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Abstract

When proving the correctness of algorithms in distributed systems, one generally consid-
ers safety conditions and liveness conditions. The Input/Output (I/O) automaton model
and its timed version have been used successfully, but have focused on safety conditions
and on a restricted form of liveness called fairness. In this paper we develop a new I/O
automaton model, and a new timed I/O automaton model, that permit the veri�cation
of general liveness properties on the basis of existing veri�cation techniques. Our mod-
els include a notion of environment-freedom which generalizes the idea of receptiveness of
other existing formalisms, and enables the use of compositional veri�cation techniques.
The presentation includes an embedding of the untimed model into the timed model which
preserves all the interesting attributes of the untimed model. Thus, our models constitute a
coordinated framework for the description of concurrent and distributed systems satisfying
general liveness properties.
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1 Introduction

The increasing need for reliable software has led the scienti�c community to develop many

formalisms for veri�cation. Particularly important are formalisms that can model distributed

and concurrent systems and those that can model real time systems, i.e., systems that rely

on time constraints in order to guarantee correct behavior. Formalisms should be able to

support veri�cation of both safety and liveness properties [AS85]. Roughly speaking, a liveness

property speci�es that certain desirable events will eventually occur, while a safety property

speci�es that undesirable events will never occur.

In this paper, we present a coordinated framework that permits modeling and veri�cation

of safety and liveness properties for both timed and untimed systems. The framework con-

sists of two models, one timed and one untimed, with an embedding of the untimed model

into the timed model. Both models come equipped with notions of external behavior and

of implementation, which are based simply on traces. The framework is intended to support

a variety of veri�cation techniques, including simulation methods, compositional reasoning,

algebraic methods, and temporal logic methods.

A successful technique for the veri�cation of safety properties and some special liveness

properties is based on the simulation method of [AL91a, LV91, LV93a, LV93b, Jon91], applied

to the Input/Output automaton model of [LT87] and to its generalization to the timed case

[MMT91]. I/O automata are state machines with a labeled transition relation where the labels,

also called actions , model communication. A key feature of I/O automata is the explicit

distinction between their input and output actions, which characterize the events under the

control of the environment and those under the control of the automaton, respectively. I/O

automata can handle general safety properties and can also deal with a special kind of liveness,

called fairness . Fairness captures the intuitive idea that each subcomponent of a composed

system has fair chances to make progress. The notion of implementation for I/O automata,

i.e., the way a concrete system is said to implement a more abstract speci�cation, is expressed

through fair trace inclusion, where a fair trace of an I/O automaton is a sequence of actions

that can occur whenever the I/O automaton respects its fairness property. I/O automata can

be composed in parallel, i.e., they can interact together so that they can be viewed as a single

large system. An important property of I/O automata is that the implementation relation is

compositional in the sense that it is always safe to replace a subcomponent in a large system

with one of its implementations. Compositionality is needed for modular design techniques.

Despite its success, the I/O automaton model is not general enough to handle some recent

veri�cation work in [SLL93, LLS93]. In particular, [SLL93, LLS93] provide examples where

fairness is not adequate as a liveness condition. Moreover, the work in [SLL93, LLS93] has

shown the need for a connection between timed and untimed models to prove that an implemen-

tation that uses timing constraints correctly implements an untimed speci�cation. The mutual

exclusion algorithm of Fischer [Fis85, AL91b] is another instance of a timed implementation

for an untimed speci�cation.

This motivates a generalization of the I/O automaton model and its timed version to handle

general liveness properties in such a way that the simulation based proof method still applies.
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A simple and natural generalization is motivated by [AL93], which models a machine as a pair

(A;L) consisting of an automaton and A and a subset L of its behaviors satisfying the desired

liveness property. The implementation notion can then be expressed by live trace inclusion

just as fair trace inclusion expresses implementation for I/O automata. The use of live trace

inclusion as the implementation notion is motivated by the fact that the simulation based proof

method is known to work for implementation notions based on some form of trace inclusion.

Unfortunately, if L is not restricted, simple examples show that live trace inclusion is not

compositional (cf. Examples 3.29 and 3.34).

In this paper we identify the appropriate restrictions on L, in both the untimed model and

the timed model, so that live trace inclusion is compositional for the pair (A;L). A pair (A;L)

satisfying these restrictions on L is called a live I/O automaton in the untimed model and a live

timed I/O automaton in the timed model. The restrictions on L are given by a property called

environment-freedom, which captures the intuitive idea that a live (timed) I/O automaton

must not constrain its environment. The environment-freedom property is de�ned, using ideas

from [Dil88], by means of a two-person game between a live (timed) I/O automaton and its

environment. Speci�cally, the environment provides arbitrary inputs while the system tries

to react so that it behaves according to its liveness condition. A live (timed) I/O automaton

(A;L) has a winning strategy against its environment if A can respond to any environment

move in such a way that it will always eventually satisfy its liveness condition L. If a live

(timed) I/O automaton has a winning strategy, then it is said to be environment-free.

The de�nitions of the environment-freedom property in the untimed and the timed model

are closely related. In particular, the environment-freedom property for the timed model

is a natural extension of the environment-freedom property for the untimed model up to

some technical details involving the so called Zeno behaviors . The close relation between the

environment-freedom property in the untimed and the timed model allows the models to be tied

together, thus permitting the veri�cation of timed implementations of untimed speci�cations.

Speci�cally, the paper presents a patient operator [NS92, VL92] that converts (untimed) live

I/O automata into live timed I/O automata without timing constraints. The patient operator

preserves the environment-freedom property and the live trace preorder relation of the untimed

model. Thus, the patient operator provides the mechanism by which the timed and untimed

models are uni�ed into a coordinated framework.

Our models generalize several existing models. The fairness condition of I/O automata

satis�es the environment-freedom property; thus, live I/O automata are a proper generalization

of I/O automata. Environment-freedom also implies feasibility as de�ned in [LS89]. The failure

free complete trace structures of [Dil88] are also properly generalized by our model. In the

timed case, our model generalizes [MMT91] and the notion of strong I/O feasibility introduced

in [VL92]. Finally, in contrast to [AL91b], our timed model does not give either the system or

the environment control over the passage of time.

In order to extend the simulation based proof method to our model, we introduce an execu-

tion correspondence theorem which builds on a similar lemma of [LT87] by extending the result

to some of the simulation relations studied in [LV93a, LV93b]. The execution correspondence

theorem says that the existence of a simulation relation between two automata induces a strict
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correspondence between their behaviors. The paper shows how such a correspondence can be

used to prove live trace inclusion.

We believe that our coordinated untimed and timed models comprise a good general

framework for veri�cation of concurrent systems. The models have already been used in

[SLL93, LLS93] which deal with a non-trivial system, a communication protocol used in the

Internet, and require all the new expressiveness and simulation tools provided in this paper.

After some preliminary de�nitions, given in Section 2, the paper is divided into four main

sections. Section 3 presents the untimed model, Section 4 presents the timed model, Sec-

tion 5 embeds the untimed model into the timed model by means of the patient operator,

and Section 6 extends the simulation method to live (timed) I/O automata. The presentation

of both the untimed and timed models starts with a general automaton model with liveness

conditions in the style of [AL91b]; then the I/O distinction is introduced together with the

environment-freedom property. The presentation of the untimed model also includes several

examples that motivate the de�nition of environment-freedom and show that there does not

seem to be any trivial generalization of our environment-freedom property that still leads to

the compositionality of the live trace preorder. Once live (timed) I/O automata are de�ned for

each model, the paper introduces the corresponding notions of implementation and compares

our model with other existing models.

2 Preliminaries

Notation for Natural Numbers

Unless otherwise stated, indices like i, j, and k as well as the constantN range over the natural

numbers N0. The notation 0 < i � 1, as well as the notation 0 < i < 1, states that i is

a positive natural number. Similarly, the notation f0; 1; : : : ;1g denotes the set of natural

numbers.

Sequences

We use \list" and \sequence" synonymously. The empty sequence is denoted by ". A �nite se-

quence l1 = e1 : : :en and a sequence l2 = en+1en+2 : : : can be concatenated. The concatenation,

written l1 ^ l2, or sometimes just l1l2, is the sequence e1 : : : enen+1en+2 : : :.

A sequence l1 is a pre�x of a sequence l2, written l1 � l2, if either l1 = l2, or l1 is �nite and

there exists a sequence l0
1
such that l2 = l1 ^ l

0
1
.

For any sequence l2 and any �nite sequence l1 with l1 � l2, we denote by l2� l1 the unique

sequence l0
1
such that l2 = l1 ^ l

0
1
.

For any non-empty sequence l = e1e2e3 : : :, de�ne head(l) to be e1, the �rst element of l,

and tail(l) to be the sequence e2e3 : : :, the rest of l.
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K�onig's Lemma

The following lemma about digraphs is a generalization of K�onig's Lemma. This generalization

also appears in [LV93a]. A root in a digraph is a node with no incoming edges.

Lemma 2.1 (Generalization of K�onig's Lemma)

Let G be an in�nite digraph that satis�es the following properties:

1. G has �nitely many roots.

2. Each node of G has �nite outdegree.

3. Each node of G is reachable from some root of G.

Then there is an in�nite path in G starting from some root.

Proof. The usual proof of K�onig's Lemma [K�on26] extends to this case.

3 Untimed Systems

The discussion of untimed systems is organized as follows. Section 3.1 de�nes automata.

Section 3.2 introduces live automata without I/O distinction. Section 3.3 de�nes safe I/O au-

tomata by adding an Input/Output distinction to safe automata, and introduces the standard

parallel composition, action hiding, and action renaming operators found in the literature.

Section 3.4 introduces environment-freedom, de�nes live I/O automata, and extends the op-

erators of Section 3.3. Thus, the presentation separates the issue of liveness from that of I/O

distinction and environment-freedom. Section 3.5 de�nes two preorder relations, the safe pre-

order and the live preorder, and shows in what sense the live preorder can express a notion of

implementation. Section 3.6 compares our model with existing work.

3.1 Automata

The following de�nition of an automaton is given in the style of [LT87] and essentially describes

a transition system.

De�nition 3.1 (Automaton)

An automaton A consists of four components:

� a set states(A) of states.

� a nonempty set start(A) � states(A) of start states.

� an action signature sig(A) = (ext(A); int(A)) where ext(A) and int(A) are disjoint sets

of external and internal actions, respectively. Denote by acts(A) the set ext(A)[ int(A).
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� a transition relation steps(A) � states(A)� acts(A)� states(A).

Thus, an automaton is a state machine with labeled steps. Its action signature describes the

interface with the environment. It speci�es which actions model events that are visible from

the environment and which ones model internal events.

An action a of automaton A is said to be enabled in state s if there exists a state s0 such that

the step (s; a; s0) is an element of steps(A).

An execution fragment � of an automaton A is a (�nite or in�nite) sequence of alternating

states and actions starting with a state and, if the execution fragment is �nite, ending in a

state,

� = s0a1s1a2s2 � � � ;

where each triplet (si; ai+1; si+1) is an element steps(A). Denote by fstate(�) the �rst state

of � and, if � is �nite, denote by lstate(�) the last state of �. Furthermore, denote by

frag�(A); frag!(A) and frag(A) the sets of �nite, in�nite and all execution fragments of A,

respectively. An execution is an execution fragment whose �rst state is a start state. Denote

by exec�(A); exec!(A) and exec(A) the sets of �nite, in�nite and all execution of A, respectively.

A state s of A is reachable if there exists a �nite execution of A that ends in s.

A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment �2 =

snan+1sn+1 � � � of A can be concatenated . In this case the concatenation, written �1
a �2, is the

execution fragment s0a1s1 � � �ansnan+1sn+1 � � �.

An execution fragment �1 of A is a pre�x of an execution fragment �2 of A, written

�1 � �2, if either �1 = �2, or �1 is �nite and there exists an execution fragment �0
1
of A such

that �2 = �1
a �0

1
.

Let � = s0a1s1a2s2 � � � be an execution fragment. The length of � is the number of actions

occurring in �. The length is in�nite for in�nite execution fragments. De�ne the ith pre�x ,

ith su�x , and (i; j)-segment of �, for 0 � i � j � j�j, as

�ji
4

= s0a1s1 � � �aisi

ij�
4

=

(
siai+1si+1 � � � if i < j�j

sj�j if � is �nite and i = j�j

ij�jj
4

= siai+1si+1 � � �ajsj

The trace of an execution fragment � of an automatonA, written traceA(�), or just trace(�)

when A is clear from context, is the list obtained by restricting � to the set of external actions

of A, i.e., trace(�) = � � ext(A), where � is the standard restriction operator on lists. Let �

be a sequence of actions from acts(A). Then, traceA(�), or just trace(�) when A is clear from

context, denotes the list obtained by restricting � to the set of external actions of A. For a set

S of executions of an automaton A, denote by tracesA(S), or just traces(S) when A is clear

from context, the set of traces of the executions in S. We say that � is a trace of an automaton

A if there exists an execution � of A with trace(�) = �. Denote by traces�(A); traces!(A) and

traces(A) the sets of �nite, in�nite and all traces of A, respectively. Note, that a �nite trace

might be the trace of an in�nite execution.
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3.2 Live Automata

The automaton A of De�nition 3.1 can be thought of as expressing the safety properties of a

system, i.e, what always holds, or equivalently what is never supposed to happen. The liveness

properties of a system, i.e., what must eventually happen, can be expressed by a subset L of

the executions of its safe part A, as proposed in [AL93]. Thus, informally, a live automaton is

a pair (A;L) where A is an automaton and L is a subset of its executions. The executions of

L, which satisfy both the safety and liveness requirements of (A;L), are the only ones that can

occur in the described system. However, in order to ensure that the set L of executions does

not introduce any more safety than is already given by A, it should not be possible to violate

L in a �nite number of steps. As a consequence, any �nite execution of A must be extendible

to an execution in L. In fact, if the safe part A of live automaton (A;L) has a �nite execution

� that cannot be extended to an execution in L, then � cannot occur in the system described

by (A;L), and thus L introduces the additional safety property that � cannot occur. Our

restriction on the pair (A;L) implies that the pair (exec(A); L) is machine-closed as de�ned in

[AL93].

De�nition 3.2 (Live automaton)

A liveness condition L for an automatonA is a subset of the executions ofA such that any �nite

execution of A has an extension in L, i.e., for each � 2 exec�(A) there exists an �0 2 frag(A)

such that � a �0 2 L.

A live automaton is a pair (A;L), where A is an automaton and L is a liveness condition

for A. The executions of L are called the live executions of (A;L).

Informally, a liveness condition can be used to express (at least) two intuitively di�erent

requirements. First, a liveness condition can be used to specify assumptions about the long-

term behavior of a system that are based on its physical structure. For example, it is reasonable

to assume that two independent processes running in parallel are both allowed to make progress

in�nitely often. In a physical system this is ensured by executing the two processes on separate

processors or by using a fair scheduler in a multiprogramming environment. The notion of

fairness of I/O automata [LT87] exactly captures this particular physical assumption. Second,

a liveness condition can be used to specify additional properties that a system is required to

satisfy. For example, in a mutual exclusion problem we may require a process to eventually

exit the critical region whenever it enters it.

Even though a liveness condition can express many speci�c intuitive ideas, for the purpose

of this paper a liveness condition simply represents the set of executions that a system can

exhibit whenever it is \working properly".

3.3 Safe I/O Automata

Our notion of safe I/O automaton is the same as the \unfair" I/O automaton of [LT87], i.e.,

the automaton obtained by removing the partition of the locally-controlled actions from an

I/O automaton of [LT87].
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De�nition 3.3 (Safe I/O automaton)

A safe I/O automaton A is an automaton augmented with an external action signature,

esig(A) = (in(A); out(A)), which partitions ext(A) into input and output actions. In each

state, each input action must be enabled. A is said to be input-enabled.

The internal and output actions of a safe I/O automaton A are referred to as the locally-

controlled actions of A, written local(A). Thus, local(A) = int(A) [ out(A).

The interaction between safe I/O automata is speci�ed by the parallel composition operator.

We use the synchronization style of [Hoa85, LT87], where automata synchronize on their com-

mon actions and evolve independently on the others. We also retain the constraint of [LT87]

that each action is under the control of at most one automaton by de�ning parallel compo-

sition only for compatible safe I/O automata. Compatibility requires that each action be an

output action of at most one safe I/O automaton. Furthermore, to avoid action name clashes,

compatibility requires that internal action names be unique.

De�nition 3.4 (Parallel composition)

Safe I/O automata A1; : : : ; AN are compatible if for all 1 � i; j � N with i 6= j, the following

conditions hold:

1. out(Ai) \ out(Aj) = ;

2. int(Ai) \ acts(Aj) = ;

The parallel composition A1 k � � � k AN of compatible safe I/O automata A1; : : : ; AN is the safe

I/O automaton A such that

1. states(A) = states(A1)� � � � � states(AN)

2. start(A) = start(A1)� � � � � start(AN )

3. out(A) = out(A1) [ � � � [ out(AN)

4. in(A) = (in(A1)[ � � � [ in(AN )) n out(A)

5. int(A) = int(A1) [ � � � [ int(AN)

6. ((s1; : : : ; sN); a; (s
0
1
; : : : ; s0N)) 2 steps(A) i� for all 1 � i � N

(a) if a 2 acts(Ai) then (si; a; s
0
i) 2 steps(Ai)

(b) if a =2 acts(Ai) then si = s0i

The executions of the parallel composition of compatible safe I/O automata A1; : : : ; AN can

alternatively be characterized as those executions that, when projected onto any component

Ai, yield an execution of Ai. In particular, let A = A1 k � � � k AN . First let s be a state of
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A. Then, for any 1 � i � N , de�ne sdAi to be s projected onto the ith component. Now, let

� = s0a1s1a2s2 � � � be an alternating sequence of states and actions such that sk 2 states(A)

and ak 2 acts(A), for all k, and � ends in a state if it is a �nite sequence. De�ne �dAi,

where 1 � i � N , to be the sequence obtained from � by projecting its states onto their ith

component and by removing each action not in acts(Ai) together with its following state.

Lemma 3.5

Let A = A1 k � � � k AN . Let � = s0a1s1a2s2 � � � be an alternating sequence of states and actions

such that sk 2 states(A) and ak 2 acts(A), for all k, and � ends in a state if it is a �nite

sequence. Then � 2 exec(A) i�, for each i, �dAi 2 exec(Ai) and sj�1dAi = sjdAi whenever

aj =2 acts(Ai).

Proof. The lemma is a direct consequence of Corollary 8 of [LT87].

The parallel composition operator could alternatively be de�ned as a commutative and associa-

tive (up to isomorphism) binary operator. Thus, the parallel composition of N I/O automata

could be obtained by applying the binary composition operator N�1 times. We use the N -ary

parallel composition operator since it provides a simpler and more direct notation. Finally, the

parallel composition operator is restricted to the composition of �nitely many I/O automata

in order to preserve compatibility with the timed model, where composition of in�nitely many

live timed I/O automata is not possible.

Parallel composition is typically used to build complex systems based on simpler components.

However, some actions are meant to represent internal communications between the subcom-

ponents of the complex system. The hiding operator of [LT87] changes some external actions

into internal actions.

De�nition 3.6 (Action hiding)

Let A be a safe I/O automaton and let � be a set of actions such that � � local(A). Then

de�ne A n� to be the safe I/O automaton such that

1. states(A n �) = states(A)

2. start(A n �) = start(A)

3. in(A n �) = in(A)

4. out(A n�) = out(A) n �

5. int(A n �) = int(A) [ �

6. steps(A n�) = steps(A)

Lemma 3.7

Let A be a safe I/O automaton and � � local(A). Then exec(A n �) = exec(A).
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Proof. The lemma is a direct consequence of Corollary 13 of [LT87].

Several processes might be identical except for their actions' names. The processes of a token

ring communication network provide a classical example. Such processes can be speci�ed

by �rst de�ning a generic automaton representing the functionality of a generic token ring

process, and then creating an instance for each process by renaming the actions of the generic

automaton via an action renaming operation. Action renaming can also be used to resolve

name clashes that lead to incompatibilities in De�nition 3.4.

De�nition 3.8 (Action renaming)

A mapping � from actions to actions is applicable to a safe I/O automaton A if it is injective

and acts(A) � dom(�). Given a safe I/O automaton A and a mapping � applicable to A,

de�ne �(A) to be the safe I/O automaton such that

1. states(�(A)) = states(A)

2. start(�(A)) = start(A)

3. in(�(A)) = �(in(A))

4. out(�(A)) = �(out(A))

5. int(�(A)) = �(int(A))

6. steps(�(A)) = f(s; �(a); s0) j (s; a; s0) 2 steps(A)g

Lemma 3.9

Let A be a safe I/O automaton and let � be a mapping applicable to A. For each execution

� 2 exec(A), let �(�) be the sequence that results from replacing each occurrence of every

action a in � by �(a). Then exec(�(A)) = f�(�) j � 2 exec(A)g.

Proof. The lemma is a direct consequence of Lemma 15 of [LT87].

3.4 Live I/O Automata

In de�ning live I/O automata one could follow the approach of De�nition 3.2 and de�ne a

live I/O automaton to be a pair (A;L) where A is a safe I/O automaton and L is a liveness

condition for A. However, such a naive de�nition would not capture the fact that a live I/O

automaton should behave properly independently of the inputs provided by its environment.

Given the structure of our liveness conditions, such independence from the environment will

prove to play a fundamental role in the proofs for the closure of live I/O automata under

parallel composition and the substitutivity of our trace based preorders.
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Example 3.10

Let A be a the safe I/O automaton described by the diagram,

A : s

! 
a;b

# //

where a is an input action and b is an output action. Let L be the set of executions of

A containing at least �ve occurrences of action a. L is trivially a liveness condition for A;

however, the pair (A;L) would not behave properly if the environment does not provide more

than four a actions (recall that behaving properly means being an execution of L).

Some of the problems arising from the requirement that a live I/O automaton should behave

properly independently of the inputs provided by its environment are addressed in [Dil88,

AL93]. Their solutions lead to the notion of receptiveness . Intuitively a system is receptive if

it behaves properly independently of the inputs provided by its environment, or equivalently, if

it does not constrain its environment. The interaction between a system and its environment

is represented as a two person game where the environment moves consist of providing an

arbitrary �nite number of inputs, i.e., in our model, a �nite number of input actions, and the

system moves consist of performing at most one local step, i.e., in our model, at most one

locally-controlled step. A system is receptive if it has a way to win the game (i.e., to behave

properly) independently of the moves of its environment. The fact that an environment move

can include at most a �nite number of actions represents the natural requirement that the

environment cannot be in�nitely faster than the system.

The behavior of the system during the game is determined by a strategy . In our model

a strategy consists of a pair of functions (g; f). The function g decides which of the possible

states the system reaches in response to any given input action; the function f determines the

next move of the system. The move can be a local step or no step (? move).

De�nition 3.11 (Strategy)

Consider any safe I/O automaton A. A strategy de�ned on A is a pair of functions (g; f) where

g : exec�(A)� in(A)! states(A) and f : exec�(A)! (local(A)� states(A))[ f?g such that

1. g(�; a) = s implies �as 2 exec�(A)

2. f(�) = (a; s) implies �as 2 exec�(A)

In the game between the environment and the system the moves of the environment are repre-

sented as an in�nite sequence I, called an environment sequence, of input actions interleaved

with in�nitely many � symbols. The symbol � represents the points at which the system is

allowed to move. The occurrence of in�nitely many � symbols in an environment sequence

guarantees that each environment move consists of only �nitely many input actions.
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Suppose the game starts after a �nite execution �. Then the outcome of a strategy (g; f),

given � and an environment sequence I, is the extension of � obtained by applying g at each

input action in I and f at each � in I.

De�nition 3.12 (Outcome of a strategy)

Let A be a safe I/O automaton and (g; f) a strategy de�ned on A. De�ne an environment

sequence for A to be any in�nite sequence of symbols from in(A) [ f�g with in�nitely many

occurrences of �. Then de�ne R(g;f), the next-function induced by (g; f) as follows: for any

�nite execution � of A and any environment sequence I for A,

R(g;f)(�; I) =

8>>>>><
>>>>>:

(�as; I0) if I = �I0; f(�) = (a; s)

(�; I0) if I = �I0; f(�) = ?

(�as; I0) if I = aI0; g(�; a) = s

Let � be any �nite execution of A and I any environment sequence for A. The outcome

sequence of (g; f) given � and I is the unique in�nite sequence (�n; In)n�0 that satis�es:

� (�0; I0) = (�; I) and

� for all n > 0, (�n; In) = R(g;f)(�
n�1; In�1).

Note, that (�n)n�0 forms a chain ordered by pre�x .

The outcome O(g;f)(�; I) of the strategy (g; f) given � and I is the execution limn!1 �n,

where (�n; In)n�0 is the outcome sequence of (g; f) given � and I and the limit is taken under

pre�x ordering.

Lemma 3.13

Let A be a safe I/O automaton and (g; f) a strategy de�ned on A. Then for any �nite execution

� of A and any environment sequence I for A, the outcome O(g;f)(�; I) is an execution of A

such that � � O(g;f)(�; I).

The concepts of strategies and outcomes are used to de�ne formally the property that a system

does not constrain its environment. This property is called environment-freedom. Informally,

environment-freedom requires that there exists a strategy, called an environment-free strategy,

that allows the system to win every game against its environment. In other words, every

outcome of the environment-free strategy should be an element of L. An important feature

of the de�nition of environment-freedom is that it considers outcomes where the environment-

free strategy for (A;L) is applied after any �nite execution of A. The discussion following the

de�nition shows that this feature leads to a clean separation of safety and liveness properties.
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De�nition 3.14 (Environment-freedom)

A pair (A;L), where A is a safe I/O automaton and L � exec(A), is environment-free if

there exists a strategy (g; f) de�ned on A such that for any �nite execution � of A and any

environment sequence I for A, the outcome O(g;f)(�; I) is an element of L. The strategy (g; f)

is called an environment-free strategy for (A;L).

Lemma 3.15

Consider the pair (A;L), where A is a safe I/O automaton and L � exec(A). If (A;L) is

environment-free, then L is a liveness condition for A.

Proof. Consider any environment-free strategy (g; f) for (A;L), any �nite execution � of A,

and any environment sequence I for A. Then, since (g; f) is an environment-free strategy for

(A;L), the outcome O(g;f)(�; I) is an element of L. Furthermore, by Lemma 3.13, O(g;f)(�; I)

is an extension of �. Hence, any �nite execution of A has an extension in L.

De�nition 3.16 (Live I/O automaton)

A live I/O automaton is a pair (A;L), where A is a safe I/O automaton and L � exec(A),

such that (A;L) is environment-free.

Example 3.17

Consider the safe I/O automaton A described by the transition diagram below.

s1

s0 s2 s3

s4 s5 s6

"

!
i

 

OO

i //

o

|
|
|
|
|
|

>>

i

B
B
B
B
B
B

  

"

!
i

 

OO
o // "

!
i

 

OO

i // "

!
i

 

OO
o // "

!
i

 

OO

The unique start state of A is s0. Action i is an input action and action o is an output action.

Let L be the liveness condition for A consisting of the set of executions of A with at least one

occurrence of action o. The pair (A;L) is not environment-free. Speci�cally, consider the �nite

execution � = s0is4 and the environment sequence I = ��� � � �. Performing action o after

reaching state s4 requires receiving an input i. Therefore, there is no strategy whose outcome

given � and I is an execution in L.

De�ne a new automaton A0 from A by removing states s4; s5; s6, and let L0 be the set

of executions of A0 containing at least one occurrence of action o. Then the pair (A0; L0) is

environment-free. Function f chooses to perform action o whenever applied to an execution

ending in s0 or s2 and chooses ? otherwise; function g always moves to the only possible next
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state. In [AL93] the pair (A;L) is said to be realizable and is identi�ed with its realizable

part (A0; L0). Realizability can be de�ned in our model by considering only those outcomes

O(g;f)(�; I) where � consists of a start state. However, the approach of [AL93] implies that

state s4 should never be reached in (A;L), thus adding new safety requirements to A via

L. It is the requirement of our environment-freedom condition that O(g;f)(�; I) � L for all

� 2 exec�(A) which ensures that such new safety properties are not introduced.

Let B be a safe I/O automaton that performs its unique output action i just once, and let

LB be the set of executions of B. The pair (B;LB) is trivially a live I/O automaton. It is

easy to see that the parallel composition (A;L) k (B;LB) is not even a live automaton. Thus,

realizable pairs are not closed under parallel composition. The reader is referred to Section 3.6

for more details.

Remark 3.18

Note that for a pair (A;L) to be environment-free, all input actions must be enabled in all

reachable states. Consider any reachable state s of A and any �nite execution � of A leading to

state s. Since � must be extendible for all input actions that the environment might provide,

each input action must be enabled in s. For this reason safe I/O automata are required to be

input-enabled by de�nition.

The parallel composition, hiding and renaming operators can now be extended to live I/O

automata by using the results of Lemmas 3.5, 3.7, and 3.9.

De�nition 3.19 (Parallel composition)

Live I/O automata (A1; L1); : : : ; (AN ; LN) are compatible i� the safe I/O automata A1; : : : ; AN

are compatible.

The parallel composition (A1; L1) k � � � k (AN ; LN) of compatible live I/O automata

(A1; L1), : : : ; (AN ; LN) is de�ned to be the pair (A;L) where A = A1 k � � � k AN and

L = f� 2 exec(A) j �dA1 2 L1; : : : ; �dAN 2 LNg.

De�nition 3.20 (Action hiding)

Let (A;L) be a live I/O automaton and let � be a set of actions such that � � local(A). Then

de�ne (A;L) n � to be the pair (A n �; L).

