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Abstract

Many approaches to programming emphasize the use of interfaces. The
basic idea is to decompose programs into modules and to specify how each
module’s interface behaves. This makes it easier to reason about programs
because one can rely on a module’s specification rather than examining its
implementation, which is more complicated.

Although programmers benefit from specifications when reasoning about
programs, existing compilers do not. In this thesis, 1 discuss how
to incorporate specifications into a programming language to improve
performance. 1 use specifications in two ways: (1) to allow programmers
to define new optimizations that make general interfaces more efficient to
use, and (2) to enhance conventional optimizations. The specifications can
be written incrementally, so programmers can choose to write only the parts
of specifications needed to improve performance.

I demonstrate my approach using Speckle, a statically typed, imperative
programming language that incorporates specifications.  Users define
optimizations in Speckle by providing multiple implementations for a single
procedure. One implementation must be general enough to work in any
context. The other implementations are more efficient but require an addi-
tional precondition specified by the user. The compiler uses specifications
to prove that particular calls to the procedure can use the specialized
implementations.

The prototype Speckle compiler (PSC) incorporates primitive, auto-
mated theorem-proving technology to optimize programs. In addition to
user-defined optimizations, PSC identifies opportunities to perform three
kinds of conventional optimizations: eliminating common subexpressions,
moving code out of loops, and eliminating dead code.

Because specifications are simpler than code, PSC detects optimizations
that most compilers cannot, such as hoisting procedure calls out of loops.
Also, because specifications contain information not found in code, PSC
detects optimizations that are impossible without specifications.

Keywords: Formal Specifications, Program Optimization, Compilers, Par-
tial Specifications, Speckle, Larch, Programming Languages, Specification
Languages, Theorem-Provers, CLU.
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Chapter 1

Introduction

Many approaches to programming emphasize the use of module interfaces (or
abstractions) [37, 45]. The basic idea is to achieve a separation of concerns.
The client of an interface looks at its specification and writes code that uses
the interface. He need not concern himself with how the specified behavior
is achieved. The implementor’s job is to provide an implementation that
satisfies the specification.

Programming with interfaces offers many advantages. The principal
advantage is modularity. The separation of concerns embodied by a
specification allows the client and the implementor each to design, construct,
test, and change his code without having to examine the other’s code. Such
independence is vital in software systems of any appreciable size. A second
advantage is simplicity. The implementation of an interface is usually more
complicated than the specification, so the specification allows clients to
reason about the interface at a simpler level. A third advantage is reuse.
Once an interface is specified and implemented for one system, the interface
can be re-used in other systems, thereby reducing the cost of developing
software.

Programming with interfaces also presents some challenges. When
designing interfaces, a software engineer often faces the dilemma of whether
to make an interface general or to specialize the interface to the task at hand
[32]. For example, consider the interface of a procedure to insert an element
into a set. For efficiency, the interface of insert might require that the
element not already be in the set—if sets are represented as unsorted lists
without duplicates, this would avoid having the implementation examine
each element. For generality, however, the interface for insert should have
no precondition so that insert can be called from any context.

This thesis addresses the problem of how to make programming with
simple and general interfaces more efficient. The approach is to make
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specifications available to the compiler by incorporating them into the
programming language.

1.1 Specifications Can Improve Performance

Specifications have been advocated primarily for two reasons:

1. Specifications make it easier to understand code. A specification only
needs to describe the result of a computation rather than how the
result is computed. Thus, a specification is usually more compact
and easier to understand than an implementation, which might use
complicated data structures and invariants to improve efficiency. This
makes it easier to understand code that uses the implementation.

2. Specifications make it easier to change programs. As the contract
between the implementor of an interface and its clients, a specification
describes the required behavior of an interface. Without a specifica-
tion, it is impossible to distinguish the parts of an implementation’s
behavior that are required from those that can be changed. Thus,
specifications make it easier to alter programs in ways that preserve
correctness.

Normally, specifications directly benefit people who construct, test, port,
and maintain a program, but the specifications are ignored by the compiler.
However, specifications are useful at compile time for essentially the same
reasons that they are useful to programmers.

In this thesis, I discuss how to incorporate specifications into a
programming language to improve performance. | use specifications in two
ways: (1) to allow programmers to define new optimizations that make
general interfaces more efficient to use, and (2) to enhance conventional
optimizations.

Similar benefits in performance might be obtained without specifications,
e.g., by writing pragmas or transformation rules. However, the cost of
writing specifications is amortized over other uses, such as documenting
interfaces. Thus, the effort a programmer spends writing specifications
to improve performance also improves modularity, makes it easier to
understand code, and encourages reuse.

14



1.1.1 Defining New Optimizations

Specifications can be used to let programmers define new optimizations to be
performed by the compiler. In this thesis, I consider one kind of programmer-
defined optimization: a specialized procedure implementation (SPI).

From the client’s perspective, calling a procedure with an SPI is like
calling any other procedure. From the implementor’s perspective, SPIs
allow a single procedure interface to have multiple implementations. One
implementation—the general implementation—can be used anywhere. The
other implementations—the SPIs—are usually faster than the general one
but can be used only when certain conditions are met. The programmer
defines these conditions formally using the specification language, and the
compiler substitutes an SPI for the general implementation when it can
prove, using specifications, that the conditions are met at a particular call
site.

SPIs reduce the conflict between generality and efficiency. The client sees
only a single, general interface while the compiler substitutes a more efficient
SPI in contexts where the full generality is unnecessary. For the insert
example described earlier, the programmer can provide clients with the
efficiency of both implementations and the convenience of a single, general
interface.

Without SPIs, a programmer might choose to write a separate interface
for each procedure implementation. Using SPIs has two advantages. First,
because SPIs are not directly accessible to the caller, they eliminate the
possibility of a client calling an SPI whose precondition is not satisfied.
Second, because they conceal information that might otherwise be visible to
clients, SPIs improve modularity. When an SPT is added to or removed from
a procedure, the client code only needs to be recompiled. It does not need
to be edited.

1.1.2 Enhancing Conventional Optimizations

Specifications can also be used to enhance conventional optimizations.
In this thesis, I examine common subexpression elimination, hoisting
expressions out of loops, and dead code elimination.

Most conventional compilers restrict common subexpression elimination
and code hoisting to expressions that don’t contain procedure calls. The
reason is that it is difficult to determine when it is safe to eliminate or
hoist a procedure call, which may modify or allocate data structures. With

15



specifications, however, it is easy to determine whether a procedure call can
be eliminated or whether it performs visible side effects or allocates data.

Specifications also enhance common subexpression elimination when a
procedure is called between two common expressions. Without specifica-
tions, the compiler must perform interprocedural analysis to determine if
the call changes the value of the expression. This information is more readily
available in the procedure’s specification.

1.2 Speckle

Speckle is a combined programming language and formal specification
language that I designed to enhance the efficiency of programs that make
use of interfaces. The programming language portion is mostly a subset of
CLU [36], and the specification language portion is based on Larch [21, 22].

CLU has several features that make it an appropriate starting point for
Speckle. CLU supports both procedural and data abstraction, which are the
primary ways to simplify reasoning about programs. CLU has static typing,
so there is no need to optimize away runtime type checks. CLU has side
effects and pointers,' so the compiler must handle aliasing.

I chose Larch because of the tools available for checking and reasoning
about Larch specifications [16] and because there were already techniques
for specifying CLU programs using Larch [52].

I implemented a prototype Speckle compiler that incorporates parts
of a general-purpose theorem-prover, LP [16], to identify opportunities to
perform optimizations. The compiler recognizes three kinds of conventional
optimizations: common subexpression elimination,? moving code out of
loops, and dead code elimination. It also identifies opportunities to use
SPIs.

1.2.1 Design Goals

Several key ideas drove the design of Speckle. The first idea is that the
compiler should use the information supplied in specifications to perform
more optimizations. It is the user’s responsibility to make sure that the
specifications are correct; if they are incorrect, the compiler may perform
unsafe optimizations.

'In CLU, pointers are implicit, as in LISP, rather than explicit, as in C. Pointer
arithmetic is not allowed.
2The expressions need not be in the same basic block.
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remove duplicates = proc (a: int_array)

1 j:int := a.low

2 s:int_set := int_set$create()

3 for i:int in int_array$indexes(a) do
4 if not int_set$member(s, alil)

5 then int_set$insert(s,ali])

6 aljl := alil

7 joi= g+ 1

8 end

9 end

-
(@]

int_array$trim(a, a.low, j - a.low)
end remove_duplicates

Figure 1.1: Procedure remove duplicates

The second idea is that specifications and assertions should be optional.
The specification language should allow partial specifications, i.e., ones
that are either entirely missing or only partially written. Furthermore,
the compiler should make use of any relevant information in partial
specifications. It is not acceptable for the compiler to ignore specifications
until all parts of the program are specified in full, because this may never
happen.

The third idea is that programmers should be able to define new
optimizations to be performed by the compiler. Speckle currently supports
only one kind of user-defined optimization—SPIs.

1.2.2 Example: remove_duplicates

Fig. 1.1 is an example that illustrates some of the methods and ideas
of this work. Procedure remove duplicates uses two user-defined data
types: int_set, a type for integer sets, and int_array, a type for integer
arrays that can grow and shrink dynamically. As in CLU, the syntactic
expressions a.low, alil, and al[j] :=... are shorthands for calls to the
procedures int_array$get_low, int_array$fetch, and int_array$store.
int_array$trim takes an array, a starting index, and an element count and
discards all elements outside the index range start...start+count-1.
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Using formal specifications and SPIs, the compiler identifies the following
optimizations automatically:

1. The expressions al[il on lines 5 and 6 can be replaced by the value
computed for a[i] on line 4.

This optimization relies on the specifications of member and Insert to
show that a is unchanged since the call to fetch on line 4.

2. An SPI of insert can be used to avoid checking whether a[i] is
in s. (The int_set implementation maintains the invariant that no
duplicates occur in the representation of an int_set.)

This optimization relies on the semantics of if and the specification
of member to determine a[i] ¢ s. It also relies on the specification
of fetch to show that s is unchanged between the calls to member and
insert.

3. An SPI of fetch can be used to avoid the bounds checks for a[i] on
line 4.

4. An SPI of store can be used to avoid the bounds checks for a[j] on
line 6.

5. The two expressions a.low on line 10 can be replaced by the value
computed for a.low on line 1.

Optimizations 3-5 require proof-by-cases, proof-by-induction, and the
specifications of the procedures inside the loop to determine that the bounds
of the array are invariant over the loop.

To get theses optimizations, the author of remove duplicates did not
have to write any specifications. Instead, the compiler used the specifications
of the procedures and data types used in remove_duplicates.

On the surface, many of the array optimizations seem similar to those
in [20]. However, there is a significant difference. In [20], the compiler relies
on the semantics of arrays as defined by the programming language. The
technique does not work for optimizations of user-defined data types, e.g.,
sets. Here, the compiler relies on the specifications of procedures and data
types to perform optimizations, so the technique works for any data type.

18



1.3 Assumptions

This thesis rests primarily on two assumptions. The first is that future
compilers will have sufficient computing resources to use theorem-proving
technology during compilation. While the prototype compiler is not a
practical one, I believe that both improvements in compilation techniques
that exploit specifications and advances in computing power will indeed
make theorem-proving a practical component of future compilers.

The second assumption is that it is practical to rely on unverified
specifications to optimize code. The validity of this assumption rests on the
development of techniques for detecting and locating errors in specifications.

1.4 Overview

In Chapter 2, 1 define the Speckle program state, the central notion that
establishes the Speckle model of computation. Then, I describe how to
specify data types, procedures, and iterators in Larch/Speckle using program
states.

In Chapter 3, I formalize the notion of a program and give proof rules
for reasoning about programs using the specifications of Chapter 2.

In Chapter 4, I describe how specifications enhance three conventional
optimizations: common subexpression elimination, moving code out of
loops, and dead code elimination. I give formal proof obligations for each of
these optimizations and show how to discharge the proof obligations using
the proof rules of Chapter 3. Many of the improvements rely on improved
side effect analysis that would also benefit other optimizations.

In Chapter 5, I present specialized procedures and describe how they
reduce the conflict between efficiency and generality. Then, I discuss the
need to propagate the proof obligations of specialized procedures up the call
stack to preserve modularity.

In Chapter 6, I describe the prototype Speckle compiler (PSC). PSC
incorporates primitive automated theorem-proving technology to detect
optimizations. The technology is a combination of term rewriting and
automated proofs by cases and induction.

In Chapter 7, I extend Larch/Speckle to support partial specifications,
and I describe the strategy used by PSC to deduce some of the missing
portions of partial specifications.

In Chapter 8, I report on a case study using PSC on pieces of a large
program.
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Chapter 9 contains a summary and conclusion.

Related work is discussed throughout the thesis. To my knowledge,
only Hisgen has previously examined the idea of letting programmers define
optimizations in an imperative language [25]. Other closely related works
are discussed in Chapters 4 and 5.
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Chapter 2

Larch/Speckle

This chapter describes most of the Larch/Speckle specification language—
it omits only the features for partial specifications, which are described in
Chapter 7.

Section 2.1 provides some essential background about Larch specifica-
tions, and Section 2.2 provides some essentials about the Speckle program-
ming language. The remainder describes the semantics of Larch/Speckle
using examples and discusses related work on specification languages.

2.1 Larch

Larch is a family of specification languages designed for specifying programs
written in one of a number of different programming languages. Larch uses a
two-tiered approach. The shared tier, which is common to all programming
languages, consists of the Larch Shared Language (LSL). LSL is used to
define useful functions in a fragment of multisorted first-order predicate
logic. The glue between a programming language and LSL is the interface
tier, which provides an interface language for each programming language,
e.g., Larch/CLU [52], Larch/C [22], Larch/C++ [34], etc.

Each interface language formalizes the notion of a program state and
provides a syntax and semantics for specifying procedure interfaces and data
abstractions.

e A procedure specification is a predicate on pre- and post-states. The
predicate, which is defined using LSL functions, specifies the post-
states that are possible when the procedure is called from a given
pre-state.

e A data abstraction is a module that implements an abstract type,
e.g., set, using some concrete type, e.g., hash table. The interface
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for a data abstraction specifies an LSL sort for modeling values of
the abstract type in a program state. Thus, program states are more
abstract than if they were defined using only the sorts corresponding
to primitive types.

