusses
how this a�ects the run-time performance of programs. The fourth section describes the di�culty of
deallocating structures that may pass through zero-tripping loops, loops that execute zero or more
times. The fourth section also describes a code generation strategy that can solve this problem. The
�fth section describes an optimization that hoists matched allocation and deallocation commands
out of loops in order to reduce the run-time overhead of storage management.

10.1 Implementation Details

Most of the theory developed in this thesis has actually been put into practice. We have an im-
plementation of the abstract interpreter, the deallocation command veri�cation algorithm, and the
deallocation command insertion algorithm. This section describes the details of our implementation
and the structure of the experiments we used to determine the overall e�ectiveness of our methods.

10.1.1 Implementation of the Veri�cation and Insertion Algorithms

Our implementation of the deallocation command veri�cation and insertion algorithms handles
tuples, arrays, algebraic types, lists, and I-structures as well as a number of scalar types: booleans,
integers,
oating point numbers, characters, and symbols. The implementation uses activation
labels similar to those described in Chapter 6, but higher-order functions are not supported. The
implementation handles conditionals, loops, and the limited form of barriers shown in this thesis.
The current implementation of the compiler does not insert conditional deallocation commands,
but it does attempt to get complete coverage of deallocatable structures using a greedy algorithm
and a careful ordering of the identi�ers whose values may be deallocated.

The deallocation command veri�cation and insertion tools are implemented as two new modules
in the Id Compiler [40]. Both modules operate on program graphs , which are basically a data
ow
graph representation of KID�. The �rst module computes the function environment for the whole

161

162 CHAPTER 10. PERFORMANCE ANALYSIS

program and veri�es and annotates each function de�nition. The second module walks over the
program again, and actually inserts deallocation commands and barriers where the �rst program
annotated the graph.

The compiler uses the behavior of each function over its representative input as the behavior of
that function over any input, as described in Section 5.2. The compiler must compute the behavior
of all mutually recursive procedures together, but in general computes the entries in the function
environment in an order determined by a topological sort of the recursive-set nodes in the program.
A recursive-set node consists of either a function alone, for non-recursive functions, or a function and
all of the functions it calls recursively, for recursive functions. This allows the compiler to compute
the function environment for each function fi before all non-recursive calls to fi. Computation
of input-output mappings for each recursive-set in topological order also speeds up analysis by
making the function environment converge faster. The analysis module takes time proportional to
the number of recursive-sets and time quadratic in the size of the recursive sets.

In more detail, the �rst module computes the call graph of the program. From the call graph, the
compiler determines the recursive-sets of the program and the order in which function environment
entries must be computed. The compiler then generates the representative inputs and computes
the function environment in topological order.

Next, the compiler visits each procedure and applies �rst the deallocation command veri�cation
algorithm and then the insertion algorithm. Any time a potentially unsafe deallocation command
is found, the compiler issues a warning with as much identi�cation information as possible.

The insertion algorithm works on one control region at a time. Control regions in the program
graph correspond to the bodies of procedures, the branches of conditional and case expressions,
and the code before a barrier. Each of these regions must have been a letrec block in the original
KID� code.

Within each control region, the compiler determines all of the output ports (which correspond to
the de�nition of an identi�er in the letrec block) that will produce structures whose lifetime is
de�nitely contained by that of the control region. These ports are then sorted by the size of the
sets of labels to which they may be bound. Any port whose label set contains another port's label
is discarded. This process is repeated until we are left with a set of ports whose label sets are
disjoint. The compiler then inserts deallocation commands on each of these ports.

Any time the compiler inserts a deallocation command, it informs the programmer where the deal-
location command was inserted. If the components of a structure can be deallocated, the compiler
will insert selection and deallocation code for these elements. The compiler has special cases for in-
serting code to deallocate arrays and their components (shared or unshared) and to deallocate lists
recursively (cyclic or acyclic). The current implementation does not insert conditional deallocation
commands.

In addition to the two modules that implement the deallocation veri�cation and insertion algo-
rithms, there is a module that generates code to allocate structures in activation frames rather
than the heap. This module �nds structures of static size that are allocated and deallocated within
the same control region and changes them to be frame allocated. Restricting this module to apply
only to structures allocated and deallocated within the same control region | rather than within
the same procedure | limits its usefulness slightly. Nevertheless, this module is fairly e�ective at
converting general allocation and deallocation code into frame-based allocation and deallocation
code. The restriction that the sizes of frame-allocated objects must be known at compile-time is
imposed by the Id Run Time System (Id-RTS) [41] on the Monsoon data
ow machine [36] which

10.1. IMPLEMENTATION DETAILS 163

must know the complete size of an activation frame before a procedure is called. We discuss the
e�ectiveness of this optimization in Section 10.3.

10.1.2 Monsoon

Monsoon [36] is a data
ow machine with an explicit token store. Instead of using a hashing
function to match the token pairs associated with instruction instances, each instruction has an
explicit address (relative to an activation or frame pointer) where operand matching occurs.

All of the experiments described in this chapter were run on a con�guration of Monsoon hardware
consisting of one processor and one I-structure unit. Each monsoon processing element (PE)
contains 256K 32-bit words of instruction memory, 256K 64-bit words of data memory used for
activation frames, and 256K element token queues. The processor consists of an eight stage pipeline
operating at 10 MHz. Eight di�erent threads of computation are interleaved in the pipeline.

Each I-structure (IS) unit consists of 4M 64-bit words of data memory. Each word of data memory
on both the PE and IS boards has an associated 3 presence-bits and 8 type-bits. The presence bits
indicate whether a word of memory is empty or present and are the basic mechanism for �ne-grain
synchronization on Monsoon. The presence bits in activation frames are used for operand matching
while the presence bits in heap memory are used to implement I-structure semantics.