De�nition 3.21 (Action renaming)

A mapping � from actions to actions is applicable to a live I/O automaton (A;L) if it is

applicable to A. Let � be an execution of (A;L). De�ne �(�) to be the sequence that results

from replacing each occurrence of every action a in � by �(a). Given a live I/O automaton

(A;L) and a mapping � applicable to (A;L), de�ne �((A;L)) to be the pair (�(A); f�(�) j � 2

Lg).
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All the operators above are closed for live I/O automata in the sense that they produce a new

live I/O automaton whenever applied to live I/O automata.

Proposition 3.22 (Closure of action hiding)

Let (A;L) be a live I/O automaton and let � � local(A). Then (A;L) n � is a live I/O

automaton.

Proof. To see that (A;L) n � is a live I/O automaton it is su�cient to note that A n � is a

safe I/O automaton, L � exec(A n�) (by Lemma 3.7), and that an environment-free strategy

for (A;L) is also an environment-free strategy for (A;L) n �.

Proposition 3.23 (Closure of action renaming)

Let (A;L) be a live I/O automaton and let � be a mapping applicable to (A;L). Then �((A;L))

is a live I/O automaton.

Proof. To see that �((A;L)) is a live I/O automaton it is su�cient to note that �(A) is a safe

I/O automaton, f�(�) j � 2 Lg � exec(�(A)) (by Lemma 3.9), and that an environment-free

strategy for (A;L) can easily be modi�ed to be an environment-free strategy for �((A;L)).

Speci�cally, since � is injective, any environment-free strategy (g; f) for (A;L) can be trans-

formed into a new environment-free strategy (g�; f�) for �((A;L)) where

g�(�(�); �(a)) = g(�; a)

f�(�(�)) =

(
(�(a); s) if f(�) = (a; s)

? if f(�) = ?

The analysis for the parallel composition operator is more complicated and needs some technical

lemmas. Given (A;L) = (A1; L1) k � � � k (AN ; LN), it is easy to see that A is a safe I/O

automaton since its de�nition is based on the parallel composition of safe I/O automata.

However, it is not as easy to see that the pair (A;L) is environment-free, and hence a live

I/O automaton. The proof that (A;L) is environment-free uses a strategy (g; f) for (A;L)

based on environment-free strategies (gi; fi) for each of the (Ai; Li), and shows that (g; f) is

an environment-free strategy for (A;L).

Function g should compute, given input a, the next state according to the gi functions of

those components of A for which a is an input action, and simply leave the state unchanged

for those components where a is not an action.

Function f must ensure that every component of A gets a chance to control a step of

A in�nitely often. This fact accounts for much of the complexity in the de�nition of (g; f).

Ensuring that every component of A gets a chance to control a step in�nitely often would most

naturally be done by assigning the control of steps to components in a round robin fashion. The
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round robin based approach, however, would give rise to a technical problem in the de�nition

of f : since the only argument to f is a �nite execution �, the component whose turn it is to

control the step in the round robin schedule must be determined from �. Unfortunately, the

�nite execution � does not include enough information to make this determination. Consider

the following scenario. Assume that it is component Ai's turn to control the step after a �nite

execution �. Assume further that Ai decides to perform a ? move and that the next input is a

� symbol. In this case � will not change and, thus, it will again be Ai's turn to control the next

step. Therefore, the round robin protocol is violated. The problem is, of course, that ? and

� moves are \invisible" in �. One solution to this problem would be to let f be a function of

\extended" executions that contain information about ? and � moves. The problem with this

solution, however, is that it becomes messy due to the fact that this new notion of execution

must keep track of ? and � moves of subcomponents of components, and so on. An alternative

solution, adopted in our de�nition of f , uses the number of locally-controlled actions in �

to determine which component controls a step. If the component controlling a step wants

to perform a ? move but another component wants to perform a local step, a component

wanting to perform the local step is given control. Thus a new locally-controlled action is

added ensuring that another component will be given the opportunity to control the next step.

Only if all components want to perform ? moves, does f yield a ? move.

One �nal technicality in the de�nition of f is that it uses the gi functions. In particular, if

a component performs a local step with action a, action a might be an input action of other

components. In this case, the de�nition of f will need the gi functions of all those components

for which action a is an input action.

De�nition 3.24 (Parallel composition of strategies)

LetA = A1 k � � � k AN be the parallel composition of compatible safe I/O automataA1; : : : ; AN .

For each �nite execution � 2 exec�(A), let l(�) be the number of occurrences of locally-

controlled actions of A in �, i.e., l(�) = j� � local(A)j, and let p(�) = (l(�) mod N) + 1. Let,

for each 1 � i � N , (gi; fi) be a strategy de�ned on Ai.

The parallel composition (g1; f1) k � � � k (gN ; fN) of the strategies (g1; f1); : : : ; (gN ; fN) is the

pair of functions (g; f) de�ned as follows.

Function g : exec�(A)� in(A)! states(A) is de�ned such that g(�; a) = s where, for each

component Ai,

sdAi =

(
gi(�dAi; a) if a 2 in(Ai)

lstate(�)dAi otherwise

Function f : exec�(A)! (local(A) � states(A)) [ f?g is de�ned for � based on the following

cases:

1. If there exists Ai such that fi(�dAi) 6= ?, then de�ne k as follows. If fp(�)(�dAp(�)) 6= ?,

then k = p(�). Otherwise, k is the minimum index i such that fi(�dAi) 6= ?. Now let
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fk(�dAk) = (a; sk) and de�ne f(�) = (a; s) where, for each component Ai,

sdAi =

8><
>:

sk if i = k

gi(�dAi; a) if a 2 in(Ai)

lstate(�)dAi otherwise

2. If fi(�dAi) = ? for all Ai

then f(�) = ?.

It is easy to see that the strategy of De�nition 3.24 is indeed a strategy de�ned on A.

Lemma 3.25

Let A1; : : : ; AN be compatible safe I/O automata and let, for each 1 � i � N , (gi; fi) be a

strategy de�ned on Ai. Then (g1; f1) k � � � k (gN ; fN) is a strategy de�ned on A1 k � � � k AN .

Proof. Let A = A1 k � � � k AN and (g; f) = (g1; f1) k � � � k (gN ; fN). From De�nition 3.4, we

know that A is a safe I/O automaton. Now the proof is a simple cases analysis on the di�erent

cases of De�nition 3.24. In fact, for each one of those cases, it is su�cient to show that f and

g give legal steps of A.

The following lemma is the key lemma for proving that the strategy of De�nition 3.24 is

environment-free if the component strategies are environment-free. The lemma shows that the

projection of an outcome of the composed strategy onto any Ai is an outcome of the strategy

(gi; fi). Intuitively, this means that, even though the composed system uses its composed

strategy to �nd its outcome, it still looks to each component as if it was using its own component

strategy.

Lemma 3.26

Let A1; : : : ; AN be compatible safe I/O automata and, for each 1 � i � N , let (gi; fi) be a

strategy de�ned on Ai. Let A = A1 k � � � k AN and let (g; f) = (g1; f1) k � � � k (gN ; fN).

Furthermore, let � be an arbitrary �nite execution of A, I be an arbitrary environment

sequence for A, and i, with 1 � i � N , be an arbitrary index. Then, there exists an environment

sequence Ii for Ai such that O(g;f)(�; I)dAi = O(gi;fi)(�dAi; Ii).

Proof. From De�nition 3.4 we know that A is a safe I/O automaton. Furthermore, by

Lemma 3.25, (g; f) is a strategy de�ned on A.

Let R(g;f) and R(gi;fi) be the next-functions induced by (g; f) and (gi; fi), respectively.

Also, let (�n; In)n�0 be the outcome sequence of (g; f) given � and I. Then O(g;f)(�; I) =

limn!1 �n. Finally, for any �nite execution �0 2 exec�(A), let l(�0) be the number of oc-

currences of locally-controlled actions of A in �0, i.e., l(�0) = j�0 � local(A)j, and let p(�0) =

(l(�0) mod N) + 1. (See De�nition 3.24.)
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The �rst step of the proof consists of constructing an environment sequence Ii such that

O(g;f)(�; I)dAi = O(gi;fi)(�dAi; Ii). The construction of Ii is inductive on n. Along with

Ii, the inductive de�nition constructs an outcome sequence (�ji ; I
j
i )j�0 of (gi; fi) given �dAi

and Ii, and a total nondecreasing mapping m with signature N0 ! N0, which, informally,

maps elements of the outcome sequence (�n; In)n�0 to their corresponding elements of the

outcome sequence (�
j
i ; I

j
i )j�0. The nth step of the inductive construction of Ii de�nes the

(m(n� 1) + 1)th; : : : ; m(n)th elements of Ii, which are denoted by Ii;m(n�1)+1; : : : ; Ii;m(n).

Along with the inductive de�nitions, three properties are proven: the �rst property shows

the correspondence between �n and �
m(n)

i ; the second and third property are used to show

that (�
j
i ; I

j
i )j�0 is indeed an outcome sequence of (gi; fi) given �dAi and Ii. Formally, the

properties are written as follows.

P1 �ndAi = �
m(n)

i .

P2 If n > 0 and m(n) = m(n� 1) + 1 then (�
m(n)

i ; ") = R(gi;fi)(�
m(n�1)
i ; Ii;m(n)).

P3 If n > 0 and m(n) = m(n � 1) + 2 then (�
m(n)�1
i ; ") = R(gi;fi)(�

m(n�1)
i ; Ii;m(n)�1) and

(�
m(n)

i ; ") = R(gi;fi)(�
m(n)�1
i ; Ii;m(n)).

The base part of the proof is trivial. The inductive part of the proof is divided into cases based

on the de�nition of R(g;f) (c.f. De�nition 3.12) and then subcases based on the de�nition of

(g; f) (c.f. De�nition 3.24).

Base case n = 0:

De�ne: m(0) = 0

�
m(0)

i = �0dAi

P1 By de�nition.

P2 Vacuously satis�ed.

P3 Vacuously satis�ed.

Inductive step n > 0:

Assume P1{P3 hold for all k < n. The de�nition of R(g;f) suggests three cases which are

considered in order.

Case 1 (�n; In) = (�n�1as; tail(In�1)) where f(�n�1) = (a; s) and head(In�1) = �.

The de�nition of f in De�nition 3.24 suggests the following sub cases:

Case 1.1 p(�n�1) = i and a =2 acts(Ai).

De�ne: m(n) = m(n� 1) + 1

�
m(n)

i = �
m(n�1)
i

Ii;m(n) = �
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P1 Since p(�n�1) = i and a =2 acts(Ai), case 1 of the de�nition of f shows that

sdAi = lstate(�n�1)dAi. Now,

�ndAi
1
= (�n�1as)dAi

2
= �n�1dAi

3
= �

m(n�1)
i

4
= �

m(n)

i

where steps 1 and 4 follow from the de�nitions made in this case, step 2 follows

from the fact that sdAi = lstate(�n�1)dAi and s =2 acts(Ai), and step 3 follows

from the induction hypothesis.

P2 Since p(�n�1) = i and a =2 acts(Ai), case 1 of the de�nition of f shows

that fi(�
n�1dAi) = ?. Based on the induction hypothesis fi(�

m(n�1)
i ) =

fi(�
n�1dAi), so fi(�

m(n�1)
i ) = ?. Now case two of the de�nition of R(gi;fi)

con�rms that (�
m(n)

i ; ") = R(gi;fi)(�
m(n�1)
i ; Ii;m(n)).

P3 Vacuously satis�ed.

Case 1.2 p(�n�1) = i and a 2 in(Ai).

De�ne: m(n) = m(n� 1) + 2

�
m(n)�1
i = �

m(n�1)
i

�
m(n)

i = �
m(n)�1
i asdAi

Ii;m(n)�1 = �

Ii;m(n) = a

P1 In this case,

�ndAi
1
= (�n�1as)dAi
2
= �n�1dAiasdAi

3
= �

m(n�1)
i asdAi

4
= �

m(n)�1
i asdAi

5
= �

m(n)

i

where steps 1, 4 and 5 follow from the de�nitions made in this case, step 2

follows from the fact that a 2 acts(Ai), and step 3 follows from the induction

hypothesis.

P2 Vacuously satis�ed.

P3 Since p(�n�1) = i and a 2 in(Ai), case 1 of the de�nition of f shows that

fi(�
n�1dAi) = ?. Based on the induction hypothesis fi(�

m(n�1)
i ) = fi(�

n�1dAi),

so fi(�
m(n�1)
i ) = ?. Now case two of the de�nition of R(gi;fi) con�rms that

(�
m(n)�1
i ; ") = R(gi;fi)(�

m(n�1)
i ; Ii;m(n)�1).

Since a 2 in(Ai), case 1 of the de�nition of f shows that gi(�
n�1dAi; a) =

sdAi. Based on the induction hypothesis gi(�
m(n�1)
i ; a) = gi(�

n�1dAi; a). By

de�nition gi(�
m(n)�1
i ; a) = gi(�

m(n�1)
i ; a), so gi(�

m(n)�1
i ; a) = sdAi. Now case

three of the de�nition of R(gi;fi) shows that (�
m(n)

i ; ") = R(gi;fi)(�
m(n)�1
i ; Ii;m(n)).
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Case 1.3 p(�n) = i and a 2 local(Ai) or p(�
n) 6= i and a 2 local(Ai).

De�ne: m(n) = m(n� 1) + 1

�
m(n)

i = �
m(n�1)
i asdAi

Ii;m(n) = �

P1 In this case,

�ndAi
1
= (�n�1as)dAi

2
= �n�1dAiasdAi

3
= �

m(n�1)
i asdAi

4
= �

m(n)

i

where steps 1 and 4 follow from the de�nitions made in this case, step 2 follows

from the fact that a 2 acts(Ai) and step 3 follows from the induction hypothesis.

P2 Since a 2 local(Ai), case 1 of the de�nition of f shows that fi(�
n�1dAi) =

(a; sdAi). Based on the induction hypothesis fi(�
m(n�1)
i ) = fi(�

n�1dAi), so

fi(�
m(n�1)
i ) = (a; sdAi). Now case one of the de�nition of R(gi;fi) con�rms that

(�
m(n)

i ; ") = R(gi;fi)(�
m(n�1)
i ; Ii;m(n)).

P3 Vacuously satis�ed.

Case 1.4 p(�n) 6= i and a 2 in(Ai).

De�ne: m(n) = m(n� 1) + 1

�
m(n)

i = �
m(n�1)
i asdAi

Ii;m(n) = a

P1 In this case,

�ndAi
1
= (�n�1as)dAi
2
= �n�1dAiasdAi

3
= �

m(n�1)
i asdAi

4
= �

m(n)

i

where steps 1 and 4 follow from the de�nitions made in this case, step 2 follows

from the fact that a 2 acts(Ai) and step 3 follows from the induction hypothesis.

P2 Since a 2 in(Ai) case 1 of the de�nition of f shows that gi(�
n�1dAi; a) =

sdAi. Based on the induction hypothesis gi(�
m(n�1)
i ; a) = gi(�

n�1dAi; a), so

gi(�
m(n�1)
i ; a) = sdAi. Now case three of the de�nition R(gi;fi) con�rms that

(�
m(n)

i ; ") = R(gi;fi)(�
m(n�1)
i ; Ii;m(n)).

P3 Vacuously satis�ed.

Case 1.5 p(�n) 6= i and a =2 acts(Ai).

De�ne: m(n) = m(n� 1)
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P1 Since p(�n�1) 6= i and a =2 acts(Ai), case 1 of the de�nition of f shows that

sdAi = lstate(�n�1)dAi. Now,

�ndAi
1
= (�n�1as)dAi

2
= �n�1dAi

3
= �

m(n�1)
i

4
= �

m(n)

i

where steps 1 and 4 follow from the de�nitions made in this case, step 2 follows

from the fact that sdAi = lstate(�n�1)dAi and a =2 acts(Ai), and step 3 follows

from the induction hypothesis.

P2 Vacuously satis�ed.

P3 Vacuously satis�ed.

Case 2 (�n; In) = (�n�1; tail(In�1)) where f(�n�1) = ? and head(In�1) = �.

De�ne: m(n) = m(n� 1) + 1

�
m(n)

i = �
m(n�1)
i

Ii;m(n) = �

P1 In this case,

�ndAi
1
= �n�1dAi

3
= �

m(n�1)
i

4
= �

m(n)

i

where steps 1 and 3 follow from the de�nitions made in this case, step 2 follows from

the induction hypothesis.

P2 Since f(�n�1) = ?, case 2 of the de�nition of f shows that fi(�
n�1dAi) = ?. Based

on the induction hypothesis fi(�
m(n�1)

i ) = fi(�
n�1dAi), so fi(�

m(n�1)

i ) = ?. Now

case two of the de�nition ofR(gi;fi) con�rms that (�
m(n)

i ; ") = R(gi;fi)(�
m(n�1)
i ; Ii;m(n)).

P3 Vacuously satis�ed.

Case 3 (�n; In) = (�n�1as; tail(In�1)) where g(�n�1; a) = s and head(In�1) = a.

The de�nition of g in De�nition 3.24 suggests the following sub cases:

Case 3.1 a 2 in(Ai).

De�ne: m(n) = m(n� 1) + 1

�
m(n)

i = �
m(n�1)
i asdAi

Ii;m(n) = a
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P1 In this case,

�ndAi
1
= (�n�1as)dAi

2
= �n�1dAiasdAi

3
= �

m(n�1)
i asdAi

4
= �

m(n)

i

where steps 1 and 4 follow from the de�nitions made in this case, step 2 follows

from the fact that a 2 acts(Ai) and step 3 follows from the induction hypothesis.

P2 The de�nition of g shows that gi(�
n�1dAi; a) = sdAi. Based on the induction

hypothesis, gi(�
m(n�1)
i ; a) = gi(�

n�1dAi; a), so gi(�
m(n�1)
i ; a) = sdAi. Now case

three of the de�nition of R(gi;fi) shows that (�
m(n)

i ; ") = R(gi;fi)(�
m(n�1)
i ; Ii;m(n)).

P3 Vacuously satis�ed.

Case 3.2 a =2 in(Ai).

De�ne: m(n) = m(n� 1)

P1 The de�nition of g shows that sdAi = lstate(�n�1)dAi. Then,

�ndAi
1
= (�n�1as)dAi

2
= �n�1dAi

3
= �

m(n�1)
i

4
= �

m(n)

i

where steps 1 and 4 follow from the de�nitions made in this case, step 2 follows

from the fact that sdAi = lstate(�n�1)dAi and a =2 acts(Ai), and step 3 follows

from the induction hypothesis.

P2 Vacuously satis�ed.

P3 Vacuously satis�ed.

This concludes the inductive de�nition and induction proof.

The second part of the proof consists of showing that Ii is indeed an environment sequence

for Ai. Denote the generic jth element of Ii by Ii;j. The sequence Ii is well de�ned since

Ii;m(n) is de�ned whenever m(n) = m(n� 1)+1 and Ii;m(n)�1 and Ii;m(n) are de�ned whenever

m(n) = m(n � 1) + 2. Showing that Ii is an environment sequence for Ai induces two proof

obligations:

1. Ii;j 2 in(Ai)[ f�g for all j > 0.

This follows immediately from the de�nition of Ii;j in the induction.

2. There are in�nitely many j > 0 such that Ii;j = �.

Since I is an environment sequence, it contains in�nitely many elements. Thus, the

induction has in�nitely many steps (i.e., n ! 1). For every step, all cases of the

induction except 1:4, 1:5, 3:1, and 3:2 de�ne a new element Ii;j such that Ii;j = �. Thus,
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the proof obligation is met as long as there exists no no � 0 such that for all n > no
every step of the induction leads to case 1:4, 1:5, 3:1, or 3:2. For a contradiction assume

such an no exists. Consider the following observations about cases 1:4, 1:5, 3:1 and 3:2.

If the nth step leads to cases 3:1 or 3:2, then l(�n) = l(�n�1). If the nth step leads to

case 1:4 or 1:5, then l(�n) = l(�n�1) + 1. Furthermore, cases 1:4 and 1:5 require that

p(�n�1) 6= i, where p(�n�1) = (l(�n�1) mod N)+1. Thus, since N is �nite, there can be

at most �nitely many steps after the ntho step that lead to case 1:4 or 1:5, i.e., as many

as necessary to get p(�n�1) = i. In other words, there exists a number n1 � n0 such that

for each n � n1 the n
th step leads to case 3:1 or 3:2. However, since I is an environment

sequence, for in�nitely many n such that n > no, head(I
n�1) = �. Now there is a

contradiction since the nth step cannot lead to case 3:1 or 3:2 when head(In�1) = �.

An immediate consequence of the fact that Ii contains in�nitely many � symbols is that

limn!1m(n) =1. In fact, m(n) > m(n� 1) whenever Im(n) = �.

The �nal step of the proof consists in showing that (�ni ; I
n
i )n�0 is the outcome sequence of

(gi; fi) given �dAi and Ii, and thus that O(g;f)(�; I)dAi = O(gi;fi)(�dAi; Ii). Let I
n
i denote the

su�x of Ii generated by removing the �rst n elements of Ii. By de�nition, (�
0

i ; I
0

i ) = (�dAi; Ii).

Thus it must be veri�ed that for all n > 0, (�ni ; I
n
i ) = R(gi;fi)(�

n�1
i ; In�1i ). This fact follows

directly from P2 and P3 and the following observation: \For any strategy (g0; f 0) de�ned on

any safe I/O automaton A0, any pair of executions �0; �00 2 exec�(A0), and any environment

sequence I0, (�0; tail(I0)) = R(g0;f 0)(�
00; I0) i� (�0; ") = R(g0;f 0)(�

00; head(I0))." Since (�ni ; I
n
i )n�0

is an outcome sequence of (gi; fi) given �dAi and Ii, the de�nition of an outcome shows that

O(gi;fi)(�dAi; Ii) = limn!1 �ni . Thus,

O(g;f)(�; I)dAi
1
= (limn!1 �n)dAi

2
= limn!1(�

ndAi)
3
= limn!1(�

m(n)

i )
4
= limn!1(�

n
i )

5
= O(gi;fi)(�dAi; Ii)

where step 1 follows from the de�nition of �n, step 2 follows from the continuity of the pro-

jection operator, step 3 follows from P1, step 4 follows from the fact that limn!1m(n) = 1

and the family (�ni )n�0 form a chain ordered under pre�x, and step 5 from the fact that

O(gi;fi)(�dAi; Ii) = limn!1 �ni .

Lemma 3.27

Let (A1; L1) : : : ; (AN ; LN) be compatible live I/O automata and, for each 1 � i � N , let (gi; fi)

be an environment-free strategy for (Ai; Li). Then (g1; f1) k � � � k (gN ; fN) is an environment-

free strategy for (A1; L1) k � � � k (AN ; LN).

Proof. Let (A;L) = (A1; L1) k � � � k (AN ; LN) and (g; f) = (g1; f1) k � � � k (gN ; fN). From

De�nition 3.4, we know that A is a safe I/O automaton. Furthermore, from De�nition 3.19,

Lemma 3.5, and the fact that each Li � exec(Ai), the set L is a subset of exec(A).
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Consider any environment sequence I forA and any �nite execution � ofA. By Lemma 3.26

there exists for all Ai an environment sequence Ii such that O(g;f)(�; I)dAi = O(gi;fi)(�dAi; Ii).

Since (gi; fi) is an environment-free strategy for (Ai; Li), O(gi;fi)(�dAi; Ii) 2 Li Consequently,

O(g;f)(�; I)dAi 2 Li for all (Ai; Li). From De�nition 3.19, O(g;f)(�; I) 2 L. Thus (g; f) is an

environment-free strategy for (A;L).

Proposition 3.28 (Closure of parallel composition)

Let (A1; L1); : : : ; (AN ; LN) be compatible live I/O automata. Then (A1; L1) k � � � k (AN ; LN) is

a live I/O automaton.

Proof. Let (A;L) = (A1; L1) k � � � k (AN ; LN). From De�nition 3.4, we know that A is a

safe I/O automaton. Furthermore, from De�nition 3.19, Lemma 3.5, and the fact that each

Li � exec(Ai), the set L is a subset of exec(A).

For each 1 � i � N , let (gi; fi) be an environment-free strategy for (Ai; Li). By Lemma 3.27

the strategy (g; f) = (g1; f1) k � � � k (gN ; fN) is an environment-free strategy for (A;L). There-

fore, the pair (A;L) is environment-free. Thus, from De�nition 3.16, (A;L) is a live I/O

automaton.

Environment-freedom is a crucial property of live I/O automata since it guarantees that no

pair of compatible live I/O automata constrain each other's environments. In particular, if

pair (A;L) is not environment-free, the parallel composition operator may generate pairs that

are not even live automata.

Example 3.29

Consider safe I/O automata A and B described by the state transition diagrams below.

A : sA B : sB

! 
a;b

# //

! 
a;b

# //

For A, action b is an input action, and action a is an output action; for B, action a is an

input action and action b is an output action. Let the liveness condition LA for A be the set

of executions � of A such that trace(�) ends in (ab)1 or a1, and let the liveness condition LB

for B be the set of executions � of B such that trace(�) ends in (aabb)1 or b1.

The pairs (A;LA) and (B;LB) are not environment-free. To see that (A;LA) is not

environment-free consider the environment sequence I = bb�bb� � � �; to see that (B;LB) is

not environment-free consider the environment sequence I = aaa�aaa� � � �.

Let (C;LC) = (A;LA) k (B;LB). In this case, LC = ;. Thus LC is not a liveness condition

for C, which means that (C;LC) is not even a live automaton.
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Example 3.29 also exposes the 
aw in a simpler and more intuitive de�nition for environment-

freedom we originally considered for this paper. The simpler de�nition, which is a natural

generalization of the fairness condition of [LT87] and is also discussed in [LS89], states that \a

pair (A;L) is environment-free if for each �nite execution � of A and each (�nite or in�nite)

sequence � of input actions there is an execution fragment �0 of A such that �0din(A) = �

and � a �0 2 L." It is easy to see that the pairs (A;LA) and (B;LB) of Example 3.29 are

both environment-free based on the simpler de�nition. However, the example shows that their

composition cannot be a live I/O automaton. The problem with the simpler de�nition is that

it allows the system to choose its relative speed with respect to the environment, and it allows

the system to base its decisions on the future behavior of the environment. Example 3.29 shows

that the simpler de�nition thus gives the system too much power for parallel composition to

be closed.

3.5 Preorder Relations for Live I/O Automata

In [LT87, Dil88, AL93] the notion of implementation is expressed through some form of trace

inclusion. Similar notions of implementation can be de�ned on live I/O automata. In particular

it is possible to identify two preorder relations, the safe and the live preorders, which aim at

capturing the safety and liveness aspects of live I/O automata, respectively.

De�nition 3.30 (Trace preorders)

Given two live I/O automata (A1; L1) and (A2; L2) such that esig(A1) = esig(A2), de�ne the

following preorders:

Safe: (A1; L1) vS (A2; L2) i� traces(A1) � traces(A2)

Live: (A1; L1) vL (A2; L2) i� traces(L1) � traces(L2)

The safe preorder is the same as the unfair preorder of I/O automata [LT87], while the live

preorder is a generalization of the fair preorder of [LT87]. In particular, the live preorder

coincides with the fair preorder if, for each live I/O automaton (A;L), L is chosen to be the

set of fair executions of A. The conformation preorder of [Dil88], which expresses the notion

of implementation for complete trace structures, coincides with the live preorder when dealing

with failure free complete trace structures. Finally, the notion of implementation of [AL93],

which works in a state based model, coincides with the live preorder up to a di�erent notion

of traces arising from the state structure of the model. In [AL93], a system M1 implements a

system M2 i� the set of \traces" of the realizable part of M1 is a subset of the set of \traces"

of the realizable part of M2. Furthermore, if a system M is receptive, then M is equal to its

realizable part. Thus, for receptive systems, the implementation notion of [AL93] is just the

live trace preorder. The reader is referred to Section 3.6 for more details about realizability.

It is interesting to note that the live preorder implies the safe preorder whenever the involved

automata have �nite internal nondeterminism. On the other hand, if the involved automata do

not have �nite internal nondeterminism, the live preorder only implies �nite trace inclusion.
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Essentially, �nite internal nondeterminism requires that a live I/O automaton has a �nite

internal branching structure. In particular, an external action can lead to only a �nite number

of states, and a state may enable at most a �nite number of internal actions.

De�nition 3.31 (Finite internal nondeterminism)

An automaton A has �nite internal nondeterminism (FIN) i�, for each �nite trace � 2

traces�(A), the set flstate(�) j � 2 exec�(A); trace(�) = �g is �nite.

Proposition 3.32

Let (A1; L1) and (A2; L2) be two live I/O automata with esig(A1) = esig(A2).

1. If (A1; L1) vL (A2; L2) then traces�(A1) � traces�(A2)

2. If A2 has FIN and (A1; L1) vL (A2; L2), then (A1; L1) vS (A2; L2)

Proof.

1. Let � be a �nite trace of A1. By de�nition of trace, there is an execution �1 of A1 such

that trace(�1) = �. By de�nition of a live I/O automaton there exists an execution �0
1
of

A1 such that �1 � �0
1
and �0

1
2 L1. Since (A1; L1) vL (A2; L2), there exists an execution

�0
2
of L2 such that trace(�0

1
) = trace(�0

2
). By de�nition of a live I/O automaton, �0

2
is an

execution of A2, and, since the set of executions of an automaton is closed under pre�x,

there is a pre�x �2 of �
0
2
such that �2 is an execution of A2 and trace(�2) = �, i.e., � is

a trace of A2.

2. Finite trace inclusion follows directly from part 1. In�nite trace inclusion follows from

�nite trace inclusion, closure under pre�x of trace sets, and the fact that trace sets

of automata with �nite internal nondeterminism are closed under pre�x ordering limit

[LV91].