2.1.1 The Larch Shared Language

The semantics of LSL is defined precisely in [23]. This section is just an
informal synopsis of LSL features that are relevant to Speckle.

LSL specifications are written in units called traits. Fig. 2.11is an example
of a trait for sets. A trait begins with a name followed by sort parameters,
if any. In Fig. 2.1, sort S is used for sets, and sort E is used for elements.

The includes section lists other traits whose sort and function defini-
tions may be used by the trait. In Fig. 2.1, the Integer trait is included to
provide the sort Int and the functions +, >, 0, and 1.

The introduces section lists the names and signatures of functions used
by the trait. These functions may use either infix notation, like __€__, or
prefix notation, like insert. Mixfix notation, e.g., __[_], is also allowed.

The asserts section lists axioms that hold about the various functions.
The axioms may use the builtin Boolean functions, e.g., =,V, and A. The
symbols == and = are equivalent, except that == has lower precedence.

Typically, most of a trait’s assertions are given as equations, but two
other forms are common. A generated by clause defines an induction
schema by listing functions that are sufficient to construct all values of a
sort. In Fig. 2.1, the generated by clause asserts that all values of sort S
can be constructed using only {} and insert.

A partitioned by clause lists functions that are sufficient for distin-
guishing unequal values of a sort. In Fig. 2.1, the partitioned by clause
asserts that two sets are equal if and only if they contain the same elements.

The implies section lists formulas that should follow from the axioms
using the normal inference rules of predicate logic. Implications are a
source of redundant information that can be used to detect inconsistencies
and omissions in specifications [15]. In Speckle, implications are used as
additional information for proving that an optimization is safe.

The semantics of LSL defines a theory—an infinite set of formulas—for
a trait. The theory of a trait is the consequence closure of its axioms and
inference rules, which include the normal inference rules of predicate logic.

Typically, the theories of traits used in specifications are undecidable—
there is no way to tell if an arbitrary formula is in a theory. However,
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Set (E, S): trait
includes Integer
introduces

{}: — s

insert: E, S — S

__€__: E, S — Bool
U

— -_——3

N__: S, S —= S

gsize: S — Int

asserts
V s,s81,82: S, e,el,e2: E
-(e € {1);

el € insert(e2, s) == el = &2 V el € s;
e € (81 U 82) ==¢ € 81 V e € 82;

e € (s1Nss2) ==¢e € 81 A e € 82;
size({}) == 0;
size(insert(e, s))

size(s) + (if e € s then 0 else 1);

S generated by {1}, insert
S partitioned by €

implies
V e: E, 8: 8
e € s == insert(e, 8) = s;

size(s) > 0;
Figure 2.1: A Set Trait

theorem-proving techniques can be used to show that some formulas are
in the theory of a trait. Also, there is no guarantee that the theory of a
trait is consistent. Speckle requires, but cannot check, that all traits used
in specifications are consistent.

2.2 Key Aspects of Speckle as a Programming Language

The programming language portion of Speckle is mostly a subset of CLU [36].
It has the following features of CLU:
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Static Typing. Type checking is done at compile time, so runtime type
checks are not needed.

Side Effects. Programs may modify data structures.

Data Abstraction. Users may define new data types. The implemen-
tations of such a type can encapsulate the representation of the type.

Garbage Collection. There is no explicit mechanism to deallocate
memory, so dangling references cannot occur.

Pointers. Data values may contain pointers into the garbage-collected
store, and pointers can be used to create cyclic data structures.
However, pointer arithmetic is not allowed.

Procedures. Procedures may have any number of arguments and any
number of results. All arguments and results, which may be pointers,
are passed by value.

Tterators. lterators are a restricted form of coroutines that can be
implemented on a single stack.

FEzxceptions. Routines may terminate either normally or by signalling
an exception. If a routine signals an exception that is not handled by
the caller, a fatal runtime error occurs. Exceptions may return any
number of results.

No Global Variable Names. There is no global scope for variable
identifiers.

Syntactic Shorthands. Syntactic shorthands are provided to abbreviate
calls to certain procedures. For example, “a[i] := e” denotes a call
to store operation of the type of a. When not followed by “:=",
“al[i]” denotes a call to the fetch operation. Similarly, “x.f1d := v”
denotes a call to the set _£1d operation of the type of x, and “x.£14d”
denotes a call to the get_f1d operation.

As a simplification, 1 omitted some features of CLU—polymorphism,
procedures as data, the type any, and own variables.

CLU’s primitive data types are divided into two categories: immutable

and mutable. An instance of an immutable type cannot be modified during
the the execution of a program, whereas an instance of a mutable type
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int = immutable type
based on Int

int_queue = mutable type
based on IntQueue

Figure 2.2: Data Type Specifications

can be modified. For example, integers and sequences of real numbers are
immutable types, while arrays of integers and arrays of reals are mutable.
Unlike CLU, Speckle provides a formal way to specify whether a user-defined
type is mutable or immutable.!

A value of a mutable type is a pointer to a value in the garbage-collected
store. Thus, pointers appear implicitly wherever a mutable type is used.
This model is similar to LISP, which has implicit pointers, as opposed to C,
where pointers are explicit.

2.3 Specifying Interfaces in Larch/Speckle

Larch /Speckle specifications consists of three basic parts: data type
specifications, program states, and procedural specifications. Program
states are defined in part by data type specifications, which describe
the values manipulated by programs. Procedural specifications, i.e.,
specifications of procedures and iterators, are written as predicates on
program states.

2.3.1 Data Type Specifications

The specification of a data type, T, indicates whether T is mutable and
specifies an LSL sort, S, whose values are used to model instances of type
T. S is called the value sort of T.

Fig. 2.2 gives part of two data type specifications. Type int is
immutable. The based on clause specifies that sort Int is the value sort of
type int. Type int_queue is mutable, and its value sort is IntQueue.

An instance of a mutable type has both a value and an identity. The
value may change during a program’s execution, but the identity does not.

In CLU, the compiler must assume that a user-defined type is mutable.
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To model identities, a location sort is implicitly defined for each mutable
type. A location sort provides an infinite supply of unique identifiers that
get assigned to instances of a mutable type as they are allocated. The
identifiers are called locations because they are used as the addresses of
data in program states.

In the example above, sort int_queueLoc is implicitly defined as the
location sort for int_queue. This sort can be used in LSL specifications
that define other value sorts. For example, consider a data type for sets of
int_queues:

int_queue_set = immutable type
based on QueueSet

The value sort QueueSet would be defined in LSL using int_queueLoc for
the elements of QueueSets, e.g., by instantiating the Set trait of Fig. 2.1
with int_queueLoc for E and QueueSet for S.

A term of a value sort may contain locations of mutable data. For
example, QueueSet terms contain locations of sort int_queueLoc. Similarly,
a value of an array with a mutable element type contains the location of each
element. In contrast, a value of an array of immutable integers contains no
locations.

Implementations of data types must not “expose the representation.”
The representation is exposed if code outside the implementation of the
type can access the representation directly, i.e., without calling operations
of the type.

2.3.2 Program States
A Speckle program state consists of an environment and a store:

Prog State = Env X Store
Env = Ident — ( LSLValue + Loc)
Store = Loc — LSLValue

The domains LSLValue and Loc are determined by specifications of data
types used in a program. LSIValue is the disjoint sum of the value sorts of
the types, and Loc is the disjoint sum of the location sorts of the mutable
types.

The environment maps identifiers to their values, and the store maps
locations of mutable data to their values. An identifier is the name of a
program variable, e.g., ‘x’ or ‘sum’. If the type of an identifier is immutable,
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the environment maps the identifier to an LSLValue. If the type of an
identifier is mutable, the environment maps the identifier to a location. The
environment of program state ¢ is written as ¢ and the store is written
as o°",

Program states have several properties that follow from the features
of the programming language. Because Speckle is statically typed, each
program state o is well-typed. If identifier ‘x” is declared to have immutable
type IT, the sort of ¢®(‘x’) is the value sort of IT. Similarly, if ‘x’ is
declared to have mutable type MT, the sort of " (x’) is MTLoc, and the
sort of o (" (x”)) is the value sort of MT.

There may be several aliases for a given location [. For example, the
environment may map any number of identifiers to . (Each identifier would
have the same type as [.) Also, an LSLValue in range(c®") or range(c™"")
may contain /.

Because LSLValues may contain locations, data may be cyclic and may
contain multiple levels of indirection. However, memory is reclaimed only
by garbage collection, so a program state never has dangling references. lL.e.,
the set of locations contained by values in range(c®" ) and range(o
subset of domain(c®").

Str) iS a

A program can alter its state in two ways. One way is to assign a new
value to an identifier. This changes only the environment. Furthermore, it
changes only the binding of the assigned identifier, i.e., assigning to identifier
‘x’ never affects the binding of identifier ‘y’.

The other way to alter the program state is to call a procedure that
modifies locations in the store. A procedure call modifies a location [ if
oove(l) # opug (1), where o, and oo are the program states before and
after the call. Because of the scope rules, a procedure call never changes the
environment except for identifiers that are assigned result values.

2.3.3 Procedure Specifications

The specification of a procedure, Prc, is a set of predicates. The precondi-
tion, Prc.Pre, must hold whenever Prc is called. Otherwise, the behavior
of the procedure is undefined. The normal postcondition, Pre.Post[norm],
holds if the Prc returns normally. If Prc signals exception sig, the
postcondition Pre.Post[sig] holds. The guard condition Prc.Guard[sig]
specifies when a procedure is allowed to signal exception stg. The guard
condition for the normal return, Prc.Guard[norm], is the conjunction of the
negation of the guards for the exceptional returns.
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Predicate Definition

Pre.Pre(oyy., Args) requires
Pre.Post[norm](opt, opbe, Args, Resnorm) ensures A modifies
Pre.Post[sig](opye, Tposts Args, Resgy) ensuring,;, A modifies
Pre.Guard[norm](op, Args) Nsig — (Wheng,)
Pre.Guard[sig](opy., Args) wheng;,

Figure 2.3: Procedure Specification Predicates

Syntactically, the predicates are decomposed into a number of clauses.
The requires clause defines the precondition. The postconditions are
defined by the modifies, ensures, and ensuring clauses. The guard
conditions are defined by the when clauses. Fig. 2.3 summarizes the
association between the predicates and the syntactic clauses. Args denotes
a list of LSL variables—one per formal argument of Prc. The sort of each
variable is determined by the formal argument’s type. For immutable
types, the corresponding value sort is used, and for mutable types, the
corresponding location sort is used. Similarly, Res is used for the results
of Prc.

Fig. 2.4 lists several example specifications that rely on the data type
specifications of Fig. 2.2. The precondition for dequeue is vacuous, i.e.,
true. The precondition for head is that the queue is not empty. The
syntax q” denotes the IntQueue obtained by dereferencing q in the pre-
state. Similarly, q’ denotes the value obtained by dereferencing q in the
post-state. The superscripts * and ’ can be applied to any term denoting
a location.

The modifies clause specifies the set of locations that a procedure is
allowed to modify. Thus, it restricts the side effects that a procedure is
allowed to perform, whether the procedure returns normally or signals an
exception. For example, dequeue may modify only the int_queuelLoc q, and
head and create may not modify any locations.

Larch /Speckle automatically defines the sort LocSet to model sets of
locations. LocSets are heterogeneous because they may contain locations of
more than one mutable data type. In a modifies clause, one can write a
list of terms to specify the set of locations, S, that a procedure may modify.
Each term must be either a location or a LocSet, and S is simply the union
of the locations and the LocSets. Semantically, the modifies clause adds
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dequeue = proc (q: int_queue) returns (i: int)
requires --
modifies q
ensures q’ = deq(q™) A i = head(gq™
except
signals empty when IsEmpty(q”) ensuring q’ = q”

head = proc (q: int_queue) returns (i: int)
requires — IsEmpty(q”)

modifies --
ensures i = head(q”")
create = proc () returns (q: int_queue)
requires --
modifies --
ensures q’ = empty A New(q)

Figure 2.4: Sample Procedure Specifications

the conjunct

V1: Loc € domain(oy) [[ ¢S = opog(l) = opie(]) ]
to a postcondition.  This conjunct is abbreviated as the predicate
OnlyModifies(pre, post, S). In addition, every postcondition has the con-
junct

domain(oy.,) C domain (o)

This guarantees that the post-store contains every location in the pre-store.

The ensures clause specifies the postcondition for a normal return. For
the procedure head, the postcondition specifies that the return value is equal
to the head of the queue. This assertion is an equation, not an assignment—
the same assertion can be written as head(q”) = 1i.

For each exception that a procedure may signal, a when clause specifies
a guard that must hold for the exception to be signalled, and an optional
ensuring clause specifies a postcondition. The ensures clause does not
apply when a procedure signals an exception.

A procedure may list any number of exceptions, and the guards for
the exceptions need not be mutually exclusive. If one or more guards are
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satisfied, the procedure must signal one of the corresponding exceptions.
The choice may or may not be implemented non-deterministically.

To specify allocation, the ensures and ensuring clauses may use the
special function New. For example, in Fig. 2.4, the specification of procedure
create states that the return value is a newly allocated location, i.e., that
the location is unaliased to all locations in the pre state. In the common
case, New has a single argument denoting a location. The meaning of New (x)
is the assertion

x ¢ domain(ony) A x € domain(oyiy)
The first conjunct suffices to show that x is unequal to all previously existing
locations. The second conjunct would be needed to prove that x is not a
dangling reference in the post-state.

In general, New may have any number of arguments, each of which is
either a location or a LocSet. Each location is treated as a singleton LocSet.
The meaning of New(lsy, sy, ...,ls,) is that each [s; contains new locations:

/\ ls; 0 domain(ogy) ={} A ls; C domain(ojiy)

i=1...n

and that each pair of LocSets in the assertion is disjoint:

/\ i#j:>lsiﬂlSj:{}

i,5=1...n

Thus, New(x,y) implies x # y, but New(x) A New(y) does not.