Monsoon is heavily instrumented. Each processor has a statistics processor, containing 64 statistics
registers, that counts on a cycle-by-cycle basis what type of operations were executed and to what
group of procedures those operations belonged. One of these counters is incremented every cycle.
The counters are divided into 8 banks of 8 counters. The counter to be incremented is determined
by the operation type and a 3-bit color �eld from a executing token's continuation. For most
operations, the 3-bit color �eld is used to choose one of the �rst 7 banks of counters, and the
operation type is used to choose one of the 8 counters in the chosen bank. Events such as idle
pipeline cycles are counted in the last bank of 8 counters.

These statistics counters allow us to measure the utilization of the machine very precisely. We can
account for how much time is spent in the user's program, how much is spent in the Run-Time
System (RTS), and how much is spent with the processor idle. We use the statistics counters to
measure the performance of our examples.

10.1.3 Id Run-Time System on Monsoon

The version of the run-time system that we used when running these experiments consisted of a
frame manager and a heap manager. The frame manager uses a single free list to manage unused
activation frames, and so it only allocates one size of activation frame. The run-time system is
initialized so that this frame size is large enough for all procedures.

The heap manager uses the quick-�t algorithm [43] to manage deallocated storage. This algorithm
incurs one word of overhead for all objects that are allocated. This overhead is insigni�cant for large
objects, but is signi�cant for small objects such as cons cells. Under this management strategy,
cons cells take three words apiece.

All structures in Id are implemented as I-structures. Each word of an I-structure has presence-bits
that indicate whether that word is empty or present . Stores cause the presence-bits of a word to go
from empty to present as well as changing the value of the word. Fetches issued against an empty
word defer until a value is stored in that word.

164 CHAPTER 10. PERFORMANCE ANALYSIS

One of the duties of the heap manager is to clear the presence-bits of each word of memory to
empty. The current Id RTS clears the presence-bits of all words of the heap during an initialization
phase before a program is executed. During program execution, presence-bits are cleared whenever
an object is deallocated. The heap manager maintains the invariant that all of the presence-bits of
free memory are empty.

In steady-state, when as many objects are being deallocated as are allocated, it does not matter
whether presence-bits are cleared upon allocation or upon deallocation. However, if presence-bits
are cleared upon deallocation, the di�erence in run-time between programs that reclaim storage
and those that never reclaim storage can be signi�cant | programs that do not reclaim storage
are not charged for clearing the presence-bits of the I-structures that they allocate. Under this
strategy, a program that does not reclaim storage will have better performance than one that does
reclaim storage unless it runs out of memory.

We �nd that most of our programs that allocate and deallocate approximately equal amounts of
storage spend about half their time in the run-time system. Of the time spent executing run-time
system code, half is spent clearing presence-bits, and the other half is spent manipulating the data
structures that keep track of free and allocated storage.

The activation frame and heap managers both contain code to record the maximum amount of
storage that was allocated and the current amount of storage allocated. We use this code to gather
statistics about the amount of storage used by our example programs.

10.1.4 Structure of the Experiments

For each program we studied, we determined storage usage and execution time without storage
deallocation, and storage usage and execution time with the best hand-inserted deallocation. Then
we recompiled the programs to verify the hand-inserted deallocation commands, recording the per-
cent increase in compile-time and the static percentage of deallocation commands veri�ed. We also
recompiled the original programs to insert deallocation commands automatically, again recording
the percent increase in compile-time and the static percentage of deallocation commands inserted.
Finally, we ran the programs again to determine dynamic storage usage and execution time for
the programs with veri�ed deallocation commands only and automatically inserted deallocation
commands only.

10.2 Performance Measurements

This section describes the compile-time performance of our implementation of the veri�cation and
insertion algorithms. It also describes the run-time performance of the various versions of the com-
piled code. The �rst example described is the Wavefront benchmark. Wavefront is an example we
use to illustrate the use of non-strictness in the de�nition of relaxation programs. The second exam-
ple described is the Simple hydrodynamics benchmark. Both Wavefront and Simple are programs
with very static structure. Both of these programs use arrays as their major data structure. The
third example described is the Gamteb benchmark. This example has a more dynamic structure,
because the heart of the simulation is a set of 7 mutually recursive procedures. Gamteb allocates
a large number of tuples as it simulates the trajectories of photons in a carbon rod.

10.2. PERFORMANCE MEASUREMENTS 165

def multiwave edge_vector n =

{m = initial_wave edge_vector ;

r =

{for i <- 1 to n do

next m = wave m ;

finally m }

in r };

Figure 10.1: The code for multiwave

def multiwave edge_vector n =

{m = initial_wave edge_vector ;

r =

{for i <- 1 to n do

next m = wave m ;

Dealloc(m);

finally m }

_ = if (1 <= n) then Dealloc(m);

in r };

Figure 10.2: The annotated code for multiwave

10.2.1 The Wavefront Benchmark

The Wavefront benchmark is a simple example used to test automatic storage reclamation. The
outer loop of the example is shown in Figure 10.1. Procedure
initial wave allocates a matrix, and each iteration procedure wave reads matrix m and creates a
new matrix. The matrix passed into each iteration of the loop is garbage upon termination of that
iteration. The analyzer correctly determines this and allows the compiler to generate the code in
Figure 10.2.

We can reclaim the storage associated with the value of initial wave whenever the loop executes
at least once.

The following table contains the compile-times for the Wavefront benchmark. The four versions of
the program are WavefrontNA, WavefrontHA, WavefrontVF and WavefrontAA. WavefrontNA is the
original version, without any deallocation commands. This program was compiled by the unmod-
i�ed Id compiler. WavefrontHA is a hand-annotated version that contains deallocation commands
that were inserted manually. It was also compiled with the unmodi�ed Id compiler. WavefrontVF
is the hand-annotated version as compiled by the Id compiler with the lifetime analysis and deal-
location veri�cation module. All unsafe deallocation commands are removed by the compiler.
WavefrontAA is the unannotated version of the Wavefront program compiled with both the lifetime
analysis and deallocation insertion modules. The number of deallocation commands is a static
count of all of the deallocation commands in the program.