The proof of Proposition 3.32 supports the requirement of our de�nition of a liveness condition

(De�nition 3.2) that every safe execution be extendible to a live execution. Without this

requirement, the live preorder could not be used to infer the safe preorder, i.e., neither part of

Proposition 3.32 would hold.

An important goal of this paper is the substitutivity of the safe and live preorders for the

operators of Section 3.4. In the case of the parallel composition operator, this means that

an implementation of a system made up of several parallel components can be obtained by

implementing each component separately.

Theorem 3.33 (Substitutivity)

Let (Ai; Li); (A
0
i; L

0
i), i = 1; : : : ; N be live I/O automata, and let vX be either vS or vL. If,

for each i, (Ai; Li) vX (A0i; L
0
i), then
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1. if (A1; L1); : : : ; (AN ; LN) are compatible and (A0
1
; L0

1
); : : : ; (A0N ; L

0
N) are compatible then

(A1; L1)k � � �k(AN ; LN) vX (A0
1
; L0

1
)k � � � k(A0N ; L

0
N)

2. if � � local(A1) and � � local(A0
1
) then

(A1; L1) n� vX (A0
1
; L0

1
) n �

3. if � is a mapping applicable to both A1 and A0
1
then

�((A1; L1)) vX �((A0
1
; L0

1
))

Proof. The substitutivity results for the safe trace preorder are already proven in [LT87].

The substitutivity results for the live trace preorder follow directly from the de�nitions of

the parallel composition, hiding, and renaming operators after observing, as it is proved in

Corollaries 8, 13 and Lemma 15 of [LT87], that parallel composition, hiding and renaming of

execution sets preserve trace equivalence.

The following example shows that the absence of environment-freedom can lead to situations

where the substitutivity result of Theorem 3.33 breaks down.

Example 3.34

Consider the safe I/O automata A1; A2, and A3 with the transition diagrams below.

A1 A2 A3

s0 s0 s0

s1 s2

a
{{xx

bFF
##

 !a;b

"oo

 !a;b

"oo

! a

# //

 !b

"oo

where a and b are output actions for A1 and A2 and are input actions for A3. Let L1 (resp. L2)

be the set of executions of A1 (resp. A2) containing at least one action and let L3 be the set

of executions of A3 containing at least one occurrence of action a immediately followed by an

occurrence of action b. It is easy to check that (A1; L1) and (A2; L2) are both environment-free,

but (A3; L3) is not environment-free since it requires at least one input.

Observe that (A1; L1) vL (A2; L2) and that (A2; L2)k(A3; L3) is environment-free and thus a

live I/O automaton. One might want to conclude that (A1; L1)k(A3; L3) vL (A2; L2)k(A3; L3).

Unfortunately, this conclusion is false. In particular, let (A;L) = (A1; L1)k(A3; L3). Then, the

set L is not a liveness condition since A1 can never perform an action a followed by an action

b. Thus, the fact that (A3; L3) is not environment-free causes situations where the parallel

composition with (A3; L3) fails to lead to a pair (A;L) where L is a liveness condition. This

in turn causes the substitutivity of the parallel composition operator to fail.

There are several ways in which the live preorder can be justi�ed as an adequate notion of

implementation for live I/O automata. Since the live preorder captures the implementation
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notions of [LT87, Dil88, AL93] it can rest on the justi�cations provided for these implementa-

tion notions. For example, the fair preorder of [LT87] is justi�ed by two observations. First,

the fact that I/O automata are input-enabled guarantees that a system must respond to any

environment. In our model the same property is guaranteed by the concept of environment-

freedom. Second, by restricting attention to fair traces the correctness of an implementation

is based only on executions where the system behaves fairly. In our model this property is

guaranteed by restricting attention to live traces.

An additional justi�cation for the live preorder as a notion of implementation is based on

the concepts of safety and liveness properties. It is easy to see that the safe preorder preserves

the safety properties of a system, i.e., the safe preorder guarantees that an implementation

cannot do anything that is not allowed by the speci�cation. The live preorder, on the other

hand, preserves the liveness properties of a system, thus guaranteeing that an implementation

must do something whenever it is required to by the speci�cation. Informally, if after a sequence

of actions � something has to happen, � is not a live trace of the speci�cation, and thus not

a live trace of the implementation. Therefore, even in the implementation something has to

happen after � has occurred. If the involved systems have �nite internal nondeterminism, then

the live preorder implies the safe preorder. Thus the live preorder guarantees both safety and

liveness properties.

3.6 Comparison with Other Models

This section compares our model with the models of [Dil88, LT87, AL93] and the work of

[RWZ92].

The model of complete trace structures of [Dil88] is a special case of our model. Speci�cally,

the model of [Dil88] does not include a state structure, so that the safe part of a live automaton

in [Dil88] is given by a set of traces. Since there is no notion of a state in a complete trace

structure, a strategy for a system is simpler than our strategies in the sense that function

g is not necessary and that function f simply picks up a locally-controlled action based on

previous environment moves. By ignoring the state structure of a system, the model in [Dil88]

may erroneously view as receptive a state machine that is not environment-free based on our

model since its traces may be receptive. Thus, complete trace structures are not adequate

whenever the state structure of a system is important.

The I/O automaton model of [LT87] is also a special case of our model. An I/O automaton

M of [LT87] can be represented in our model as the environment-free pair (A;L), where A is

the I/O automaton M without the partition of its locally-controlled actions and L is the set

of fair executions of M . The environment-free strategy (g; f) for (A;L) is de�ned in such a

way that g picks up any possible next state in response to an input action, while f gives fair

turns to proceed (say in a round robin way) to all the components of M that are continuously

willing to perform some locally-controlled action. Thus [LT87] can only express some special

cases of our general liveness conditions.

The model of [AL93] is based on unlabeled state transition systems and is suitable for the
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modeling of shared memory systems. An action in [AL93] is identi�ed with a set of transi-

tions, and transitions are partitioned into environment transitions and system transitions. The

environment moves by performing an arbitrary �nite number of environment transitions and

the system responds by performing zero or one system transitions. Function g is not necessary

in a strategy for a system of [AL93] since the environment chooses the next shared state in its

move and does not modify the internal state. Function f chooses a new transition based on

the past history of the system.

A fundamental di�erence between [AL93] and our work is in that we de�ne environment-

freedom by requiring the existence of a strategy that can \win the game" after any �nite execu-

tion �, whereas [AL93] considers a weaker property, called realizability , where the requirement

is the existence of a strategy that can win starting from any start state (cf. Example 3.17).

The realizable part of a system of [AL93] is the set of behaviors that can be the outcome of

some strategy. A system is then receptive if it coincides with its realizable part. The notion of

receptiveness of [AL93] corresponds to our notion of environment-freedom, as can be derived

easily from Proposition 9 of [AL93].

Example 3.17 shows a live automaton (A;L), which is not environment-free. However,

(A;L) is realizable, and (A0; L0), which is de�ned in the same example, is the realizable part of

(A;L). In [AL93] systems are compared based on their realizable parts. Thus, it is necessary

to determine the realizable part of a system before its safety properties can be determined,

and for this reason realizable systems are closed under parallel composition in [AL93]. In

other words, L can add new safety properties to A. However, later in [AL93] a notion of

machine-realizability is introduced which separates safety and liveness properties and requires

receptiveness, or equivalently environment-freedom, just like our live I/O automata.

Finally, it is easy to show, given our de�nition of environment-freedom, that the set of live

traces of any live I/O automaton is union-game realizable according to [RWZ92], and thus

describable by means of a standard I/O automaton of [LT87]. However, in general the I/O

automaton description would involve a lot of encoding and would be extremely unnatural.

4 Timed Systems

The notion of liveness discussed in the previous section is now extended to the timed model.

Section 4.1 introduces timed automata along with timed executions and timed traces , and

shows the relationship between the new timed executions and the ordinary executions from

the untimed model. Section 4.2 introduces live timed automata. Section 4.3 de�nes safe timed

I/O automata by introducing the Input/Output distinction. Section 4.4 extends the notion

of environment-freedom to the timed model and de�nes live timed I/O automata. Section 4.5

introduces several preorders on live timed I/O automata, one of which is used to express a

notion of implementation. Finally, Section 4.6 compares our model with existing work. Since

Examples 3.10, 3.17, 3.29, and 3.34 apply equally to the timed model, our discussion focuses

on issues speci�c to the timed model.
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4.1 Timed Automata

The following de�nition of a timed automaton is the same as the corresponding de�nition

in [LV93b] except for the fact that our de�nition allows multiple internal actions. Also, the

notions of timed executions and timed traces are the same as the de�nitions of [LV93b]. The

de�nitions are repeated here but the reader is referred to [LV93b] for further details. Times

are speci�ed using a dense time domain T. In this work, as in [LV93b], let T be R�0, the set

of non-negative reals.

De�nition 4.1 (Timed automaton)

A timed automaton A is an automaton whose set of external actions contains a special time-

passage action �. De�ne the set of visible actions to be vis(A)
4

= ext(A) n f�g.

As an additional component, a timed automaton contains a mapping nowA : states(A)! T

(called now when A is clear from context), indicating the current time in a given state.

Finally, A must satisfy the following �ve axioms

S1 If s 2 start(A) then s:now = 0.

S2 If (s; a; s0) 2 steps(A) and a 6= �, then s0:now = s:now .

S3 If (s; �; s0) 2 steps(A) then s0:now > s:now .

S4 If (s; �; s0) 2 steps(A) and (s0; �; s00) 2 steps(A), then (s; �; s00) 2 steps(A).

To be able to state the last axiom, the following auxiliary de�nition is needed. Let I be an

interval of T. Then a function ! : I ! states(A) is an A-trajectory , sometimes called trajectory

when A is clear from context, if

1. !(t):now = t for all t 2 I , and

2. (!(t); �; !(t0)) 2 steps(A) for all t; t0 2 I with t < t0.

That is, ! assigns to each time t in the interval I a state having the given time t as its now

component. The assignment is done in such a way that time-passage steps can span between

any pair of states in the range of !. Denote inf (I) and sup(I) by ftime(!) and ltime(!),

respectively. If I is left closed, then denote !(ftime(!)) by fstate(!). Similarly, if I is right

closed, then denote !(ltime(!)) by lstate(!). If I is closed, then ! is said to be an A-trajectory

from fstate(!) to lstate(!). An A-trajectory ! whose domain dom(!) is a singleton set [t; t] is

also denoted by the set f!(t)g. The range of ! is denoted by rng(!).

The �nal axiom then becomes

S5 If (s; �; s0) 2 steps(A) then there exists an A-trajectory from s to s0.

Axiom S1 states that time must be 0 in any start state. Axiom S2 says that non-time-passage

steps occur instantaneously. In this framework, operations with some duration in time are
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modeled by a start action and an end action. Axiom S3 says that time-passage steps cause

time to increase. Axiom S4 gives a natural property of time, namely that if time can pass in

two steps, then it can also pass in a single step. Finally, Axiom S5 says that if time can pass

from time t to time t0, then it is possible to associate states with all times in the interval [t; t0]

in a consistent way. In [LV93b] the last axiom is explained further and compared to the weaker

axiom that says the following: if time can pass in one step, then it can pass in two steps with

the time of the intermediate state being any time in the interval.

Timed Executions

Section 3 introduced the notions of execution and trace for automata. These notions carry

over to timed automata with the addition of one new idea.

In particular, the notion of execution only allows one to associate states with a countable

number of points in time, whereas the trajectory axiom S5 allows one to associate states with

all real times. Also, the intuition about the execution of a timed system is that visible actions

occur at points in time, and that time passes \continuously" between these points. These

observations lead to the de�nition of a timed execution. The de�nition is close to the notion of

hybrid computation of [MMP91] where continuous changes and discrete events alternate during

the execution of a system.

A timed execution fragment � of a timed automaton A is a (�nite or in�nite) sequence of

alternating A-trajectories and actions in vis(A) [ int(A), starting in a trajectory and, if the

sequence is �nite, ending in a trajectory

� = !0a1!1a2!2 � � �

such that the following holds for each index i:

1. If !i is not the last trajectory in �, then its domain is a closed interval. If !i is the last

trajectory of � (when � is a �nite sequence), then its domain is a left-closed interval

(and either open or closed to the right).

2. If !i is not the last trajectory of �, then (lstate(!i); ai+1; fstate(!i+1)) 2 steps(A).

A timed execution is a timed execution fragment !0a1!1a2!2 � � � for which fstate(!0) is a start

state.

If � is a timed execution fragment, then de�ne ftime(�) and fstate(�) to be ftime(!0) and

fstate(!0), respectively, where !0 is the �rst trajectory of �. Also, de�ne ltime(�) to be the

supremum of the union of the domains of the trajectories of �, i.e. the supremum of the now

values of all the states in the ranges of the trajectories of �. Finally, if � is a �nite sequence

where the domain of the last trajectory ! is a closed interval, de�ne lstate(�) to be lstate(!).

Finite, Admissible, and Zeno Timed Executions

The timed executions and timed execution fragments of a timed automaton can be partitioned

into �nite, admissible, and Zeno timed executions and timed execution fragments.
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A timed execution (fragment) � is de�ned to be �nite, if it is a �nite sequence and the

domain of the last trajectory is a closed interval. A timed execution (fragment) � is admissible

if ltime(�) = 1. Finally, a timed execution (fragment) � is Zeno if it is neither �nite nor

admissible.

There are basically two types of Zeno timed executions: those containing in�nitely many

occurrences of non-time-passage actions but for which there is a �nite upper bound on the

times in the domains of the trajectories, and those containing �nitely many occurrences of

non-time-passage actions and for which the domain of the last trajectory is right-open. Thus,

Zeno timed executions represent executions of a timed automaton where an in�nite amount of

activity occurs in a bounded period of time. (For the second type of Zeno timed executions, the

in�nitely many time-passage steps needed to span the right-open interval should be thought

of as an \in�nite amount of activity".)

There are idealized processes that naturally exhibit Zeno behaviors. As an example consider

a ball that bounces on the 
oor and loses a fraction of its energy at each bounce. Ideally the

ball will bounce in�nitely many times within a �nite amount of time. Note, however, that

our timed automaton model cannot suitably describe this process since there is no way of

specifying what happens after the ball stops bouncing. Fortunately, Zeno behaviors do not

occur in the systems we are interested in describing.

From now on, the focus will be on admissible timed executions since these executions

correspond to the intuition that time is a force beyond control that happens to approach

in�nity. However, according to the de�nition of timed automata, it is possible to specify timed

automata for which from some states no admissible timed executions fragments are possible.

In particular, such a state may only allow a Zeno timed execution, or it may prevent time from

advancing at all (in which case a time deadlock has occurred).

Denote by t-frag�(A), t-frag1(A), t-fragZ(A), and t-frag(A) the sets of �nite, admissible,

Zeno, and all timed execution fragments of A. Similarly, denote by t-exec�(A), t-exec1(A),

t-execZ(A), and t-exec(A) the sets of �nite, admissible, Zeno, and all timed executions of A.

A �nite timed execution fragment �1 = !0a1!1 � � �an!n of A and a timed execution fragment

�2 = !0nan+1!n+1an+2!n+2 � � � of A can be concatenated if lstate(�1) = fstate(�2). The con-

catenation, written �1
a �2, is de�ned to be � = !0a1!1 � � �an(!n

a !0n)an+1!n+1an+2!n+2 � � �,

where ! a !0(t), for any functions ! and !0 from intervals of time to states(A), is de�ned to be

!(t) if t is in dom(!), and !0(t) if t is in dom(!0) n dom(!). It is easy to see that � is a timed

execution fragment of A.

The notion of timed pre�x, called t-pre�x , for timed execution fragments is de�ned as

follows. A timed execution fragment �1 of A is a t-pre�x of a timed execution fragment �2

of A, written �1 �t �2, if either �1 = �2 or �1 is �nite and there exists a timed execution

fragment �0
1
of A such that �2 = �1

a�0
1
. Likewise, �1 is a t-su�x of �2 if there exists a �nite

timed execution fragment �0
1
such that �2 = �0

1

a �1.

For a �nite timed execution fragment �1 and a timed execution fragment �2 with �1 �t �2,

de�ne �2 � �1 to be the (unique) timed execution fragment �0
1
such that �2 = �1

a �0
1
.

The length of a timed execution fragment � expresses the number of visible and internal

actions in �. Thus, even though � is admissible or Zeno (and thus not �nite), its length might
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be �nite. Formally, de�ne the length of � = !0a1!1a2!2 � � � as

j�j
4

=

(
n if � is a �nite sequence and ends in !n
1 if � is an in�nite sequence

The de�nition of ith pre�x of � = !0a1!1a2!2 � � �, for all 0 � i � j�j, is

�ji
4

= !0a1!1 � � �ai!i

De�ne � 2 t, read \� before t", for all t � ftime(�), to be the t-pre�x of � that includes

exactly all states with times not bigger than t. Formally,

�2 t
4

=

8><
>:

� if t � ltime(�)

�0 if t < ltime(�) and there exists �00 = !00
0
a00
1
!00
1
� � � such that

� = �0 a �00 and ltime(�) = t and jdom(!00
0
)j > 1

Likewise, de�ne �3 t, read \� after t", for all t < ltime(�) or all t � ltime(�) when � is �nite,

to be the t-su�x of � that includes exactly all states with times not smaller than t. Formally,

�3 t
4

=

8><
>:

� if t � ftime(�)

�0 if t > ftime(�) and there exists �00 = !00
0
a00
1
!00
1
� � �!00n such that

� = �00 a �0 and ftime(�0) = t and jdom(!00n)j > 1

Timed Traces

In the untimed model automata are compared based on their traces. This turns out to be

inadequate in the timed model as the following example illustrates. The example is a slight

modi�cation of an example in [LV91].

Example 4.2

Let Idle be a timed automaton that lets time pass except that it performs a visible action a at

time 50. More speci�cally, let the state set be T� ftrue ; falseg with the initial state (0; true),

and let the steps be

((t; b); �; (t0; b)) if t < t0 ^ (b = true =) t0 � 50); and

((50; true); a; (50; false)):

Then let idle 0 be the timed automaton that performs a at time 50 but also performs an

internal action � at time 37. Thus, the state space is T� ftrue; falseg � ftrue; falseg, initially

(0; true; true), and let the steps be

((t; b1; b2); �; (t
0; b1; b2)) if t < t0 ^ (b1 = true =) t0 � 37) ^ (b2 = true =) t0 � 50);

((37; true; true); �; (37; false; true)); and

((50; false; true); a; (50; false; false)):

Then Idle and Idle
0
do not have the same traces. In particular, Idle has a trace � a that is

not a trace for Idle 0. (Idle0 has a trace � � a since it cannot let time pass to 50 in one step.)
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This clearly contradicts the intuition about timed automata. Seen from \the outside" they

both wait until time 50 and then perform a. The example explains why traces are not a good

basis for comparing timed automata.

Note, that making � internal would not solve the problem. In that case, a timed automaton

that performs a at time 10 would have the same traces (namely a) as a timed automaton that

performs a at time 50.

The problem in Example 4.2 arises because of the invisible nature of time-passage actions.

This leads to timed traces , which consist of the visible actions together with their time of

occurrence.

Timed Sequence Pairs

A timed sequence over a set K is de�ned to be a (�nite or in�nite) sequence � over K � T in

which the second components of every pair (the time components) are nondecreasing. De�ne

� to be Zeno if it is in�nite and the limit of the time components is �nite. For any nonempty

timed sequence �, de�ne ftime(�) to be the time component of the �rst pair in �.

As for timed execution fragments, the operators 2 and 3 are de�ned on timed sequences.

De�ne � 2 t, for all t 2 T, to be the longest pre�x �0 of � such that all time components of �0

are less than or equal to t. Similarly, de�ne �3 t, for all t 2 T, to be the longest su�x1 �0 such

that all time components of �0 are greater than or equal to t.

A timed sequence pair over K is a pair 
 = (�; t), where � is a timed sequence over K and

t 2 T [ f1g, such that t is greater than or equal to all time components in �. Let seq(
)

and ltime(
) denote the two respective components of 
. Then de�ne ftime(
) to be equal

ftime(seq(
)) in case seq(
) is nonempty, and equal to ltime(
) otherwise. Denote by tsp(K)

the set of timed sequence pairs over K. A timed sequence pair 
 is said to be �nite if both

seq(
) and ltime(
) are �nite, and admissible if seq(
) is not Zeno and ltime(
) =1.

Timed Traces of Timed Automata

Let � = !0a1!1a2!2 � � � be a timed execution fragment of a timed automaton A. For each

ai, de�ne the time of occurrence ti to be ltime(!i�1), or equivalently, ftime(!i). Then, de�ne

t-seq(�) to be the sequence consisting of the actions in � paired with their time of occurrence:

t-seq(�) = (a1; t1)(a2; t2) � � �

Then t-trace(�), the timed trace of �, is de�ned to be the timed sequence pair over vis(A)

t-trace(�)
4

= (t-seq(�) � (vis(A)� T); ltime(�)):

Thus, t-trace(�) records the occurrences of visible actions together with their time of occur-

rence, and the limit time of the timed execution fragment. A timed trace suppresses both

internal and time-passage actions.

1
Strictly speaking, the su�x obtained by removing the shortest pre�x.
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Let t-traces�(A), t-traces1(A), t-tracesZ(A), and t-traces(A) denote the sets of timed traces

of A obtained from �nite, admissible, Zeno, and all timed executions of A, respectively.

Relationships Between Timed and Untimed Execution Fragments

There is a close relationship between timed execution fragments and ordinary execution frag-

ments of a timed automaton. This leads to an alternative, but equivalent, de�nition of timed

traces. All de�nitions and lemmas are taken from [LV93b].

Sampling

Roughly speaking, an (ordinary) execution fragment can be regarded as \sampling" the state

information in a timed execution fragment at a countable number of points in time. Formally,

we say that an execution fragment � = s0a1s1a2s2 � � � of A samples a timed execution fragment

� = !0b1!1b2!2 � � � of A if there is a monotone increasing function f : N0 ! N0 such that the

following conditions are satis�ed.

1. f(0) = 0,

2. bi = af(i) for all i � 1,

3. aj = � for all j not in the range of f ,

4. For all i � 0 such that !i is not the last trajectory in �,

(a) sj 2 rng(!i) for all j, f(i) � j < f(i+ 1),

(b) sf(i):now = ftime(!i), and

(c) sf(i+1)�1:now = ltime(!i).

5. If !i is the last trajectory in �, then

(a) sj 2 rng(!i) for all j, f(i) � j,

(b) sf(i):now = ftime(!i), and

(c) supfsj:now j f(i) � jg = ltime(!i).

In other words, the function f in this de�nition maps the (indices of) actions in � to corre-

sponding (indices of) actions in �, in such a way that exactly the non-time-passage actions

of � are included in the image. Condition 4 is a consistency condition relating the �rst and

last times for each non-�nal trajectory to the times produced by the appropriate steps of �.

Condition 5 gives a similar consistency condition for the �rst time of the �nal trajectory (if

any); in place of the consistency condition for the last time, there is a \co�nality" condition

asserting that the times grow to the same limit in both executions.

The following two straightforward lemmas show the relationship between timed execution

fragments and ordinary execution fragments.
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Lemma 4.3

Let A be a timed automaton. If � is an execution fragment of A, then there is a timed

execution fragment � of A such that � samples �.

Lemma 4.4

Let A be a timed automaton. If � is a timed execution fragment of A, then there is an

execution fragment � of A such that � samples �.

De�ne a state s to be t-reachable in timed automaton A provided that there is a �nite timed

execution � such that lstate(�) = s. The following lemma shows that t-reachability can

equivalently be de�ned by means of ordinary executions.

Lemma 4.5

State s is t-reachable in A i� it is reachable in A.

Proof. Straightforward using Lemmas 4.3 and 4.4.

An important consequence of Lemma 4.5 is that any technique that can prove that a property

holds for all �nal states of �nite (ordinary) executions is a sound technique for proving that

a property holds in all t-reachable states of a timed automaton. Most importantly, induction

on the steps of ordinary executions is sound in this sense. Conversely, any technique that can

prove that a property holds for all t-reachable states also proves that it holds for all reachable

states.

Finite, Admissible and Zeno Execution Fragments

An execution fragment � is �nite if it is a �nite sequence. In the timed model, an execution

fragment � is de�ned to be admissible if there is no �nite upper bound on the now values of

the states in �. Finally, an execution fragment is said to be Zeno if it is neither �nite nor

admissible.

Lemma 4.6

If � samples � then

1. � is �nite i� � is �nite,

2. � is admissible i� � is admissible, and

3. � is Zeno i� � is Zeno.
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Timed Traces

It is possible to give a sensible de�nition of the timed trace of an ordinary execution fragment

of a timed automaton. Namely, suppose � = s0a1s1a2s2 � � � is a execution fragment of a timed

automaton A. First, de�ne ltime(�) to be the supremum of the now values of all the states

in �. Then let � be the sequence consisting of the actions in � paired with their times of

occurrence:

� = (a1; s1:now)(a2; s2:now) � � � :

Then t-trace(�), the timed trace of �, is de�ned to be the pair

t-trace(�)
4

= (� � (vis(A)� T); ltime(�))

The following lemma shows that the de�nitions of timed traces for execution fragments and

timed execution fragments are properly related:

Lemma 4.7

If � samples � then t-trace(�) = t-trace(�).

4.2 Live Timed Automata

The notion of live timed automaton is now introduced. The de�nition is similar to the de�nition

of a live automaton in the untimed model (De�nition 3.2) except for the fact that the liveness

condition is a set of timed executions.

De�nition 4.8 (Live timed automaton)

A timed liveness condition L for a timed automaton A is a subset of the timed executions of

A such that any �nite timed execution of A has an extension in L. Formally, L � t-exec(A)

such that for all � 2 t-exec�(A) there exists a �0 2 t-frag(A), such that � a �0 2 L.

A live timed automaton is a pair (A;L), where A is a timed automaton and L is a timed

liveness condition for A. The timed executions of L are called the live timed executions of A.

4.3 Safe Timed I/O Automata

De�nition 4.9 (Safe timed I/O automaton)

A safe timed I/O automaton is a timed automaton augmented with a visible action signature,

vsig(A) = (in(A); out(A)), which partitions vis(A) into input and output actions. A must be

input-enabled.

The internal and output actions of a safe timed I/O automaton A are referred to as the

locally-controlled actions of A, written local(A). Thus, local(A) = int(A) [ out(A).
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Parallel composition of safe timed I/O automata is de�ned similarly to the corresponding

de�nition for the untimed model (De�nition 3.4). However, the time-passage steps and the

now mappings of the component safe timed I/O automata need special treatment. Speci�cally,

time is only allowed to pass by a certain amount in the composition if all components allow

the same amount of time to pass. Also, the state space of the composition consists of all states

in the cartesian product of the component state spaces where the component states have the

same now values. Thus, the components must agree on the time. The now mapping of the

composition is then de�ned to be the now mapping of any of the components.

De�nition 4.10 (Parallel composition)

Safe timed I/O automata A1; : : : ; AN are compatible if for all 1 � i; j � N with i 6= j, the

following conditions hold:

1. out(Ai) \ out(Aj) = ;

2. int(Ai) \ acts(Aj) = ;

The parallel composition A1k � � � kAN of compatible safe timed I/O automata A1; : : : ; AN is the

safe timed I/O automaton A such that

1. states(A) = f(s1; : : : ; sN) 2 states(A1)� � � �� states(AN) j s1:nowA1
= � � �= sN :nowAN

g

2. start(A) = start(A1)� � � � � start(AN )

3. (s1; : : : ; sN):nowA = s1:nowA1
(= s2:nowA2

= � � � = sN :nowAN
)

4. out(A) = out(A1) [ � � � [ out(AN)

5. in(A) = (in(A1)[ � � � [ in(AN )) n out(A)

6. int(A) = int(A1) [ � � � [ int(AN)

7. ((s1; : : : ; sN); a; (s
0
1
; : : : ; s0N)) 2 steps(A) i� for all 1 � i � N

(a) if a 2 acts(Ai) then (si; a; s
0
i) 2 steps(Ai)

(b) if a =2 acts(Ai) then si = s0i

Note, how Condition 7 of the de�nition captures both time-passage steps (where all components

participate) and other steps (where a subset of the components participate).

Lemma 3.5 carries over to the timed case. However, a new de�nition of projection is needed

for timed executions. Speci�cally, let A = A1k � � � kAN . For any function ! from an interval

of time to states(A), de�ne !dAi to be obtained from ! by projecting every state in the range

of ! to Ai. Let � = !0a1!1a2!2 � � � be an alternating sequence of functions from intervals of

time to states(A) and actions from acts(A) n f�g such that � does not end in an action if it is

a �nite sequence. Then the projection �dAi of � onto Ai is obtained by projecting each !k of
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� onto Ai, removing each action aj that is not an action of Ai, and concatenating each pair of

(projected) functions !k, !k+1 whose interleaved action is removed.

The following lemma relates the timed executions of a composed timed automaton with

those of the component timed automata.

Lemma 4.11

Let A = A1k � � � kAN . Let � = !0a1!1a2!2 � � � be an alternating sequence of functions from

intervals of time to states(A) and actions from acts(A) n f�g such that � does not end in an

action if it is a �nite sequence, the domain of each function !j that is not the last function of �

is closed, and, if � is a �nite sequence, the domain of the last function of � is left closed. Let

consistent(�) be the predicate that is true i� for each Ai and each j such that aj =2 acts(Ai),

lstate(!j�1)dAi = fstate(!j)dAi. Then,

1. consistent(�) and �dAi 2 t-exec�(Ai), for all Ai, i� � 2 t-exec�(A).

2. consistent(�) and �dAi 2 t-exec1(Ai), for all Ai, i� � 2 t-exec1(A).