As a convenience when specifying LocSets, Larch/Speckle provides the
special functions reach” and reach’. Both functions map LocSets to
LocSets. reach”(s) denotes the set of locations reachable from s in the
pre-store, and reach’(s) denotes the set of locations reachable from s in
the post-store.

The definitions of reach” and reach’ require some way to determine
which locations are contained by an LSLValue in the range of a program
state’s store. Therefore, to fully define reach” and reach’, each type’s
value sort must provide a function, contents, that maps a term of the
value sort to the set of locations contained in the term. Unfortunately, the
contents functions cannot be inferred mechanically and therefore must be
supplied by specifiers.

Fig. 2.5 is an example of a specification for contents for mappings.
Suppose a program uses a data type that maps strings to mutable
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Map_Contents: trait
includes String, Map(String, int_queueloc, SIQ_Map),
LocSortFunctions(int_queueloc)
introduces
contents: SIQ_Map — LocSet
asserts
V siq: SIQ_Map, s: String, iql: int_queueLoc
contents(empty_map) == {}; % the empty LocSet
contents(bind(siq, s, iql)) == {iql} U contents(siq);

Figure 2.5: Specifying contents

int_queues. The sort SIQ Map is the value sort for the mapping type. The
trait in Fig. 2.5 specifies that the contents of a SIQMap value is the range
of the mapping.

As ashorthand, specifiers may abbreviate reach (contents(v)), where
v is a term of some value sort, as reach” (v). The same shorthand applies
for reach’.

2.3.4 Iterator Specifications

Iterators are a restricted form of coroutine that can be used to iterate over
collections of values, e.g., sets, mappings, and trees. An iterator can only
be invoked by a for statement, which defines a loop.

An iterator is first called when the execution of a for statement begins.
Subsequently, it is resumed each time control reaches the end of the body
of the for statement. Each time an iterator is called or resumed, it may
either yield results, return, or signal an exception. If it yields, another
iteration begins. If it returns, control is transferred to the statement after
the for. If it signals an exception, control is transferred to the handler for
the exception.?

Iterators are specified much like procedures, but with some additional
constructs. Fig. 2.6 contains a iterator specification and Fig. 2.7 contains
a procedure that uses the iterator to construct the inverse of a mapping.
The requires clause of the specification specifies a precondition that must

2If there is no handler for the exception, a fatal runtime error occurs.
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map$elements = iter (m: map) yields (d: dom, r: ran)

requires --
modifies --
ensures d € domain(m@) A r = image(m@, d) A d ¢ d prev
returns when seq2set(d prev) = domain(m@)
Figure 2.6: An Iterator Specification
invert = proc (m: map) returns (i: inv_map)
requires --
modifies --
ensures i’ = inverse(m”) & New(i)

except signals many_to_one when — invertible(m”")

i: inv_map := inv_map$create()

for d: dom, r: ran in map$elements(m) do
if inv_map$defined(i, r) then signal many_to_one end
inv_map$define(i, r, d)
end

return(i)

end invert

Figure 2.7: Calling an Iterator

hold each time the iterator is called or resumed. The modifies clause
specifies the set of locations the iterator is allowed to modify. The ensures
clause specifies the postcondition that applies each time the iterator yields.
The returns when clause specifies the guard that determines whether the
iterator yields or returns. It may be followed by an ensuring clause that
specifies a postcondition that holds when the iterator returns.

Iterator specifications may refer to values from previous points in a loop.
The syntax m@ denotes the value obtained by dereferencing the location m
in the program state in which the iterator was first called. Thus, m@ and
m” are synonymous the first time the iterator is called, but may differ when
the iterator is resumed. The suffix @ may be applied to any term denoting
a location.
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Another way to refer to values at previous points in a loop is with the
syntax T prev, where T is some term. T prev denotes the sequence of the
values T had each time the iterator previously yielded. On the first iteration,
T previs an empty sequence. Typically, the prev suffix is applied to yielded
values. For example, in Fig. 2.6, d prev denotes the sequence of dom values
that were previously yielded. The assertion d ¢ d prev specifies that no
domain element is yielded more than once.

Finally, iterator specifications may use the special term n_iter to denote
the number of times the iterator has yielded to the loop body. This is
useful in specifying iterators such as int$from_to, which yields a subrange
of integers in ascending order.

2.4 Related Work

Larch /Speckle has many features in common with other interface languages,
e.g., Larch/CLU [52], Larch/C [22], and Larch/C++ [34], as well as features
in common with generic interface languages [8, 24, 35, 53]. Larch/Speckle
is unique in that, as explained in Chapter 7, Larch/Speckle supports partial
specifications.

Because Speckle is based on CLU, Larch/Speckle is most like Larch /CLU.
One difference is the formalization of New, which in Larch/CLU is a separate
clause that identifies all locations that were allocated by a procedure. In
Larch /Speckle, a specification need not identify locations that were allocated
to be used as temporaries. Another difference is in the specifications of
iterators. Instead of the shorthands @, prev, and n_iter, Larch/CLU
provides facilities to introduce names for specification variables, to specify
their initial values, and to specify how the values are updated on each
iteration.

Larch/Speckle’s program states are similar to those in Euclid [31] and
FX [38]. In each language, the program store is partitioned into disjoint
pieces. In Euclid, the store is composed of disjoint “collections” of data. In
FX, the store is composed of disjoint “regions” of data. In Larch/Speckle,
the store can be viewed as the union of disjoint mappings—one for each
mutable data type. Euclid and FX are more general than Larch/Speckle
because they allow programs to use multiple collections or regions of data
of a single type.

I chose to use Larch because it came with both a theorem-prover
for reasoning about Larch specifications (LP [16]) and techniques for
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specifying CLU programs using Larch [52]. However, there are many generic
specification languages other than Larch that could also be used as the basis
for program optimization.

Perhaps the language most similar to Larch is VDM [27, 28]. Both
VDM and Larch are designed to facilitate reasoning about specifications in
checking designs and to support reasoning about programs. Like LSL, VDM
is not tied to a particular programming language. VDM specifications are
predicates on abstract program states, whose definition presumably depends
on the programming language used. For the purpose of optimization, one
drawback is that VDM has nothing akin to an interface language, so one
would first have to connect the semantics of a programming language to
VDM in a way that allows mechanical analysis. Such analysis might use
VDM'’s generic proof rules for generic programming language constructs like
if and while.

The Z specification language [48] is one of a class of languages designed
for reasoning about specifications that are independent of any programming
language. To make such specifications useful to a compiler, one would first
have to develop an interface language that relates the semantics of Z to that
of the programming language.

Another approach in developing specification languages is to design them
for particular programming languages. German [18] uses a language tailored
for Pascal, and McHugh [41] uses one tailored for Gypsy, a derivative of
Pascal. Neither of these languages supports data abstraction as well as CLU.
Since data abstraction is a primary way that specifications simplify reasoning
about programs, these programming languages seemed less attractive than
CLU. Luckham and others designed ANNA [40], a language for annotating
Ada programs. Although Ada supports data abstraction, CLU is more
attractive because it is simpler than Ada, which has both stack and heap
allocation.
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Chapter 3

Programs and Proof Rules

This chapter describes the formalization of programs and the proof rules
that will be used to discharge the proof obligations for performing various
optimizations.

3.1 Limitations and Assumptions

My purpose for formalizing programs and writing proof rules is to provide
a framework for a compiler to prove that optimizations are safe. The
formalization is not intended to prove properties such as whether a program
terminates, as in [47], or whether it references uninitialized variables.

The formalization of the program state relies on interfaces of data types
and LSL traits. I assume that no data types have exposed representations,
i.e., that reading or modifying a location of one type has no effect on
locations of other types.

The proof rules rely on a procedure’s specification to define the effects
of calling the procedure. Thus, the soundness and completeness of the proof
rules depends on the accuracy and completeness of the specifications.

Finally, 1 assume that the program does not call any procedure whose
precondition is not satisfied—this is evident because the proof rules rely
on the postconditions without checking preconditions. Although the proof
rules could be used to verify that the preconditions are satisfied, this has
been extensively studied by others, e.g. [19, 26, 39], and is not a part of my
research.

3.2 Programs as Annotated Control Flow Graphs

Hoare rules are a standard way of defining proof rules for programs in terms
of their structure [26]. However, in a language with exceptions, it is awkward
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to use Hoare rules for the same reason that it is awkward to give Hoare rules
for statements like break and continue. Therefore, I use Floyd’s approach
[13] and define proof rules for Speckle programs that have been converted
into control flow graphs (FGs). These rules represent a (partial) semantics
for Speckle.

A program is an implementation of a procedure. It has a unique
entering edge labeled enter, one or more exiting edges, and zero or more
internal edges. FEach exiting edge corresponds either to a normal return
or to signaling an exception. There are six kinds of nodes: assignment,
branch, procedure call, iterator call, merge, and loop. Because Speckle is
a structured programming language, all FGs are reducible.

Associated with each FG edge e is a program state symbol, ., and a
theory, T.. 7o is induced from the FG using the proof rules. In 7., o
denotes an arbitrary member of the set of program states that can occur
at edge e. Recall that a theory is an infinite set of formulas. The formulas
in 7. constrain the possible values for .. To prove that some predicate P
holds at the program point denoted by an edge e, one must prove that the
formula P(co.) is in 7Te.

The formulas in the theory of an edge, e, also contain the program state
symbols for any edge, d, that dominates e.! This is useful for defining the
program state at edge e in terms of the program states of edges that were
traversed to reach e. For example, suppose € is an edge exiting the node
x:= x+1, and d is the edge entering the node. In 7., o, is defined in terms
of oq using formulas such as 67" (x") = o™ (%)) +1.

Te may contain more formulas constraining o4 than 73 contains. For
example, suppose d enters the branch node branch b and e is the exiting
edge for when b is true. 7. contains the formula o™ (‘v’) = true, but 7Tq4
does not (unless the branch is always taken).

In 7., 0. is analogous to the “collecting state” of edge e in the framework
of abstract interpretation [1, 11]. The collecting state of an edge denotes
the set of program states that can occur at the edge. Here, 7. corresponds
to the characteristic predicate for the set of program states, and o, is the
predicate’s formal variable.

'Edge i dominates edge j if every path from the entering edge to j must pass through
1. Every edge dominates itself. Edge ¢ strictly dominates edge 7 if ¢+ dominates 7 and @ # j.
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3.2.1 Soundness and Completeness

To ensure soundness, the proof rules must not over-constrain the program
states defined by the theories: every formula constraining o, in 7. must be
true of every program state that could arise at edge e at runtime. Thus, it
is conservative to omit a formula from a theory.

Soundness does not require that each edge’s theory be consistent. A
theory is inconsistent when it contains the formula true = false, which,
together with the normal inference rules of predicate logic, can be used
to prove that the theory contains all formulas. If 7. is inconsistent, no
program state can satisfy all the formulas constraining o, because some
of these formulas will contradict one another. If edge e is unreachable at
runtime, however, it is sound for 7. to be inconsistent since o, represents
the empty set of program states.

To ensure completeness, the proof rules must not under-constrain the
program states defined by the theories: the formulas constraining o, in 7,
must admit only those program states that can arise at edge e at runtime.

Because the proof rules rely on the specifications of called procedures
instead of their implementations, it is sometimes impossible to prove
conjectures that are true for a particular implementation of a specification.
Thus, the proof rules are in some sense incomplete. The reason is
that specifications typically abstract away implementation details that are
irrelevant to clients, so a specification often admits more post-states than
an implementation will actually generate.

However, the cost of such incompleteness is outweighed by the fact
that the specifications simplify reasoning about the program states, which
allows the compiler to detect more optimizations. In practice, I found that
the details abstracted away by specifications were usually irrelevant to the
optimizations considered in this thesis.

I will not prove the soundness or the completeness, modulo abstraction
by specification, of the proof rules. Such a proof would require a formal
semantics for Speckle and an abstraction function from concrete program
states to Larch/Speckle program states.

3.3 Proof Rules for Flow Graphs
To define the theories for each edge in a FG, I use structural induction on

flow graphs. First, I define the theory of the entry edge. Next, for each way
one or more nodes can be appended to a flow graph, I give a proof rule that
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defines the theories of the new exiting edges in terms of the theories of the
old exiting edges.

The relation € is used to define the theories at each edge: F € 7, means
that formula F is in theory 7.. Also, the notation for the hypothesis of a
proof rule is extended to include the template of a subgraph appearing in
the program.

As a convenience, there are two additional proof rules. The first is that
every edge’s theory is closed under the usual inferences rules of predicate
logic:

F € ConsequenceClosure(7e)
(Closure)

FeT.

The second proof rule is that the theory of an edge j is an extension of
the theories of each edge ¢ that dominates j:

FeT
Edge ¢+ dominates edge j

FeT;

(Extension)

This rule propagates the formulas defining o; in 7; to 7j, so it allows 7; to
define o; in terms of oj.

A related invariant that follows from the proof rules is that a theory 7j
can contain formulas constraining o; only if ¢ dominates j.

3.3.1 Entry Edge

The theory Tenter of the entering edge comes from the specifications of
procedures and data types used in the FG. Tenier is the consequence closure
of the union of:

1. the theories of all LSL specifications used by the program;

2. the theory of the program state and procedure predicates defined by
Larch /Speckle; and
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3. the precondition specified by the user, if any, for entering the FG.

The precondition comes from the requires clause of the procedure
implemented by the program.

The extension proof rule ensures that every edge’s theory is an extension of
Tenter, 0 Tenter contains formulas that are true globally.
3.3.2 Assignment Nodes

An assignment node has exactly one entering and one exiting edge. The
left and right sides of the assignment must each consist of a single identifier.
The proof rule for an assignment is:

pre

—-————

post

..