166 CHAPTER 10. PERFORMANCE ANALYSIS

Program Compile-Time Deallocs
(seconds) (number)

WavefrontNA 18 0
WavefrontHA 18 3

WavefrontVF 32 2
WavefrontAA 32 2

The hand-annotated version contains three deallocation commands to deallocate the edge-vector,
the �rst matrix, and each intermediate matrix. The compiler-veri�ed and compiler annotated
version contain two deallocations: one for the edge vector, and one for the intermediate matrices.
The compiler cannot determine that the �rst matrix will not be returned as the result, so it cannot
insert code to deallocate that matrix. A programmer can insert conditionals to prevent error in
this case.

The following table describes the run-time performance of the four versions of Wavefront. Each
program was run 40 iterations on a 30 � 30 matrix. The table gives the total run-time for each
program, as well as the maximum amount of storage that was allocated, in words, and the �nal
number of words of storage that were still allocated when the programs terminated.

Program Run-Time Max Storage Final Storage
(seconds) (words) (words)

WavefrontNA 0.193 37,225 37,225
WavefrontHA 0.349 10,000 907

WavefrontVF 0.336 10,000 1814
WavefrontAA 0.375 10,000 941

The original version of this program runs the fastest, but it also uses the most storage. The hand
annotated version takes 81% longer. However, it deallocates all but the �nal matrix. The main
reason the versions containing deallocation code take longer to execute is because the deallocation
code must clear the presence-bits of the objects being deallocated.

The compiler-veri�ed and compiler-annotated versions deallocate all but the �rst and last matrices.
Deallocation of the �rst matrix cannot be veri�ed, because if we execute zero iterations, the �rst
matrix is returned as the result, and the compiler cannot prove that we execute more than zero
iterations. We discuss this problem in more detail in Section 10.4.

10.2.2 Simple

Simple, a hydrodynamics benchmark program [13], is a scienti�c program with very simple control
structure. If compiler-directed storage reclamation is going to have any success, it should be able to
reclaim every intermediate structure allocated in this program. In fact, our �rst implementation of
the program annotator, which did not handle nested structures, had very good success on Simple.
It inserted Dealloc statements that deallocated seventy percent (dynamically) of the structures
allocated by the program at run-time. Unfortunately, these were tuples that contained numbers of
large matrices, and so this was a small fraction | only thirty percent for problem size of ten by
ten | of the total storage allocated.

The following table contains the compile-times for the Simple benchmark under four conditions:
not annotated (NA), hand annotated (HA), veri�ed safe deallocation commands only (V F) and
automatically annotated (AA).

10.2. PERFORMANCE MEASUREMENTS 167

Program Compile-Time Deallocs
(seconds) (number)

SimpleNA 409 0
SimpleHA 437 70

SimpleV F 863 58
SimpleAA 894 58

Compilation of the hand-annotated version of Simple took slightly longer than the original version,
while compilation with the lifetime analyzer and deallocation command veri�er or inserter turned
took twice as long as compilation of the original program.

The twelve deallocation commands (70� 58) that could not be veri�ed as safe were all potentially
unsafe because they deallocated structures that may escape if a loop executed zero iterations. These
deallocation commands in version HA are actually safe, because the loop never executes fewer than
one iteration.

The following table contains information about the run-time performance of the four versions of
Simple. Each version was run twice: once for 20 iterations of a 50 � 50 matrix, and once for 40
iterations of a 50� 50 matrix.

Program Size Iters Time Max Storage Final Storage
(seconds) (words) (words)

SimpleNA 50 20 38.9 1,678,867 1,678,867
SimpleNA 50 40 77.0 3,324,447 3,324,447
SimpleHA 50 20 51.5 114,147 40,941
SimpleHA 50 40 102.6 114,147 40,941

SimpleV F 50 20 51.5 114,147 58,609
SimpleV F 50 40 102.6 114,147 58,609
SimpleAA 50 20 51.6 114,147 58,609
SimpleAA 50 40 102.5 114,147 58,609

Each version that contains deallocation commands took about 33% longer to run than the version
that had no deallocation commands. However, these each deallocated 93% to 97% of the storage
that they allocated. Each of the three versions containing deallocation commands reclaims all of
the storage allocated during each iteration. The only di�erence in the amount of storage that they
use is in how much of the storage allocated for initial data structures is eventually reclaimed.

10.2.3 Gamteb

Gamteb [8], a Monte Carlo simulation of photon transport in a graphite rod, is another scienti�c
program on which this system should have good success. The Id version has a slightly more complex
structure than the original Fortran: the Id version uses a recursive procedure to simulate particle
transport. This recursive procedure is called from a parallel outer loop. Each recursive procedure
is called with a new particle and returns a new tuple of counts. The particle tuples passed in can
be deallocated upon termination of the recursive call, and the count tuples returned as the result
of the recursive call are read and may be deallocated upon termination of each invocation of the
outer loop.

A version of Gamteb with hand-inserted deallocation commands contained 38 deallocation com-
mands. The compiler veri�es the safety of 37 of these deallocation commands. The compiler fails

168 CHAPTER 10. PERFORMANCE ANALYSIS

{ def frame tuple(x,y) =
k1{ ft = k2MakeTuple(x,y)

result = k3g(ft);

in k4result };

def g(t) =
k6{ r = k7Select1(t)

in k8r };

in k9frame tuple(68,47) }

Figure 10.3: Frame allocated tuple example

to verify one deallocation command that reclaims a structure that may be passed through a zero-
tripping loop. The compiler can insert 35 deallocation commands. It fails to insert two deallocation
commands that reclaim structures that may be passed through zero-tripping loops.

The following table contains the compilation times for the four versions of Gamteb.

Program Compile-Time Deallocs
(seconds) (number)

GamtebNA 158 0
GamtebHA 183 36

GamtebVF 976 34
GamtebAA 980 34

The following table contains information about the run-time performance of the four versions of
Gamteb.