3. consistent(�) and �dAi 2 t-execZ(Ai), for all Ai, i� � 2 t-execZ(A).

4. consistent(�) and �dAi 2 t-exec(Ai), for all Ai, i� � 2 t-exec(A).

If � 2 t-exec(A) then, for all i, ltime(�) = ltime(�dAi).

We now turn attention to the timed versions of action hiding and action renaming. The only

changes from the untimed model are the handling of the now component and the fact that the

time-passage action, �, may not be renamed.

De�nition 4.12 (Action hiding)

Let A be a safe timed I/O automaton and let � be a set of actions such that � � local(A).

Then de�ne A n � to be the safe timed I/O automaton such that

1. states(A n �) = states(A)

2. start(A n �) = start(A)

3. nowAn� = nowA

4. in(A n �) = in(A)

5. out(A n�) = out(A) n �

6. int(A n �) = int(A) [ �

7. steps(A n�) = steps(A)
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Lemma 4.13

Let A be a safe timed I/O automaton and let � be a set of actions such that � � local(A).

Then

1. t-exec�(A n �) = t-exec�(A)

2. t-exec1(A n �) = t-exec1(A)

3. t-execZ(A n�) = t-execZ(A)

4. t-exec(A n �) = t-exec(A)

De�nition 4.14 (Action renaming)

A mapping � from actions to actions is applicable to a safe timed I/O automaton A if it is

injective, acts(A) � dom(�), and �(�) = �. Given a safe timed I/O automaton and a mapping

� applicable to A, de�ne �(A) to be the safe timed I/O automaton such that

1. states(�(A)) = states(A)

2. start(�(A)) = start(A)

3. now�(A) = nowA

4. in(�(A)) = �(in(A))

5. out(�(A)) = �(out(A))

6. int(�(A)) = �(int(A))

7. steps(�(A)) = f(s; �(a); s0) j (s; a; s0) 2 steps(A)g

Lemma 4.15

Let A be a safe timed I/O automaton and � be a mapping applicable to A. For any timed

execution � of A, let �(�) denote the sequence obtained by replacing each occurrence of every

action a in � by �(a), and for any set L of timed executions of A, let �(L) = f�(�) j � 2 Lg.

Then

1. t-exec�(�(A)) = �(t-exec�(A))

2. t-exec1(�(A)) = �(t-exec1(A))

3. t-execZ(�(A)) = �(t-execZ(A))

4. t-exec(�(A)) = �(t-exec(A))
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4.4 Live Timed I/O Automata

In order to de�ne live timed I/O automata, the notion of environment-freedom is generalized

to timed systems. As for the untimed model a live timed I/O automaton is environment-free

if it can behave properly independently of the behavior of the environment. Speci�cally, a

game is set up between a timed automaton and its environment and the timed automaton is

environment-free i� it has a winning strategy against its environment.

The notion of strategy is similar to the one used for the untimed model. However, the

presence of time has a strong impact on the type of interactions that can occur between a

timed automaton and its environment.

In the untimed model the environment is allowed to provide any �nite number of input

actions at each move, and the system is allowed to perform at most one of its locally-controlled

actions at each move. Thus, the fact that the environment can be arbitrarily fast with respect

to the system, but not in�nitely fast, is re
ected in the structure of the environment moves.

This structure is not needed in the timed model since actions in the timed model are associated

with speci�c times. In particular, the relative speeds of the system and the environment are

given directly by their timing constraints. The behavior of the environment during the game

can be represented simply as a timed sequence over input actions.

In the untimed model a strategy is not allowed to base its decisions on any future input

actions from the environment. In the timed model, not only is the strategy not allowed to

know about the occurrence of future input actions, but the strategy is also not allowed to

know anything about the timing of such input actions, e.g., that no inputs will arrive in the

next � time units. Thus, if a strategy in the timed model decides to let time pass, it is required

to specify explicitly all intermediate states. By specifying all states at intermediate times for a

time-passage step, the current state of the system will always be known should the time-passage

step be interrupted by an input action.

As in the untimed model, a strategy in the timed model is a pair of function (g; f). Function

f takes a �nite timed execution and decides how the system behaves till its next locally-

controlled action under the assumption that no input are received in the meantime; function

g decides what state to reach whenever some input is received.

De�nition 4.16 (Strategy)

Consider any safe timed I/O automaton A. A strategy de�ned on A is a pair of functions

(g; f) where g : t-exec�(A) � in(A) ! states(A) and f : t-exec�(A) ! (traj (A) � local(A) �

states(A)) [ traj (A), where traj (A) denotes the set of A-trajectories, such that

1. g(�; a) = s implies �afsg 2 t-exec�(A)

2. f(�) = (!; a; s) implies � a !afsg 2 t-exec�(A)

3. f(�) = ! implies � a ! 2 t-exec1(A)

4. f is consistent , i.e., if f(�) = (!; a; s), then, for each t, ftime(!) � t � ltime(!),

f(�a (!2 t)) = (!3 t; a; s), and, if f(�) = !, then, for each t, ftime(!) � t < ltime(!),

f(� a (! 2 t)) = ! 3 t.
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For notational convenience de�ne f(�):trj =

(
! if f(�) = (!; a; s)

! if f(�) = !

Condition 1 of De�nition 4.16 states that g returns a \legal" next state given an input. Con-

ditions 2 and 3 state the two possible system moves given by f : either f speci�es time-passage

followed by a local step, or f speci�es that the system simply lets time pass forever. Note

that f speci�es all states during time passage. The consistency condition (Condition 4) for f

says that, whenever after a �nite timed execution � the system decides to behave according to

!afsg or !, after performing a part of ! the system would decide to behave according to the

rest of !afsg or !. In other words, a strategy decision cannot change in the absence of some

inputs. The consistency condition is required for the closure of the composition operator.

The game between the system and the environment works as follows. The environment can

provide any input at any time, while the system lets time pass and provides locally-controlled

actions based on its strategy. It is very important for the system moves not to be based on the

future moves of the environment. Speci�cally, at any point in time the system decides its next

move using function f . If an input comes, the system will perform its current step just until

the time at which the input occurs, and then use function g to compute the state reached as

a result of the input.

A new problem arises when the system decides to perform an action at the same time

at which the environment is providing some input. Our model does not rule out such race

conditions. Practical examples of such situations arise whenever the system has some timeout

mechanism and the input occurs exactly when the timeout period expires. The race conditions

are modeled as nondeterministic choices. As a consequence, the outcome, i.e., the result of the

game, for a timed strategy is a set of timed executions.

The following de�nition of the outcome of a strategy for safe timed I/O automata closely

parallels the corresponding de�nition in the untimed model.

De�nition 4.17 (Outcome of a strategy)

Let A be a safe timed I/O automaton and (g; f) a strategy de�ned on A. De�ne a timed

environment sequence for A to be a timed sequence over in(A), and de�ne a timed environment

sequence I for A to be compatible with a timed execution fragment � of A if either I is

empty, or � is �nite and ltime(�) � ftime(I). Then de�ne R(g;f), the next-relation induced by

(g; f), as follows: for any �;�0 2 t-exec(A) and any I; I0 compatible with �;�0, respectively,

((�; I); (�0; I0)) 2 R(g;f) i�
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(�0; I0) =

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(� a !afsg; I) where � is �nite, I = "; f(�) = (!; a; s);

(� a !; I) where � is �nite, I = "; f(�) = !;

(� a !afsg; I) where � is �nite, I = (b; t)I00; f(�) = (!; a; s);

ltime(!) � t;

(� a !0afs0g; I00) where � is �nite, I = (a; t)I00; f(�):trj = !;

ltime(!) � t; !0 = ! 2 t; g(� a !0; a) = s0; or

(�; I) where � is not �nite:

Let � be a �nite timed execution of A, and I be a timed environment sequence for A compatible

with �.

An outcome sequence of (g; f) given � and I is an in�nite sequence (�n; In)n�0 that satis�es:

� (�0; I0) = (�; I) and

� for all n > 0, ((�n�1; In�1); (�n; In)) 2 R(g;f).

Note, that (�n)n�0 forms a chain ordered by t-pre�x .

The outcome O(g;f)(�; I) of the strategy (g; f) given � and I is the set of timed executions

�0 for which there exists an outcome sequence (�n; In)n�0 of (g; f) given � and I such that

�0 = limn!1 �n.

The set of outcome sequences of (g; f) given some � and I is determined step by step using

the next-relation R(g;f). In the de�nition of R(g;f), the �rst, second, and third cases deal with

di�erent situations in which no input occurs during the system move chosen by f . The fourth

case takes care of the situation in which inputs do occur during the system move chosen by f .

Note, that the third and fourth cases may both be applicable whenever the next input action

of I and the local action chosen by f occur at the same time. This is why the outcome is a

set of timed executions. Finally, the �fth case is needed for technical convenience, since the

second case generates an admissible timed execution.

The following lemma states that an outcome set is never empty and that an element of

an outcome cannot be �nite. Furthermore, if an element of an outcome is Zeno, it contains

in�nitely many actions (other than the implicit time-passage actions).

Lemma 4.18

Let A be a safe timed I/O automaton, (g; f) a strategy de�ned on A, � a �nite timed execution

of A, and I a timed environment sequence for A compatible with �. Then O(g;f)(�; I) 6= ;

and O(g;f)(�; I) � (t-exec1(A) [ t-execZ(A)). Furthermore, if �0 2 O(g;f)(�; I) and �0 2

t-execZ(A), then j�0 � acts(A)j =1.
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Proof. Let R(g;f) be the next-relation induced by (g; f). Construct an outcome sequence

of (g; f) given � and I inductively as follows. De�ne (�0; I0) = (�; I). For any n > 0,

assume (�n�1; In�1) has been de�ned. Then it is easy to see that the condition of at least

one case in the de�nition of R(g;f) is satis�ed. Thus, de�ne (�
n; In) to be any pair such that

((�n�1; In�1); (�n; In)) 2 R(g;f). This inductively de�ned outcome sequence gives rise to an

element in O(g;f)(�; I). That proves that O(g;f)(�; I) is not empty.

Now, let (�n; In) be an arbitrary outcome sequence of (g; f) given � and I. Clearly, �0 = � 2

t-exec(A). Now assume, that �n 2 t-exec(A). Then, by the four conditions of De�nition 4.16,

it is easy to see that also �n+1 2 t-exec(A). Thus, by induction, �n 2 t-exec(A) for all n � 0.

Now, assume �0 = limn!1(�
n) =2 t-exec(A). Then there must be a �nite t-pre�x �00 of �0 such

that �00 =2 t-exec�(A). Also, �00 must be a t-pre�x of �n for some n. However, this contradicts

the fact that �n 2 t-exec(A). Thus, �0 2 t-exec(A).

Now, assume that �0 is �nite. Then there exists a number n0 such that for all n > n0, �n =

�n�1 = �0, but this contradicts the de�nition of R(g;f). Thus, O(g;f)(�; I) � (t-exec1(A) [

t-execZ(A))

Finally, it is easy to see that if �0 2 t-execZ(A), then �0 is an in�nite sequence of trajectories

and actions. Only the second case in the de�nition of R(g;f) can lead to a �nite sequence, but

in this case the outcome will be admissible (cf. De�nition 4.16 Condition 3). This proves the

�nal part of the lemma.

Another problem due to the explicit presence of time in the model is the capability of a system

to block time. Under the reasonable assumption that it is natural for a system to require that

time advances forever, a timed automaton that blocks time cannot be environment-free. Thus,

we could assume that �nite and Zeno timed executions are not live and that the environment

cannot block time. However, as is illustrated in the following example due to Lamport, Zeno

timed executions cannot be ignored completely.

Example 4.19

Consider two safe timed I/O automata A;B such that in(A) = out(B) = fbg and out(A) =

in(B) = fag. Let A start by performing its output action a and let B start by waiting for

some input. Furthermore, let both A and B reply to their nth input with an output action

exactly 1=2n time units after the input has occurred.

Consider the following de�nition of environment-freedom, which assumes that the environ-

ment does not behave in a Zeno manner: a pair (A;L) is environment-free i� there exists a

strategy (g; f) de�ned on A such that for each �nite timed execution � of A and any admissible

timed environment sequence I for A compatible with � we have O(g;f)(�; I) � L. Then it is

easy to observe that, if LA and LB are de�ned to be the set of admissible timed executions

of A and B, respectively, the pairs (A;LA) and (B;LB) are environment-free. However, the

parallel composition of A and B yields no admissible executions, rather it only yields a Zeno

timed execution, which blocks time. Thus, the parallel composition of (A;LA) and (B;LB)

constrains the environment. Observe that (A;LA) and (B;LB) \unintentionally" collaborate
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to generate a Zeno timed execution: each pair looks like a Zeno environment to the other.

To eliminate the problem of Example 4.19 one must ensure that a system does not collaborate

with its environment to generate a Zeno timed execution. We call Zeno-tolerant those timed

executions where such a collaboration does not arise.

De�nition 4.20 (Special types of timed executions)

Given a safe timed I/O automaton A, and given a timed execution � of A,

� � is said to be environment-Zeno if � is a Zeno timed execution that contains in�nitely

many input actions;

� � is said to be system-Zeno if � is a Zeno timed execution that either contains in�nitely

many locally-controlled actions or contains �nitely many actions;

� � is said to be Zeno-tolerant if it is an environment-Zeno, non-system-Zeno timed exe-

cution; equivalently, � is Zeno-tolerant if

1. ltime(�) is �nite,

2. � contains in�nitely many input actions, and

3. � contains �nitely many locally-controlled actions.

Denote by t-execZt(A) the set of Zeno-tolerant timed executions of A.

A Zeno-tolerant strategy guarantees that the system never chooses to block time in order to

win its game against the environment. That is, a Zeno-tolerant strategy produces Zeno timed

executions only when applied to a Zeno timed environment sequence I, and in these cases the

outcome is Zeno-tolerant. Thus, the system does not respond to Zeno inputs by behaving in a

Zeno fashion.

De�nition 4.21 (Zeno-tolerant strategy)

A strategy (g; f) de�ned on a safe timed I/O automaton A is said to be Zeno-tolerant if, for

every �nite timed execution � 2 t-exec�(A) and every timed environment sequence I for A

compatible with �, O(g;f)(�; I) � t-exec1(A)[ t-execZt(A).

Now the de�nition of environment-freedom for the timed model is possible.

De�nition 4.22 (Environment-freedom)

A pair (A;L) where A is a safe timed I/O automaton and L � t-exec(A) is environment-free i�

there exists a Zeno-tolerant strategy (g; f) de�ned onA such that for each �nite timed execution

� of A and each timed environment sequence I for A compatible with �, O(g;f)(�; I) � L.

The pair (g; f) is called an environment-free strategy for (A;L).
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A pair (A;L) is environment-free if, after any �nite timed execution and with any (Zeno

or non-Zeno) sequence of input actions, it can generate some admissible or Zeno-tolerant

timed execution in A. Also, A must never generate one of its �nite or system-Zeno timed

executions, since it would constrain its environment in this case. Thus liveness conditions

should not include any �nite or system-Zeno timed execution. Zeno-tolerant timed executions

are used only to handle illegal interactions, and therefore also should not be included in liveness

conditions. This leads to the de�nition of live timed I/O automata, where the liveness condition

contains only admissible timed executions, but the strategy is allowed to yield Zeno-tolerant

outcomes when given a Zeno timed environment sequence.

De�nition 4.23 (Live timed I/O automaton)

A live timed I/O automaton is a pair (A;L), where A is a safe timed I/O automaton and

L � t-exec1(A), such that the pair (A;L[ t-execZt(A)) is environment-free.

Lemma 4.24

If (A;L) is a live timed I/O automaton, then L is a timed liveness condition for A.

Proof. Given a �nite timed execution � of A, consider an environment-free strategy (g; f)

for (A;L [ t-execZt(A)). Consider any timed execution � a �0 2 O(g;f)(�; "). Such a timed

execution exists according to Lemma 4.18. The timed execution � a �0 is not Zeno-tolerant

since it contains �nitely many input actions. Therefore � a �0 is a timed execution of L, i.e.,

� can be extended to a timed execution of L.

As in the untimed model, the parallel composition, action hiding, and action renaming opera-

tors de�ned for safe timed I/O automata are extended to live timed I/O automata.

De�nition 4.25 (Parallel composition)

Live timed I/O automata (A1; L1); : : : ; (AN ; LN) are compatible i� the safe timed I/O automata

A1; : : : ; AN are compatible.

The parallel composition (A1; L1)k � � �k(AN ; LN) of compatible live timed I/O automata

(A1; L1); : : : ; (AN ; LN) is de�ned to be the pair (A;L) where A = A1k � � � kAN and L = f� 2

t-exec(A) j �dA1 2 L1; : : : ;�dAN 2 LNg.

The restriction of the parallel composition operator to �nitely many components can now be

justi�ed with the following example.

Example 4.26

Let f(Ai; Li)gi�0 be a family of in�nitely many live timed I/O automata such that each safe

I/O automaton Ai has a unique distinct output action ai which executes at time 1, and Li

is the set of admissible executions of Ai. The parallel composition ki�0(Ai; Li) exhibits �nite

or Zeno timed executions only since it can never reach a time greater than 1. Speci�cally,
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in�nitely many actions, i.e., the set faigi�0, must be executed at time 1. Thus ki�0(Ai; Li)

cannot be an environment-free pair.

De�nition 4.27 (Action Hiding)

Let (A;L) be a live timed I/O automaton and let � be a set of actions such that � � local(A).

Then de�ne (A;L) n � to be the pair (A n �; L).

De�nition 4.28 (Action Renaming)

A mapping � from actions to actions is applicable to a live timed I/O automaton (A;L) if it

is applicable to A. Let � be a timed execution of (A;L). De�ne �(�) to be the sequence

that results from replacing each occurrence of every action a in � by �(a). Given a live

timed I/O automaton and a mapping � applicable to (A;L), de�ne �((A;L)) to be the pair

(�(A); f�(�) j � 2 Lg).

As expected, the three operators above are closed for live timed I/O automata in the sense

that they produce a new live timed I/O automaton. As for the untimed model, this is easy to

prove for action hiding and renaming, but fairly complicated for parallel composition.

Proposition 4.29 (Closure of action hiding)

Let (A;L) be a live timed I/O automaton and let � � local(A). Then (A;L) n� is a live timed

I/O automaton.

Proof. Let (A�; L�) = (A;L) n�, i.e., (A�; L�) = (A n�; L) by De�nition 4.27. From De�ni-

tion 4.12 A� is a safe timed I/O automaton. Furthermore, Lemma 4.13 gives t-exec1(A�) =

t-exec1(A). Therefore L� � t-exec1(A�) as required by the de�nition of live timed I/O

automata (De�nition 4.23).

To show that the pair (A�; L� [ L0
�
), where L0

�
= t-execZt(A�), is environment-free, it

su�ces to note that any environment-free strategy for (A;L [ L0), where L0 = t-execZt(A),

is also an environment-free strategy for (A�; L� [ L0
�
). In fact the hiding operator simply

changes some output actions into internal actions. The remaining structure of a live timed

I/O automaton, including its set of locally-controlled actions, is not a�ected.

Proposition 4.30 (Closure of action renaming)

Let (A;L) be a live timed I/O automaton and let � be a mapping applicable to (A;L). Then

�((A;L)) is a live timed I/O automaton.

Proof. Consider any timed execution � of (A;L). Let �(�) be the sequence obtained by

replacing each occurrence of every action a in � by �(a). If S is a set of timed executions of

(A;L), let �(S) = f�(�) j � 2 Sg.

Let (A�; L�) = �((A;L)), i.e., (A�; L�) = (�(A); �(L)) by De�nition 4.28. From De�ni-

tion 4.14 A� is a safe timed I/O automaton. Furthermore, Lemma 4.15 gives t-exec1(A�) =
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�(t-exec1(A)). Therefore, since L � t-exec1(A), L� � t-exec1(A�) as required by the de�ni-

tion of live timed I/O automata (De�nition 4.23).

Let L0 = t-execZt(A) and let (g; f) be an environment-free strategy for (A;L[L0). Further-

more, let L0� = t-execZt(A�). Then Lemma 4.15 and the fact that � maps local(A) to local(A�)

and in(A) to in(A�) implies that L
0
� = �(L0), which in turn implies L� [L

0
� = �(L[L0). Now,

de�ne a strategy (g�; f�) for A� as follows:

g�(�(�); �(a)) = g(�; a)

f�(�(�)) =

(
(!; �(a); s0) if f(�) = (!; a; s0)

! if f(�) = !

It is now trivial to verify that (g�; f�) is an environment-free strategy for (A�; L� [ L0�). Con-

sequently, (A�; L�) is a live timed I/O automaton.

As in the untimed model, the proof of closure of the parallel composition operator is consid-

erably more complicated than the proof of closure for action hiding and action renaming. For

compatible live timed I/O automata (A1; L1); : : : ; (AN ; LN), let (A;L) denote the parallel com-

position (A1; L1)k � � � k(AN ; LN). In order to prove that (A;L) is a live timed I/O automaton

one must show that (A;L [ t-execZt(A)) is environment-free, which, in turn, requires �nding

an environment-free strategy for (A;L[ t-execZt(A)).

The proof proceeds by �rst de�ning a strategy (g; f) for (A;L) based on a strategy (gi; fi)

for each (Ai; Li [ t-execZt(Ai)), and then proving that (g; f) is an environment-free strategy

for (A;L[ t-execZt(A)).

Function g computes, given input a, the next state according to the gi functions of those

components of A for which a is an input action, and simply leave the state unchanged for

those components for which a is not an action. Function f determines, using each fi, which

component wishes to execute the next locally-controlled action. Say this is the kth component

and it wishes to perform action a at time t. Then each component Ai evolves based on fi up

to time t. Furthermore, at time t, Ak takes a step based on fk and each Ai for which a is an

input action takes a step based on gi.

De�nition 4.31 (Parallel composition of (timed) strategies)

Let A = A1k � � � kAN be the parallel composition of compatible safe timed I/O automata

A1; : : : ; AN , and let (gi; fi), for each 1 � i � N , be a strategy de�ned on Ai.

The parallel composition (g1; f1)k � � �k(gN ; fN) of the strategies (g1; f1); : : : ; (gN ; fN) is the pair

of functions (g; f)

g : t-exec�(A)� in(A)! states(A)

f : t-exec�(A)! (traj (A)� local(A)� states(A))[ traj (A)

such that

g(�; a) = s where, for all 1 � i � N , sdAi =

(
gi(�dAi; a) for a 2 in(Ai)

lstate(�)dAi for a =2 acts(Ai)
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and f is de�ned as follows: For all 1 � i � N , de�ne !i to be fi(�dAi):trj . Pick any k, say

the smallest, such that ltime(!k) = min1�i�N(ltime(!i)). De�ne ! such that

!dAi =

(
!k if i = k

!i 2 ltime(!k) if i 6= k

The de�nition of f(�) has two cases.

1. If fk(�dAk) = (!k; a; sk) then f(�) = (!; a; s),

where, for all 1 � i � N , sdAi =

8><
>:

sk if i = k

gi((�
a !)dAi; a) if i 6= k and a 2 in(Ai)

lstate(!)dAi if i 6= k and a =2 acts(Ai)

2. If fk(�dAk) = !k then f(�) = !.

Lemma 4.32

Let A1; : : : ; AN be compatible safe timed I/O automata and let, for each 1 � i � N , (gi; fi) be

a strategy de�ned on Ai. Then (g1; f1)k � � �k(gN ; fN) is a strategy de�ned on A1k � � � kAN .

Proof. Let (g; f) = (g1; f1)k � � � k(gN ; fN) and A = A1k � � � kAN . To prove that (g; f) is a

strategy de�ned on A, the four conditions of De�nition 4.16 must be checked:

1{3. Conditions 1{3 are trivial to check given the de�nitions of g and f , and the fact that, for

all i, (gi; fi) is a strategy de�ned on Ai.

4. Consider the consistency condition of De�nition 4.16. First assume, for an arbitrary

� 2 t-exec�(A), that f(�) = (!; a; s), and let t be an arbitrary time such that ftime(!) �

t � ltime(!). It must be shown that f(� a (! 2 t)) = (! 3 t; a; s).

Let k be such that fk(�dAk) = (!k; a; sk). This k exists by de�nition of f . Then,

for all i, either fi(�dAi) = (!i; ai; si), with ltime(!i) � ltime(!k), or fi(�dAi) = !i,

with ltime(!i) = 1 > ltime(!k). For all i, ftime(!i) = ftime(!k). Thus, for all i,

ftime(!i) � t � ltime(!i), so since fi is consistent

fi((�dAi)
a (!i2t)) = fi((�

a (!2t))dAi) =

(
((!i 3 t); ai; si) if fi(�dAi) = (!i; ai; si)

!i 3 t if fi(�dAi) = !i

Since by de�nition k is the smallest index such that ltime(!k) = min1�i�N(ltime(!i))

and since ltime(!i) = ltime(!i 3 t), k is the smallest index such that ltime(!k 3 t) =

min1�i�N(ltime(!i 3 t)).

Now, since fk((�
a(!2t))dAi) = ((!k3t); a; sk), the de�nition of f gives: f(�a(!2t)) =

(!0; a; s0), where !0dAi = !i3t = (!3t)dAi which implies that !
0 = !3t, and s0 is de�ned

as follows: s0dAk = sk = sdAi, s
0dAi = gi(((�

a (!2 t)) a !0)dAi; a) = gi((�
a !)dAi; a) =

sdAi if i 6= k and a 2 in(Ai), and s
0dAi = lstate((�a (!2t))a!0)dAi = lstate(�a!)dAi =

sdAi if i 6= k and a =2 acts(Ai). Hence, for all i, s
0dAi = sdAi, which implies s0 = s.
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Thus, (!0; a; s0) = (!3 t; a; s), which �nally gives f(�a (!2 t)) = (!3 t; a; s), as required.

In a similar fashion, it can be proved that if for arbitrary � 2 t-exec�(A), f(�) = !, then,

for any ftime(!) � t < ltime(!)(=1), it is the case that f(� a (! 2 t)) = (! 3 t).

This concludes the proof that (g; f) is a strategy de�ned on A.

The following lemma is the key lemma for showing that the strategy of De�nition 4.31 is

environment-free if the component strategies are environment-free. Speci�cally, up to a tech-

nical condition, the projection of an outcome of (g; f) onto a component Ai is an outcome of

(gi; fi). Intuitively this means that even though the composed system uses its composed strat-

egy to �nd possible outcomes, up to a technical restriction it still looks to each component as

if it was using its own component strategy. The one restriction in the generality of the lemma

stems from the following situation. If the system receives Zeno inputs that are not inputs to the

ith component, then the ith component observes that time is blocked even though the strategy

for the ith component lets time pass forever. Thus, if an outcome of the composed system is

Zeno, then the following lemma only applies to the components that perform in�nitely many

actions in the given outcome. Note that the inputs that the ith component \sees" are either

inputs to the composed system or inputs from other components of the system.

Lemma 4.33

Let A1; : : : ; AN be compatible safe timed I/O automata and let, for each 1 � i � N , (gi; fi) be

a strategy de�ned on Ai. Let A = A1k � � � kAN and (g; f) = (g1; f1)k � � �k(gN ; fN).

Furthermore, let � be an arbitrary �nite timed execution of A, I be an arbitrary timed en-

vironment sequence for A compatible with �, �0 be an arbitrary timed execution of O(g;f)(�; I),

and i, with 1 � i � N , be an arbitrary index such that if �0 is Zeno then j�0 � acts(Ai)j =1.

Then there exists a timed environment sequence Ii for Ai compatible with �dAi, such that

�0dAi 2 O(gi;fi)(�dAi; Ii).

Proof. De�nition 4.10 implies that A is a safe timed I/O automaton. Furthermore, by

Lemma 4.32, (g; f) is a strategy de�ned on A.

Let R(g;f) and R(gi;fi) be the next-relations induced by (g; f) and (gi; fi), respectively. Also,

let (�n; In)n�0 be an outcome sequence of (g; f) given � and I such that �0 = limn!1�n.

Since (�n)n�0 forms an in�nite chain ordered by t-pre�x and �0 = �, � �t �0. De�ne

Ii = t-seq(�0��)�(in(Ai)�T). Then either Ii is empty or ftime(Ii) � ltime(�) = ltime(�dAi).

Thus, Ii is compatible with �dAi.

Let N0 ! N0 be the signature of a total, nondecreasing mapping m. De�ne m(n) inductively

on n such that m(0) = 0 and either m(n) = m(n � 1) or m(n) = m(n � 1) + 1 (for n >

0). Simultaneously the induction de�nes (�0

i ; I
0

i ) and, if n > 0 and m(n) = m(n � 1) + 1,

(�
m(n)

i ; I
m(n)

i ). Furthermore, the same induction, proves

P1 �n is �nite i� �
m(n)

i is �nite.

P2 ftime(fi(�
m(n)

i ):trj ) � ltime(�n) � ltime(fi(�
m(n)

i ):trj ) if �
m(n)

i is �nite.
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P3 �ndAi =

(
�
m(n)

i
a (fi(�

m(n)

i ):trj 2 ltime(�n)) if �
m(n)

i is �nite

�
m(n)

i otherwise

P4 I
m(n)

i =

(
t-seq(�0 � �n) � (in(Ai)� T) if �

m(n)

i is �nite

" otherwise

P5 If n > 0 and m(n) = m(n� 1) + 1 then ((�
m(n�1)
i ; I

m(n�1)
i ); (�

m(n)

i ; I
m(n)

i )) 2 R(gi;fi).

Intuitively, (�
j
i ; I

j
i ) represents an outcome sequence of (gi; fi) given �dAi and Ii, and the

mapping m associates each �n with the �rst �j
i such that �ndAi �t �

j
i .