Str Str
Upost - Upre € 7;’05t
E v — E [
Tponi(x) = opri('y) € Tpost
OnlyAssigns(opd, opnt,x") € Tpost

The first consequent states that the store is unchanged—this formalizes
the fact that assignment never affects the store. The second consequent
states that the value of x after the assignment is equal to the value of y
before the assignment. The third consequent states that the values of all
Idents other than x are not affected by the assignment. The meaning of
OnlyAssigns(opr, Tpase, ‘X') is

Vvar : Ident[var # x’=> oty (var) = o5y (var)]
This captures the fact that identifiers are never aliased in Speckle. The
OnlyAssigns predicate is analogous to the OnlyModifies predicate of
Section 2.3.3. The difference is that the former constrains the environment,
while the latter constrains the store.
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3.3.3 Branch Nodes

Branch nodes are used to represent if statements. The branch condition
must be an identifier. The proof rule for branch nodes is:

lpre

branch b

lyes lno

Tora (D) =true € Tyes
Oyes = Opre € Tyes
o (b)) = false € Tho
Tno = Opre € Tno

The first and third consequents capture the control-dependent information
of whether the branch test was true or false. These contradictory formulas
would create an inconsistency if they were in the same theory. It is for this
reason that I use a theory per edge rather than one theory for entire flow
graph.

The symbol o, has different different meanings in the theories Tpre,
Tyess and Tno. In Tpre, Opre denotes an arbitrary program state at edge pre.
In Tyes, Opre denotes an arbitrary program state at edge pre that causes the
branch to be taken. Similarly, in 7., 0pre denotes an arbitrary program
state at edge pre that causes the branch to be not taken.

3.3.4 Procedure Call Nodes

A procedure call node has exactly one entering edge, but it may have several
exiting edges because a procedure may terminate either normally or by
signalling an exception. Either form of termination may return results.

The proof rule for a call to a procedure Prc that may signal exceptions
el ...elNis:
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lpre

[ReSnorm Rese1: ...: Resen]

= Prc(Args)

lnorm lel leN

For status = norm, el, ..., eN
Prc.Post[status] (o, 0ithus ALgs, Resstatus) € Tstatus
Pre.Guard[status](o}y,, Args) € Tstatus
OnlyAssigns(opie, Oiinius: Re€Sstatus) € Tstatus

Args denotes the arguments to Prc, if any. Only the value of an identifier
can be passed as argument, so temporary identifiers are introduced for more
complex expressions. Resgi,iyq denotes the results, if any, of Prc when it
terminates with status status. (See Section 2.3.3 on p. 27 for a definition of

Prc’s predicates.)

Example: Calling a Procedure

The following is a specification of procedure to compute the square root of

a real number:

sqrt = proc (rl: real) returns (r2: real)
requires --
modifies --
ensures square(r2) ~ ri
except
signals imaginary (c: complex)
when r1 < O ensuring square(c.imag) ~ -rl1 A c.real = 0
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Here is a flow graph with only a call to the procedure sqrt:

lpre

[x; z] 1= sart(y)

lnor m li magi nary
This flow graph corresponds to the Speckle code fragment:

x := sqrt(y)
except when imaginary(z: complex):

where x and y are type real and z is type complex.

The proof rule for procedure calls implies that the several formulas are
in Tnorm- (Recall that the postcondition is the conjunction of the modifies
and ensures clauses.)

V1: Loc € domain(opy) [ onom(l) = opve(l) ] (modifies)
square(o8i(%)) = a2 (') (ensures)
—(ope (7)< 0) (negation of when guard)

OnlyAssigns (B2, gEnr  ox)

pre “ norm?

Similarly, the proof rule implies that the following formulas are in

Timaginary:
V 1: Loc € domain(oyy) [ 0inaginary(D = opre(D) ] (modifies)
SQUATe(Ti i ginary(2)-imag) = —opri (')
A Oimnginary( 2).real =0 (ensuring)
ohe(y) <0 (when guard)

OnlyAssigns (B2, gEr  <z)

pre “ norm?
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3.3.5 Merge Nodes

A merge node has two or more entering edges but only one exiting edge.
Merge nodes are used to join flows of control that separated because of
branching or calls to procedures that signal exceptions. A merge node may
not be used to create a loop, i.e., the entering edges must not be backward
edges.? Loop nodes will be used to merge backward edges.

The proof rule for merge nodes is:

F[Ul/gout] S 71
F[UQ/Uout] S 75

FG 72)ut

The notation F[o/o;] denotes F' with o substituted for o; and with bound
variables renamed to avoid capture.

The rule for merge nodes is merely an instance of proof-by-cases. To
prove that a formula, F’, is true about the program state exiting a merge
node, one must prove that the formula is true of each program state that
enters the merge node.

3.3.6 Loop Nodes

A loop node has two entering edges, orig and back, and a single exiting edge,
entry. The edge orig is the header of the loop, entry is the first edge of the
body, and back is the backward edge that comes from the end of the body.
The body itself is a control flow graph and typically has an edge that exits
the loop.

The proof rule for loop nodes is:

2 A backward edge is one whose target node dominates its source node.
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F[Uorig/gentry] S %rig
F = F[Uback/gentry] S %ack

F € 7:entry

This rule is merely an instance of proof-by-induction. To prove that a
formula, F, is true about the program state at the entry edge, one must
prove that F'is true of the program state at the header of the loop and that
the body of the loop preserves the truth value of F.

3.3.7 Iterator Call Nodes

Calls to iterators are basically the same as calls to procedures. One minor
difference is that the normal form of termination for an iterator is to yield
results. The returns when guard is treated just like an exception that has
no result values. Another minor difference is that iterator specifications may
use the suffix @ to refer to the program store that existed at the loop header,
i.e., when the iterator was first called. This is handled by making o5},
argument of the precondition, the postcondition, and the guard conditions.

an

For each iterator call node, I add a specification variable to count the
number of iterations. The variable is initialized to 0 by an assignment above
the header edge, and the variable is incremented after the iterator call node.
The value of the variable is given as an argument to iterator preconditions
and postconditions that refer to n_iter.

Similarly, for each term t suffixed by prev in the iterator’s interface, I
introduce a specification variable. The variable is initialized to the empty
sequence by an assignment above the header, and, after the iterator call
node, the variable is updated by appending the value of ¢ to the end of the
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sequence. The value of the variable is given as an argument to the iterator
preconditions and postconditions that refer to t prev.

Example: Calling an Iterator

The following code iterates over the bindings in a mapping to construct the
domain and the range.

dom: int_set := int_set$create()

ran: str_set := str_set$create()

for d: int, r: string in bindings(m) do
int_set$insert(dom, d)
str_set$insert(ran, r)
end

The specification for the iterator bindings is:

bindings = iter (m: int_string_map)
yields (i: int, s: string)
requires --
modifies --
ensures image(m@, i) = s A i ¢ i prev
returns when size(m) = n_iter

Note that this specification refers to both n_iter and i prev.
The flow graph for the code is shown in Fig. 3.1.

3.4 Summary and Related Work

The proof rules for programs are a form of Hoare rules [26] for programs
that are formalized as flow graphs, as in [13], rather than parse trees
The proof rules rely on data type specifications to define the program
state (see Chapter 2), and on procedure specifications to describe the
effect of procedure calls. This simplifies reasoning about programs because
the program states are more abstract (because of data abstraction) and
because the effect of a procedure call does not have to be approximated by
interprocedural analysis.

For each edge in a flow graph, the proof rules define an LSL theory
that constrains the possible values of program states that can arise at the
edge. The set of possible program state values corresponds to the “collecting
state” in the literature on abstract interpretation [1, 11]. However, the
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proof rules are more powerful than the data flow framework used in abstract
interpretation.
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|0

int_set$create()

dom :

v sl

ran : = str_set$create()

n_iterl :=0

iprev :=1]

sl1

[d,r;] := bindings(m [——

'36

s10 n_iterl :=n_iterl + 1

'S7

iprev : = append(iprev, i)

v s8

i nt_set$insert(dom d)

s9

Y

str_set$insert(ran, r)

Figure 3.1: A Flow Graph with a Call to an Iterator
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Chapter 4

Enhancing Conventional Optimizations

In this chapter, I describe how to exploit specifications to enhance three
kinds of conventional optimizations—common subexpression elimination,
hoisting expressions out of loops, and dead code elimination. For each kind
of optimization, I give formal proof obligations that are sufficient to preserve
the correctness of the original program, and I give some examples of how
to discharge the proof obligations using the specifications and proof rules
of chapters 2 and 3. In Chapter 6, I present a strategy for mechanically
discharging the proof obligations.

Specifications permit optimizations that are impossible by analyzing
only code because they abstract away irrelevant implementation details.
Furthermore, because specifications are simpler than code, they facilitate
optimizations that are difficult to perform by analyzing only code.

4.1 Common Subexpression Elimination

Common subexpression elimination is a conventional optimization for
reusing results that were previously computed. For example, in the code

x := alil

y = ali]

the second occurrence of a[i] can be eliminated provided that the value of
a[i] is unchanged.! The compiler may replace a[i] by x or, if x is assigned
between the occurrences of a[i], by a temporary variable introduced by the
compiler.

'If the two occurrences of al[i] lie in different basic blocks, this optimization is
sometimes called global common subezpression elimination [2].
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While common subexpressions are often syntactically identical, as in the
example above, they may be syntactically different, as in the code fragment

X := atb
y :=b
Z 1= y+a

Here, y+a can be replaced by x if, as is the case in Speckle, assignment to
one identifier cannot change the value of another.

Although compilers are good at eliminating expressions that use only
primitive operations like __+__and __[__], they are less effective at eliminat-
ing procedure calls. The problem is that while the semantics of primitive
operations are simple and known to the compiler writer, the semantics of
calling an arbitrary procedure must typically be determined by examining
the procedure’s implementation, which may require interprocedural analysis
of the whole program.

As discussed in Chapter 1, a key idea in Speckle is to use specifications
to define the semantics of procedure calls. In fact, for the purpose of
source-level optimization, even primitive operations like _+__ and __[__]
are treated as calls to procedures whose specifications are supplied as part
of the language. Thus, Speckle has only three kinds of expressions: literals,
identifiers, and results of procedure calls.

4.1.1 Proof Obligations

In Speckle, common subexpression elimination constitutes replacing a call
to a procedure:

lpre

[Reshorm Rese1: ...; Resgnl:= Prc(Args)

lnorm lel leN

by an assignment:
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lpre

Resgt gt ys : = Subs

lst at us

where, according to the specification of Prc and the values Args, status is
a legal termination status for the call, and where Subs are available values
that satisfy the postcondition of Prc when it terminates with status.

A value is available at edge e if it is bound to an identifier at an edge
d that dominates e. If the identifier to which the value is bound might be
assigned a different value between edges ¢ and 7, the compiler must introduce
a temporary to save the value. When attempting to eliminate a call, the
compiler can try to substitute any available value of the proper type. The
available values include any value that was computed at nodes that dominate
the call.

To prove that it is legal for the call to Prc to terminate with status
status, the compiler must prove

Pre.Guard[status] (oo, Args) € Tore

pres

To prove that the substitute values satisfy the postcondition and that the
call need not modify or allocate any locations in the store, the compiler must
prove

Prc.Post[status](osi., o5, Args, Subs) € Tore

pres ¥ pre?

Note that 63" is passed as both the pre- and post-store to the postcondition

re
since an assFi)gnment has no effect on the store.

The proof obligations above are suflicient to preserve the correctness
of the original program under the assumption that the caller is relying
on only the specification of Prc, not its implementation. The proof
obligations demonstrate that Prc’s specification permits an implementation
to terminate the call with status status, with results Subs, and without
modifying or allocating locations in the store. Thus, it is safe to replace the
call by the assignment, to transfer control to edge status, and to delete all
other outgoing edges.

51



can_link_ends = proc (pa, pb: polymer) returns (b: bool)
return(
monomer$can_link(pa.left, pb.left) cor
monomer$can_link(pa.left, pb.right) cor
monomer$can_link(pa.right, pb.left) cor
monomer$can_link(pa.right, pb.right)

except when not_linear: return(false) end

Figure 4.1: Procedure can_link_ends

can_link_ends = proc (pa, pb: polymer) returns (b: bool)
begin
al,bl,ar,br: monomer
al := pa.left
bl := pb.left
if monomer$can_link(al, bl) then return(true) end
br := pb.right
if monomer$can_link(al, br) then return(true) end
ar := pa.right
if monomer$can_link(ar, bl) then return(true) end
return(monomer$can_link(ar, br))
end except when not_linear: return(false) end

Figure 4.2: Hand-optimized Version of can_1ink_ends

4.1.2 Example: can_link_ends

Fig. 4.1 is an example that illustrates the idea of eliminating procedure
calls. Procedure can_link_ends manipulates polymers and monomers. A
monomer is a chemical compound used as a building block to make polymers.
Here, a polymer is either linear, meaning a sequence of monomers, or cyclic,
meaning a ring of monomers. The procedure can_link ends takes two
polymers and returns a boolean to indicate whether the two polymers could
be joined to form one linear polymer by linking together monomers from
an end of each polymer. If either polymer is cyclic, can_1ink_ends returns
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monomer = immutable type
based on Monomer

can_link = proc (ml, m2: monomer) returns(b: bool)
requires --
modifies --
ensures b = (ml x m2)

polymer = mutable type spec
based on Polymer

get_left = proc (p: polymer) returns (m: monomer)
requires --
modifies --
ensures m = p”.left
except signals not_linear when —is_linear(p”)

get_right = proc (p: polymer) returns (m: monomer)
requires --
modifies --
ensures m = p”.right
except signals not_linear when —is_linear(p”)

bond_right = proc (p: polymer, m: monomer)
requires --
modifies p
ensures p’ = (p” F m)
except
signals not_linear when —is_linear(p”) ensuring p’ = p”
signals bad_bond when - (p”.right * m) ensuring p’ = p”

Figure 4.3: Monomer and Polymer Interfaces
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Monomer: trait
includes Int, Commutative(x, Monomer, Bool)
Monomer enumeration of EG, % ethylene glycol
TTA, % teraphthalic acid
AA, % adipic acid
HMD % hexamethyldiamine

introduces % The bonding relation:
__ % __: Monomer, % mil x m2 ==
Monomer — Bool h "mi will bond with m2"
asserts forall m: Monomer
—(m x m);
EG x TTA; EG « AA ; = ( EG % HMD);
- (TTA % AA); TTA x HMD ;
AA x HMD ;

Polymer: trait
includes Monomer, Cycle(Monomer, MonomerSeq, MonomerCycle)
% MonomerSeqs are non-empty sequences
Polymer union of linear: MonomerSeq, cyclic: MonomerCycle

introduces
__ .left,
—— .right: Polymer — Monomer
is_linear: Polymer — Bool
- F __: Polymer, Monomer — Polymer } adds a monomer
lin2cyc: Polymer — Polymer
- ko Monomer, Polymer — Bool ¥ bonding predicates
o Kk __: Polymer, Polymer — Bool
asserts

forall p,pl,p2: Polymer, m,ml,m2: Monomer, ms: MonomerSeq
pl x p2 == is_linear(pl)
A (pl.head % p2 V pl.tail x p2);
m x p == is_linear(p) A (m % p.head V m x p.tail);

linear(ms) .left == first(ms);
linear(ms) .right == last(ms);
is_linear(p) == tag(p) = linear;
linear(ms) F m == linear(ms F m);

lin2cyc(linear(ms)) == cyclic(seq2cycle(ms));

Figure 4.4: Monomer and Polymer Traits
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J s

not_I i near
[T1;] := get_left(pa)
Y sl
not_I i near
[T2;] := get_left(pb)
s2

A

[T3] := can_link(T1, T2)

y s3
yes
branch T3 =
no '54
not_| i near

[T4;] := get_left(pa)

s

Figure 4.5: Part of FG for can_link_ends

false since cyclic polymers have no bonding sites available. Fig. 4.2 is a less
legible version of can_link ends where redundant procedure calls have been
eliminated by hand.