Program N Run-Time Max Storage Final Storage
(seconds) (words) (words)

GamtebNA 1000 10.9 982,315 982,315
GamtebNA 2000 20.3 1,839,952 1,839,952
GamtebHA 1000 18.0 4710 132
GamtebHA 2000 33.6 5100 132

GamtebVF 1000 17.9 50000 48098
GamtebVF 2000 33.6 90000 89398
GamtebAA 1000 17.7 50000 48098
GamtebAA 2000 33.1 90000 89398

10.3 Transformation to Frame Allocation

When the compiler �nds a structure that is allocated and deallocated in the same control region, it
can transform the heap allocation into frame allocation. Deallocation of the structure then happens
automatically when the procedure exits. In other words, the compiler sets aside enough storage in
the activation frame of the procedure to contain the structure. In some implementations, such as
the implementation of Id on Monsoon, this is only possible if the structure size is known statically.

10.3. TRANSFORMATION TO FRAME ALLOCATION 169

{ def frame tuple(x,y) =
k1{ ft = k2MakeFrameTuple(x,y)

result = k3g(ft);

= CleanupFrameTuple(ft);

in k4result };

def g(t) =
k6{ r = k7Select1(t)

in k8r };

in k9frame tuple(68,47) }

Figure 10.4: Frame allocated tuple example with transformation

In other implementations, where activations frames are stack allocated, the procedure may be able
to dynamically allocate space in its activation frame by adjusting its stack pointer.

Procedure frame tuple shown in Figure 10.3 contains a tuple bound to identi�er ft that may be
frame allocated, because the structure allocated by expression k2 in procedure frame tuple does
not escape from the invocation of frame tuple.

Figure 10.4 contains the transformed code for this example. The primitive
MakeFrameTuple allocates a tuple in the frame. The semantics of the tuple is exactly the same as for
a heap-allocated tuple, except that the storage is automatically reclaimed upon termination of the
procedure frame tuple. The primitive CleanupFrameTuple performs any cleanup required by the
run-time system. The Id run-time system requires that all frames be empty when returned, and so
CleanupFrameTuple clears out the storage used by the tuple.

The following table summarizes the results when we compile the hand annotated version of Gamteb
with the frame allocation optimization enabled:

Program Compile-Time Deallocs
(seconds) (number)

GamtebHA 183 38
GamtebHAFA 183 38

The following table contains information about the run-time performance of the Gamteb benchmark
compiled with the frame allocation optimization enabled.

Program N Run-Time Max Storage Final Storage
(seconds) (words) (words)

GamtebHA 1000 18.0 4710 132
GamtebHAFA 1000 15.7 3510 132
GamtebHAFA 2000 29.4 3500 132

The version of Gamteb that uses frame allocation runs 13% faster than the original version, and uses
less total storage. The optimization itself is very straightforward and does not increase compile-time
noticeably.

170 CHAPTER 10. PERFORMANCE ANALYSIS

10.4 Handling Possibly Zero-Tripping Loops

A common idiom in functional implementations of scienti�c programs is a structure that is created
and then successively re�ned in a loop or tail recursion. Often, only the �nal value is needed, and
the initial value and all intermediate values can be reclaimed. However, if the compiler cannot
determine that the loop will execute at least once, then it cannot tell that the �nal value could not
be the initial value, and the initial value will never be reclaimed by the compiler.

Here is such an example:

def multiwave ev k =

{ M = initial wave ev;

in {for i <- 1 to k do

next M = wave M;

finally M }};

The initial value of M, allocated by initial wave, will be returned as the �nal value of the loop if
the value of k is less than one.

We can provide run-time checking to ensure that the initial matrix is only deallocated if it is not
returned as the result by testing the initial value of the loop predicate. The following code has this
transformation.

def multiwave ev k =

{ M = initial wave ev;

r = {for i <- 1 to k do

next M = wave M;

finally M }

= if k > 0 then deallocate M;

in r };

The code after the barrier deallocates the initial copy of M if k is at least one. In Wavefront,
this optimization only reclaims one object, so it is not very interesting. We applied the same
optimization with much more spectacular results.

The following table summarizes the performance of Gamteb when it is compiled with the zero-
tripping optimization turned on. The compile-time for the row labeled GamtebZT includes the
time to perform the zero-tripping optimization. The compile-time of GamtebZTFA includes both
the zero-tripping detection and frame-allocation optimizations.

Program Compile-Time Deallocs
(seconds) (number)

GamtebAA 980 34
GamtebZT 980 36
GamtebZTFA 981 36

This optimization takes very little time, but allows the compiler to add two more deallocation
commands to Gamteb than it could without the optimization. These two deallocation commands, as
we can see from the following table, reduce the storage used by Gamteb considerably. Furthermore,
once these two deallocation commands have been added, Gamteb uses a constant amount of storage
for any number of particles simulated.

10.5. EXAMPLES USING LISTS 171

Program N Run-Time Max Storage Final Storage
(seconds) (words) (words)

GamtebHA 1000 18.0 4700 132
GamtebAA 1000 17.7 50000 48098
GamtebAA 2000 33.1 91100 89398
GamtebZT 1000 18.0 4900 132
GamtebZT 2000 33.6 4900 132
GamtebZTFA 1000 15.6 3500 132
GamtebZTFA 2000 29.3 3700 132

These performance results show that the zero-tripping loop optimization is very important, even
though it only inserts code to deallocate one structure per loop.

We did similar experiments with Simple to see what di�erence it made to reclaim the storage from
structures that may be returned as the result of a loop. The following table shows the compile
times and the number of deallocations inserted. The ZT version of Simple is compiled with the ZT
transformation, which inserts twelve additional deallocation commands.

Program Compile-Time Deallocs
(seconds) (number)

SimpleAA 1100 58
SimpleZT 1000 70

The following table summarizes the results of running the HA, AA, and ZT versions of Simple on
a 50� 50 problem size for 20 and 40 iterations.