Note that all the statements are well-de�ned. For P3, when �
m(n)

i is �nite, the application

of the 2 operator is well-de�ned since (gi; fi) is a strategy de�ned on Ai and statement P2

applies; for P4, when �
m(n)

i is �nite, �0 � �n is well-de�ned since by P1 �n is �nite, and

furthermore �n �t �
0 by de�nition. These observations are not repeated below. Finally, note

that P5 is not needed in the induction step. P5 is included in the induction for convenience.

Base case n = 0:

De�ne: m(0) = 0

�
m(0)

i = �0dAi

I
m(0)

i = Ii

P1 �0 = � is �nite by de�nition. Since �
m(0)

i = �0dAi, Lemma 4.11 implies that also �
m(0)

i

is �nite.

P2 By P1, �
m(0)

i is �nite. Since �
m(0)

i = �0dAi and �0 = �, it is necessary to prove that

ftime(fi(�dAi):trj ) � ltime(�) � ltime(fi(�dAi):trj ). From the fact that (gi; fi) is a

strategy de�ned on Ai and Lemma 4.11 conclude that ftime(fi(�dAi):trj ) = ltime(�),

and since ftime(fi(�dAi):trj ) � ltime(fi(�dAi):trj ), the result follows.

P3 First note that �
m(0)

i is �nite. As in P2, ftime(fi(�
m(0)

i ):trj ) = ltime(�0). Thus, �0dAi =

�
m(0)

i = �
m(0)

i
a (fi(�

m(0)

i ):trj 2 ltime(�0)), as required.

P4 First note that �
m(0)

i is �nite. Then I
m(0)

i = Ii = t-seq(�0��) � (in(Ai)�T) = t-seq(�0�

�0) � (in(Ai)� T), as required.

P5 Vacuously satis�ed.

Inductive step n > 0:

Assume P1{P5 hold for all k < n. Consider cases:

Case 1 �n�1 is not �nite.

Since ((�n�1; In�1); (�n; In)) 2 R(g;f) and �n�1 is not �nite (�n�1; In�1) = (�n; In).
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De�ne: m(n) = m(n� 1) + 1

�
m(n)

i = �
m(n�1)
i

I
m(n)

i = I
m(n�1)
i

P1 Since �n = �n�1 and �
m(n)

i = �
m(n�1)
i the result follows from induction hypothesis

P1.

P2 Since �n = �n�1, �n is not �nite and by P1 �
m(n)

i is not �nite. Thus, P2 is vacuously

satis�ed.

P3 Again, since �n = �n�1 and �
m(n)

i = �
m(n�1)
i , and none of these timed executions

are �nite (by P1), the result follows from induction hypothesis P3.

P4 As for P3 the result follows from an induction hypothesis; here P4.

P5 Since �
m(n�1)
i is not �nite, the result follows directly from the de�nition of �

m(n)

i ,

I
m(n)

i , and R(gi;fi).

Case 2 �n�1 is �nite and �n is not �nite.

Since ((�n�1; In�1); (�n; In)) 2 R(g;f), �
n�1 is �nite, and �n�1 is not �nite, by De�ni-

tion 4.17, �n = �n�1 a !, where ! = f(�n�1), and In = In�1 = ".

By induction hypothesis P1, �
m(n�1)
i is �nite. Thus

!dAi
1
= fi(�

n�1dAi)
2
= fi(�

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1)))

3
= fi(�

m(n�1)
i )3 ltime(�n�1)

where step 1 follows from de�nition of (g; f) (De�nition 4.31) and the fact that ltime(!) =

1 (because (g; f) is a strategy), step 2 follows from induction hypothesis P3, and step 3

follows from consistency of fi (cf. Condition 4 of De�nition 4.16).

De�ne: m(n) = m(n� 1) + 1

�
m(n)

i = �
m(n�1)
i

a fi(�
m(n�1)
i )

I
m(n)

i = I
m(n�1)
i

P1 Neither �n nor �
m(n)

i are �nite.

P2 Vacuously satis�ed.

P3 Since �
m(n)

i is admissible, prove that �ndAi = �
m(n)

i . In particular

�ndAi
1
= (�n�1 a !)dAi

2
= (�n�1dAi)

a (!dAi)
3
= (�

m(n�1)

i
a (fi(�

m(n�1)

i )2 ltime(�n�1))) a (!dAi)
4
= �

m(n�1)
i

a (fi(�
m(n�1)
i )2 ltime(�n�1)) a (fi(�

m(n�1)
i )3 ltime(�n�1))

5
= �

m(n�1)
i

a fi(�
m(n�1)
i )

6
= �

m(n)

i
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where steps 1, 2, and 6 are trivial, step 3 follows from induction hypothesis P3,

step 4 follows from the property of !dAi proved above, and step 5 follows from the

de�nition of the operators 2 and 3.

P4 First note that �
m(n)

i is not �nite and �
m(n�1)

i is �nite. Then

I
m(n)

i

1
= I

m(n�1)
i

2
= t-seq(�0 � �n�1) � (in(Ai)� T)
3
= t-seq(�n � �n�1) � (in(Ai)� T)
4
= t-seq(!) � (in(Ai)� T)
5
= "

where steps 1, 4, and 5 are trivial, step 2 follows from induction hypothesis P4, and

step 3 follows from the fact that �n is admissible and thus a �xpoint in (�k)k�0.

P5 Since �
m(n�1)
i is �nite, I

m(n)

i = I
m(n�1)
i = " (by P4), and �

m(n)

i = �
m(n�1)
i

a

fi(�
m(n�1)
i ), the result follows from the second case in the de�nition of R(gi;fi) (Def-

inition 4.16).

Case 3 �n�1 and �n are �nite.

The de�nition of R(g;f) gives three cases to consider. (The �rst, third, and fourth cases

in De�nition 4.17.) Consider the �rst and third cases at the same time.

Case 3.1 First and third cases.

From de�nition of R(g;f) note that �
n = �n�1 a !afsg, f(�n�1) = (!; a; s), and

In�1 =

(
" or

(b; t)I0 with ltime(!) � t.

In both cases In = In�1.

Case 3.1.1 a =2 acts(Ai)

De�ne: m(n) = m(n� 1)

P1 Induction hypothesis P1 and the case assumptions imply that both �n and

�
m(n)

i = �
m(n�1)
i are �nite.

P2 Since �
m(n)

i is �nite, we must prove that ftime(fi(�
m(n)

i ):trj ) � ltime(�n) �

ltime(fi(�
m(n)

i ):trj ).

The �rst inequality holds by induction hypothesis P2 and the facts that

�
m(n)

i = �
m(n�1)
i and ltime(�n) � ltime(�n�1).

For the second inequality

ltime(�n)
1
= ltime(!)
2

� ltime(fi(�
n�1dAi):trj )

3
= ltime(fi(�

m(n�1)

i
a (fi(�

m(n�1)

i ):trj 2 ltime(�n�1))):trj )
4
= ltime(fi(�

m(n�1)
i ):trj 3 ltime(�n�1))

5
= ltime(fi(�

m(n�1)
i ):trj )

6
= ltime(fi(�

m(n)

i ):trj )

52



where steps 1 and 6 is trivial, step 2 follows from de�nition of (g; f) (cf.

De�nition 4.31), step 3 follows from induction hypothesis P3, step 4 follows

from consistency of fi (cf. Condition 4 of De�nition 4.16), and step 5 follows

from the fact that the 3 operator preserves the limit time.

P3 First note that �
m(n)

i is �nite. Then

�ndAi
1
= (�n�1 a !afsg)dAi

2
= �n�1dAi

a !dAi

3
= �

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1)) a !dAi

4
= �

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1)) a

(fi(�
n�1dAi):trj 2 ltime(�n))

5
= �

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1)) a

(fi(�
m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1))):trj 2

ltime(�n))
6
= �

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1)) a

((fi(�
m(n�1)
i ):trj 3 ltime(�n�1))2 ltime(�n))

7
= �

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n))

8
= �

m(n)

i
a (fi(�

m(n)

i ):trj 2 ltime(�n))

where steps 1 and 8 are trivial, step 2 follows from the fact that a =2

acts(Ai), step 3 follows from induction hypothesis P3, step 4 follows from

the de�nition of (g; f) (cf. De�nition 4.31), step 5 follows from induction

hypothesis P3, step 6 follows from consistency of fi (cf. Condition 4 of

De�nition 4.16), and step 7 follows from the de�nition of the operators and

the fact that �n�1 �t �
n.

P4 Again note that �
m(n)

i is �nite. Then

I
m(n)

i

1
= I

m(n�1)

i
2
= t-seq(�0 � �n�1) � (in(Ai)� T)
3
= ((a; s:now)^ t-seq(�0 � �n)) � (in(Ai)� T)
4
= t-seq(�0 � �n) � (in(Ai)� T)

where step 1 is trivial, step 2 follows from induction hypothesis P4, step 3

follows from de�nition of t-seq and the fact that �n = �n�1 a !afsg, and

step 4 follows from the fact that a =2 acts(Ai) and thus a =2 in(Ai).

P5 Vacuously satis�ed.

Case 3.1.2 a 2 local(Ai)

Since by induction hypothesis P1�
m(n�1)
i is �nite,

(!dAi; a; sdAi)
1
= fi(�

n�1dAi)
2
= fi(�

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1)))

3
= fi(�

m(n�1)

i )3 ltime(�n�1)

where step 1 follows from the de�nition of (g; f) (De�nition 4.31) and the fact

that a 2 local(Ai), step 2 follows from induction hypothesis P3, and step 3
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follows from consistency of fi (cf. Condition 4 of De�nition 4.16).

Thus, fi(�
m(n�1)
i ) = (!i; a; si), where !i 3 ltime(�n�1) = !dAi and si = sdAi.

De�ne: m(n) = m(n� 1) + 1

�
m(n)

i = �
m(n�1)
i

a (!iafsig)

I
m(n)

i = I
m(n�1)
i

P1 Both �n and �
m(n)

i are �nite.

P2 Since �
m(n)

i is �nite, we must prove that ftime(fi(�
m(n)

i ):trj ) � ltime(�n) �

ltime(fi(�
m(n)

i ):trj ).

Since ftime(fi(�
m(n)

i ):trj ) = ltime(!i) = ltime(!) = ltime(�n), the �rst

inequivalence holds.

The proof of the second inequality is similar to the one in subcase 3.1.1, only

here the last step should use ltime(fi(�
m(n�1)
i ):trj ) � ltime(fi(�

m(n)

i ):trj ).

P3 First note that both �
m(n�1)
i and �

m(n)

i are �nite.

�ndAi
1
= (�n�1 a !afsg)dAi

2
= �n�1dAi

a (!dAi)afsdAig
3
= �

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1)) a (!dAi)afsdAig

4
= �

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1)) a

(fi(�
m(n�1)

i ):trj 3 ltime(�n�1))afsdAig
5
= �

m(n�1)
i

a (fi(�
m(n�1)
i ):trj )afsdAig

6
= �

m(n�1)
i

a !iafsig
7
= �

m(n)

i
8
= �

m(n)

i
a (fi(�

m(n)

i ):trj 2 ltime(�n))
where steps 1, 6, and 7 are trivial, step 2 follows from the fact that a 2

acts(Ai), step 3 follows from induction hypothesis P3, step 4 follows from

the properties of !dAi proved at the beginning of this case, step 5 follows

from de�nition of 2 and 3, and �nally step 8 follows from the fact that

ltime(�n) = ltime(�
m(n)

i ) = ftime(fi(�
m(n)

i ):trj ).

P4 Again, note that both �
m(n�1)
i and �

m(n)

i are �nite.

I
m(n)

i

1
= I

m(n�1)
i

2
= t-seq(�0 � �n�1) � (in(Ai)� T)
3
= ((a; s:now)^ t-seq(�0 � �n)) � (in(Ai)� T)
4
= t-seq(�0 � �n) � (in(Ai)� T)

where step 1 is trivial, step 2 follows from induction hypothesis P4, step 3

follows from de�nition of t-seq and the fact that �n = �n�1 a !afsg, and

step 4 follows from a 2 local(Ai) and thus a =2 in(Ai).

P5 If I
m(n�1)
i = ", the result follows from the �rst case in the de�nition of

R(gi;fi) (De�nition 4.17).

Now, assume I
m(n�1)
i = (b; t0)I0i. Then a 6= b since a 2 local(Ai) and

b 2 in(Ai). Now, since I
m(n�1)
i = t-seq(�0 � �n�1) � (in(Ai) � T) and

(a; s:now) is �rst on t-seq(�0 � �n�1), conclude that s:now � t0. Thus,
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ltime(!i) = ltime(!) = s:now � t0. Then the result follows from the third

case in the de�nition of R(gi;fi).

Case 3.1.3 a 2 in(Ai)

Let !i = fi(�
m(n�1)
i ):trj .

Similar to proof P2 of subcase 3.1.1, it is easy to prove: ftime(!i) � ltime(�n) �

ltime(!i).

Then, let !0i = !i 2 ltime(�n) and s0i = gi(�
m(n�1)
i

a !0i; a).

Furthermore,

I
m(n�1)
i

1
= t-seq(�0 � �n�1) � (in(Ai)� T)
2
= ((a; s:now)^ t-seq(�0 � �n�1)) � (in(Ai)� T)
3
= (a; s:now)^ (t-seq(�0 � �n) � (in(Ai)� T))

where step 1 follows from induction hypothesis P4, step 2 follows from the

de�nition of �n, and step 3 follows from the fact that a 2 in(Ai). Thus, in

particular I
m(n�1)
i is not empty.

De�ne: m(n) = m(n� 1) + 1

�
m(n)

i = �
m(n�1)
i

a (!0iafs
0
ig)

I
m(n)

i = tail(I
m(n�1)
i )

P1 Both �n and �
m(n)

i are �nite.

P2 Similar to the proof of P2 in subcase 3.1.2.

P3 First note that both �
m(n�1)
i and �

m(n)

i are �nite.

First,

!dAi
1
= fi(�

n�1dAi):trj 2 ltime(�n)
2
= fi(�

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1))):trj 2 ltime(�n)

3
= (fi(�

m(n�1)
i ):trj 3 ltime(�n�1))2 ltime(�n)

4
= (!i 3 ltime(�n�1))2 ltime(�n)

where step 1 follows from the de�nition of (g; f) (De�nition 4.31), step 2

follows from induction hypothesis P3, step 3 follows from consistency of fi
(cf. Condition 4 of De�nition 4.16), and step 4 follows from the de�nition

of !i.

Second,

sdAi
1
= gi((�

n�1 a !)dAi; a)
2
= gi(�

n�1dAi
a !dAi; a)

3
= gi(�

m(n�1)
i

a (!i 2 ltime(�n�1)) a

((!i 3 ltime(�n�1))2 ltime(�n)); a)
4
= gi(�

m(n�1)

i
a (!i 2 ltime(�n)); a)

5
= gi(�

m(n�1)
i

a !0i; a)
6
= s0i

where steps 2, 5, and 6 are trivial, step 1 follows from the de�nition of

(g; f) (De�nition 4.31), step 3 follows from induction hypothesis P3, the
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property of !dAi proved above, and de�nition of !i, and step 4 follows from

the de�nition of the operators.

Finally,

�ndAi
1
= �n�1dAi

a (!dAi)afsdAig
2
= �

m(n�1)
i

a (fi(�
m(n�1)
i ):trj 2 ltime(�n�1)) a (!dAi)afsdAig

3
= �

m(n�1)
i

a (!i 2 ltime(�n�1)) a

((!i 3 ltime(�n�1))2 ltime(�n))afs0ig
4
= �

m(n�1)

i
a !0iafs

0
ig

5
= �

m(n)

i
6
= �

m(n)

i
a (fi(�

m(n)

i ):trj 2 ltime(�n))
where steps 1 and 5 are trivial, step 2 follows from induction hypothesis P3,

step 3 follows from the property of !dAi proved above and the de�nition of

!i, step 4 follows from the de�nition of the operators, and �nally step 6 fol-

lows from the fact that ftime(fi(�
m(n)

i ):trj ) = ltime(�
m(n)

i ) = ltime(!0i) =

ltime(�n).

P4 First note that both �
m(n�1)
i and �

m(n)

i are �nite.

I
m(n)

i

1
= tail(I

m(n�1)

i )
2
= tail((a; s:now)^ (t-seq(�0 � �n) � (in(Ai)� T)))
3
= t-seq(�0 � �n) � (in(Ai)� T)

where steps 1 and 3 are trivial and step 2 follows from the property of

I
m(n�1)
i proved at the beginning of this case.

P5 This follows directly from the fourth case in the de�nition of R(gi;fi) (De�-

nition 4.17).

Case 3.2 Fourth case.

The de�nition of R(g;f) gives us �
n = �n�1a!0afs0g, In�1 = (a; t)In, f(�n�1):trj =

!, ltime(!) � t, !0 = ! 2 t, and g(�n�1 a !0; a) = s0. Distinguish three subcases.

Case 3.2.1 a =2 acts(Ai)

Similar to subcase 3.1.1.

Case 3.2.2 a 2 local(Ai)

This situation cannot occur since a 2 in(A) (cf. De�nition 4.10).

Case 3.2.3 a 2 in(Ai)

Similar to subcase 3.1.3.

This concludes the inductive de�nition and induction proof. Since m(0) = 0, m(n) is either

m(n� 1)+ 1 or m(n� 1), and (�
m(0)

i ; I
m(0)

i ) and (�
m(n)

i ; I
m(n)

i ) are de�ned every time m(n) =

m(n� 1)+1, (�n
i ; I

n
i )0�n�(limk!1m(k)) is de�ned. Furthermore, by the base case and the proof

of P5 for every n with m(n) = m(n� 1) + 1:

� (�0

i ; I
0

i ) = (�dAi; Ii) and

56



� for all 0 < n � (limk!1m(k)), ((�n�1
i ; In�1i ); (�n

i ; I
n
i )) 2 R(gi;fi).

Using the results of the induction, the lemma can now be proven. Consider cases based on

(�n)n�0.

1. One of �n is not �nite.

Then, by de�nition of R(g;f), there exists a number n0 > 0 such that �n0�1 is �nite, �n0

is admissible, and for all n > n0, �n = �n0 .

In the induction above each n > n0 is handled by case 1. Since this case sets m(n) =

m(n � 1) + 1, limn!1m(n) = 1. Thus, (�n
i ; I

n
i )n�0 is de�ned and this sequence then

forms an outcome sequence of (gi; fi) given �dAi and Ii. Then

�0dAi
1
= (limn!1 �n)dAi

2
= limn!1(�

ndAi)
3
= limn!1�

m(n)

i
4
= limn!1�n

i

where step 1 follows from the de�nition of �0, step 2 follows from the continuity of the

projection operator, step 3 follows from P3 since for all n > n0, �ndAi = �
m(n)

i , and step

4 follows from the fact that limn!1m(n) =1.

Thus, �0dAi 2 O(gi;fi)(�dAi; Ii), as required.

2. All �n are �nite.

(a) limn!1m(n) 6=1

Since m is nondecreasing, there exist natural numbers n0 and m0 such that for all

n � n0, m(n) = m0. Thus, (�n
i ; I

n
i )0�n�m0 is de�ned. In the induction above each

n > n0 is handled by either case 3.1.1 or 3.2.1 since all other cases set m(n) =

m(n� 1)+ 1. Cases 3.1.1 and 3.2.1 correspond to adding an action not in acts(Ai)

to �n. Thus, �0 � �n0 contains no actions from acts(Ai) which implies that j�0 �

acts(Ai)j = j�n0 � acts(Ai)j 6= 1 since �n0 is �nite. Thus, by hypothesis �0 is not

Zeno. Lemma 4.18 then implies that �0 is admissible.

Now, for all n � n0, P1 and P2 imply that ltime(�n) � ltime(fi(�
m0

i ):trj ). Since �0

is admissible, limn!1 ltime(�n) = 1 which implies that ltime(fi(�
m0

i ):trj ) = 1.

Thus, fi(�
m0

i ) = ! for some ! with ltime(!) = 1. Furthermore, by P4, Im
0

i =

t-seq(�0 � �n0) � (in(Ai)� T) = ".

De�ne (�m0+1
i ; Im

0

+1

i ) = (�m0

i
a !; Im

0

i ). Then by de�nition of R(gi;fi) (De�ni-

tion 4.17), ((�m0

i ; Im
0

i ); (�m0+1
i ; Im

0

+1

i )) 2 R(gi;fi). Furthermore, for all k > m0 + 1,

de�ne (�k
i ; I

k
i ) = (�k�1

i ; Ik�1i ).

Again, clearly ((�k�1
i ; Ik�1i ); (�k

i ; I
k
i )) 2 R(gi;fi).

Thus, (�n
i ; I

n
i )n�0 is an outcome sequence of (gi; fi) given �dAi and Ii. Now,
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�0dAi
1
= (limn!1 �n)dAi

2
= limn!1(�

ndAi)
3
= limn!1(�

m0

i
a (fi(�

m0

i ):trj 2 ltime(�n)))
4
= �m0

i
a !

5
= limn!1(�

n
i )

where step 1 follows from the de�nition of �0, step 2 follows from the continuity of

the projection operator, step 3 follows from P3, step 4 follows from the de�nition

of ! and the fact that limn!1 ltime(�n) =1, and step 5 follows from the fact that

�n
i = �m0

i
a ! for all n > m0.

Thus, �0dAi 2 O(gi;fi)(�dAi; Ii), as required.

(b) limn!1m(n) =1

In this situation (�n
i ; I

n
i )n�0 is an outcome sequence of (gi; fi) given �dAi and Ii.

Then

�0dAi
1
= (limn!1 �n)dAi

2
= limn!1(�

ndAi)
3
= limn!1(�

m(n)

i
a (fi(�

m(n)

i ):trj 2 ltime(�n)))
4
= limn!1(�

m(n)

i )
5
= limn!1(�

n
i )

where step 1 follows from the de�nition of �0, step 2 follows from the continuity of

the projection operator, step 3 follows from P3, step 4 follows from the fact that for

all n, �
m(n)

i �t �
m(n)

i
a (fi(�

m(n)

i ):trj 2 ltime(�n)) �t �
m(n)+1

i (this follows directly

from the de�nition of �
m(n)

i for all n where m(n) = m(n� 1) + 1), and �nally step

5 follows from the fact that limn!1m(n) =1.

Thus, �0dAi 2 O(gi;fi)(�dAi; Ii), as required.

This concludes the proof.

Lemma 4.34

Let (A1; L1); : : : ; (AN ; LN) be compatible live timed I/O automata and let, for each 1 � i � N ,

(gi; fi) be an environment-free strategy for (Ai; Li [ t-execZt(Ai)). Furthermore, let (A;L) =

(A1; L1)k � � � k(AN ; LN). Then (g; f) = (g1; f1)k � � � k(gN ; fN) is an environment-free strategy

for (A;L[ t-execZt(A)).

Proof. De�nition 4.22 given the following proof obligations.

1. A is a safe timed I/O automaton,

2. L [ t-execZt(A) � t-exec(A),

3. O(g;f)(�; I) � L[t-execZt(A), for all � 2 t-exec�(A) and all timed environment sequences

I for A that are compatible with �, and
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4. (g; f) is Zeno-tolerant.

Consider the points one at a time.

1. De�nition 4.25 along with De�nition 4.10 directly implies that A is a safe timed I/O

automaton.

2. By De�nition 4.25, L = f� 2 t-exec(A) j �dA1 2 L1; : : : ;�dAN 2 LNg. Thus,

Lemma 4.11 implies L � t-exec(A). Finally, since t-execZt(A) � t-exec(A), the result

follows.

3. Let � 2 t-exec�(A) be an arbitrary �nite timed execution of A and I be an arbitrary

timed environment sequence for A that is compatible with �. Note, since (gi; fi) is

an environment-free strategy for (Ai; Li [ t-execZt(Ai)), (gi; fi) is, by De�nition 4.22, a

Zeno-tolerant strategy de�ned on Ai. Let �0 be an arbitrary element of the outcome

O(g;f)(�; I). By Lemma 4.18, � is either Zeno or admissible.

� Assume �0 is Zeno.

By Lemma 4.18, �0 contains in�nitely many actions (j�0 � acts(A)j = 1). Assume

�0 is not Zeno-tolerant (�0 2 t-execZt(A)). Then j�0 � local(A)j = 1. Since each

locally-controlled action in �0 belongs to the locally-controlled actions of one of the

component automata of A, and there are only �nitely many such components, there

exists an i such that j�0�local(Ai)j =1 which also implies j(�0dAi)�local(Ai)j =1.

Lemma 4.33 now implies the existence of a timed sequence Ii over in(Ai) compatible

with �dAi such that �
0dAi 2 O(gi;fi)(�dAi; Ii). Since �

0dAi is Zeno (by Lemma 4.11)

and j(�0dAi) � local(Ai)j = 1, there is a contradiction to the fact that (gi; fi) is

Zeno-tolerant.

Thus, �0 2 t-execZt(A). That su�ces.

� Assume �0 is admissible.

By Lemma 4.33, for each 1 � i � N there exists a timed sequence Ii over in(Ai)

compatible with �dAi, such that �0dAi 2 O(gi;fi)(�dAi; Ii). By Lemma 4.11, �0dAi

is admissible. Now the fact that (gi; fi) is an environment-free for the pair (Ai; Li[

t-execZt(Ai)) implies that �
0dAi 2 Li. This implies, by De�nition 4.25, that �0 2 L.

That su�ces.

4. To prove that (g; f) is Zeno-tolerant (cf. De�nition 4.21), it su�ces to note that the

previous case says that O(g;f)(�; I) � L [ t-execZt(A), where L � t-exec1(A).

The main result, closure of the parallel composition operator, can now be proven.

Proposition 4.35 (Closure of parallel composition)

Let (A1; L1); : : : ; (AN ; LN) be compatible live timed I/O automata. Then the parallel composi-

tion (A1; L1)k : : :k(AN ; LN) is a live timed I/O automaton.
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Proof. Let (A;L) = (A1; L1)k � � � k(AN ; LN). De�nition 4.10 implies that A is a safe timed

I/O automaton. Furthermore, since Li � t-exec1(Ai), Lemma 4.11 and De�nition 4.25 show

that L � t-exec1(A).

For each 1 � i � N , let (gi; fi) be an environment-free strategy for (Ai; Li [ t-execZt(Ai)).

By Lemma 4.34 the strategy (g; f) = (g1; f1)k � � � k(gN ; fN) is an environment-free strategy

for (A;L [ t-execZt(A)). Therefore, the pair (A;L [ t-execZt(A)) is environment-free. By

De�nition 4.23 of live timed I/O automata, the result now follows.

4.5 Preorder Relations for Live Timed I/O Automata

For safe timed I/O automata there are several ways of de�ning a timed trace preorder that

depend upon which kinds of traces are being considered. A naive choice would be to consider

all the timed traces of a safe timed I/O automaton; however, one might not be interested in,

e.g., the Zeno timed traces of a system. For the live preorder, on the other hand, there is a

unique natural choice.

De�nition 4.36 (Timed trace preorders)

Given two live timed I/O automata (A1; L1) and (A2; L2) such that esig(A1) = esig(A2) de�ne

the following preorders:

Safe: (A1; L1) vSt (A2; L2) i� t-traces(A1) � t-traces(A2):

Safe-�nite: (A1; L1) v
�
St
(A2; L2) i� t-traces�(A1) � t-traces�(A2):

Safe-admissible: (A1; L1) v
1
St
(A2; L2) i� t-traces1(A1) � t-traces1(A2):

Safe-non-Zeno: (A1; L1) v
nz

St
(A2; L2) i� (A1; L1) v

�
St
(A2; L2) and (A1; L1) v

1
St
(A2; L2):

Live: (A1; L1) vLt (A2; L2) i� t-traces(L1) � t-traces(L2):

The safe-non-Zeno preorder is the relation that is used in [VL92]. This preorder is used in

[VL92] instead of the more natural safe-admissible preorder since �nite timed traces are need

for substitutivity of a sequential composition operator.

It is interesting to note that the live preorder implies the safe preorder whenever the involved

safe timed I/O automata have timed �nite internal nondeterminism. On the other hand, if

the involved safe timed I/O automata do not have timed �nite internal nondeterminism, then

the live preorder only implies �nite timed trace inclusion. Essentially, timed �nite internal

nondeterminism requires that a timed automaton has a �nite internal branching structure. In

particular, a �nite timed trace can lead to at most �nitely many states.

De�nition 4.37 (Timed �nite internal nondeterminism)

A timed automaton A has timed �nite internal nondeterminism (t-FIN) i�, for each trace


 2 t-traces�(A), the set flstate(�) j t-trace(�) = 
g is �nite.

Proposition 4.38

Let (A1; L1) and (A2; L2) be two live timed I/O automata with vsig(A1) = vsig(A2).
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1. If (A1; L1) v
1
St
(A2; L2) then (A1; L1) v

�
St
(A2; L2).

2. If A2 has t-FIN and (A1; L1) v
�
St
(A2; L2) then (A1; L1) vSt (A2; L2).

3. If (A1; L1) vLt (A2; L2) then (A1; L1) v
�
St
(A2; L2).

Proof.

1. Let 
 be a �nite timed trace of A1. By de�nition of timed trace, there is a timed execution

�1 of A1 such that t-trace(�1) = 
. By de�nition of live timed I/O automaton there

exists an admissible timed execution �0
1
of A1 such that �1 �t �

0
1
and t-trace(�0

1
) 2

L1 (just apply any environment-free strategy for (A1; L1) to �1 and to an admissible

timed environment sequence for A compatible with �1). By de�nition of live timed I/O

automaton, �0
1
is a timed execution of A1. Since (A1; L1) v

1
St

(A2; L2), there exists a

timed execution �0
2
of A2 such that t-trace(�0

1
) = t-trace(�0

2
). Since the set of timed

executions of a timed I/O automaton is closed under t-pre�x, there is a t-pre�x �2 of �
0
2

such that �2 is a timed execution of A2 and t-trace(�2) = 
, i.e., 
 is a timed trace of

A2.