The procedure can_link_ends calls the procedures monomer$can_link,
polymer$get_left, and polymer$get right, whose specifications appear
in Fig. 4.3.2 The pertinent traits for these interfaces are in Fig. 4.4. The
operator cor is short-circuit or.

From the interfaces in Fig. 4.3, it is clear that half of the calls to get_left
and get right are redundant. Both procedures may be called twice per
polymer even though the second call returns the same result as the first call
since the polymers are never modified.

I will explain how to eliminate the second call to get_left(pa); similar
analysis can eliminate the other redundant calls. Fig. 4.5 shows the FG
for can_link_ends from the entry edge to the second call to get_left.
Temporary identifier names have been introduced systematically so that
the arguments to procedures are either literals or identifiers.

?Recall that the syntax pa.left is a syntactic shorthand for polymer$get left (pa).
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The goal is to replace

| s

[T4;] := get_left(pa)

s

not _Il i near

| s

T4 :=T1

s

The first obligation is to prove that the call will return normally:

get_left.Guard[norm|(o3", o™ (‘pa’)) € Ta
Given the specification of get_left, this is equivalent to
is_linear(c5" (o™ (‘pa’))) € T4
Simple analysis can prove the lemma

o3 (o5 (a)) = o (o5 (pa) € Ta

This lemma follows from the fact that pa is never the target of an assignment
and from the modifies clauses of the procedures called between edges 0 and

5. This lemma can be used to simplify the goal to:

is_linear(og™ (o§™ (‘pa’))) € Ta

This formula is in 7y because it is the guard for the normal return of the
first call to get_left. Because edge 1 dominates edge 5, the extension proof

rule propagates this formula to 74, so the goal is discharged.

The second proof obligation is to show that the value of T1 at edge 1

satisfies the postcondition of the call:

get_left.Post[norm](cj", 05", o™ (‘pa’), o™ (‘T1))) € T4
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Given the specification of get_left, this is equivalent to two subgoals. The
first, from the modifies clause, is

domain(o3"™) C domain(oi™) A V1€ domain(oly) [of" () =o" ()] € T4

pre

which is trivially true. The second, from the ensures clause, is
o (T1) = oj(01 (pa) €Ty

Using the lemma from before, the right side of the equation can be replaced
to yield
o (T1) = o3 (0 (pa) € Ta

This formula is in 77 because it is part of the postcondition of the first
call to get_left. Because edge 1 dominates edge 5, the extension proof
rule propagates this formula to 74, so the goal is discharged. Thus, the
optimization is safe.

4.1.3 Syntactically Distinct Expressions

In the previous example, each call that was eliminated was syntactically
identical to a previous call. In general, this is not necessary.
For example, in the code

bond_right(p, monomer_bag$choose(ms))
monomer_bag$delete(ms,p.right)

p.right can be replaced by the result of choose. The pertinent interfaces
are those of get_right and bond right, which adds a monomer to the right
end of a polymer. When bond right returns normally, p must be linear,
80 p.right must return normally. Furthermore, the second argument to
bond_right becomes the right end of p, so it can replace p.right.

4.1.4 Optimizations Impossible without Specifications

The proof obligations for common subexpression elimination allows opti-
mizations that would be considered unsound by ordinary code analysis. For
example, consider the code

i1 := intset$least(s)
i2 := intset$choose(s)
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The specifications in Fig. 4.6 allow the compiler to replace choose by i1.
The key here is that the specification of choose is non-deterministic—more
than one value can satisfy the postcondition. Furthermore, the specification
does make any guarantees about “randomness.” The optimization is sound
because the caller can only rely on the specification of choose, which might
always return the least element.

Unless choose is in fact implemented as least, the optimization
appears unsound without the specifications because it might alter the result
computed by the program.

Although it is interesting that specifications enable optimizations that
are otherwise impossible, it is unclear how often such optimizations can be
applied in practice.

4.2 Hoisting Expressions out of Loops

Hoisting expressions out of loops is a conventional optimization related to
common subexpression elimination. The basic idea is to move loop-invariant
expressions out of loops. For example, in the code

while b do
x := alil

% Code that doesn’t modify a or assign a or i.
end

a[i] need only be computed once, rather than once per iteration. Thus,
the code can be replaced by

first := true
while b do
if first then
save := alil
first := false
end
X := save

% Code that doesn’t modify a or assign a or i.
end

where first and save are new identifiers generated by the compiler. In
some cases, the compiler may be able to dispense with first and compute
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intset = mutable type

based on IntSet

least = proc (s: intset) returns (i: int)
requires --
modifies --
ensures i = smallest(s")
except signals empty when s" = {}
choose = proc (s: intset) returns (i: int)
requires --
modifies --
ensures i € s’
except signals empty when s’ = {}

Figure 4.6: Interface for least and choose

a[i] before the while, but in general, this may be unsound (suppose, for
example, b implies inbounds(a,1i)) or inefficient (suppose b is false).

As described above, common subexpression elimination suffices to
handle the case where available values computed before a loop can be
used to eliminate a procedure call inside a loop. For example, common
subexpression elimination can eliminate the second occurrence of a[i] in
the code

x := alil
while true do
y = ali]

% Code that doesn’t modify a or assign a or i.
end

To handle the general case, the compiler needs a way to determine when
the results of a procedure called in the first iteration can be used to eliminate
calls to the procedure on all subsequent iterations. In my formulation, there
is no way to distinguish values computed on the first iteration from values
computed on arbitrary iterations: different points in a computation are
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distinguished by the different edges, but an edge in the body of a loop® does
not distinguish one iteration from another.

One work-around is to hoist a copy of the entire loop body, i.e., to unroll
the first iteration. This distinguishes the first iteration from all subsequent
ones, so common subexpression elimination can reuse results from the first
iteration to eliminates calls in subsequent ones. After the optimizations
have been identified, the hoisted loop body can be un-hoisted prior to code
generation.

This strategy is able to hoist even an expression whose value might
change on each iteration. For example, for the code

while true do
e: elem := set$choose(s)

: % Code that doesn’t delete e from s or assign e or s.
end

the strategy would determine that the result of set$choose on the first
iteration could be reused to replace the calls to set$choose on subsequent
iterations—even when set$choose might return a different value on each
iteration.

4.3 Dead Code Elimination

Dead code elimination is an optimization that removes parts of the
program that are never executed. The principal benefit of dead code
elimination is that it makes the code smaller, but it can have the secondary
benefit of improving the performance of an instruction cache by reducing
fragmentation.

Initially, 1 did not set out to perform dead code elimination, but in
the course of building PSC (see Chapter 6), 1 discovered that dead code
elimination came for free.

4.3.1 Proof Obligation

Recall that an edge is unreachable at run time if its theory is inconsistent.
Thus, to eliminate an edge from the FG, the compiler must prove that 7, is
inconsistent, i.e.,

true = false € To

Fdge e is in the body of a loop if ¢ dominates the back edge of the loop and if the
entry edge of the body dominates e.
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If a theory 7; is inconsistent, the extension proof rule will propagate the
inconsistency to the theory of each edge j dominated by ¢. This is sound
because if 7 is unreachable and j could only be reached by going through i,
7 is unreachable.

Once all edges entering a node are eliminated, the node can be eliminated
since it is unreachable via ordinary graph traversal starting from the entry
edge.

4.3.2 Example: can_link

In the code
if can_link(m, m)
then ...
end

the then arm of the if statement is dead code. (Such code might
arise through the use of macros.) The interface of can_link (Fig. 4.3,
p. 53) specifies that the return value is equal to the result obtained by
applying the __x__relation, which denotes whether two monomers can bond
together. Because __x__is irreflexive (see the Monomer trait, Fig. 4.4, p. 54),
can_link(m, m) is always false.

The flow graph for the code above is

| s

[T1] := can_link(m m
Y sl
s3
branch T1 EEE—
no
yes ¢32

The proof obligation is
true = false € Ty
The ensures clause of can_link asserts
oF (T1) = (o () * o™ (m)) € T
The extension proof rule propagates this assertion as

O.Il*lnv((Tl 7) — (O.Io*lnv((m7) * O.IO*]nv(ﬂm7)) 6 7‘2
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Because the rule for branch nodes asserts o™ (‘T1’) = true € 73, this
simplifies to

true = (o§™(m’) x o™ (m’)) € T3
Finally, using the Monomer trait axiom ¥ m [m* m == false], this simplifies

to
true = false € Ty

4.4 Improving Side Effect Analysis

Side effect analysis plays a key role in many optimizations. To eliminate
common subexpressions, a compiler must prove that the code between the
common expressions does not alter their value. To hoist an expression from
a loop, a compiler must prove that the body does not alter the expression’s
value. Specifications enhance side effect analysis in several ways.

4.4.1 Benevolent Side Effects

Specifications can conceal what Hoare calls benevolent side effects from
clients. These side effects are benevolent because they are invisible to clients
but they improve performance.

For example, Fig. 4.7 is an implementation of polymer$get _left that
performs a benevolent side effect. Here, polymers are represented using trees
whose leaves are non-empty arrays of monomers.* The implementation of
get_left caches its result in the left field of the representation, but this
side effect is invisible to clients of polymer.

Specifications also conceal temporary side effects. An implementation
may modify some data, perform some computation, and then restore the
data to its original state. From the client’s perspective, the data is
unchanged.

4.4.2 Immutable Types

Immutable types can obviate the need to perform side effect analysis. For
example, consider the code

b1l := monomer$can_link(ml, m2)

b2 := monomer$can_link(ml, m2)

“This representation allows efficient implementations for the operations to reverse a
polymer or to link two linear polymers together.
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polymer = mutable type

rep = record[root: tree, % Tree of arrays of monomers
cyclic: bool, % Is the polymer cyclic?
left, % Leftmost monomer, if known
right: mono_q] % Rightmost monomer, if known
tree = oneof[leaf: leaf,
pair: pair]
leaf = record[reverse: bool, ), Interpret data as if reversed
data: am] % R.I.: Non-empty
pair = record[left,
right:  tree]
am = array[monomer]
mono_q = oneof [known: monomer,

none: null ]

get_left = proc (p: rep) returns (monomer)
except signals cyclic
if p.cyclic then signal cyclic end
return(mono_q$value_known(p.left))
except when wrong_tag: end
root: tree := p.root
while true do
tagcase root
tag leaf (1: leaf):
ans: monomer
if 1l.reverse
then ans := am$top(l.data)
else ans := am$bottom(l.data)
end
p-left := mono_g$make_known(ans)
return(ans)
tag pair (pr: pair):
root := pr.left
end
end
end get_left

Figure 4.7: A Benevolent Side Effect in get_left
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The interface of can_link specifies that its return value only depends on
the monomers passed in as arguments (see Fig. 4.3, p. 53): In particular,
the result of can_link does not depend on the store of the program state
A nor ? appear in the interface. Thus, side effects to the store
are irrelevant. Instead, it is sufficient to check that the identifiers m1 and
m2 are not assigned, which is easy given Speckle’s scoping rules and lack of
call-by-reference.

The reason that can link ignores the store is that monomers are
immutable and do not contain locations. If monomers were mutable,
can_link would be specified using m1” and m2".

since neither

4.4.3 Abstract Data Types

Data abstraction, which is embodied in data type specifications, simplifies
reasoning about side effects because it reduces the possibilities for aliasing.
Each data type must ensure that outside its implementation, locations of
the type are never aliased to locations of other types. This makes it easier
to perform optimizations.

For example, consider the code

a: array[monomer] := ...

p: polymer := ...
al1] := p.left
m := p.left

If this code is outside the implementation of polymer, it is easy to prove
that it is safe to eliminate the second call to get_left: the result depends
only on the value stored in polymerLoc p, and the only location modified
by the code is that of a, which is not a polymerLoc. Thus, it is safe to
eliminate the second occurrence of p.left, even if polymers are represented
using arrays of monomers, e.g., as in Fig. 4.7.

4.4.4 Assertions about Allocation

To prove that two locations of the same type are distinct, the compiler can
rely on allocation assertions made with New. For example, in the code
p: polymer := ...
if monomer$can_link(p.left, p.right) then
p2: polymer := copy(p)
polymer$change_cycle(p2)
return(p2, p.left, p.right)
end except when not_linear: end
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copy = proc (p: polymer) returns (p2: polymer)
requires --
modifies --
ensures p2’ = pl" A New(p2)

change_cycle = proc (p: polymer)
requires --
modifies p
ensures p’ = lin2cyc(p”™
except signals not_linear when —is_linear(p”)

Figure 4.8: Interfaces for copy and change_cycle

the occurrences of p.left and p.right in the return statement can be
eliminated—even though the polymer p2 is modified between the common
subexpressions.