Program Size Iters Time Max Storage Final Storage
(seconds) (words) (words)

SimpleHA 50 20 51.5 114,147 40,941
SimpleHA 50 40 102.6 114,147 40,941
SimpleAA 50 20 51.6 114,147 58,609
SimpleAA 50 40 102.5 114,147 58,609
SimpleZT 50 20 51.6 114,147 40,941
SimpleZT 50 40 102.5 114,147 40,941

Use of the ZT transformation allows the compiler-generated deallocation commands to reclaim as
much storage as the hand-generated deallocation commands do.

10.5 Examples Using Lists

This section describes the experiments we did with list manipulating programs. The �rst example,
shown below, creates a list named l1 containing len integers. It then creates a list named l2 by
incrementing each element in l1 by n1. It creates another list l3 by scaling each element in l2 by
n2. Finally, it returns the sum of the elements of list l3.

def test len n1 n2 =

{ l1 = gen list len;

l2 = inc list n1 l1;

172 CHAPTER 10. PERFORMANCE ANALYSIS

l3 = scale list n2 l2;

r = sum list l3;

in r };

The three list generating procedure gen list, inc list, and scale list were written using list
comprehensions. In Id, a list comprehension is syntactic sugar that expands into a loop expression
that generates a list. List comprehensions tend to make list manipulating programs more compact.

The Id compiler inserts code that allocates one extra cons cell for each list comprehension. The
extra cell simpli�es the code that constructs the list, because it eliminates the extra testing that
would be needed otherwise when generating an empty list. The lifetime of the extra cons cell
is always bounded by the control region enclosing the list comprehension, but the standard Id
compiler does not currently insert deallocation code for this extra cell.

The following table shows the compile-time performance of three versions of this program: no anno-
tations inserted (NA), hand inserted deallocation commands (HA), and automatically annotated
(AA). The compiler could not verify any of the hand inserted deallocation commands because they
are contained in procedures and violate the safety condition that we de�ned in Chapter 5. The
compiler has special cases for inserting code to deallocate lists, and these were used to generate the
automatically annotated version of the benchmark.

Program Compile-Time # Dealloc # Deallocate List
(seconds)

ListNA 11 0 0
ListHA 15 0 3
ListAA 26 3 3

The hand annotated version of the List benchmark contains three calls to the procedure Deallocate List,
which deallocates all cells of a list. This procedure assumes that the list is acyclic. The hand an-
notated version does not deallocate the extra cons cells allocated by the list comprehension code
because there is no way to name these cells in the Id source code. The compiler annotated version
of the List benchmark contains three Dealloc commands to reclaim extra cons cells allocated by
the list comprehension code, as well as three calls to Deallocate Cyclic List, which deallocates
all unique cells in a list. The compiler cannot determine that a list is acyclic, and so it inserts code
that safely deallocates both cyclic and acyclic lists.

The following table contains information about the run-time performance of the three versions of
the list manipulating benchmark.

Program Length Run-Time Max Storage Final Storage
(seconds) (words) (words)

ListNA 1000 0.194 9009 9009
ListNA 100,000 19.3 900,009 900,009
ListDA 1000 0.426 9009 9
ListDA 100,000 42.5 900,009 9
ListAA 1000 0.498 9006 0
ListAA 100,000 49.3 900,006 0

Both versions of this benchmark that deallocate storage take more than twice as long as the original
code. The compiler annotated version of this benchmark uses the least amount of storage, but takes

10.6. EXPLICIT STORAGE REUSE 173

the longest because the code to deallocate a potentially cyclic list is more expensive than the code
to deallocate an acyclic list. The automatically annotated version has a lower maximum storage
because the deallocation of one of the extra cons cells was allocated before the both of the others
were allocated.

10.6 Explicit Storage Reuse

If the compiler �nds a structure that is allocated in each iteration of a loop and deallocated in the
following iteration, then the compiler can lift both the allocate and the deallocate out of the loop
and explicitly reuse the structure. In some cases the compiler may have to allocate two or more
structures outside of the loop and cycle through them.

Consider the following example, where M is a matrix that is successively relaxed. In each iteration,
a new version of M is created and an old one becomes garbage. Furthermore, the loop is bounded
by parameter k | this allows up to k iterations of the loop to execute in parallel. Therefore, the
space used by the loop should be bounded by k times the space requirements of a single iteration.

def relax M size n_steps =

{for i <- 1 to n_steps bound k do

next M = {matrix (1,size),(1,size) of

| [i,j] = relax_point M i j

|| i <- 1 to size & j <- 1 to size };

Dealloc(M)

finally M };

Although this version of the procedure reclaims all intermediate storage allocated, it calls the heap
manager n steps times to allocate storage and n steps times to deallocate storage. We only ever
need k instances of the matrix M at any point in time, and so we should be able to locally manage
the storage in order to reduce the burden on the heap manager. We would like to specialize storage
management whenever possible to increase the e�ciency for particular uses of storage.

The previous procedure de�nition can be transformed into the following code in order to reduce
the overhead of storage management.

def relax M size n_steps =

{ Ms = make_k_matrices ((1,size),(1,size)) k;

R = {for i <- 1 to n_steps bound k do

next M = Ms![i mod k];

_ = {for i <- 1 to size do

{for j <- 1 to size do

next M[i,j] = relax_point M i j }};

Ms![i mod k] = clear_matrix M;

finally M };

_ = free_k_matrices Ms;

in R };

174 CHAPTER 10. PERFORMANCE ANALYSIS

The procedure make k matrices takes the dimensions b of the matrix and the loop bound k and
returns an M-vector [7, 6] containing k empty matrices each with dimensions b. Each iteration,
the (i mod k)th element of the vector of empty matrices is taken and used as the value of next
M. Upon termination of the ith iteration, the current value of M is cleared and put back into the
(i mod k)th of the vector of empty matrices. The vector of empty matrices and all of the empty
matrices are deallocated upon termination of the whole loop by the call to free k matrices.

This optimization is not currently implemented, but we expect it to be e�ective in reducing the
run-time overhead of allocating and deallocating storage.