2. This is a standard result that appears in [LV91].

3. Let 
 be a �nite timed trace of A1. By de�nition of timed trace, there is a timed execution

�1 of A1 such that t-trace(�1) = 
. By de�nition of live timed I/O automaton there

exists a timed execution �0
1
of A1 such that �1 �t �0

1
and t-trace(�0

1
) 2 L1. Since

(A1; L1) vLt (A2; L2), there exists a timed execution �0
2
of L2 such that t-trace(�0

1
) =

t-trace(�0
2
). By de�nition of timed live I/O automaton, �0

2
is a timed execution of A2,

and, since the set of timed executions of a timed automaton is closed under t-pre�x,

there is a t-pre�x �2 of �
0
2
such that �2 is a timed execution of A2 and t-trace(�2) = 
,

i.e., 
 is a timed trace of A2.

The important property of the safe and live preorders is that they are substitutive for the

operators of Section 4.4. In the case of the parallel composition operator, this means that

an implementation of a system made up of several parallel components can be obtained by

implementing each component separately.

Theorem 4.39 (Substitutivity)

Let (Ai; Li); (A
0
i; L

0
i), i = 1; : : : ; N be live timed I/O automata, and let vX be one relation

among vSt, v
�
St
, v1

St
, vnz

St
and vLt. If, for each i, (Ai; Li) vX (A0i; L

0
i), then

1. if (A1; L1); : : : ; (AN ; LN) are compatible and (A0
1
; L0

1
); : : : ; (A0N ; L

0
N) are compatible then

(A1; L1)k � � �k(AN ; LN) vX (A0
1
; L0

1
)k � � � k(A0N ; L

0
N).

2. if � � local(A1) and � � local(A0
1
) then

(A1; L1) n� vX (A0
1
; L0

1
) n �
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3. if � is a mapping applicable to both A1 and A0
1
then

�((A1; L1)) vX �((A0
1
; L0

1
))

Proof. The substitutivity results are a direct consequence of Lemmas 4.11, 4.13, and 4.15,

and the observation, analogous to the one of the untimed model, that parallel composition,

hiding and renaming of timed execution sets preserve timed trace equivalence.

4.6 Comparison with Other Timed Models

This section compares our timed model with the work of [AL91b, MMT91, VL92].

The formalism that is used in [AL91b] is the Temporal Logic of Actions (TLA) [Lam91]

extended with a new variable now that models time. A speci�cation S consists of the conjunc-

tion of three formulas Init ^�^ L where Init represents the initial con�gurations of S, � is a

safety property , and L is a liveness property . The subformula Init ^� corresponds to our safe

timed I/O automata, while the subformula L corresponds to our timed liveness conditions. In

[AL91b] L can also be satis�ed by �nite or Zeno executions or by executions that do not satisfy

Init ^�. The formula L is a liveness condition for Init ^� based on our de�nition i� the pair

(Init ^ �; L) is machine-closed based on the de�nition in [AL91b].

There is a special formula NZ in [AL91b] that is used to express non-Zenoness, i.e., that

time advances forever. Time blocking or Zeno behaviors are undesirable in [AL91b] as well as

in our model; however, it is possible for the safety part of a speci�cation to describe systems for

which time cannot advance past a given upper bound whenever a particular state is reached.

Such a situation is eliminated in [AL91b] by requiring the pair (�;NZ) to be machine-closed.

In our model, on the other hand, the same situation is eliminated by the fact that system-Zeno

executions are not allowed in the liveness part of a live timed I/O automaton and that a live

timed I/O automaton is machine-closed by de�nition.

A major di�erence between our notion of environment-freedom and the notion of recep-

tiveness of [AL91b] is in the role of time: in our model no one is allowed to have control over

time; in [AL91b] either the system or its environment must have control over time. We believe

that it is more reasonable to assume that no one has control over time, and thus consider our

model easier to understand.

The model of [MMT91] is an extension to the timed model of the I/O automaton model of

[LT87]. The locally-controlled actions of an automaton are partitioned into classes, each one of

which is associated with a lower bound (possibly 0 but not1) and an upper bound (possibly1

but not 0). Actions from one class with lower bound c1 and upper bound c2 must stay enabled

for at least c1 time units before one of them can be performed, and cannot stay enabled more

that c2 time units without any one of them being performed.

An automatonM of [MMT91] can be represented in our model as a pair (A;L) where A is

a safe timed I/O automaton with a transition relation that satis�es all the timing constraints

of M , and L is the set of all admissible executions of A. It is easy to check that (A;L) is

environment-free and that admissible timed trace inclusion in [MMT91] coincides with live
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trace inclusion in our model. However, there are liveness conditions that can be represented

in our model but cannot be represented naturally in the model of [MMT91].

The work in [VL92] does not deal with general liveness properties, and argues that �nite and

admissible timed traces inclusion is generally su�cient to express a useful notion of implemen-

tation whenever time is involved. The work in [SLL93], however, has shown that liveness is

useful even in a timed model. In general, the automata of [VL92] are not receptive, however, in

order to avoid trivial implementations, [VL92] assumes some form of I/O distinction and some

form of receptiveness at the lower level of implementation. There is a very close connection

between the technical de�nitions of I/O feasibility and strong I/O feasibility of [VL92] and

our notion of environment-freedom. It is possible to represent each timed I/O automaton A

of [VL92] with the pair (A;L) where L is the set of admissible executions of A. The notion

of I/O feasibility of [VL92], which requires each �nite timed execution of A to be extendible

to an admissible timed execution of A using locally-controlled actions only, is stronger than

requiring that L is a liveness condition for A and weaker than requiring that (A;L) is a live

timed I/O automaton. In order to have closure under parallel composition, [VL92] introduces

a stronger requirement on I/O automata called strong I/O feasibility. Strong I/O feasibil-

ity adds to I/O feasibility the requirement that the safe part of an I/O automaton A does

not exhibit any system-Zeno execution. However, environment-freedom, which is weaker than

strong I/O feasibility since the safe part of a live timed I/O automaton is allowed to exhibit

system-Zeno behaviors, is su�cient to guarantee closure under parallel composition and hence

substitutivity.

5 Embedding the Untimed Model in the Timed Model

The untimed model, presented in Section 3, is used to specify systems where the amount of

time that passes between actions is considered unimportant. Many problems in distributed

computing can be stated and solved using this model. However, it is not possible to state

anything about, e.g., response times in the untimed model. It is implicitly assumed that the

�nal implementation on a physical machine is \fast enough" for practical use.

An untimed system can be thought of as a timed system that allows arbitrary time-passage.

This indicates that the timed model is, in some sense, more general than the untimed model,

and that one could use the timed model in situations where one would usually use the untimed

model. However, the timed model is more complicated than the untimed model due to the

time-passage action, the now component, etc. Furthermore, it does not seem natural to be

required to deal with time, when the problem to be solved does not mention time.

Thus, one would like to work in the untimed model as much as possible and only switch

to the timed model when it is needed. Sometimes, however, an algorithm that uses time

implements a speci�cation that does not use time. For example, [LLS93] shows how an untimed

speci�cation (of the at-most-once message delivery problem) is implemented by a system that

assumes upper time bounds on certain process steps and channel delays. Fischer's mutual

exclusion algorithm [Fis85, AL91b] is another such example. Figure 1 depicts the stepwise

development one would use for an implementation proof like the one in [LLS93]. The stepwise
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Figure 1: A stepwise development from an untimed speci�cation to a timed implementation.

development in Figure 1, however, raises the issue of what it means to implement an untimed

speci�cation with a timed implementation. Our approach to this issue is to convert the untimed

systems in the stepwise development to timed systems by applying a patient operator that adds

arbitrary time-passage steps. The patient operator we use is similar to the one of [NS92, VL92].

To complement the patient operator, this section proves the Embedding Theorem which states

that a concrete level implements an abstract level in the untimed model if and only if the

patient version of the concrete level implements the patient version of the abstract level in

the timed model. Thus, the �rst part of the stepwise development of Figure 1 can be carried

out entirely in the simpler untimed model, and the last part in the timed model. In the

intermediate development step which goes from untimed to timed, one must prove that the

timed level implements the patient version of the untimed level. The embedding theorem can

then be applied to show that the implementation IMPL implements the patient version of the

speci�cation SPEC.

De�nition 5.1 (Patient operator on safe I/O automata)

Let A be a safe (untimed) I/O automaton where � =2 acts(A). Then de�ne patient(A) to be

the safe timed I/O automaton with

� states(patient(A)) = states(A)� T

If s = (s0; t) is a state of patient(A), we let s:basic denote s0.

� start(patient(A)) = start(A)� f0g

� nowpatient(A)((s; t)) = t
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� ext(patient(A)) = ext(A)[ f�g

� in(patient(A)) = in(A)

� out(patient(A)) = out(A)

� int(patient(A)) = int(A)

� steps(patient(A)) consists of the steps

{ f((s; t); a; (s0; t)) j (s; a; s0) 2 steps(A)g

{ f((s; t); �; (s; t0)) j t0 > tg

The following trivial lemma states that the basic state of a patient automaton does not change

during time-passage in a timed execution.

Lemma 5.2

Let A be a safe I/O automaton with � =2 acts(A) and let � = !0a1!1a2!2 � � � be a timed

execution of patient(A). Then, for all i and all s; s0 2 rng(!i), s:basic = s0:basic.

In order to state what it means to apply the patient operator to a live I/O automaton, the

following auxiliary de�nition of what it means to untime a timed execution is needed. Let A

be a safe I/O automaton with � =2 acts(A) and let � = !0a1!1a2!2 � � � be a timed execution of

patient(A). Then de�ne

untime(�) = (fstate(!0):basic)a1(fstate(!1):basic)a2(fstate(!2):basic) � � �

Similarly, let 
 = ((a1; t1)(a2; t2) � � � ; t) be a timed trace of patient(A). Then de�ne

untime(
) = a1a2 � � �

Lemma 5.3

Let A be a safe I/O automaton with � =2 acts(A). Then � 2 t-exec(patient(A)) i� untime(�) 2

exec(A). Furthermore, if � is �nite, then untime(�) is �nite.

Proof. The proof of this lemma is trivial using Lemma 5.2, De�nition 5.1, and the de�nition

of untime.

The patient operator can now be extended to live I/O automata. For any live I/O automaton

(A;L), the patient live I/O automaton of (A;L) should be the live timed I/O automaton whose

safety part is patient(A) and whose liveness part consists of all those admissible executions

that, when made untimed, are in L. Thus, the liveness condition of the patient live I/O

automaton allows time to pass arbitrarily, as long as the liveness prescribed by L is satis�ed

sooner or later. This is formalized in the following de�nition.

65



De�nition 5.4 (Patient operator on live I/O automaton)

Let (A;L) be a live I/O automaton with � =2 acts(A). Then, de�ne patientA(L) = f� 2

t-exec1(patient(A)) j untime(�) 2 Lg, and de�ne patient(A;L), the patient live I/O automa-

ton of (A;L), to be the pair (patient(A); patientA(L)).

One must prove that for any live I/O automaton (A;L), patient(A;L) is a live timed I/O

automaton. This means showing the existence of an environment-free strategy for the pair

(patient(A); patientA(L) [ t-execZt(patient(A))). This is accomplished by de�ning the patient

strategy of an (untimed) strategy (g; f) de�ned on A, and showing that the patient strategy of

(g; f) is environment-free for (Ap; Lp [ t-execZt(Ap)), where (Ap; Lp) = patient(A;L), if (g; f)

is environment-free for (A;L). To ensure that the patient strategy of (g; f) is Zeno-tolerant,

which is required for environment-freedom, the patient strategy of (g; f) insists on letting time

pass some �xed positive amount of time � before making a local step.

To formalize this idea, the following de�nition is needed.

De�nition 5.5

For any safe timed I/O automaton A and any �nite timed execution � of A, de�ne lloctime(�)

to be the time of occurrence of the last locally-controlled action in �, or 0 if no such action

exists. Formally, let � = !0a1!1 � � �an!n. If a1; : : : ; an =2 local(A), then de�ne lloctime(�) = 0;

otherwise, de�ne lloctime(�) = ftime(!k) where ak 2 local(A) and ak+1; : : : ; an =2 local(A).

De�nition 5.6 (Patient strategy)

Let A be a safe I/O automaton with � =2 acts(A) and (g; f) be an (untimed) strategy de�ned

on A. Furthermore, let Ap = patient(A). Then de�ne the patient strategy of (g; f) with respect

to some positive real number �, written patient�(g; f), to be the pair of functions

gp : t-exec
�(Ap)� in(Ap)! states(Ap)

fp : t-exec
�(Ap)! (traj (Ap)� local(Ap)� states(Ap)) [ traj (Ap)

de�ned in the following way

gp(�; a)
4

= (g(untime(�); a); ltime(�))

fp(�)
4

=

8>>>>>>><
>>>>>>>:

(!; a; s) if f(untime(�)) = (a; s:basic); s:now = ltime(!) and

dom(!) = [ltime(�);max(ltime(�); lloctime(�) + �)]

rng(!) = f(lstate(�):basic; t) j t 2 dom(!)g

! if f(untime(�)) = ? and

dom(!) = [ltime(�);1]

rng(!) = f(lstate(�):basic; t) j t 2 dom(!)g
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For �nite timed executions � of Ap, Lemma 5.3 implies that untime(�) is a �nite execution of

A. Also, by De�nition 5.1, A and Ap have the same input, output, and internal actions. Thus,

in the de�nition of (gp; fp), the domains and ranges of g and f are compatible with the usage

of g and f .

The following lemma states that the patient strategy is indeed a strategy.

Lemma 5.7

Let A be a safe I/O automaton with � =2 acts(A), (g; f) an (untimed) strategy de�ned on A,

and � any positive real number. Then patient�(g; f) is a (timed) strategy de�ned on patient(A).

Proof. Let (gp; fp) = patient�(g; f) and Ap = patient(A). To verify that (gp; fp) is a (timed)

strategy de�ned on Ap check the four conditions of De�nition 4.16.

1. For the �rst condition, which deals with gp, let, for arbitrary � 2 t-exec�(Ap) and

a 2 in(Ap), gp(�; a) = s = (s0; t). By the de�nition of gp and the fact that (g; f)

is a strategy de�ned on A (cf. De�nition 3.11), (lstate(untime(�)); a; s0) 2 steps(A)

which, by de�nition of untime, Lemma 5.2, and the fact that � is �nite is the same as

(lstate(�):basic; a; s0) 2 steps(A). Finally, De�nition 5.1 and the fact that t = ltime(�)

gives (lstate(�); a; s) 2 steps(Ap), which su�ces.

2. For the second condition let fp(�) = (!; a; s). Similar to the �rst condition, it is easy

to see that (lstate(!); a; s) is a step of Ap. Then by the de�nition of ! and the fact

that Ap allows time to pass arbitrarily, !afsg is a timed execution fragment of Ap and

fstate(!) = lstate(�). Thus, � a !afsg 2 t-exec�(Ap) as required.

3. The argument parallels that for Condition 2.

4. Finally, the fourth condition, dealing with consistence of fp, is considered.

(a) Assume fp(�) = (!; a; s) and let t be a time such that ftime(!) � t � ltime(!).

By de�nition of fp we have f(untime(�)) = (a; s:basic), s:now = ltime(!), and

dom(!) = [ltime(�);max(ltime(�); lloctime(�) + �)] and

rng(!) = f(lstate(�):basic; t0) j t0 2 dom(!)g.

By de�nition of untime , we have untime(� a (! 2 t)) = untime(�), which implies

f(untime(� a (! 2 t))) = f(untime(�)).

Thus, fp(�
a (! 2 t)) = (!0; a; s0) with f(untime(� a (! 2 t))) = (a; s0:basic) =

(a; s:basic), s0:now = ltime(!0), and dom(!0) = [ltime(� a (! 2 t));max(ltime(� a

(!2 t)); lloctime(�a (!2 t))+ �)] and rng(!0) = f(lstate(�a (!2 t)):basic; t0) j t0 2

dom(!0)g.

Now, by Lemma 5.2 lstate(� a (! 2 t)):basic = lstate(�):basic, and furthermore

we have, by the de�nitions of 2 and lloctime, that ltime(� a (! 2 t)) = t and

lloctime(� a (! 2 t)) = lloctime(�)
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Assume ltime(�) > lloctime(�)+�. Then ftime(!) = ltime(!) = t = ltime(�), and

max (ltime(� a (!2 t)); lloctime(�a (!2 t)) + �) = max (ltime(�); lloctime(�)+ �).

Then assume ltime(�) � lloctime(�)+�. Then t � ltime(!) = lloctime(�)+�, and

again we havemax (ltime(�a(!2t)); lloctime(�a(!2t))+�) = max (t; lloctime(�)+

�) = lloctime(�) + � = max (ltime(�); lloctime(�) + �).

Thus, we have dom(!0) = [ltime(� a (! 2 t));max(ltime(� a (! 2 t)); lloctime(� a

(! 2 t)) + �)] = [t;max(ltime(�); lloctime(�) + �)] = dom(! 3 t) and rng(!0) =

f(lstate(� a (! 2 t)):basic; t0) j t0 2 dom(!)g = f(lstate(�):basic; t0) j t0 2 dom(! 3

t)g = rng(! 3 t). Therefore, !0 = ! 3 t and s0:now = ltime(!0) = ltime(!) such

that s0 = s.

Hence, �nally conclude that fp(�
a (! 2 t)) = ((! 3 t); a; s), as required.

(b) Assume fp(�) = !. This case is handled similarly to the previous case.

Thus, (gp; fp) is a strategy de�ned on Ap.

The proof that for any environment-free (untimed) strategy (g; f) for a live I/O automaton

(A;L), and any positive �, the patient strategy patient�(g; f) is an environment-free (timed)

strategy for (Ap; Lp[t-exec
Zt(Ap)), where (Ap; Lp) = patient(A;L), uses two technical lemmas.

The �rst of these lemmas states that if �0 is an admissible timed execution of an outcome of

patient�(g; f), then untime(�0) is an outcome of (g; f). This expresses the intuitive idea that

the only signi�cant di�erence between (g; f) and patient(g; f) is due to time-passage. The

second lemma states that the di�erence in the time of occurrence of any two locally-controlled

actions in a timed execution of an outcome of patient�(g; f), is at least �. This is, of course,

due to the fact that patient�(g; f) insists on letting time pass for at least � time units between

local steps.

Lemma 5.8

Let A be a safe I/O automaton with � =2 acts(A) and let (g; f) be an (untimed) strategy de�ned

on A. Let Ap = patient(A) and (gp; fp) = patient�(g; f) for some arbitrary positive real number

�. Then, for all � 2 t-exec�(Ap), all timed environment sequences Ip for Ap compatible with

�, and all admissible �0 2 O(gp;fp)(�; Ip), there exists an environment sequence I for A such

that untime(�0) = O(g;f)(untime(�); I).

Proof. First note that by Lemma 5.7, (gp; fp) is a strategy de�ned on Ap.

Let � 2 t-exec�(Ap) be an arbitrary �nite timed execution of A, Ip an arbitrary timed

environment sequence for Ap compatible with �, and �0 be an arbitrary admissible timed

execution of the outcome O(gp;fp)(�; Ip). Let R(gp;fp) be the next-relation induced by (gp; fp)

and R(g;f) the next-function induced by (g; f). Also, let (�n; Inp )n�0 be an outcome sequence

of (gp; fp) given � and Ip such that �0 = limn!1 �n.

Let N0 ! N0 be the signature of a total, nondecreasing mapping m. De�ne m(n) induc-

tively on n. Furthermore, de�ne I�0 (a �nite sequence over in(A) [ f�g) and for each n > 0
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and each m(n� 1) < k � m(n) de�ne I�k such that I�(k�1) � I�k. After the de�nition show

that this leads to a chain (I�n)n�0, ordered by pre�x, and let I = limn!1 I
�n.

Base case n = 0:

De�ne: m(0) = 0

I�0 = "

Inductive step n > 0:

(�n; Inp ) is related to (�n�1; In�1p ) according to exactly one of the �ve cases in the de�nition

of R(gp;fp) (cf. De�nition 4.17). Consider these �ve cases:

1. De�ne: m(n) = m(n� 1) + 1

I�m(n) = I�(m(n)�1)�

2. De�ne: m(n) = m(n� 1)

3. De�ne: m(n) = m(n� 1) + 1

I�m(n) = I�(m(n)�1)�

4. Here let (a; t) = head(In�1p ).

(a) Assume fp(�
n�1) = !

De�ne: m(n) = m(n� 1) + 2

I�(m(n)�1) = I�(m(n)�2)�

I�m(n) = I�(m(n)�1)a

(b) Assume fp(�
n�1) = (!; b; s)

De�ne: m(n) = m(n� 1) + 1

I�m(n) = I�(m(n)�1)a

5. De�ne: m(n) = m(n� 1) + 1

I�m(n) = I�(m(n)�1)�

This concludes the inductive de�nition. Only case 2 above does not increment m. However,

this case occurs at most once, namely if �n�1 is �nite and �n is not. Thus, limn!1m(n) =1.

This also implies that (I�n)n�1 is a chain ordered by pre�x. Now, de�ne I = limn!1 I
�n

and, for all n, let In = I � I�n. (Thus, I�n ^In = I.)

We now argue that I is an environment sequence for A. With an argument similar to the

one that shows limn!1m(n) = 1, it is easy to see that I is in�nite. Now, assume that I

does not contain in�nitely many occurrences of �. This implies that there exists a number n0

such that for all n > n0, the inductive step is handled by case 4b above. Let, for all k � n0,

fp(�
k) = (!k; ak; sk). Then by de�nition of fp, ltime(!

k) = max (ltime(�k); lloctime(�k) + �)

which, since case 4b adds input actions, equals max (ltime(�k); lloctime(�n0) + �).
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� Assume lloctime(�n0)+� � ltime(�n0). Then ltime(�n0+1) � ltime(!n
0

) = lloctime(�n0)+

�. By induction it is easy to see that for all k � n0, ltime(�k) � lloctime(�n0), which

implies that ltime(�0) � lloctime(�n0). But this contradicts the fact that �0 is admissible.

� Assume lloctime(�n0) + � < ltime(�n0). Then ltime(�n0+1) � ltime(!n
0

) = ltime(�n0),

and, by de�nition ofR(gp;fp), ltime(�
n0+1) � ltime(�n0). Thus, ltime(�n0+1) = ltime(�n0).

Again, by induction, ltime(�0) � ltime(�n0), and since �n0 is �nite, this contradicts the

fact that �0 is admissible.

Thus, both cases lead to a contradiction, which allows the conclusion that I contains in�nitely

many occurrences of �. Finally, I consists of actions from in(Ap) [ f�g. Since, by De�ni-

tion 5.1, in(A) = in(Ap), I is an in�nite sequence over in(A)[ f�g containing in�nitely many

occurrences of �. Thus, I is an environment sequence for A.

Similar to the way (I�n)n�0 is de�ned, now de�ne a chain (�n)n�0 of executions of A,

ordered by pre�x. Thus, de�ne �0 and, for each n > 0 and each m(n � 1) < k � m(n), �k

such that �k�1 � �k. In the same induction prove, for each n:

P1 untime(�n) = �m(n).

P2 If n > 0 and for each m(n� 1) < k � m(n), R(g;f)(�
k�1; Ik�1) = (�k; Ik).

Base case n = 0:

De�ne: �0 = untime(�)

P1 untime(�0) = untime(�) = �0 = �m(0).

P2 Vacuously satis�ed.

Inductive step n > 0:

Assume P1 as induction hypothesis. Again consider the �ve cases in the de�nition of R(gp;fp).

Case 1 Here (�n; Inp ) = (�n�1a!afsg; In�1p ) with fp(�
n�1) = (!; a; s). Then, by de�nition of

(gp; fp), f(untime(�
n�1)) = (a; s:basic). Furthermore, by the induction hypothesis and

the de�nition of m(n), untime(�n�1) = �m(n�1) = �m(n)�1.

De�ne: �m(n) = �m(n)�1a(s:basic)

P1 untime(�n) = untime(�n�1 a !afsg) = untime(�n�1) a untime(!afsg) = �m(n�1) a

(fstate(!):basic)a(s:basic) = �m(n)�1a(s:basic) = �m(n).

P2 This condition must be shown for k = m(n).

De�nition of I�m(n) above implies Im(n)�1 = I � I�(m(n)�1) = �(I � I�m(n)) =

�Im(n).

By case 1 of the de�nition of R(g;f) (cf. De�nition 3.12) the result now follows.
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Case 2 Here �n = �n�1 a ! where ! = fp(�
n�1). Also m(n) = m(n� 1) in this case.

P1 untime(�n) = untime(�n�1 a !) = untime(�n�1) = �m(n�1) = �m(n).

P2 Vacuously satis�ed.

Case 3 This case is handled similarly to case 1.

Case 4 Here, let (a; t) = head(In�1p ). Then, (�n; Inp ) = (�n�1 a !0afs0g; tail(In�1p )), where

!0 = (fp(�
n�1):trj ) 2 t and s0 = gp(�

n�1 a !0; a). Then, the induction hypothesis

and the de�nition of (gp; fp), imply g(untime(�n�1 a !0); a) = g(untime(�n�1); a) =

g(�m(n�1); a) = s0:basic.

Case 4.1 Assume fp(�
n�1) = !

Then the induction hypothesis and the de�nitions of (gp; fp) and m(n), imply

f(untime(�n�1)) = f(�m(n�1)) = f(�m(n)�2) = ?.

De�ne: �m(n)�1 = �m(n)�2

�m(n) = �m(n)�1a(s0:basic)

P1 untime(�n) = untime(�n�1 a !0afs0g) = untime(�n�1)a(s0:basic) =

�m(n�1)a(s0:basic) = �m(n)�2a(s0:basic) = �m(n)�1a(s0:basic) = �m(n).

P2 This condition must be shown for k = m(n)� 1 and k = m(n).

As for the previous cases, it is easy to see that Im(n)�2 = �Im(n)�1. Then the

result for k = m(n)� 1 directly follows from case 2 of the de�nition of R(g;f).

Similarly, Im(n)�1 = aIm(n). Furthermore, g(�m(n�1); a) = s0:basic which im-

plies g(�m(n)�2; a) = g(�m(n)�1; a) = s0:basic. Now the result for k = m(n)

follows from case 3 of the de�nition of R(g;f).

Case 4.2 Assume fp(�
n�1) = (!; b; s)

De�ne: �m(n) = �m(n)�1a(s0:basic)

P1 untime(�n) = untime(�n�1 a !0afs0g) = untime(�n�1)a(s0:basic) =

�m(n�1)a(s0:basic) = �m(n)�1a(s0:basic) = �m(n).

P2 This condition must be shown for k = m(n).

Since Im(n)�1 = aIm(n) and g(�m(n�1); a) = g(�m(n)�1; a) = s0:basic, the result

follows from case 3 of the de�nition of R(g;f).

Case 5 In this case (�n; Inp ) = (�n�1; In�1p ).

De�ne: �m(n) = �m(n)�1

P1 The induction hypothesis and the de�nition of m(n) imply that untime(�n) =

untime(�n�1) = �m(n�1) = �m(n)�1 = �m(n).
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P2 This condition must be shown for k = m(n).

By de�nition of (�n)n�0, there exists an n0 < n such that �n0 is �nite, fp(�
n0) = !,

for some !, and �n0+1 = �n0+2 = � � � = �n�1 = �n = �n0 a !.

Then De�nition 5.6 of (gp; fp) implies that f(untime(�n0)) = ? and then, since

untime(�n0) = untime(�n�1), f(untime(�n�1)) = ?. Thus, by the induction hy-

pothesis and de�nition of m(n), f(�m(n�1)) = f(�m(n)�1) = ?,

By de�nition of I�m(n), Im(n)�1 = I � I�(m(n)�1) = �(I � I�m(n)) = �Im(n).

Now, since �m(n) = �m(n)�1, f(�m(n)�1) = ?, and Im(n)�1 = �Im(n), the result

follows from case 2 in the de�nition of R(g;f) (cf. De�nition 3.12).

This concludes the inductive de�nition and proof. By P2 and the fact that limn!1m(n) =1,

(�n; In)n�1 is the outcome sequence of (g; f) given untime(�) and I. Now,

untime(�0)
1
= untime(limn!1�n)
2
= limn!1(untime(�

n))
3
= limn!1 �m(n)

4
= limn!1 �n

5
= O(g;f)(untime(�); I)

where step 1 follows from the de�nition of �0, step 2 follows from continuity of untime (easy

to verify), step 3 follows from P1 in the induction proof, step 4 follows from the fact that

limn!1m(n) = 1, and �nally step 5 follows from the fact that (�n; In)n�1 is the outcome

sequence of (g; f) given untime(�) and I. This concludes the proof.

Lemma 5.9

Let A be a safe I/O automaton with � =2 acts(A) and let (g; f) be an (untimed) strategy

de�ned on A. Let Ap = patient(A) and (gp; fp) = patient�(g; f) for some arbitrary positive

real number �. Let � 2 t-exec�(Ap) be an arbitrary �nite timed execution of Ap, I an arbitrary

timed environment sequence for Ap compatible with �, and �0 an arbitrary timed execution of

the outcome O(gp;fp)(�; I). Then for any two elements (a1; t1) and (a2; t2) in t-seq(�0 � �) �

(local(Ap)� T), jt2 � t1j � �.