The key interfaces appear in Fig. 4.8. The interface for copy specifies
that p is not modified. Furthermore, the assertion New(p2) implies that p2
is not an alias for p. Since change_cycle modifies only p2, p is not modified,
so the values of p.1left and p.right are unchanged.

4.5 Related Work

4.5.1 Conventional Techniques

Conventional optimization techniques, e.g. [9, 12, 42, 46, 50], all use some
form of symbolic evaluation based on the semantics of the programming
language. For example, value numbering [9], one of the earliest techniques,
can eliminate primitive expressions such as sums and products. It relies on
the semantics of addition (e.g., that + is commutative) to recognize when
lexically distinct expressions like a+b and b+a are equal, and it relies on
the semantics of assignment to determine how an assignment statement can
alter the values of identifiers that appear in expressions.

The work described here is an extension of the conventional techniques.
The key difference is to use symbolic evaluation based on the semantics
of the programming language and the semantics of specifications, i.e., to
combine the two. The specifications allow several generalizations:
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1. Expressions are generalized to include procedure calls.

L.e., procedure calls can be eliminated or hoisted from loops.

2. “Common” expressions need not be equal.

A procedure call can be eliminated whenever an available value satisfies
the procedure’s specification. For procedures with non-deterministic
specifications, the available value may be different from the value the
procedure would return.

3. Hoisted expressions need not be constant.

A procedure call can be hoisted out of a loop if the result from the
first iteration satisfies the procedure’s specification for all iterations.

4.5.2 Alias Analysis

Alias analysis is a crucial component of any optimizer because aliasing
increases the likelihood that a side effect will foil an optimization. Much
work on alias analysis has been restricted to languages that do not
allow pointers [3, 10] or that restrict pointers to at most one level of
indirection [43]. Some exceptions are [7, 29, 33], which use interprocedural
analysis.

The alias analysis techniques in [7, 29, 33] annotate each edge in a FG
with a summary graph approximating the data structures at that point in
the program. Because the size of the summary graphs must be bounded
at compile-time even though the program’s data structures are unbounded
at run-time, a single node in the summary graph must sometimes be used
to represent distinct data structures. This approximation can foil some
optimizations.

A similar problem arises for Speckle. Each theory 7, describes the state
of the data structures at edge e. 7. is a full description of the program
state, not an approximation. However, the theorem-prover needed to detect
optimizations will sometimes fail to discharge the proof obligation for a legal
optimization. Thus, legal optimizations may still be missed.

4.5.3 Pragmas

Previous work on program optimization has used pragmas to enhance
common subexpression elimination and code motion. Programmers write
pragmas—hints for the compiler—to identify procedures that might be
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eliminated or hoisted out of loops. With the Gnu C Compiler, users can
declare that a procedure is “const” [49]. The pragma “const” asserts
that a procedure is referentially transparent, i.e., that given equal actual
values, the procedure returns the same results and has no side effects. For
example, sine and cosine are typically “const” procedures. The PL/I
pragma “reducible” is similar to “const.”

When the Gnu C Compiler detects that a “const” procedure is called
more than once with the same arguments, the compiler eliminates the second
call. The compiler can also hoist calls to “const” procedures out of loops
when the actuals are loop-invariant.

Pragmas like “const” have two limitations. First, the pragmas do not
describe the relation between a procedure’s arguments and results—the
pragmas only state that a relation exists. Thus, the pragmas can only
eliminate common subexpressions when the same procedure is called more
than once with the same actual values. Speckle specifications, on the other
hand, do describe the relation between the actuals and the results (including
the pre- and post-states), and this information can be used to detect a
larger class of common subexpressions, e.g., the polymer$bond right /
polymer$get_right example in Section 4.1.3 on p. 57.

The second limitation is that pragmas like “const” only work for
referentially transparent procedures.  This precludes procedures that
dereference pointers to compute their results—a side effect can change the
target of a pointer without changing the pointer itself, so dereferencing a
pointer is not referentially transparent. Thus, pragmas like “const” cannot
eliminate calls to procedures like polymer$get left, which dereferences a
polymerLoc.

4.5.4 FX

The FX language incorporates specifications of side effects to enhance
optimizations like common subexpression elimination and code motion [38].
FX divides the program store into disjoint regions somewhat like collections
in Euclid [31]. This is similar to the way Speckle divides Loc, the domain
of the program store, into disjoint subdomains—one per data type. In FX,
however, there is no association between types and regions. A region may
contain values of multiple types.

For each region accessible to a procedure, the procedure’s specification
states whether the procedure may read, modify, or allocate locations in the
region. This information allows an FX compiler to eliminate successive calls
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to a procedure p by checking several conditions:
1. that each call has the same actual values,

2. that the regions read by p are not modified by the code between the
successive calls, and

3. that p does not visibly modify or allocation locations.

Unlike the pragmas of the previous section, FX specifications can be used
to eliminate calls to procedures that are not referentially transparent. The
key difference is that FX specifications can refer to any region accessed by
a procedure, not just the regions containing the actual values. However,
FX shares the other limitation of pragmas: FX does not describe the
relation between the actuals, results, and pre- and post-states of a procedure.
This means that FX can be used to eliminate only successive calls to the
same procedure. FX is insufficient to handle cases like the bond _right /
get_right example in Section 4.1.3 on p. 57.

The FX compiler checks that an implementation satisfies its FX specifica-
tion. However, the compiler does not use specifications to conceal benevolent
side effects or temporary side effects.

4.6 Summary

Because specifications are simpler than code, they enable optimizations that
are difficult to perform by analyzing only code. Specifications allow the
compiler to eliminate calls to procedures that dereference pointers, and they
make it easier to exploit relationships between procedures, such as the fact
that a call to get_right returns the value passed in to bond_right.
Because specifications contain information not found in code, they per-
mit optimizations that are impossible by analyzing only code: specifications
make it possible to eliminate procedure calls that perform benevolent side
effects, and specifications make it possible to substitute different values for
the results of procedures with non-deterministic specifications.
Specifications also provide supplementary information that bounds the
side effects of a procedure call, as well as information about control
dependencies that can be used to detect unreachable nodes in the flow graph.
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Chapter 5

Specialized Procedure Implementations

In this chapter, I present specialized procedure implementations (SPIs), the
only kind of programmer-defined optimization supported in Speckle. SPIs
are designed to reduce the conflict between generality and efficiency. The
basic idea is to provide multiple implementations for a single procedure
interface.

First, I explain how generality conflicts with efficiency when designing
interfaces. Next, I describe how to alleviate these conflicts with SPIs. Then,
I describe the obligation for proving that an SPI can be used in place of the
general implementation. Finally, I discuss related work.

5.1 Motivation

When designing interfaces, a software engineer often faces the dilemma of
whether to make an interface general or to specialize the interface to the task
at hand [32]. Consider the interface for the data type tablein Fig. 5.1. (This
example is taken from the AC-Unify case-study discussed in Chapter 8.) A
table is a mapping from keys to values. The procedure storel takes a
table, a key, and a value and adds (or replaces) the binding for the key. The
procedure lookup returns the value bound to a key in a table or signals
missing if the key is unbound.

The interface of storel is more general than that of store2 (Fig. 5.2)
which requires that the key is not already defined in the table. However,
the implementation of store2 can be more efficient than that of storel.
For example, suppose a table is represented as an unsorted list of key/value
pairs with the invariant that no key appears twice. To preserve the invariant,
storel will have to search the list to see if a binding exists for k, but this
search is unnecessary for store2.

In some contexts, the generality of storel is unnecessary. Consider the
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table = mutable type
based on Table

storel = proc (t: table, k: key, v: value)
requires --
modifies t
ensures t’ = bind(t", k, v)

lookup = proc (t: table, k: key) returns (v: value)
requires --
modifies --
ensures v = image(t”, k)
except
signals misssing when —defined(t”, k)

Figure 5.1: A Table Interface

store2 = proc (t: table, k: key, v: value)
requires —defined(t”, k)
modifies t
ensures t’ = bind(t", k, v)

Figure 5.2: An Alternative Interface for table$store

v: value := table$lookup(t, k)
except when missing:
v := value$create()
table$store(t, k, v)
end

Figure 5.3: Calling table$store
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substitution = mutable type
based on Substitution

extendl = proc (s: substitution, v: variable, t: term)
requires --
modifies s
ensures s’ = bind(s", v, t)
except signals cyclic_definition
when v € vars(apply(unbind(s, v), t))
ensuring s’ = s’

extend2 = proc (s: substitution, v: variable, t: term)
requires v ¢ vars(apply(unbind(s, v), t))
modifies s
ensures s’ = bind(s", v, t)

Figure 5.4: Two Interfaces for substitution$extend

code fragment in Fig. 5.3, which is taken from the source code of LP [16], a
theorem-prover. Because the call to lookup signals missing only when k is
not defined in t, and because the call to value$create() modifies nothing,
k cannot be defined in t when store is called.

Fig. 5.4 contains another example of the conflict between gener-
ality and efficiency. The figure contains two possible interfaces for
substitution$extend, which adds or replaces a binding for a variable in
a substitution. Here, a substitution is a data type that maps logical
variables to logical terms, and a desired invariant is that no values of type
substitution contain cyclic definitions, e.g., that no substitution maps x
to y and y to x. The interface of extendl, which preserves the invariant,
is more robust than that of extend2, which relies on the client to preserve
the invariant. However, because extendl must always check whether the
invariant is preserved, it will be substantially slower than extend2 in
contexts where the invariant is guaranteed to be true.

With conventional programming languages, there are three solutions to
the table$store dilemma. One is to sacrifice efliciency and choose only
the general interface. Another is to sacrifice generality and choose only the
efficient interface. A third is to provide both interfaces.
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Providing both interfaces has several problems. First, it creates more
work for clients, who will have to decide which interface to call. If a
client makes the wrong choice, either performance or correctness will be
compromised. Second, as the program evolves, the distinction between the
two interfaces may become irrelevant. In the case of table$store, the
representation may be changed to a sorted list, in which case store2 is no
faster than storel. Finally, a minor problem is that in a language like CLU
that allows one store-like operation per type to be written as t[k] := v,
only one of the interfaces can use this syntax.

Instead of providing both interfaces, it is better to provide one interface
with multiple implementations and to have the compiler choose the
appropriate implementation for the caller. In Speckle, this is accomplished
using SPIs.

5.2 Syntax and Semantics

From the client’s perspective, calling a procedure with an SPI is like
calling any other procedure. From the implementor’s perspective, SPIs
allow a single procedure interface to have multiple implementations. One
implementation—the general implementation—can be used anywhere. The
other implementations—the SPIs—are usually more efficient than the
general one but can be used only when certain conditions are met.
The programmer defines these conditions formally using the specification
language. The compiler substitutes an SPI for the general implementation
when it can prove, using specifications, that the conditions are met at a
particular call site. The general implementation must exist because a caller
may rely on the full generality of the interface and because the compiler
may fail to prove that an SPT suffices.

Fig. 5.5 is an implementation of table$§store that uses an SPI. The
general implementation calls the procedure find pair to search for a pair
whose key is k. If no such pair is found, a new pair is added to the list.
Otherwise, the val field of the pair is updated.

The special when construct delimits the beginning of an SPI. Here,
the additional precondition is =defined(t”, k), which the compiler must
discharge at call sites of store in order to use the specialized code instead
of the general code.

In general, there can be many SPIs for a procedure, as is the case in
Fig. 5.6. The procedure array$fetch, which fetches an element from an
array that can grow or shrink dynamically, uses SPIs to avoid bounds checks.
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table = mutable type

rep = list[pair]

pair = recordl[key: key, val: value]
store = proc(t: rep, k: key, v: value)
h
% General implementation
h
find_pair(t, k).val (= v

except when not_found:
rep$addh(t, pair${key: k, val: v})

end
[/
% Specialized implemenetation
[/

special when —defined(t”, k)
rep$addh(t, pair${key: k, val: v})

end store

Figure 5.5: An SPI for table$store

Here, each additional precondition is named, and the name is used by a
macro facility. The code is equivalent to the lengthier version in Fig. 5.7.

5.2.1 Compilation Issues

To optimize a caller of a procedure with SPIs, the compiler must know the
additional preconditions, or guards, of the SPIs, e.g., the compiler must
know that table$store has one SPI whose guard is —defined(t”, k).
This means that full separate compilation is no longer possible: the compiler
must know secrets about the implementation of a called procedure. However,
the secret information is very stable—changes to the guards are likely to be
infrequent.

The simplest way to compile a procedure with SPIs is to output an
ordinary procedure for each SPI, e.g., storel and store2 for Fig. 5.5. This
strategy probably leads to the most efficient code.
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array = mutable type

based on Array

array_rep = record[
low: int, % low bound
size: int, % size
elems: bounded_arraylelem]] % elements

array$fetch = proc (a: array, i: int) returns (e: elem)
special when LOW_OK: 1low(a®) < i
when HIGH_OK: i < high(a®)

ar: array_rep := down(a)
ind: int := i - ar.low
#if - LOW_OK

if ind < 0 then signal bounds end
#endif
#if - HIGH_OK

if ind > ar.size then signal bounds end
#endif
return(ar.elems[ind])

Figure 5.6: SPIs in array$fetch, Version 1

5.3 Proof Obligation

The proof obligation for substituting an SPI for the general implementation
is the guard, SW_Guard, supplied by the user in the special when clause.
This guard must be instantiated with the actual values passed to the
procedure. For the procedure call:

lpre

[Reshorm Rese1: ...; Resgnl:= Prc(Args)

lnorm lel leN

the proof obligation is SW_Guard(c3",, Args) € Tpre

pre’
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array = mutable type

based on Array

array_rep = record[
low: int, % low bound
size: int, % size
elems: bounded_arraylelem]] % elements

array$fetch = proc (a: array, i: int) returns (e: elem)
y p y

ar: array_rep := down(a)

ind: int := 1 - ar.low

if ind < 0 cor ind > ar.size then signal bounds end
return(ar.elems[ind])

special when low(a”) < i A i < high(a™

ar: array_rep := down(a)
ind: int := 1 - ar.low
return(ar.elems[ind])

special when low(a’) < i

ar: array_rep := down(a)

ind: int := 1 - ar.low

if ind > ar.size then signal bounds end
return(ar.elems[ind])

special when i < high(a®)

ar: array_rep := down(a)

ind: int := 1 - ar.low

if ind < 0 then signal bounds end
return(ar.elems[ind])

Figure 5.7: SPIs in array$fetch, Version 2
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5.3.1 Example: Calling table$store

The flow graph for the code in Fig. 5.3 is:

| s

[v;] := tabl e$l ookup(t, k)

l sl nissing‘ s2
[v] := val ue$create()
Y s3

tabl e$store(t, k, v)

54

To call the SPT of store in Fig. 5.5, the proof obligation is:

—defined(o5" (05™ (7)), 05™ (k) € T3

By simple analysis, this goal follows from the exception guard of lookup,
which asserts:

—defined(og" (o™ (t))), o™ (k') € Ty

The analysis requires using the modifies assertions of lookup and
value$create and the extension proof rule from p. 38.