Chapter 11

Conclusion

We have presented a method for performing object lifetime analysis on non-strict, parallel pro-
grams. We have shown how to use this lifetime information to verify the correctness of deallocation
commands in programs and to insert deallocation commands into programs. The central idea of
this work is recognizing that object lifetimes can be derived from reachability information, and that
interpreters can determine what objects are reachable from any point in the program.

The crux of the analysis is the naming of objects. Object names must be related to program
structure so that dynamic behavior can be related to the static structure of a program. Once we have
realized that, it is straightforward to derive an abstract interpretation that yields a summarization
of object reachability. We have presented an operational semantics that derives object names from
the dynamic structure of a program's call tree. We discussed several abstractions of this naming
scheme that allow us to model the allocation and connectivity of objects with varying degrees of
precision.

The technique of using abstract interpretation to derive an analysis method from the semantics of a
programming language shows great promise. The lifetime analysis presented in this thesis is precise
enough to yield great reductions in the usage of storage in many non-trivial scienti�c applications.
Our experiments showed that deallocation code inserted by the compiler could reclaim eighty to one
hundred percent of the storage allocated by a program. While we do not claim that compilers will
have this level of e�ectiveness for all programs, we do claim that there is a large class of programs
for which these methods are very e�ective.

11.1 Further Research

This thesis is by no means the last word in lifetime analysis. We have taken another step by de�ning
a lifetime analysis framework for non-strict, parallel languages, but a number of issues remain to
be investigated.

11.1.1 Computing Object Lifetimes

The algorithm that we described to compute function environments in the abstract interpreter
is very straightforward, but not necessarily very e�cient. The process of computing function
environments needs to be as e�cient as possible if abstract interpretation is going to be a practical
tool.

175

176 CHAPTER 11. CONCLUSION

11.1.2 Subscript Analysis

The interaction of subscript analysis and abstract interpretation is an area that could be explored
further. Can we do better analysis of programs using arrays if we can determine that certain
arrays have distinct subregions with potentially di�erent behaviors? For instance, in some scienti�c
programs, arrays are created where all of the border elements are shared and all of the inner
elements are unique. If we could use subscript analysis to distinguish these regions during abstract
interpretation, we might be able to determine that all of the interior elements could be deallocated
without having to test for uniqueness.

11.1.3 Determining Acyclicity of Recursive Objects

We feel that, by modifying our abstract interpreter, we should be able to perform sharing analysis
of recursively-typed objects. The goal of this sharing analysis would be to annotate recursively
typed object representations to indicate whether they form trees, acyclic graphs, or cyclic graphs.
This information should allow us to distinguish between objects that are de�nitely trees, objects
that are de�nitely acyclic and objects that may be cyclic. This information would be useful because
the compiler can generate more e�cient code to reclaim trees and lists than to reclaim graphs and
cyclic structures.

Hendren [20] and Harrison [19] both can determine whether objects are acyclic using information
about the allocation time of the nodes of a recursively typed object. They used this information
to determine when statements or subexpressions could be executed in parallel. However, their
methods depend on having a sequential interpreter, so the methods do not apply to our work.

The insight we had that allowed us to collect sharing information for the elements of arrays created
with MakeArray should carry over to recursive objects: the MakeArray construct provides a good
encapsulation of the expression evaluated to obtain the elements of an array. We can determine if
sharing is possible by observing the boundary of the encapsulation and seeing if any objects cross
it, or are inherited. The values that cross the boundary may be shared by the di�erent elements of
the array.

Basically, we need to unfold a recursive function once during analysis to determine if the recursive
calls to the function can share values with the initial call to the function. If there is no sharing
between the initial call and the recursive calls, then there can be no sharing between any of the
calls because each of the recursive calls can be considered to be an initial call. Unfortunately, we
have not seen how to formalize this condition in such a way that it can be included in our lifetime
analysis method. If we proceed to unfold every recursive call once during abstract interpretation,
then abstract interpretation will not terminate. Every iteration of the computation of the function
environment will yield one more input value to which the recursive function must be applied.

Lent[30] explored the selective unfolding of recursive procedure calls to determine acyclicity of lists.
He proposed a special mechanism for unfolding function calls one extra time using renamed labels
and then collapsing the renamed values back into the original domain. This extra level of labels
should allow us to detect sharing and to annotate the unshared objects, so that we can preserve the
sharing information once the labels are recompressed. We would like to investigate this technique
in more detail to determine if it is sound and to extend it beyond detecting acyclic lists to detecting
tress or directed acyclic graphs.

11.1. FURTHER RESEARCH 177

11.1.4 Deallocating Complex Structures

The problem of generating code to deallocate complex structures is related to the problem of
determining the acyclicity and sharing of complex structures. The current implementation of the
deallocation insertion algorithm in the Id compiler has a few special cases for inserting code to
deallocate single cons cells, potentially cyclic lists, and acyclic lists. The problem of generating
code to traverse and deallocate recursive objects is still open. The compiler may be able to generate
a procedure for each type to deallocate complete objects of that type. The compiler could then
compose these special deallocation procedures to deallocate objects consisting of the composition
of several types of objects.

The problem of deallocating nested or recursive structures is exacerbated when the pattern of
sharing within the structure is complex or unknown. Perhaps the run time system could provide a
function that recursively descends a structure and deallocates all unique objects in that structure.

11.1.5 Interaction with Garbage Collection

Another area that deserves more attention is the interaction of explicit storage management with
garbage collection. Is it really possible for the two to coexist such that the use of explicit deallocation
commands decreases the overhead of garbage collection? One approach that we think is worth
considering is having the compiler generate code to allocate storage in an area separate from the
garbage collected heap. This code can explicitly deallocate the whole area when the objects in it
are all dead.

Another possibility is to have a dynamic storage manager and a garbage collector that coexist in
one space. Explicit deallocation commands can be used to deallocate storage. Whatever storage is
not deallocated explicitly will eventually be deallocated by the garbage collector.