Proof. Let (a1; t1) and (a2; t2) be two arbitrary pairs in 
 = t-seq(�0 � �) � (local(Ap) � T)

and assume, without loss of generality, that (a1; t1) occurs before (a2; t2) in 
. This implies

that t2 � t1. Furthermore, assume, again without loss of generality, that (a1; t1) and (a2; t2)

are consecutive in 
. Let (�n; In)n�0 be an outcome sequence of (gp; fp) given � and I such

that �0 = limn!1�n.

De�nition 4.17 now implies the existence of a number n such that (a2; t2) is not in t-seq(�
n�

�) � (local(Ap)�T) and �n+1 = �n a !a2fsg with fp(�
n) = (!; a2; s) and ltime(!) = t2. Also,

(a1; t1) must be in t-seq(�n � �) � (local(Ap) � T) since otherwise it could not occur before

(a2; t2) in 
. Let tl = lloctime(�n). Since a1 2 local(Ap), t1 � tl.

By de�nition of fp (De�nition 5.6), ltime(!) = max(ltime(�n); lloctime(�n) + �). Thus,

t2 = ltime(!) � tl + � � t1 + �, or equivalently, t2 � t1 � �. That su�ces.
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It is now possible to prove that for any environment-free strategy (g; f) for a live I/O automaton

(A;L) and any positive �, patient�(g; f) is an environment-free (timed) strategy for (Ap; Lp [

t-execZt(Ap)), where (Ap; Lp) = patient(A;L).

Lemma 5.10

Let (A;L) be a live I/O automaton with � =2 acts(A) and let (g; f) be an (untimed) environment-

free strategy for (A;L). Furthermore, let (Ap; Lp) = patient(A;L). Then, for any positive real

number �, patient�(g; f) is a (timed) environment-free strategy for (Ap; Lp [ t-execZt(Ap)).

Proof. Let � be an arbitrary positive real number and let (gp; fp) = patient�(g; f). Note that

by Lemma 5.7 (gp; fp) is a (timed) strategy de�ned on Ap. By De�nition 4.22 one must show

that

1. Ap is a safe timed I/O automaton,

2. Lp [ t-execZt(Ap) � t-exec(Ap),

3. O(gp;fp)(�; Ip) � Lp [ t-execZt(Ap), for all � 2 t-exec�(Ap) and all timed environment

sequences Ip for Ap compatible with �, and

4. (gp; fp) is Zeno-tolerant.

Consider the points one at a time.

1. De�nition 5.1 directly implies that Ap is a safe timed I/O automaton.

2. By De�nition 5.4, Lp � t-exec1(Ap) and since also t-execZt(Ap) � t-exec(Ap), the result

follows.

3. Let � 2 t-exec�(Ap) be an arbitrary �nite timed execution of Ap and Ip be an arbitrary

timed environment sequence for Ap compatible with �. Let �0 2 O(gp;fp)(�; Ip) be an

arbitrary element of the outcome. By Lemma 4.18, � is either Zeno or admissible.

� Assume �0 is Zeno.

Then, by Lemma 5.9 there are only �nitely many locally-controlled actions of Ap in

�0. Now, Lemma 4.18 implies that �0 contains in�nitely many input actions. Thus,

� 2 t-execZt(Ap). That su�ces.

� Assume �0 is admissible.

By Lemma 5.8 there exists an environment sequence I for A such that untime(�0) =

O(g;f)(untime(�); I). The fact that (g; f) is an environment-free strategy for (A;L)

implies untime(�0) 2 L. This implies, by De�nition 5.4, that �0 2 Lp. That su�ces.

4. To prove that (gp; fp) is Zeno-tolerant (cf. De�nition 4.21), it su�ces to note that the

previous case implies the following. For arbitrary � 2 t-exec�(Ap) and arbitrary timed

environment sequences Ip for Ap compatible with �, O(gp;fp)(�; Ip) � Lp [ t-execZt(Ap),

where Lp � t-exec1(Ap) by De�nition 5.4.
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Finally, we can prove that for any live I/O automaton (A;L), patient(A;L) is a live timed I/O

automaton.

Proposition 5.11

Let (A;L) be a live I/O automaton. Then patient(A;L) is a live timed I/O automaton.

Proof. Let (Ap; Lp) = patient(A;L). De�nition 5.1 implies that Ap is a safe timed I/O

automaton. Furthermore, L � t-exec1(Ap) by De�nition 5.4. Finally, Lemma 5.10 implies

that the pair (Ap; Lp [ t-execZt(Ap)) is environment-free. By De�nition 4.23, this su�ces.

Now attention is turned to proving the Embedding Theorem, which states that the safe and

live preorders of live I/O automata are preserved by the patient operator. A few preliminary

lemmas are needed.

Lemma 5.12

Let A be a safe I/O automaton with � =2 acts(A) and let Ap = patient(A). Furthermore, let

� 2 t-exec(Ap). Then,

untime(t-traceAp
(�)) = traceA(untime(�))

Proof. Let � = !0a1!1a2!2 � � �.

Then, t-traceAp
(�) = ((a1; ftime(!1))(a2; ftime(!2)) � � ��(vis(Ap)�T); ltime(�)) and it follows

that untime(t-traceAp
(�)) = a1a2 � � � � vis(Ap).

Now, untime(�) = (fstate(!0):basic)a1(fstate(!1):basic)a2(fstate(!2):basic) � � � and it follows

that traceA(untime(�)) = a1a2 � � � � ext(A).

By De�nition 5.1, vis(Ap) = ext(A), so the result follows.

Lemma 5.13

Let (A;L) be a live I/O automaton with � =2 acts(A). Then,

1. If 
 2 t-traces(patient(A)) then untime(
) 2 traces(A).

2. If � 2 traces(A) and 
 2 tsp(ext(A)) with � = untime(
) such that if seq(
) is Zeno,

then ltime(
) is the limit of the times in seq(
), then 
 2 t-traces(patient(A)).

3. If 
 2 t-traces(patientA(L)) then untime(
) 2 traces(L).

4. If � 2 traces(L) and 
 2 tsp(ext(A)) is admissible with � = untime(
), then 
 2

t-traces(patientA(L)).

Proof. Let (Ap; Lp) = patient(A;L). Consider the four parts separately.
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1. Let 
 2 t-traces(Ap) and � 2 t-exec(Ap) such that t-trace(�) = 
. Then untime(
) =

untime(t-trace(�)) which, by Lemma 5.12, equals trace(untime(�)). By Lemma 5.3,

untime(�) 2 exec(A). That su�ces.

2. Let � = a1a2a3 � � � 2 traces(A) and 
 2 tsp(ext(A)) such that � = untime(
). Thus,


 = ((a1; t1)(a2; t2)(a3; t3) � � � ; tl) for nondecreasing times t
1; t2; t3; : : : and time tl (possibly

1) greater than or equal to ti for all i in 
. Also, let � = s0a1s1a2s2 � � � 2 exec(A) such

that � = trace(�) and � is �nite if � (and thus seq(
)) is �nite.

By de�nition of trace, each external action ai in � corresponds to an action aj(= ai) in

� and thus a pair (aj ; tj) in seq(
). De�ne tj to be the time of occurrence ti of ai. For

internal actions ai in �, de�ne the time of occurrence ti to be the time of occurrence of

the previous external action in � or 0 if no such action exists. De�ne, if � is �nite with

an being its last action, tn+1 = tl (possibly 1).

Now, de�ne � = !0a1!1a2!2 � � � where dom(!0) = [0; t1], rng(!0) = f(s0; t) j t 2

dom(!0)g, dom(!1) = [t1; t2], rng(!1) = f(s1; t) j t 2 dom(!1)g, and dom(!2) = [t2; t3],

rng(!2) = f(s2; t) j t 2 dom(!2)g. Then clearly, by De�nition 5.1, � 2 t-exec(Ap), and

furthermore t-trace(�) = (seq(
); ltime(�)). (Note, that vis(Ap) = ext(A).)

If � is �nite, then, depending on tl, � is admissible or �nite, but in both cases ltime(�) =

tl.

If � is in�nite, then seq(
) is in�nite and

(1) if seq(
) is Zeno, then ltime(�) equals the limit of the times in seq(
), which equals

tl by assumption, and

(2) if seq(
) is admissible, then � is admissible.

Thus, in all cases ltime(�) = tl. Finally, conclude that t-trace(�) = 
 which implies that


 2 t-traces(Ap) as required.

3. Let 
 2 t-traces(Lp) and � 2 Lp such that t-trace(�) = 
. Then untime(
) =

untime(t-trace(�)) which, by Lemma 5.12, equals trace(untime(�)). De�nition 5.4 and

the fact that � 2 Lp imply that untime(�) 2 L. That su�ces.

4. This proof is similar to the proof of Part 2 except that � is chosen from L and thus

might be in�nite even though � is �nite. If this is the case the times of occurrence of the

internal actions in the diverging su�x of � are chosen to increase by some �xed amount,

say, 1. Then � is admissible, and clearly � = untime(�), so by De�nition 5.4, � 2 Lp.

Thus, 
 2 t-traces(Lp).

Theorem 5.14 (Embedding Theorem)

Let (A;L) and (B;M) be live I/O automata with � =2 (acts(A) [ acts(B)). Then

1. (A;L) vS (B;M) i� patient(A;L) vSt patient(B;M).

2. (A;L) vL (B;M) i� patient(A;L) vLt patient(B;M).
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Proof. Let (Ap; Lp) = patient(A;L) and (Bp;Mp) = patient(B;M). The two parts of the

lemma are considered separately.

1. =): Let 
 2 t-traces(Ap). By Lemma 5.13 Part 1, � = untime(
) 2 traces(A), which

implies, since (A;L) vS (B;M), that � 2 traces(B). Now, the fact that 
 is a timed

sequence pair over vis(Ap) = vis(Bp) = ext(B) and the fact that 
 satis�es the property

seq(
) being Zeno implies ltime(
) is the limit of the times in seq(
), Lemma 5.13 Part 2

implies that 
 2 t-traces(Bp), as required.

(=: Let � 2 traces(A) and let 
 be any, say, admissible timed sequence pair over

ext(A) such that untime(
) = �. (Such a timed sequence pair clearly exists.) Then,

by Lemma 5.13 Part 2, 
 2 t-traces(Ap). Thus, the assumption that patient(A;L) vSt

patient(B;M) implies 
 2 t-traces(Bp). Lemma 5.13 Part 1 shows that � = untime(
) 2

traces(B), as required.

2. Similar to Part 1 by using Lemma 5.13 Parts 3 and 4.

Finally we prove a result which is important when doing speci�cation and veri�cation in a

modular fashion. Namely, the patient operator commutes with the three operators on safe and

live (timed) I/O automata. First, let �St and �Lt denote the kernels of the preorders vSt and

vLt, respectively.
2

Proposition 5.15

Let (A;L) and (A1; L1); : : : ; (AN ; LN) be live I/O automata and let �X be one of �St and �Lt.

1. Let (A1; L1); : : : ; (AN ; LN) be compatible. Then,

patient((A1; L1)k � � �k(AN ; LN)) �X patient(A1; L1)k � � � kpatient(AN ; LN)

2. Let � � local(A). Then,

patient((A;L) n �) �X patient(A;L) n �

3. Let � be an action mapping applicable to A and let �� be � extended with the mapping

[� 7! �]. Then,

patient(�(A;L))�X ��(patient(A;L))

Proof. We show the proofs for �St. The proofs for �Lt are similar.

1. First note that since (A1; L1); : : : ; (AN ; LN) are compatible, then also patient(A1; L1),

: : : , patient(AN ; LN) are compatible.

2
The kernel of a preorder v is de�ned to be the equivalence � de�ned by x � y

4

= x v y ^ y v x.
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Observe the simple fact that for each timed execution �, untime(�)dAi = untime(�dAi).

Then,

� 2 t-exec(patient(A1k � � � kAN ))

i� untime(�) 2 exec(A1k � � �kAN ) Lemma 5.3

i� 81�i�N : untime(�)dAi 2 exec(Ai) Lemma 3.5

i� 81�i�N : untime(�dAi) 2 exec(Ai) observation above

i� 81�i�N : �dAi 2 t-exec(patient(Ai)) Lemma 5.3

i� � 2 t-exec(patient(A1)k � � �kpatient(AN)) Lemma 4.11

That su�ces.

2. Note that since � � local(A), also � � local(patient(A)). Then,

� 2 t-exec(patient(A n �))

i� untime(�) 2 exec(A n �) Lemma 5.3

i� untime(�) 2 exec(A) Lemma 3.7

i� � 2 t-exec(patient(A)) Lemma 5.3

i� � 2 t-exec(patient(A) n �) Lemma 4.13

That su�ces.

3. First note that since � is applicable to A, �� is applicable to patient(A). Also note that,

since each renaming function � is injective, there is an inverse function ��1 : �(dom(�))!

dom(�) such that ��1(b) is the unique a satisfying �(a) = b.

Observe the simple fact that for any timed execution � and any rename function �0,

�0(untime(�)) = untime(�0�(�)), where �
0
� is obtained from �0 by adding the mapping

[� 7! �]. Then,

� 2 t-exec(patient(�(A))

i� untime(�) 2 exec(�(A)) Lemma 5.3

i� ��1(untime(�)) 2 exec(A) Lemma 3.9

i� untime(��1� (�)) 2 exec(A) observation above

i� ��1� (�) 2 t-exec(patient(A)) Lemma 5.3

i� � 2 t-exec(�(patient(A))) Lemma 4.15

That su�ces.

6 Proof Techniques

This section presents a number of techniques to prove the safe preorder and the live preorder

on live (timed) I/O automata. The techniques are based on results in [LV93a]([LV93b]), which

show that several simulation relations between (timed) automata are sound with respect to
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the safe preorder. This section also shows that a stronger result, called the Execution Corre-

spondence Theorem, can be proven for the simulations of [LV93a]([LV93b]). Speci�cally, that

there is a certain correspondence between the executions of the involved automata and not

only between their traces. In the untimed model, liveness conditions of live I/O automata are

stated in terms of executions and not in terms of traces, thus the Execution Correspondence

Theorem can form the basis for proofs of the live preorder. In the timed model, where liveness

conditions are given in terms of timed executions, the timed version of Execution Correspon-

dence Theorem along with a sampling characterization of the live timed executions is used as

the basis for proofs of the live preorder.

The proof that a live (timed) I/O automaton A implements (based on the live preorder)

another live (timed) I/O automaton B consists of two main steps. First a simulation relation

between the safe (timed) I/O automata parts is proven. Because of the soundness of the

simulation relations with respect to the safe preorder(s), the simulation relation already implies

that the safe preorder(s) holds. The second step, which is described in detail in this section,

uses the simulation relation found in the �rst step and the Execution Correspondence Theorem

to prove the live preorder.

Ideas similar to those of the Execution Correspondence Theorem appear in the soundness

proofs of the simulations for the safe preorder given in [LT87, LV93a]. The contribution of this

section is to formally state and prove the Execution Correspondence Theorem for a large class

of simulations and to show how it can be used as the basis for proving the live preorder.

Several pragmatic considerations support the approach to veri�cation taken in this section.

For example, when proving the safe and live preorders in the untimed setting, it is often di�cult

to reason directly about the traces of the involved live I/O automata. In particular, the traces

of an automaton are de�ned implicitly as the traces of the executions of the automaton, and

the liveness condition of a live automaton is usually de�ned implicitly to be a set of executions

of the automaton that satisfy certain properties, typically speci�ed in some temporal logic.

Thus, the sets of traces and live traces are not directly available. Rather, they are derived

from automata, temporal logic formulas, etc. As a result, simulation based proof techniques

which use the information available directly, e.g., automata, and which are sound with respect

to the safe and live preorders, are attractive.

Furthermore, using our proof methodology, the main complexity of a correctness proof for

the safe and live preorders is found in the simulation proof. Fortunately, simulation proofs have

a nice case structure that scales well to large examples and provides good intuitive insight into

the automata for which the simulation relation is being proven. Another practical advantage of

our proof methodology for the live preorder is that it proves the safe preorder as a side result.

The work in [SLL93, LLS93] shows why this can be useful. In [SLL93, LLS93] the �ve-packet-

handshake protocol of [Bel76] is shown to guarantee a safety property of \at-most-once message

delivery", as well as liveness properties such as \in the absence of crashes, each message will

eventually be delivered". However, the liveness of the system depends on liveness assumptions

on the channels connecting the sender and the receiver: \if a packet is sent in�nitely often

then it will be received in�nitely often". This liveness assumption must hold even though the

channels are allowed to lose packets. However, if the channel is cut, then correctness as de�ned
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Figure 2: Example of a simulation. The actions a and b are external actions. The remaining

steps represent internal actions.

by the live preorder is no longer ensured. Fortunately, since the safety property is independent

of the liveness of the channel, safety is still guaranteed, i.e., no message is delivered more than

once.

6.1 Untimed Proof Techniques

Section 6.1.1 de�nes a number of simulation relations taken from [LV93a]. Section 6.1.2 presents

the Execution Correspondence Theorem. Finally, Sections 6.1.3 and 6.1.4 deal with proving

the safe and live preorders, respectively.

6.1.1 Simulation Proof Techniques

This section presents simulation relations taken from [LV93a]. For the purpose of generality,

the de�nitions are stated in terms of automata. All results are also valid for the special case

of safe I/O automata.

A simulation relation is a relation between the states of one automaton, called the concrete,

low-level , or implementation automaton, and the states of another automaton, called the

abstract , high-level , or speci�cation automaton, such that certain properties hold. The exact

properties depend on the type of simulation (forward, backward, etc.) but they generally

consist of two properties. First, the start states of the two automata must be related in a

certain way, and, second, each step of the implementation automaton must \correspond" to a

sequence of steps of the speci�cation automaton.

The second property is depicted in Figure 2. For each step of the implementation au-

tomaton, i.e., for each concrete step, there must exist a sequence of (abstract) steps of the

speci�cation automaton between states related|by the simulation relation|to the pre- and

post-state of the considered concrete step, such that the sequence of abstract steps contains

exactly the same external actions as the concrete step. How the sequence of abstract steps is

selected depends on what type of simulation is considered.

Below forward simulations, re�nement mappings, backward simulations, history relations,

and prophecy relations are de�ned. The de�nitions are similar to the de�nitions given in

[LV93a] where combinations of forward and backward simulations are also considered. The
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reader is referred to [LV93a] for details about, e.g., partial completeness of the simulation

techniques.

The simulation techniques use invariants (and are thus called weak in [LV93a]) of the

implementation and speci�cation automata to restrict the steps which need to be considered.

De�ne an invariant of an automaton to be any set of states of the automaton that is a superset

of the reachable states of the automaton. Equivalently, an invariant could be de�ned to be a

state predicate that is satis�ed for all reachable states of the automaton.

We use the following notational convention: if R is a relation over S1 � S2 and s1 2 S1,

then R[s1] denotes the set fs2 2 S2 j (s1; s2) 2 Rg.

De�nition 6.1 (Forward simulation)

Let A and B be automata with the same external actions and with invariants IA and IB,

respectively. A forward simulation from A to B, with respect to IA and IB , is a relation f over

states(A)� states(B) that satis�es:

1. If s 2 start(A) then f [s]\ start(B) 6= ;.

2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u 2 f [s] \ IB, then there exists an � 2 frag�(B)

with fstate(�) = u, lstate(�) 2 f [s0], and trace(�) = trace(a).

Write A �F B if there exists a forward simulation from A to B with respect to some invariants

IA and IB. If f is a forward simulation from A to B with respect to some invariants IA and

IB , write A �F B via f .

A re�nement mapping is a special case of a forward simulation where the relation is a function.

Because of its practical importance (cf. [AL91a]) an explicit de�nition is given.

De�nition 6.2 (Re�nement mapping)

Let A and B be automata with the same external actions and with invariants IA and IB,

respectively. A re�nement mapping from A to B, with respect to IA and IB , is a function r

from states(A) to states(B) that satis�es:

1. If s 2 start(A) then r(s) 2 start(B).

2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and r(s) 2 IB , then there exists an � 2 frag
�
(B) with

fstate(�) = r(s), lstate(�) = r(s0), and trace(�) = trace(a).

Write A �R B if there exists a re�nement mapping from A to B with respect to some invariants

IA and IB . If r is a re�nement mapping from A to B with respect to some invariants IA and

IB , write A �R B via r.

In a forward simulation there has to be a sequence of abstract steps starting from any of the

abstract states related to the concrete pre-state (restricted to the invariant) and ending in
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some state related to the concrete post-state. The word \forward" thus refers to the fact that

the abstract sequence of steps is constructed from any possible pre-state in a forward direction

toward the set of possible post-states.

In a backward simulation, on the other hand, there has to be a sequence of abstract steps

ending in any state related to the concrete post-state (restricted to the invariant) and starting

in some state related to the concrete pre-state. In other words, the sequence of abstract steps

is constructed given a post-state rather than a pre-state as in the forward simulation. Thus,

in a backward simulation the steps are constructed in a backward direction.

We need the following de�nition of image-�niteness for the de�nition of a backwards sim-

ulation. A relation R over S1 � S2 is image-�nite if for each s1 2 S1, R[s1] is a �nite set.

De�nition 6.3 (Backward simulation)

Let A and B be automata with the same external actions and with invariants IA and IB,

respectively. A backward simulation from A to B, with respect to IA and IB, is a relation b

over states(A)� states(B) that satis�es:

1. If s 2 IA then b[s]\ IB 6= ;.

2. If s 2 start(A) then b[s]\ IB � start(B).

3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u0 2 b[s0] \ IB , then there exists an � 2 frag
�
(B)

with lstate(�) = u0, fstate(�) 2 b[s]\ IB, and trace(�) = trace(a).

Write A �B B if there exists a backward simulation fromA toB with respect to some invariants

IA and IB . Furthermore, if the backward simulation is image-�nite, write A �iB B. If b is a

backward simulation from A to B with respect to some invariants IA and IB , write A �B B

(or A �iB B when b is image-�nite) via b.

In [LV93a] abstract notions of history variables [OG76] and prophecy variables [AL91a] are

given in terms of history relations and prophecy relations.

De�nition 6.4 (History relation)

Let A and B be automata with the same external actions and with invariants IA and IB,

respectively. A relation h over states(A) � states(B) is a history relation from A to B, with

respect to IA and IB , if h is a forward simulation from A to B with respect to IA and IB, and

h�1 is a re�nement mapping from B to A, with respect to IB and IA.

Write A �H B if there exists a history relation from A to B with respect to some invariants

IA and IB. If h is a history relation from A to B with respect to some invariants IA and IB,

write A �H B via h.

De�nition 6.5 (Prophecy relation)
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Let A and B be automata with the same external actions and with invariants IA and IB,

respectively. A relation p over states(A)� states(B) is a prophecy relation from A to B, with

respect to IA and IB , if p is a backward simulation from A to B with respect to IA and IB,

and p�1 is a re�nement mapping from B to A, with respect to IA and IB .

Write A �P B if there exists a prophecy relation from A to B with respect to some invariants

IA and IB. Furthermore, if the prophecy relation is image-�nite, write A �iP B. If p is a

prophecy relation from A to B with respect to some invariants IA and IB , write A �P B (or

A �iP B when p is image-�nite) via p.

6.1.2 Execution Correspondence

This subsection introduces and proves the Execution Correspondence Theorem (ECT). The

ECT states that if any of the simulations de�ned in the previous section has been proven

from an implementation automaton to a speci�cation automaton, then for any execution of

the implementation automaton, there is a \corresponding" execution of the speci�cation au-

tomaton. In order to formalize this notion of correspondence, the notions of R-relation and

index mapping are introduced.

De�nition 6.6 (R-relation and index mappings)

Let A and B be automata with the same external actions and let R be a relation over

states(A)� states(B). Furthermore, let � and �0 be executions of A and B, respectively:

� = s0a1s1a2s2 � � �

�0 = u0b1u1b2u2 � � �

Say that � and �0 are R-related , written (�; �0) 2 R, if there exists a total, nondecreasing

mapping m : f0; 1; : : : ; j�jg ! f0; 1; : : : ; j�0jg such that

1. m(0) = 0,

2. (si; um(i)) 2 R for all 0 � i � j�j,

3. trace(bm(i�1)+1 � � � bm(i)) = trace(ai) for all 0 < i � j�j, and

4. for all j, 0 � j � j�0j, there exists an i, 0 � i � j�j, such that m(i) � j.

The mapping m is referred to as an index mapping from � to �0 with respect to R.

Write (A;B) 2 R if for every execution � of A, there exists an execution �0 of B such that

(�; �0) 2 R.

Thus, an index mapping maps indices of states in the concrete execution to indices of states in

the abstract execution. E�ectively, an index mapping maps concrete states to corresponding

abstract states in such a way that the start states correspond (Condition 1), corresponding

states are related by R (Condition 2), and the external actions between two consecutive pairs
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of corresponding states are the same at the concrete and the abstract level (Condition 3).

Condition 4 ensures that the abstract execution (�0) is not \too long", i.e., �0 must not extend

beyond the last state of �0 corresponding to some state in � (if such a state exists). Note, that

if � is �nite, then �0 must also be �nite. However, even if � is in�nite, �0 can be �nite if the

index mapping is constant for indices above some bound.

In order to prove the ECT, two auxiliary lemmas are needed. The �rst, Lemma 6.7, deals with

forward simulations; the second, Lemma 6.10, deals with backward simulations.

Lemma 6.7

Let A and B be automata with the same external actions and assume A �F B via f . Fur-

thermore, let � be an arbitrary execution of A. Then there exists a collection (�0i; mi)0�i�j�j of

�nite executions of B and mappings such that

1. mi is an index mapping from �ji to �0i with respect to f , for all 0 � i � j�j, and

2. �0i�1 � �0i and mi�1 = mi � f0; : : : ; i� 1g, for all 0 < i � j�j.

Proof. Let � = s0a1s1a2s2 � � � and let IA and IB be invariants of A and B, respectively, such

that f is a forward simulation from A to B with respect to IA and IB . Construct �
0
i and mi

inductively.

Since s0 2 start(A), Condition 1 of De�nition 6.1 of a forward simulation gives the existence

of a state u0 2 start(B) such that (s0; u0) 2 f . Let �0
0
= u0 and let m0 be the mapping that

maps 0 to 0. Then clearly m0 is an index mapping from �j0 to �
0
0
with respect to f .

Now assumemi�1 (for 0 < i � j�j) is an index mapping from �ji�1 to �
0
i�1 with respect to f .

Let u = lstate(�0i�1). Then, by de�nition of mi�1, mi�1(i� 1) = j�0i�1j and (si�1; u) 2 f . Since

(si�1; ai; si) 2 steps(A), and si�1, si, and u are are reachable (by de�nition since they occur

in an execution) and therefore satisfy their respective invariants, Condition 2 of De�nition 6.1

(Forward simulation) gives the existence of a �nite execution fragment �00 of B which starts

in u and ends in a state u0 with (si; u
0) 2 f , such that trace(�00) = trace(ai). Now de�ne

�0i = �0i�1
a�00 and de�ne mi to be the mapping such thatmi(j) = mi�1(j) for all 0 � j � i�1

and mi(i) = j�0ij. Then, mi is trivially an index mapping from �ji to �
0
i with respect to f , and

Part 2 of the lemma holds by construction.

In order to state an analogous lemma for backward simulations, the notion of induced digraph

is introduced along with some lemmas giving properties of the induced digraph.

De�nition 6.8 (Induced digraph)

Let A and B be automata with the same external actions and assume A �iB B via b with

respect to some invariants IA and IB . For any execution � = s0a1s1a2s2 � � � of A, let the

digraph induced by �, b, and IB be the digraph G constructed as follows:

� The nodes of G are the pairs (u; i) where 0 � i � j�j and u 2 b[si] \ IB.
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� There is an edge from (u; i) to (u0; i0) exactly if i0 = i+1 and there exists a �nite execution

fragment �0 of B such that fstate(�0) = u, lstate(�0) = u0, and trace(�0) = trace(ai+1).

Lemma 6.9

Let A and B be automata with the same external actions and assume A �iB B via b with

respect to some IA and IB. Furthermore, let � be any execution of A. Then the digraph G

induced by �, b, and IB satis�es:

1. For each 0 � i � j�j, there are nodes of the form (u; i).

2. Exactly all nodes of the form (u; 0) are roots.

3. G has �nitely many roots.

4. Each node of G has �nite outdegree.

5. Each node of G is reachable from some root of G.

Proof. Let � = s0a1s1a2s2 � � �.

1. Since each state si in � is reachable (by de�nition) and thus belongs to IA, Condition 1 of

De�nition 6.3 (Backward simulation) gives us that b[si]\IB 6= ;. Thus, by De�nition 6.8,

G has nodes of the form (u; i).

2. Any node (u; 0) is a root in G. Consider any node (u; i) with i > 0. Then since u 2

b[si] \ IB , si�1; si 2 IA, and (si�1; ai; si) 2 steps(A), De�nition 6.3 implies the existence

of a �nite execution fragment �0 of B with lstate(�) = u, trace(�0) = trace(ai), and

fstate(�) 2 b[si�1]\IB. Then by De�nition 6.8 there is an edge in G from (fstate(�); i�1)

to (u; i). Thus, (u; i) is not a root in G.

3. Since b is image-�nite, the set b[s0] \ IB is �nite and the result follows.

4. From any node (u; i), there can only be edges to nodes of the form (u0; i + 1). Again,

since b is image-�nite, there are only �nitely many such nodes.

5. Any node of the form (u; 0) is reachable. Assume all nodes of the form (u; i) are reachable

(for some 0 � i < j�j). By an argument similar to Point 2 above, it is seen that to any

node of the form (u0; i+ 1), there is an edge from a node of the form (u; i). Thus, any

node of the form (u0; i+ 1) is reachable. By induction all nodes of G are reachable.