5.4 Propagating Proof Obligations

One problem with SPIs is that the immediate caller of a procedure with
SPIs may not contain enough contextual information to discharge the guard
condition of an SPI. In these situations, the compiler must propagate the
guard condition to the caller’s caller.

Fig. 5.8, which contains part of an implementation of a data type for
directed graphs, illustrates the problem. The LSL trait for graphs appears
in Fig. 5.9. In the implementation, graphs are represented as tables, whose
interface appeared in Fig. 5.1, with the types key and value renamed to node
and node_set. The table representing a graph maps each node to a node_set
containing the node’s successors.
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node = immutable type

node_set = immutable type
based on NodeSet

create = proc () returns (ns: node_set)
requires --
modifies --
ensures ns’ = {} A New(ns)

graph = mutable type
based on Graph

rep = table % with key = node, value = node_set
insert_node = proc (g: rep, n: node)
requires --
modifies g
ensures g’ = add_node(delete_edges(g”, n), n)
WARRLREL L Code WRLRAKLALK
succs: node_set := node_set$create()

table$store(g, n, succs)
end insert_node

Figure 5.8: Part of a Graph Data Type

In Fig. 5.8, insert_node calls the procedure table$store (see Fig. 5.5),
but there is not enough contextual information to prove the guard of
table$store’s SPI, i.e., to prove —defined(g, n). Nevertheless, the
guard is satisfied when insert node is called from a context where —(n
€ g.nodes). Fig. 5.10 contains such an example: at the call site
insert_node(g2, n), the condition —(n € g2.nodes) holds because the
interface of graph$nodes ensures that it yields no duplicate nodes (interface
not shown).
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Graph: trait
includes Set(Node, NodeSet), Set(Edge, EdgeSet)
Graph tuple of nodes: NodeSet, edges: EdgeSet
Edge tuple of source: Node, dest: Node
introduces
add_node: Graph, Node — Graph
add_edge: Graph, Node, Node — Graph
delete_edges: Graph, Node — Graph
remove_edges: EdgeSet, Node — EdgeSet
reverse: Graph — Graph

asserts
Y g: Graph, n,nl1,n2: Node, es: EdgeSet
add_node(g, n) == [insert(n, g.nodes), g.edges];

add_edge(g, nl, n2) ==

[g.nodes, insert([nl, n2], g.edges)];
delete_edges(g, n) ==

[g.nodes, remove_edges(g.edges, n)l;
remove_edges({}, n) == {};
remove_edges (insert([nl, n2], es), n) ==

if n = nl1 then remove_edges(es, n)

else insert([nl, n2], remove_edges(es, n));

reverse(g) .nodes = g.nodes;
[n1, n2] € reverse(g).edges == [n2, nl] € g.edges;
implies
converts add_node, add_edge, delete_edges, remove_edges,
reverse

Figure 5.9: Graph Trait

One would like to allow the optimization, but the question is how. A
possibility would be to write an SPI for insert node, but this has two
problems. First, the implementor of insert node is a client of table$store,
so he is not supposed to rely on the existence of an SPI in table$store.
Second, Speckle doesn’t provide a way for him to call the SPI directly, even
if he wanted to.

Instead, the compiler should create the SPI for insert node, because the
compiler does have access to the SPI of table$store. The problem is that
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reverse_graph = proc (gl: graph) returns (g2: graph)
requires --
modifies --
ensures g2’ = reverse(gl”) A New(g2)

g2: graph := graph$create()
for n: node in graph$nodes(gl) do
graph$insert_node(g2, n)
end
for n: node in graph$nodes(gl) do
for succ: node in graph$successors(gl, n) do
graph$insert_edge(g2, succ, n)
end
end
end reverse_graph

Figure 5.10: Procedure reverse_graph

the compiler must be able to translate the guard condition —~defined(g,
n) at the call site of table$store to the guard —=(n € g.nodes) at the
entry point of insert node. Part of the problem is easy to solve: given
the specification of node_set$create, it is straightforward to propagate
—defined(g, n) backwards to the entry point of insert node. The difficult
part is to translate this guard, which is in terms of tables, into the desired
guard, which is in terms of graphs.

My solution is to have implementors of data types write stylized
abstraction functions. Because the guards of SPIs will generally be expressed
using observer functions, the definition of the abstraction function should
translate observers of representation values into observers of abstract values.

Fig. 5.11 contains a trait defining the abstraction function for the
graph example. It defines defined and image, which are observers
of tables, in terms of __.nodes and __.edges, which are observers of
graphs. For the example, only the first equation is needed to translate
the condition —~defined(g, n) to =(n € AF(g) .nodes). To simplify this
to =(n € g.nodes), the compiler must use some mechanism to recognize
that AF(g), where g is a table, is equal to g, the graph in insert_node’s
interface.
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GraphAbsFunc: trait
includes Graph, Table
introduces
AF: Table — Graph
asserts
¥V t: Table, n,n1,n2: Node
defined(t, n) == n € AF(t).nodes;
n2 € image(t, nil) == [n1, n2] € AF(t).edges;

Figure 5.11: Abstraction Function for Graph

5.5 Related Work

5.5.1 Transformation Rules

Speckle is not the first language that allows users to define optimizations.
In [25], Hisgen presents an unimplemented design of a strategy based on
transformation rules rather than specifications. The source language is a
derivative of ADA.

To define an optimization, an implementor describes transformations to
be performed by the compiler. For example, the implementor of table
might provide a transformation rule to replace two calls to lookup, each
with the same arguments, by a single call; this rule is analogous to common
subexpression elimination for calls to lookup.

Transformations may have preconditions expressed using applications
of side-effect free functions, which play a role analogous to that of LSL
functions. Thus, the transformation language is sufficiently powerful to
express any optimization defined by an SPI. In fact, the transformation
language is more expressive than Speckle. For example, one can write a rule
to replace the pattern

83 := concat(sl, s2)
print(s3)

print(s1)
print(s2)
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One problem of the transformation rule strategy is that it lacks
modularity. To apply a transformation rule, the compiler must reorder the
program so as to match the pattern of the rule. For the pattern above,
the compiler may have to commute a call to print with other calls so that
the calls to concat and print are consecutive. Likewise, the compiler must
make common subexpressions consecutive before it can eliminate one of
them.

The problem is that to commute one procedure call with another,
the compiler must in general rely on “commutative” transformation rules
supplied by the user. To maximize the compiler’s ability to perform
transformations, the user must consider all pairs of procedures. In contrast,
Speckle uses modifies clauses—one per procedure—to determine whether
a procedure call interferes with an optimization.

5.5.2 Eliminating Runtime Checks

A common use of SPIs is to eliminate runtime checks. Many have focussed
on eliminating such checks for operations that are primitive to the source
language, e.g., array bounds checking, nil checks in pointer dereferences,
overflow, assignments from supertypes to subtypes, etc. SPIs are more
general because they can be used to eliminate runtime checks that are not
primitive to the source language.

In [47], Sites describes a technique for proving that programs written in
a language like Algol 60 terminate without runtime errors. This requires
proving properties suflicient to eliminate runtime checks in array references,
numeric operations, assignments from supertypes to subtypes, etc. The
language does not have pointers, so the problem of aliasing is simpler than
in Speckle. Sites simulates his technique manually on several examples.

In [18], German develops a tool for verifying the absence of runtime
errors, such as arithmetic overflow and invalid array indices. Users write
formal specifications for procedures (entry and exit assertions) and decorate
their code with sufficiently strong assertions so that the verifier can discharge
all of the assertions plus the absence of runtime errors. German’s work
focuses on defining Pascal formally and expressing assertions sufficient to
preclude a runtime error. He does not describe the strategies used to
discharge assertions. (My strategy is presented in Chapter 6.)

In [41], McHugh examines all of the static checks of Gypsy, a derivative
of Pascal. Gypsy is a programming environment for verified software, so
programs typically contain entry, exit, and other assertions. McHugh’s
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compiler generated optimization conjectures that, when discharged by the
UT Interactive Prover [6], resulted in the elimination of code supporting
exceptions—i.e., a broad category of runtime checks. McHugh does not
describe strategies used to prove the conjectures.

In [20], Gupta reduces the overhead of array bounds checks by
eliminating redundant checks that occur in code fragments such as
“ali] := alil+1” and by moving checks out of loops. The strategy used
relies on the programming language semantics of arrays and does not extend
to user-defined types.

Currently, Greg Nelson and David Detlefs are studying array bounds
checking, nil checks, and other runtime checks in Modula-3 [44].

5.6 Summary

SPIs are a form of user-defined optimization that allow one procedure
interface to have multiple implementations. Rather than compromising
generality for efliciency, a programmer can use an SPI to have the compiler
substitute a specialized implementation for the general one in calling
contexts where the specialized implementation suffices.
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Chapter 6

Prototype Speckle Compiler

There are two important issues to consider when designing a compiler that
uses specifications. The first is how to translate specifications written in
a declarative style into a logical system with an operational semantics.
This translation must be done carefully so that the logical system can
automatically discharge the proof obligations of many optimizations that
are safe. The second issue is that of compiler performance. Most of the
optimizations attempted by a compiler are unsafe, e.g., most procedure calls
cannot be replaced by an assignment. Therefore, the compiler cannot afford
to spend much time trying to prove any one conjecture.

To explore these issues and to test the ideas of the previous chapters,
I constructed a prototype Speckle compiler, PSC. The inference engine of
PSC is a stripped-down, automated version of the interactive theorem-
prover LP (version 2.2a) [16, 22]. LP is particularly well-suited for Speckle
because it was designed to work with LSL and because it fails quickly when
trying to prove a difficult conjecture rather than attempting expensive proof
strategies. This is important because most conjectures PSC tries to prove
are false.

In this chapter, I describe PSC, what it does, and how it works. In
particular, I focus on how the formalization of Speckle programs is adapted
to exploit LP’s capabilities and on how LP’s capabilities are extended to
enhance reasoning about conditionals and loops.

6.1 What PSC Does

PSC implements most of the optimizations described in chapters 4 and 5.
However, instead of generating code, PSC outputs a list of successful and
unsuccessful attempts at performing optimizations. PSC does not attempt
to propagate the guards of SPIs up the call graph and does not attempt to
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hoist expressions unless they are loop constants.

Before running PSC, the user must convert the LSL specifications used
by a program into an LP logical system. This process could (and should)
be entirely mechanized. Currently, the user must run the LSL Checker
to translate LSL into LP’s syntax. Then, the user must run LP to
convert automatically the declarative specifications into a logical system
with operational semantics.

Once the logical system is created from the LSL specifications, the user
runs PSC, which outputs a list of attempted optimizations and indicates
which succeeded and which failed. PSC takes the following actions:

1. Reads the logical system derived from LSL specifications.

2. Adds axioms for location sorts and LocSets as specified in data type
interfaces, and translates procedure and iterator interface specifica-
tions into predicates on program states. (See Chapter 2.)

3. Translates the program (a procedure body) into a flow graph.

4. Uses the proof rules from Chapter 3 to generate a logical system for
each edge in the graph.

5. Uses the logical systems to try to discharge the proof obligations for
performing optimizations given in chapters 4 and 5.

The second and third steps are straightforward, so I will not discuss them
further. The fourth step—constructing a logical system for each edge—is
an expensive one. However, these logical systems are constructed once per
compilation and then used to try to discharge the proof obligations for each
attempted optimization.

The remainder of this chapter begins with a description of LP, its
logical systems, and its facilities for constructing logical systems from LSL
specifications. Next, I describe how PSC constructs logical systems for each
edge using LP. Then, I describe the strategy for performing automated
proof by cases and induction in PSC. The strategy is a simple one that
does not attempt to synthesize loop invariants. Finally, 1 explain how the
proof strategy and the logical systems are used to detect optimizations.

6.2 LP Logical Systems

LP (version 2.2a) is an interactive theorem-prover for a fragment of
multisorted, first-order, predicate logic. Like LSL, LP does not allow
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quantifiers in terms. Instead, all variables are assumed to be universally
quantified.!

In general, LP’s logical systems contain five types of axioms: rewrite
rules, operator theories, deduction rules, induction rules, and equations.
However, PSC uses only the three types of axioms that are used automati-
cally: rewrite rules, operator theories, and deduction rules. Equations and
induction rules are not used because they require interaction from the user.

6.2.1 Rewrite Rules

Rewrite rules implement a proof method based on normalization. The basic
idea is to rewrite semantically equal terms to syntactically equal normal
forms and to rewrite conjectures to true.

A rewrite rule LHS — RHS consists of a pattern LHS and a replacement
RHS. A rule can be used to reduce a term T to a simpler term by matching
LHS to a subterm of T, applying the resulting substitution to RHS, and
replacing the matched subterm. A term is irreducible by a rewrite rule if
none of its subterms match the rule’s pattern. The verbs “simplify” and
“rewrite” are synonyms for “reduce.”

A set of rewrite rules can be combined to form a rewriting system. A term
is reducible by a rewriting system if it is reducible by any of the system’s
rules. A normal form of a term is computed by repeatedly reducing a term
until it is irreducible. A term may have more than one normal form. A
rewriting system is terminating if no term is forever reducible by the system.