11.1.6 M-Structures

Full-
edged Id and KID both have M-structures [7, 6], which are useful when writing programs
that compute histograms, implement graph algorithms, or implement run-time system code. M-
structures are mutable structures that allow mutually exclusive access to each word.

We would like to see our instrumented and abstract interpreters augmented to handle programs
using M-structures. We believe that M-structures can be modeled safely in our abstract interpreter
in the same fashion as I-Structures. But our solution for modeling abstract M-structures does not
solve the problem of modeling M-structures in the instrumented interpreter. It seems that the store
would have to be threaded through the interpreter in order for the interpreter to model mutually
exclusive access to each M-structure element. We would like to �nd a solution to this problem that
does not obscure the parallelism of the interpreter.

Once M-Structures are added to KID� we will have to model barriers in full generality, which
may involve computing a graph of activation label precedence. This precedence relation would be
analogous to our terminates before relation. Once we have computed the precedence graph, we
may be able to determine in some cases whether programs deadlock.

178 CHAPTER 11. CONCLUSION

11.2 Other Research Directions

Other semantic analyses are useful for a wide variety of reasons. Strictness analysis is helpful
in determining that portions of a program may be sequentialized. Sequentialization is a useful
optimization for compiling non-strict languages because it eliminates redundant synchronization.
Dependence analysis and interference analysis are also important analyses in the �eld of ptimizing
compilers..

The abstract interpretation framework presented in this thesis is a sound basis for a wide variety
of other such analyses of non-strict or parallel programs. By changing the abstract evaluators and
value domains presented in this report, the abstract interpreter can be restructured to support
these other data dependent analysis methods.

Bibliography

[1] Alexander Aiken and Brian R. Murphy. Static type inference in a dynamically typed language.
In Conference Record of the 18th ACM Symposium on the Principles of Programming Lan-

guages, pages 279{290, New York, NY, January 1991. Association for Computing Machinery,
ACM Press.

[2] Andrew W. Appel. Garbage collection can be faster than stack allocation. Information Pro-

cessing Letters, 25:275{279, 1987.

[3] Zena M. Ariola and Arvind. Compilation of Id-: a subset of Id. Computation Structures
Group Memo 315-1, Massachusetts Institute of Technology Laboratory for Computer Science,
Cambridge, MA, December 1990.

[4] Henry G. Baker. Unify and conquer (garbage, updating, aliasing, : : :) in functional languages.
In 1990 ACM Conference on Lisp and Functional Programming, pages 218{226, New York,
NY, June 1990. Association for Computing Machinery, ACM Press.

[5] Je�rey M. Barth. Shifting garbage collection overhead to compile time. Communications of

the ACM, 20(7):513{518, July 1977.

[6] Paul S. Barth. Atomic Data Structures for an Implicitly Parallel Language. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, January 1992.

[7] Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-structures: Extending a parallel, non-strict,
functional language with state. In Functional Programming Languages and Computer Archi-

tecture, pages 538{568, Berlin, August 1991. Association for Computing Machinery, Springer-
Verlag.

[8] Patrick J. Burns, Mark Christon, Roland Schweitzer, Olaf M. Lubeck, Harvey J. Wasserman,
Margaret L. Simmons, and Daniel V. Pryor. Vectorization of Monte Carlo particle transport:
An architectural study using the LANL benchmark \Gamteb". In Proceedings Supercomput-

ing '89, pages 10{20, New York, NY, November 1989. IEEE Computer Society and ACM
SIGARCH, ACM Press.

[9] David C. Cann. Compilation Techniques for High Performance Applicative Computation. PhD
thesis, Colorado State University, May 1989. (Technical Report CS-89-108).

[10] David R. Chase, Mark Wegmen, and F. Kenneth Zadeck. Analysis of pointers and structures.
In SIGPLAN'90 Conference on Programming Language Design and Implementation, pages
296{310, New York, NY, June 1990. SIGPLAN, Association for Computing Machinery.

179

180 BIBLIOGRAPHY

[11] Douglas W.. Clark. An empirical study of list structure in Lisp. Communications of the ACM,
20(2):78{86, February 1977.

[12] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints. In Conference Record

of the 4th ACM Symposium on the Principles of Programming Languages. Association for
Computing Machinery, 1977.

[13] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The SIMPLE code. UCID 17715, Lawrence
Livermore Laboratory, February 1978.

[14] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An e�cient method
of computing static single assignment form. Conference Record of the 16th ACM Symposium

on the Principles of Programming Languages, pages 25{35, January 1989.

[15] Alain Deutsch. On determining lifetime and aliasing of dynamically allocated data in higher-
order functional speci�cations. In Conference Record of the 17th ACM Symposium on the

Principles of Programming Languages, pages 157{168. ACM SIGACT-SIGPLAN, January
1990.

[16] McGraw et al. SISAL: Streams and iteration in a single-assignment language. Report M-
146, Rev. 1, University of California, Lawrence Livermore National Laboratory, Livermore,
California, March 1985.

[17] David K. Gi�ord, Pierre Jouvelot, John M. Lucassen, and Mark A. Sheldon. FX-87 Ref-
erence Manual. LCS-TR 407, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, September 1987.

[18] David K. Gi�ord, Pierre Jouvelot, and Mark A. Sheldon. Report on the FX-90 program-
ming language. Programming systems research group, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, August 1990. Draft.

[19] Williams Ludwell Harrison, III. The interprocedural analysis and automatic parallelization of
scheme programs. Lisp and Symbolic Computation, 2(3/4):179{396, 1989.

[20] Laurie J. Hendren and Alexandru Nicolau. Parallelizing programs with recursive data struc-
tures. IEEE Transactions on Parallel and Distributed Computing, 1(1), January 1990.

[21] Harry S. Hochheiser. A Schezoid Compiler for P-RISC. Master's thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, 1991.

[22] Susan Horwitz, Phil Pfei�er, and Thomas Reps. Dependence analysis for pointer variables.
In Proceedings of the SIGPLAN '89 Conference on Programming Language Design and Imple-

mentation, pages 28{40, New York, NY, June 1989. ACM Press.