Lemma 6.10

Let A and B be automata with the same external actions and assume A �iB B via b. Fur-

thermore, let � be an arbitrary execution of A. Then there exists a collection (�0i; mi)0�i�j�j of

�nite executions of B and mappings such that

1. mi is an index mapping from �ji to �0i with respect to b, for all 0 � i � j�j, and
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2. �0i�1 � �0i and mi�1 = mi � f0; : : : ; i� 1g, for all 0 < i � j�j.

Proof. Let � = s0a1s1a2s2 � � � and let IA and IB be invariants of A and B, respectively,

such that b is an image-�nite backward simulation from A to B with respect to IA and IB.

Furthermore, let G be the digraph induced by �, b, and IB . If � is �nite, �x p to be any path

(u0; 0)(u1; 1) � � �(un; n), where n = j�j. Such a path exists by Condition 5 of Lemma 6.9. If �

is in�nite, then G is in�nite and Lemmas 6.9 and 2.1 (K�onig's Lemma) imply the existence of

an in�nite path in G. Fix p = (u0; 0)(u1; 1) � � � to be any such path. Now construct �0i and mi

inductively. At the same time prove that lstate(�0i) = ui.

Since s0 2 start(A) and u0 2 b[s0] \ IB , Condition 2 of De�nition 6.3 of a backward

simulation implies that u0 2 start(B). Let �0
0
= u0 and let m0 be the mapping that maps 0 to

0. Then clearly m0 is an index mapping from �j0 to �
0
0
with respect to b, and lstate(�0

0
) = u0.

Now assume mi�1 (for 0 < i � j�j) is an index mapping from �ji�1 to �
0
i�1 with respect to

b and assume that lstate(�0i�1) = ui�1. Since there is an edge in G from (ui�1; i� 1) to (ui; i),

there exists, by De�nition 6.8, a �nite execution fragment �00 of B such that fstate(�00) = ui�1,

lstate(�00) = ui, and trace(�00) = trace(ai). Now de�ne �0i = �0i�1
a �00 and de�ne mi to be the

mapping such that mi(j) = mi�1(j) for all 0 � j � i � 1 and mi(i) = j�0ij. Then, trivially

mi is an index mapping from �ji to �
0
i with respect to b, and Point 2 of the lemma holds by

construction. Also, lstate(�0i) = ui as required.

If � is �nite, then the lemma holds by construction; if � is in�nite, then the lemma holds

by induction.

Finally, the Execution Correspondence Theorem can be stated and proven. The theorem states

that if a relation S is a forward simulation, re�nement mapping, image-�nite backward simu-

lation, history relation, or image-�nite prophecy relation from A to B, then for any execution

of A, there exists an S-related execution of B.

Theorem 6.11 (Execution Correspondence Theorem)

Let A and B be automata with the same external actions. Assume for X 2 fF;R; iB;H; iPg

that A �X B via S. Then (A;B) 2 S.

Proof. One must show that for all � 2 exec(A) there exists an �0 2 exec(B) such that

(�; �0) 2 S. Consider cases.

1. A �F B via S.

Let � = s0a1s1a2s2 � � � be an arbitrary execution of A, and let (�0i; mi)0�i�j�j be a collec-

tion of �nite executions of B and mappings as de�ned in Lemma 6.7.

First assume � is �nite. Then � = �jj�j, and according to Lemma 6.7 mj�j is an index

mapping from �jj�j to �
0
j�j. That su�ces since �

0
j�j = �0 by Condition 4 of De�nition 6.6

Now, assume � is in�nite. Then let m be the unique mapping over the natural numbers

de�ned by m(i) = mi(i), and let �0 be the limit of �0i under the pre�x ordering. Thus,
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�0 is the unique execution of B de�ned by �0jm(i) = �0i with the restriction that for any

index j of �0 there exists an i such that �0jj � �0i.

Now the claim is that m is an index mapping from � to �0 with respect to S. First

note that m is total and nondecreasing. The latter is seen by contradiction. Assume

m is not nondecreasing. Then there exists an i such that m(i) < m(i � 1), but since

m(i) = mi(i) and m(i� 1) = mi�1(i� 1) = mi(i� 1) this contradicts the fact that mi is

an index mapping and thus is nondecreasing. Similarly, it can be seen that the range of

m is within f0; : : : ; j�0jg.

Now the four conditions of De�nition 6.6 must be checked. Condition 1 holds since m0

is an index mapping and thus satis�es m0(0) = 0. Assume Condition 2 or 3 does not

hold. Then there must exist an i such that the condition is invalidated. However, this

contradicts the fact that for any i, mi is an index mapping from �ji to �
0
i with respect

to S. Finally, assume Condition 4 does not hold. Thus, assume the existence of an

index j in �0 such that for all i, m(i) < j. By de�nition of �0 there exists an i such

that �0jj � �0i. Now, Lemma 6.7 gives that mi(i) = j�0ij � j. Thus, m(i) � j which

contradicts the assumption that m(i) < j.

2. A �R B via S.

A re�nement mapping is a forward simulation, so the result follows from the previous

case.

3. A �iB B via S.

Same as case 1, by using Lemma 6.10 instead of Lemma 6.7.

4. A �H B via S.

By De�nition 6.4 S is a forward simulation from A to B, so the result follows from case

1 above.

5. A �iP B via S.

By De�nition 6.5 S is an image-�nite backward simulation from A to B, so the result

follows from case 3 above.

6.1.3 Proving the Safe Preorder

This subsection proves the soundness of the simulation proof techniques with respect to the

safe preorder. This is a well-known result, see, e.g., [LV93a], however, instead of proving the

result directly as in [LV93a], the ECT is used. We start with some preliminary de�nitions and

technical lemmas needed for the proof.

De�ne the ith step of �, for all 0 < i � j�j, as step(�; i)
4

= i�1j�ji = (si�1; ai; si). Also, let

m be a total, nondecreasing mapping m : f0; 1; : : : ; Ng ! f0; 1; : : : ; j�jg, where N 2 N0[f1g.

Then, de�ne the ith m-step of �, for all 0 < i � N , as stepm(�; i)
4

= m(i�1)j�jm(i).
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Lemma 6.12

Let � be an execution fragment.

1. Then, for all 0 � i < j � j�j,

ij�jj = step(�; i+ 1) a step(�; i+ 2) a � � � a step(�; j)

2. Let m be a total, nondecreasing mapping m : f0; 1; : : : ; Ng ! f0; 1; : : : ; j�jg, where N 2

N0 [ f1g. Then, for all 0 � i < j � N ,

m(i)j�jm(j) = stepm(�; i+ 1) a stepm(�; i+ 2) a � � � a stepm(�; j)

Proof. Trivial by explicit construction.

Lemma 6.13

Let � be an execution fragment.

1. Then, for all 0 � i < j�j,

ij� =

(
step(�; i+ 1) a step(�; i+ 2) a � � � a step(�; j�j) if � is �nite

step(�; i+ 1) a step(�; i+ 2) a � � � otherwise

2. Let m be a total, nondecreasing mapping m : f0; 1; : : : ; Ng ! f0; 1; : : : ; j�jg, where N 2

N0[f1g, such that for all 0 � j � j�j there exists an i 2 dom(m) with m(i) � j. Then,

for all 0 � i < N ,

m(i)j� =

(
stepm(�; i+ 1) a stepm(�; i+ 2) a � � � a stepm(�;N) if N is �nite

stepm(�; i+ 1) a stepm(�; i+ 2) a � � � otherwise

Proof. The lemma follows from Lemma 6.12

The following lemma is used to show that any two related executions have the same trace.

Lemma 6.14

Let A and B be automata with the same external actions and let R be a relation over

states(A) � states(B). Assume that (�; �0) 2 R and let m be any index mapping from �

to �0 with respect to R. Then, for all 0 � i � j�j, trace(ij�) = trace(m(i)j�
0).

Proof. Let � = s0a1s1a2s2 � � � and �0 = u0b1u1b2u2 � � �. If i = j�j (in the case where � is

�nite), j�jj� = sj�j and Condition 4 of De�nition 6.6 gives m(j�j)j�
0 = um(j�j). Thus, obviously

trace(ij�) = trace(m(i)j�
0) (the empty list). If 0 � i < j�j, then from Lemma 6.13

ij� = step(�; i+ 1) a step(�; i+ 2) a � � �

m(i)j�
0 = stepm(�

0; i+ 1) a stepm(�
0; i+ 2) a � � �
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where the concatenations are �nite (and end in step(�; j�j) and stepm(�
0; j�j), respectively) if

and only if � is �nite.

Now use the obvious fact that restricting an execution to a set of actions, distributes over

concatenation. This gives us:

trace(ij�) = (ij�) � ext(A)

= (step(�; i+ 1) � ext(A))^(step(�; i+ 2) � ext(A))^ � � �

= trace(step(�; i+ 1))^ trace(step(�; i+ 2))^ � � �

trace(m(i)j�
0) = (m(i)j�

0) � ext(B)

= (stepm(�
0; i+ 1) � ext(B))^ (stepm(�

0; i+ 2) � ext(B))^ � � �

= trace(stepm(�
0; i+ 1))^ trace(stepm(�

0; i+ 2))^ � � �

Now, from the de�nitions of step and stepm and Condition 3 of De�nition 6.6

trace(step(�; j)) = trace(stepm(�
0; j))

for all 0 < j � j�j. So, if j�j 6= 1, trace(ij�) = trace(m(i)j�
0) by construction. If j�j = 1,

assume that trace(ij�) 6= trace(m(i)j�
0). Then there must be a �nite pre�x � of trace(ij�) such

that � 6� trace(m(i)j�
0). Also, there must exist a �nite number j > i such that

� � �1 = trace(step(�; i+ 1))^ � � �^ trace(step(�; j))

Since � 6� trace(m(i)j�
0), it must also be the case that �1 6� trace(m(i)j�

0). Now, let

�0 = trace(stepm(�
0; i+ 1))^ � � �^ trace(stepm(�

0; j))

Then, �0 � trace(m(i)j�
0) and by distributivity of restriction over concatenation �1 = �0. Thus

�1 � trace(m(i)j�
0), which contradicts the assumption. So, also if j�j = 1 conclude that

trace(ij�) = trace(m(i)j�
0).

Lemma 6.15

Let A and B be automata with the same external actions and let R be a relation over

states(A)� states(B). If (�; �0) 2 R, then trace(�) = trace(�0).

Proof. Immediate from Lemma 6.14 since for any execution �1, 0j�1 = �1, and any index

mapping maps 0 to 0 (cf. Condition 1 of De�nition 6.6).

The soundness of the simulation relations with respect to trace inclusion can now be shown.

Lemma 6.16 (Soundness of simulations w.r.t. trace inclusion)

Let A and B be automata with the same external actions and assume for X 2 fF;R; iB;H; iPg

that A �X B via S. Then traces(A) � traces(B).
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Proof. Let � 2 traces(A) be an arbitrary trace of A and let � be an execution of A such

that trace(�) = �. Then, by Theorem 6.11 (ECT), there exists an execution �0 of B such that

(�; �0) 2 S. By Lemma 6.15, trace(�0) = trace(�) = �. Thus, � 2 traces(B) as required.

Finally, it follows immediately from the fact that the simulation relations are sound with respect

to trace inclusion (Lemma 6.16) and the de�nition of the safe preorder (De�nition 3.30) that

the simulation relations are sound with respect to the safe preorder

Theorem 6.17 (Soundness of simulations w.r.t. the safe preorder)

Let (A;L) and (B;M) be live I/O automata with esig(A) = esig(B), and assume for some

X 2 fF;R; iB;H; iPg that A �X B. Then (A;L) vS (B;M).

6.1.4 Proving the Live Preorder

A proof strategy for proving that one live I/O automaton implements another live I/O au-

tomaton via the live preorder is now described. First consider the following lemma.

Lemma 6.18

Suppose (A;L) and (B;M) are live I/O automata with esig(A) = esig(B), and assume for

some X 2 fF;R; iB;H; iBg that A �X B via S. If

8 (�; �0) 2 S : (� 2 L =) �0 2M)

then (A;L) vL (B;M).

Proof. It is enough to show that traces(L) � traces(M). Let � 2 traces(L). By de�nition of

trace there is an execution � of L such that trace(�) = �. By de�nition of live I/O automaton

� is an execution of A. From Theorem 6.11 (ECT) there exists an execution �0 of B such

that (�; �0) 2 S. From the hypothesis of this lemma �0 is an execution of M . Moreover, from

Lemma 6.15 we have trace(�) = trace(�0). Thus, � 2 traces(M).

Based on Lemma 6.18, the following proof strategy proves that a live I/O automaton (A;L) is

a correct implementation of another live I/O automaton (B;M):

1. Prove a simulation S from A to B with respect to some invariants.

2. Assume � and �0 are arbitrary executions of A and B, respectively, and assume that �

is live (i.e., � 2 L).

Prove that �0 is also live (i.e., �0 2M).

This will usually be a proof by contradiction. That is, assume that �0 is not live and

show that this leads to a contradiction. This strategy gives a nice way of splitting the

proof into cases since being live usually means satisfying a conjunction of condition such

that not being live means not satisfying one (at least) of these conditions. Thus, each of

the conditions can be considered separately.
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The reader is referred to [SLL93, Lyn93] for extensive applications of the proof techniques.

6.2 Timed Proof Techniques

Since liveness conditions in the timed model are expressed in terms of timed executions, the

obvious generalization of the approach taken in the untimed model would be to develop simu-

lation techniques that give a correspondence between the timed executions of timed automata.

This suggests that the simulation techniques in the timed model should for every \timed step"

(!; a; !0) of a low-level timed automaton, where ! and !0 are trajectories, �nd a corresponding

timed execution fragment of the high-level timed automaton. On the other hand, the fact that

the transition relation of a timed automaton determines ordinary steps of the form (s; a; s0),

rather than steps of timed executions of the form (!; a; !0), suggests simulation techniques

that for each ordinary step, (s; a; s0), of the low-level timed automaton �nd a corresponding

(ordinary) execution fragment of the high-level timed automaton. We pursue this latter type

of simulation.

In particular, this section shows that the existence of such a simulation, based on ordinary

steps, between two timed automata implies all four of the timed safe preorders of the timed

model (cf. De�nition 4.36). Also, (timed) liveness conditions can be characterized by sets of

ordinary (sampled) executions some of which are minimal. These characterizations by sets

of ordinary (sampled) executions form the basis of a lemma similar to Lemma 6.18 on which

proofs of the timed live preorder can be based.

The structure of this section parallel that of the untimed model. First a number of (timed)

simulation techniques are de�ned. Then, the execution correspondence theorem for the timed

model is proven, and �nally the use of the timed simulation techniques to prove the timed safe

and live preorders is discussed.

6.2.1 Timed Simulation Proof Techniques

The timed simulations presented here are similar to the ones de�ned in [LV91] except for our

use of invariants. Recall, that an invariant is any set of states of an automaton that is a

superset of the reachable states (reachability coincides with t-reachability).

There are only two minor di�erences between the simulation relations presented here and

the simulation relations from the untimed model. First, states related by a simulation relation

must have the same time. Second, since the trace operator on execution fragments does not

adequately abstract from time-passage actions, the simulation techniques below use a notion

of visible trace. For any timed automaton A and any execution fragment � of A, de�ne the

visible trace of �, written vis-traceA(�), or just vis-trace(�) when A is clear from context, to

be � � vis(A). Similarly, given any sequence of actions �, de�ne the visible trace of �, written

vis-traceA(�), or just vis-trace(�) if A is clear from context, to be � � vis(A).

De�nition 6.19 (Timed forward simulation)

Let A and B be timed automata with the same visible actions and with invariants IA and IB,

respectively. A timed forward simulation from A to B, with respect to IA and IB , is a relation
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f over states(A)� states(B) that satis�es:

1. If u 2 f [s] then u:now = s:now .

2. If s 2 start(A) then f [s]\ start(B) 6= ;.

3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u 2 f [s] \ IB, then there exists an � 2 frag�(B)

with fstate(�) = u, lstate(�) 2 f [s0], and vis-trace(�) = vis-trace(a).

Write A �tF B if there exists a timed forward simulation from A to B with respect to some

invariants IA and IB . If f is a timed forward simulation from A to B with respect to some

invariants IA and IB , write A �tF B via f .

De�nition 6.20 (Timed re�nement mapping)

Let A and B be timed automata with the same visible actions and with invariants IA and

IB , respectively. A timed re�nement mapping from A to B, with respect to IA and IB , is a

function r from states(A) to states(B) that satis�es:

1. r(s):now = s:now .

2. If s 2 start(A) then r(s) 2 start(B).

3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and r(s) 2 IB , then there exists an � 2 frag
�
(B) with

fstate(�) = r(s), lstate(�) = r(s0), and vis-trace(�) = vis-trace(a).

Write A �tR B if there exists a timed re�nement mapping from A to B with respect to some

invariants IA and IB. If r is a timed re�nement mapping from A to B with respect to some

invariants IA and IB , write A �tR B via r.

De�nition 6.21 (Timed backward simulation)

Let A and B be timed automata with the same visible actions and with invariants IA and

IB , respectively. A timed backward simulation from A to B, with respect to IA and IB , is a

relation b over states(A)� states(B) that satis�es:

1. If u 2 b[s] then u:now = s:now .

2. If s 2 IA then b[s]\ IB 6= ;.

3. If s 2 start(A) then b[s]\ IB � start(B).

4. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u0 2 b[s0] \ IB , then there exists an � 2 frag�(B)

with lstate(�) = u0, fstate(�) 2 b[s]\ IB, and vis-trace(�) = vis-trace(a).
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Write A �tB B if there exists a timed backward simulation from A to B with respect to some

invariants IA and IB. If furthermore the timed backward simulation is image-�nite, write

A �itB B. If b is a timed backward simulation from A to B with respect to some invariants

IA and IB, write A �tB B (or A �itB B when b is image-�nite) via b.

De�nition 6.22 (Timed history relation)

Let A and B be timed automata with the same visible actions and with invariants IA and IB,

respectively. A relation h over states(A)� states(B) is a timed history relation from A to B,

with respect to IA and IB, if h is a timed forward simulation from A to B with respect to IA
and IB , and h�1 is a timed re�nement mapping from B to A, with respect to IB and IA.

Write A �tH B if there exists a timed history relation from A to B with respect to some

invariants IA and IB. If h is a timed history relation from A to B with respect to some

invariants IA and IB , write A �tH B via h.

De�nition 6.23 (Timed prophecy relation)

Let A and B be timed automata with the same visible actions and with invariants IA and IB,

respectively. A relation p over states(A)� states(B) is a timed prophecy relation from A to B,

with respect to IA and IB , if p is a timed backward simulation from A to B with respect to IA
and IB , and p�1 is a timed re�nement mapping from B to A, with respect to IB and IA.

Write A �tP B if there exists a timed prophecy relation from A to B with respect to some

invariants IA and IB . If furthermore the timed prophecy relation is image-�nite, write A �itP

B. If p is a prophecy relation from A to B with respect to some invariants IA and IB, write

A �tP B (or A �itP B when p is image-�nite) via p.

6.2.2 Execution Correspondence

As in the untimed model, the simulation relations imply a certain correspondence between the

ordinary executions of the involved timed automata. The following de�nition formalizes this

correspondence, called timed R-relation, and de�nes a notion of timed index mapping . The

de�nition is similar to De�nition 6.6 in the untimed model; the only di�erences are that the R

relation must relate states with the same time and that the de�nition deals with visible traces

as opposed to traces, i.e., the same di�erences as in the simulation relations.

De�nition 6.24 (Timed R-relation and timed index mappings)

Let A and B be timed automata with the same external actions and let R be a relation over

states(A)� states(B) such that if (s; u) 2 R then s:now = u:now . Furthermore, let � and �0

be (ordinary) executions of A and B, respectively.

� = s0a1s1a2s2 � � �

�0 = u0b1u1b2u2 � � �
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Let � and �0 be timed R-related , written (�; �0) 2t R, if there exists a total, nondecreasing

mapping m : f0; 1; : : : ; j�jg ! f0; 1; : : : ; j�0jg such that

1. m(0) = 0,

2. (si; um(i)) 2 R for all 0 � i � j�j,

3. vis-trace(bm(i�1)+1 � � � bm(i)) = vis-trace(ai) for all 0 < i � j�j, and

4. for all j, 0 � j � j�0j, there exists an i, 0 � i � j�j, such that m(i) � j.

The mapping m is referred to as a timed index mapping from � to �0 with respect to R.

Write (A;B) 2t R if for every execution � of A, there exists an execution �0 of B such that

(�; �0) 2t R.

The following lemma shows that timed R-related executions have the same limit time and that

there is a correspondence with respect to �niteness, admissibility, and Zenoness.

Lemma 6.25

Let A and B be timed automata with the same external actions and let R be a relation over

states(A)� states(B) such that if (s; u) 2 R then s:now = u:now. Furthermore, let � and �0

be executions of A and B, respectively. Then, if (�; �0) 2t R

1. ltime(�) = ltime(�0),

2. if � is �nite then �0 is �nite,

3. � is admissible i� �0 is admissible, and

4. if �0 is Zeno then � is Zeno.

Proof. Let � = s0a1s1a2s2 � � � and �0 = u0b1u1b2u2 � � �, and assume (�; �0) 2t R. Let m be

a timed index mapping from � to � with respect to R. The four parts of the lemma are

considered separately.

1. For any state s in � (and thus any time in �) there exists, by Condition 2 of De�ni-

tion 6.24, a state u in �0 with (s; u) 2 R, and thus u:now = s:now . This proves that

ltime(�) � ltime(�0). Similarly Condition 4 of De�nition 6.24 implies that ltime(�) �

ltime(�0). Thus, ltime(�) = ltime(�0).

2. Assume � is �nite. Now, assume that �0 is not �nite. Let m0 = m(j�j). Then, since

�0 is not �nite and thus in�nite, the state um0+1 exists in �0. Then Condition 4 of

De�nition 6.24 implies the existence of an index 0 � i � j�j such thatm(i) > m0+1 > m0,

but this contradicts the fact thatm0 = m(j�j), and m is nondecreasing. Thus, �0 is �nite.

3. This result follows directly from Part 1 of this lemma.
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4. Assume �0 is Zeno. Then Part 2 of this lemma implies that � is not �nite. Furthermore,

Part 3 of this lemma implies that � is not admissible. Thus, � is Zeno.

This concludes the proof.

Note that in Part 2 of Lemma 6.25 the converse is not true: even though �0 is �nite, � could

be Zeno by having a su�x containing only internal actions and having m be constant for all

indices in that su�x. This argument shows that the converse of Part 4 is also not true in

general.

Now the Execution Correspondence Theorem can be stated for the timed model.

Theorem 6.26 (Execution Correspondence Theorem)

Let A and B be timed automata with the same visible actions. Assume for X 2 ftF; tR; itB;

tH; itPg that A �X B via S. Then (A;B) 2t S.

Proof. Similar to the ECT proof in the untimed model (Theorem 6.11).

6.2.3 Proving the Timed Safe Preorders

Due to the fact that timed R-related executions have the same time in related states and have

a correspondence between the their visible traces, it is possible to prove that timed R-related

executions have the same timed traces.

Lemma 6.27

Let A and B be timed automata with the same external actions and let R be a relation over

states(A)� states(B) such that if (s; u) 2 R then s:now = u:now. Then, if (�; �0) 2t R, then

t-trace(�) = t-trace(�0).

Proof. Similar to the proofs of Lemmas 6.14 and 6.15.

Soundness of the timed simulations with respect to timed trace inclusion now follows.

Lemma 6.28 (Soundness of timed simulations w.r.t. timed trace inclusion)

Let A and B be timed automata with the same external actions. Assume for X 2 ftF ; tR; itB ;

tH ; itPg that A �X B. Then

1. t-traces(A) � t-traces(B)

2. t-traces�(A) � t-traces�(B)

3. t-traces1(A) � t-traces1(B)

Proof. Consider the three parts separately.
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1. Suppose 
 2 t-traces(A). Then by de�nition there exists a timed execution � 2 t-exec(A)

such that t-trace(�) = 
. Now, the sampling results of Lemmas 4.4 and 4.7 imply

the existence of an execution � 2 exec(A) with t-trace(�) = t-trace(�). Then ECT

(Theorem 6.26) and Lemma 6.27 imply the existence of an execution �0 2 exec(B) such

that t-trace(�0) = t-trace(�). Finally, the sampling results of Lemmas 4.3 and 4.7 give

the existence of a timed execution �0 2 t-exec(B) with t-trace(�0) = t-trace(�0).

Thus, t-trace(�0) = t-trace(�0) = t-trace(�) = t-trace(�) = 
. Therefore 
 2 t-traces(B).

That su�ces.

2. Similar to Part 1. Also use Lemma 6.25 Part 2 and Lemma 4.6 Part 1 to prove the

following: if � is �nite then �, �0, and �0 are also �nite. Then the result follows.

3. Similar to Part 2. Use Lemma 6.25 Part 3 and Lemma 4.6 Part 2.

Based on this lemma, the soundness of the timed simulations with respect to the timed safe

preorders can be shown.

Theorem 6.29 (Soundness of timed simulations w.r.t. the timed safe preorders)

Let (A;L) and (B;M) be live timed I/O automata with vsig(A) = vsig(B), and assume for

some X 2 ftF; tR; itB; tH; itPg that A �X B. Then

1. A vSt B

2. A v�
St
B

3. A v1
St
B

4. A vnz

St
B

Proof. Parts 1{3 follow directly from Lemma 6.28 Parts 1{3 and the de�nition of the timed

safe preorders (De�nition 4.36). Part 4 follows, by De�nition 4.36, from Parts 2 and 3.

6.2.4 Proving the Timed Live Preorder

It is possible to characterize timed liveness conditions by a set of ordinary executions such that

a lemma like Lemma 6.18 (based on the timed simulation techniques above) can be stated.

Start by de�ning such (minimal) sampling characterizations of liveness conditions.

De�nition 6.30 ((Minimal) sampling characterizations)

Let (A;L) be a live timed I/O automaton. A set L0 � exec(A) is a sampling characterization

of L if L = f� 2 t-exec1(A) j for all � 2 exec(A) where � samples �, � 2 L0g.

Furthermore, L0 is said to be minimal if it equals the set of all samplings of all timed executions

in L.
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For any live timed I/O automaton (A;L), L has a minimal sampling characterization L0,

namely the one containing all samplings of the timed executions in L.

Lemma 6.31

Let (A;L) and (B;M) be live timed I/O automata with vsig(A) = vsig(B). Assume that L0 and

M0 are sampling characterizations of L and M , respectively, and assume that M0 is minimal.

Assume for some X 2 ftF; tR; itB; tH; itPg that A �X B via S. If

8 (�; �0) 2t S : (� 2 L0 =) �0 2M0)

then (A;L) vLt (B;M).

Proof. Let 
 2 t-trace(L) be an arbitrary timed trace of L and let � 2 L with t-trace(�) = 
.

Based on the sampling result of Lemma 4.4 and the fact that L0 is a sampling characterization

of L, there exists an execution � 2 exec(A) such that � samples � and � 2 L0. Based on the

sampling results of Lemmas 4.6 and 4.7, � is admissible and t-trace(�) = 
. Then by ECT

(Theorem 6.26) there exists an �0 2 exec(B) such that (�; �0) 2t S. Lemmas 6.25 and 6.27

imply that �0 is admissible and t-trace(�0) = 
. By the hypothesis in this lemma, �0 2 M0.

Then, based on the sampling results of Lemmas 4.3, 4.6, and 4.7, there exists a �0 2 t-exec1(B)

with t-trace(�0) = 
. Now, since M0 is a minimal sampling characterization of M , � 2M and

thus 
 2 t-traces(M). By de�nition of vLt (De�nition 4.36) this su�ces.

Lemma 6.31 can be used to prove the live preorder between two live timed I/O automata in

a manner similar to the way Lemma 6.18 is used in the untimed model. However, one must

�rst �nd sampling characterizations of the liveness conditions. Furthermore, the sampling

characterization for the high-level liveness condition must be minimal. In practice the liveness

condition L of a live timed I/O automaton is often de�ned as those timed executions that

have all their samplings in some set of ordinary executions L0, which, in turn, could be those

executions that satisfy some formula in a temporal logic. In this case L0 is, by de�nition, a

sampling characterization of L. Then, the only remaining proof obligation is to show that the

sampling characterization of the high-level live timed I/O automaton is minimal. In [SLL93]

there is an example of the use of Lemma 6.31

7 Concluding Remarks

This paper extends I/O automata [LT87, MMT91] to handle general liveness properties in both

the timed and untimed model, and creates a coordinate framework where timed and untimed

systems can be analyzed. A key aspect of the models is the notion of environment-freedom,

which expresses the fact that a live (timed) I/O automaton does not constrain its environment.

Moreover, the simulation method of [AL91a, LV91, LV93a, LV93b, Jon91] is extended to our

model, making the results of this paper immediately applicable in practice. A substantial

veri�cation project using the model appears in [SLL93, LLS93]. In addition to generalizing
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the I/O automaton model [LT87] and its timed version [MMT91], our model generalizes the

failure free complete trace structures of [Dil88] and the strong I/O feasibility notion of [VL92].

People familiar with process algebras might object to our model, arguing that environment-

freedom is too restrictive since it rules out several systems that might be of interest at a high

level of abstraction. We recognize this objection and regard the generalization of the model

as future work. In fact, our model is closer to the classical models of the process algebraic

community than the models of [AL93, AL91b], and thus may represent a natural starting point

for possible generalizations. Some promising results come from [Seg93], which shows that there

is a strong connection between the trace semantics of I/O automata and the must preorder of

the theory of testing [DH84].

Another line of research consists of extending the current model to handle systems with

probabilistic behaviors. The ultimate goal would be a model where probabilistic behaviors,

timing constraints, safety properties, and liveness properties can be integrated together.
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