[23] Paul Hudak. A semantic model of reference counting and its abstraction. In Samson Abramsky
and Chris Hankin, editors, Abstract Interpretation of Declarative Languages, Computers and
Their Applications, chapter 3, pages 45{62. Ellis Horwood Limited, Chichester, West Sussex,
England, 1987.

[24] Paul Hudak and Jonathan Young. A collecting interpretation of expressions (without power-
domains). Conference Record of the 15th ACM Symposium on the Principles of Programming

Languages, pages 107{118, January 1988. (Full version accepted to TOPLAS).

BIBLIOGRAPHY 181

[25] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. In Func-

tional Programming Languages and Computer Architecture (Lecture Notes in Computer Sci-

ence; 201), pages 199{203. Springer-Verlag, Berlin, September 1985.

[26] Thomas Johnsson. Analysing heap contents in a graph reduction intermediate language. In
Proceedings of the 1990 Glasgow Workshop. Springer-Verlag, 1990.

[27] Neil D. Jones and Steven S. Muchnik. A
exible approach to interprocedural data
ow analysis
and programs with recursive data structure. In Conference Record of the 9th ACM Symposium

on the Principles of Programming Languages, pages 66{74, New York, NY, 1982. Association
for Computing Machinery, ACM Press.

[28] Simon B. Jones and Daniel Le M�etayer. Compile-time garbage collection by sharing analysis.
In FPCA Conference Proceedings Fourth International Conference, pages 54{74, New York,
NY, 1989. ACM IFIP, ACM Press.

[29] James R. Larus and Paul N. Hil�nger. Detecting con
icts between structure accesses. In
SIGPLAN '88 Conference on Programming Language Design and Implementation, pages 21{
34, New York, NY, July 1988. SIGPLAN, Association for Computing Machinery.

[30] Arthur Lent. Compile-time analysis of list sharing using abstract interpretation. 6.847 term
paper, Massachusetts Institute of Technology, Cambridge, MA, December 1991.

[31] John M. Lucassen and David K. Gi�ord. Polymorphic e�ect systems. In Conference Record

of the 15th ACM Symposium on the Principles of Programming Languages, pages 47{57. SIG-
PLAN, ACM Press, January 1988.

[32] David A. Moon. Garbage collection in a large lisp system. In 1984 ACM Conference on Lisp

and Functional Programming, pages 235{246, New York, NY, August 1984. Association for
Computing Machinery, ACM Press.

[33] R. S. Nikhil. Id Nouveau Reference Manual Part I: Syntax. Technical report, Computation
Structures Group, MIT, 545 Technology Square, Cambridge, Massachusetts, April 1987.

[34] R. S. Nikhil, K. Pingali, and Arvind. Id Nouveau. Computation Structures Group Memo
265, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts, July 1986.

[35] Rishiyur S. Nikhil. Id 90 reference manual. Computation Structures Group Memo 284-1,
Massachusetts Institute of Technology Laboratory for Computer Science, Cambridge, MA,
September 1990.

[36] Gregory M. Papadopoulos. Implementation of a General Purpose Data
ow Multiprocessor.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, August 1988.

[37] Young Gil Park and Benjamin Goldberg. Escape analysis on lists: Optimizing storage alloca-
tion and reclamation in higher order functional languages. Extended Abstract, 1990.

[38] John E. Ranelletti. Graph Transformation Algorithms for Array Memory Optimization in

Applicative Languages. PhD thesis, University of California, Davis, Livermore, California,
94550, November 1987. (Technical Report UCRL-53832).

182 BIBLIOGRAPHY

[39] Cristina Ruggieri and Thomas P. Murtagh. Lifetime analysis of dynamically allocated ob-
jects. In Conference Record of the 15th ACM Symposium on the Principles of Programming

Languages. ACM SIGACT-SIGPLAN, January 1988.

[40] Kenneth R. Traub. A compiler for the MIT Tagged-Token Data
ow Architecture. Technical
Report TR-370, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts, August 1986.

[41] Kenneth R. Traub, Michael J. Beckerle, James E. Hicks, Gregory M. Papadopoulos, Andrew
Shaw, and Jonathan Young. Monsoon Software Interface Speci�cations. Technical Report
MCRC-TR-1 and CSG Memo 296, Motorola Cambridge Research Center and Massachusetts
Institute of Technology, Cambridge, MA, January 1990.

[42] Phil Wadler. Strictness analysis on non-
at domains (by abstract interpretation over �nite
domains). In Samson Abramsky and Chris Hankin, editors, Abstract Interpretation of Declar-

ative Languages, Computers and Their Applications, chapter 12, pages 266{275. Ellis Horwood
Limited, Chichester, West Sussex, England, 1987.

[43] C. B. Weinstock and W. A. Wulf. Quick Fit: An E�cient Algorithm for Heap Storage Allo-
cation. SIGPLAN Notices, 23(10):141{148, 1988.

[44] Jonathan Young. The Theory and Practice of Semantic Program Analysis for Higher-Order

Functional Programming Languages. PhD thesis, Yale University, May 1989.

[45] Jonathan Young and Patrick O'Keefe. Experience with a type evaluator. In D. Bj�rner, A. P.
Ershov, and N. D. Jones, editors, Partial Evaluation and Mixed Computation, pages 573{581.
North Holland, 1988.

BIBLIOGRAPHY 183

Biographical Note

James Hicks was born on December 28, 1964 in Los Angeles, California. He attended the Mas-
sachusetts Institute of Technology. He married Sharon Chang in 1987. He received his S.M. in
Computer Science and Engineering in June, 1988 as a VI-A cooperative student working at MIT
Lincoln Laboratory. He did his graduate work at MIT in the Computation Structures Group,
studying parallel languages, parallel architectures, compilers, and semantic analysis. He completed
his Ph.D. in Electrical Engineering and Computer Science in January, 1992. He is a member of Eta
Kappa Nu, the national electrical engineering honor society, and the Association for Computing
Machinery.