LP also supports conditional rewrite rules. A conditional rule is a rewrite
rule prefixed by a guard that must be satisfied before the basic rule can be
used to reduce a term. As before, the first step in reducing a term T by
G: LHS — RHS is to obtain a substitution ¢ by matching LHS to T'. The
guard must then be discharged by reducing o(G) to true. Only then can
the original term be reduced.

6.2.2 Operator Theories

Operator theories enhance term rewriting by generalizing matching [54].
Each function symbol has an operator theory. The three operator
theories handled by LP are: empty, commutative, and associative-
commutative.

! These restrictions on the use of quantifiers will be removed in the next release of LP.
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A function’s operator theory determines how LP performs matching.
By default, a function £ has the empty theory, so, for example, £(a,b)
does not match f(b,a). However, if £ is commutative, f(a,b) does
match £(b,a). Furthermore, if £ is associative-commutative, £(a,f(b,c))
matches £ (£(a,b),c)), etc.

6.2.3 Deduction Rules

A deduction rule has the form
when [Vxy,..., 2, <hypotheses>] yield <conclusions>

where <hypotheses> and <conclusions> are sequences of equations. Logi-
cally, a deduction rule is equivalent to an implication of the form

([Va1, ..., 2, <hypotheses>]) = (<conclusions>)

Because LP’s terms cannot have nested quantifiers, deduction rules cannot
be expressed as implications unless n is 0, i.e., the hypotheses can are
expressed without nested quantifiers.

Operationally, a deduction rule adds the assertion o(<conclusions>)
when there is a substitution ¢ that matches o(<hypotheses>) to axioms
in the logical system.

Because PSC is an unusual user of LP, PSC can discard all of the
deduction rules once the logical systems have been constructed, i.e., before
using the logical systems to prove optimization obligations. PSC can discard
the deduction rules because they are used only when facts are added to a
logical system, and PSC, unlike typical LP users, discards a conjecture once
it has been proved rather than adding the conjecture as an axiom.

6.2.4 Generating Logical Systems from LSL

LSL specifications can be translated into LP logical systems mechanically.
The LSL checker translates LSL syntax into LP commands, from which
LP constructs a logical system. The primary concern for PSC is whether
the logical system can automatically discharge conjectures that arise during
optimization. A logical system discharges a conjecture if the rewrite rules
normalize the conjecture to true.

One potential problem is that most LSL axioms are equations, which
PSC does not use. LP converts sets of equations into terminating sets
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of rewrite rules whenever possible. Occasionally, LP cannot convert an
equation because the resulting rewriting system would not be terminating.
PSC ignores such equations. In my experience, all equations were converted
to rewrite rules.

A more serious problem is that process of translating LSL specifications
is unable to generate some deduction rules that are needed for optimization.
Currently, LSL’s partitioned by clauses are the only axioms that are
converted into deduction rules. However, there are many deduction rules
that cannot be expressed with partitioned by.

One way around the problem is to extend LSL with a syntax for deduction
rules. This is the approach I use in PSC. The disadvantage of this approach
is that the specifier is forced to consider the operational semantics of
specifications that are supposed to be declarative. A better solution would
be to make LP infer the deduction rules from declarative specifications.
Unfortunately, such a solution is not currently available.?

Example: Table Trait

Fig. 6.1 is a trait for tables. When this trait is translated by the LSL Checker
and the output is given to LP, the result is the logical system in Fig. 6.2. LP
converts the partitioned by clause into a deduction rule and converts all
equations to rewrite rules. (The third assertion in the trait is a shorthand for
the equation —~defined(empty, k) == true.) The generated by assertion
is ignored.

6.3 Constructing Logical Systems for a Program

PSC uses the formalization of programs described in chapters 2 and 3 to
model programs. Recall that a program consists of a single procedure body,
which calls other procedures that are optimized separately. The program is
translated into a flow graph, and each edge has a theory that describes the
program state at the edge.

For each edge e, PSC constructs a logical system, R, to approximate
the theory T.. The purpose of R, is to discharge proof obligations of the
form F € T, by seeing if R, normalizes F' to true.

Re may fail to reduce some formulas in 7 to true, so the compiler may
miss some optimizations. However, the compiler does not perform unsound

2Future versions of the LSL checker and LP are expected to alleviate this problem.
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Table: trait

introduces
empty: — Table
bind: Table, Key, Value — Table
image: Table, Key — Value
defined: Table, Key — Bool
asserts

Table partitioned by image, defined
Table generated by empty, bind
Y k,k1,k2: Key, v: Value, t: Table
image(bind(t, k1, v), k2) ==
if k1 = k2 then v else image(t, k2);
—defined(empty, k);
defined(bind(t, k1, v), k2) == k1 = k2 V defined(t, k2);

Figure 6.1: Table Trait

when [V k,k1: Key image(tl, k) == image(t2, k),
defined(tl, k1) == defined(t2, ki1)]
yield t1 == t2

Y k,k1,k2: Key, v: Value, t: Table
image(bind(t, k1, v), k2) —
if k1 = k2 then v else image(t, k2);
defined(empty, k) — false;
defined(bind(t, k1, v), k2) — k1 = k2 V defined(t, k2);

Figure 6.2: Logical System Generated for Table Trait

optimizations, i.e., R, is constructed using the proof rules from Chapter 3
so that it normalizes only formulas in 7. to true.

This section begins with a description of the term proof strategy used in
PSC. Next, I revise the model of the program store slightly to make proofs
involving modifies clauses succeed more often. Subsequently, I explain how
PSC creates the logical system for each edge. Finally, I present a few minor
implementation issues
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6.3.1 Proof Strategy

Typically, the proof obligations for various optimizations are terms that
contain program state symbols. Since the proof method is rewriting terms
to normal forms, it is useful to have a strategy for normalizing program state
symbols.

PSC constructs logical systems to support the proof strategy of rewriting
terms “towards the entering edge.” This strategy is to rewrite a term, ¢, that
contains the program state symbol of an internal graph edge, e, to either:

1. a term that contains program state symbols of only edges that
dominate e, or

2. a term that doesn’t contain any program state symbols.

(This case can be viewed as a special case of (1).)

LP uses a simplification ordering to choose whether to convert an
equation a = b into a — b or b — a [17]. To encourage LP to rewrite
terms towards the entering edge, PSC imposes the dominates partial order
onto LP’s simplification ordering. If e; dominates e;, PSC makes the term
o1 simpler than o in the simplification ordering. The effect is that when
an ensures clause of the form x’ = £(x”) is instantiated and converted
into a rewrite rule, the rule is usually ordered as x> — £(x”) rather than
f(x") — x°.

Likewise, the modifies clause must be converted into a rule that
simplifies terms towards the entering edge. In Chapter 2, the semantics
of OnlyModifies(pre, post, S) was defined as

V l: Loc € domain(oyiy) [ ¢S = o () =03 (]) ]

pre post pre

where S is the set of modified locations. Recall that [ € domain(oy) is to

distinguish locations that were allocated by a procedure call from locations
that existed before the call.
One possibility is to order the definition of OnlyModifies into a
conditional rewrite rule
(l e domain(af)}g) ANLES) : Uf)torst(l) — 03}2(1)
Unfortunately, using this rules leads to two problems. One is that even
for the common case S = {} (i.e., modifies --), the guard is non-trivial

to discharge automatically. Discharging [ € domain(o}),) involves many
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facts, such as New assertions from specifications, axioms about reachability,
and program state invariants about the absence of dangling references.
The second problem is that later, when partial specifications are allowed,
the New assertions are likely to be omitted. Therefore, 1 use a slightly
different formalization of the program state that simplifies the guard of the
conditional rewrite rule.

6.3.2 An Alternate Model for the Program Store

Recal that in Chapter 2, the store is defined as a finite mapping Loc —
LSLValue, and the semantics of allocation is to bind an undefined location [
to some value, v. In PSC, the store is defined as an infinite mapping where
each possible LSLValue is the image of an unbounded number of locations.
The semantics of allocating a location to have initial value v is to select
a previously unreachable (i.e., inaccessible) location [ that is bound to v
and make [ reachable to the caller. Because the store is infinite whereas a
program can allocate only a finite number of locations, there is always an
unreachable location [ for every possible initial value v.

When the store is modeled as an infinite mapping, the definition of
OnlyModifies(pre, post, S) simplifies to

VIi:lgsS = ol () =0 (])

post pre

which can be ordered into the conditional rewrite rule®

l¢gS o () — on(l)

post pre

The meaning of New(x) must also be revised for infinite program stores.
In Chapter 2, the meaning of New(x) was defined as

x ¢ domain(o3th) A x € domain(oi)

pre post
With infinite stores, the meaning of New(lsy,lsy,...,ls,) is that each [s;
contains only previously unreachable locations:
A Is; N reach”™(var) = {}

Env

i:l...n,varEO'pre

and, just as before, that each pair of distinct LocSets in the assertion is
disjoint. Recall that reach” (x) is the set of locations reachable from x in
the pre-state (see p. 30).

#For minor reasons discussed later, PSC axiomatizes the modifies clause in a slightly
different form.
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6.3.3 The Entering Edge

Recall from Chapter 3 that the theory of the entering edge, Tenter, is an
extension of the theories of LSL specifications used by the program. These
specifications are converted into a logical system, which PSC uses as a
starting point for Renter-

Given this logical system as a starting point, PSC constructs Renter by
declaring and axiomatizing functions to look up the value of an identifier in
the environment, to look up the value of a location in the store, to construct
and examine LocSets, etc. The precise axiomatization is determined by the
interface specifications of data types (see Chapter 2).

6.3.4 Edges Exiting Assignment, Branch, Procedure Call, and
Iterator Call Nodes

For each assignment, branch, procedure call, and iterator call node in the
graph, PSC constructs a logical system for each of the node’s exiting edges
by copying the logical system of the node’s entering edge and asserting the
conclusions of the proof rules in Chapter 3. If the conclusion of a proof rule
is F'€ T, PSC adds the equation F == true to R, and then uses LP to
convert the equation into a rewrite rule.

Example

As a simple example, consider the code fragment

table$storel(t, k, vi)
v2 := table$lookup(t, k)

which uses the table data type specified in Fig. 5.1 on p. 70. Fig. 6.3 contains
the flow graph for this code and two tables. The first table lists, for each
edge, the assertions for that edge’s theory. The second table contains the
rewrite rules generated by LP. The tables are condensed—the assertions and
rewrite rules for edge e are not repeated for edges dominated by e, e.g., the
entries for s1 are not repeated for s2.

Note that the logical system for s3 is inconsistent. This means that edge
s3 is unreachable. The call lookup(t,k) will never signal missing because
k is defined in t by the call to storel.
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tabl e$storel(t, k, v1)

s1
[v2] := tabl e$l ookup(t, k) mes1ng
s3
¢ s2
Edge Assertions
s0 See Fig. 6.1
R I A )
st |V () = o () = o3 (1)
O.]i]nv — Ugnv
o5 (v2) = mage(oT (of" (%), 07 (X))
s2 | o3" = oi"
defined(cj" (o™ (t")), o™ (k"))
v # v2 = o™ (v) = o™ (v)
o3 = o
s3 —|def1ned( (o™ (), o™ (k)
o3t = o™
Edge Rewrite Rules
s0 See Fig. 6.2
(G (%) = bind(oy (of™ (%)), b (%), o (w1))
s1 | 1# o™ (t) : ot (1) — o5 (1)
Env RN Ugnv
P (v2) & o (v1T]
s2 | 03" — 0"
(assertlon reduces to an identity)
v £ v2 oy (v) = o™ (v)
btr — O.itr
83 (assertlon reduces to an inconsistency)

Env _>O.Env

Figure 6.3: Flow Graph with Assertions and Rewrite Rules
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6.3.5 Edges Exiting Merge and Loop Nodes

Unlike the proof rules for other nodes, those for for merge and loop nodes
have hypotheses that involve theories of edges in the program. Thus, merge
and loop nodes must be handled differently.

Initially, PSC approximates the logical system of an edge e that exits
a merge or loop node by copying the logical system of the edge, d, that
immediately dominates e.*
by the extension proof rule, T4 C T.. Actually, Rq is a weak initial
approximation for 7. because R4 contains no information about o.. PSC
then extends R by adding an axiom o™ (id) — o™ (id) for each identifier
td that is not assigned between d and e.

Despite the added axioms, R, contains very little information o, so R,

R4 is a sound approximation for 7. because,

is too weak to prove many facts about o.. Instead, proofs involving o, are
done by combining term rewriting with automated proof-by-cases and proof-
by-induction. This is explained in Section 6.4, but first I wish to point out
two minor ways in which the implementation of PSC, for historical reasons,
differs from what I have described.

6.3.6 Minor Implementation Issues

I began implementing PSC before LP had conditional rewrite rules. To
this day, PSC axiomatizes modifies clauses without conditional rules. To
simulate the conditional rule

l¢gS : o () — olu(l)

post pre

I use the rule

unreduced(post) [1] — if 1 € S then post[1]
else unreduced(pre) [1]

where sig[l] is the translation of of3(l) into LP syntax, and where
unreduced is the identity function for program stores. Without unreduced,
the rule above could not be ordered from left to right. Note that the axiom
unreduced(s) = s must not be used; otherwise, LP would normalize away
all occurrences of unreduced and order the rewrite rule in the opposite

direction.

* As defined in [2], d immediately dominates e if d # e and d dominates e and no other
dominator of e is dominated by d. Intuitively, d is the nearest branch point that can cause
control to bypass e.
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In Chapter 2, 1 defined the environment as a mapping from identifiers
to values. In PSC, the environment is axiomatized as a collection of
functions, each of which maps a program state to the value of an identifier.

OnlyAssigns(opr, Opasy, ‘X') is axiomatized as

/\ v(post) = v(pre)

vEx!
6.4 Automating Proof-by-Cases and Proof-by-Induction

Using the logical systems constructed in Section 6.3, the strategy of rewriting
terms toward the entering edge works well for programs without merge or
loop nodes. However, if the program does contain such nodes, ordinary
rewriting is often insufflicient to simplify a term containing o., where e is
an edge exiting a merge or loop node, to a term that doesn’t contain .
Therefore, I combine term rewriting with a strategy that automates the
proof-by-cases rule for merge nodes and the proof-by-induction rule for loop
nodes. The key issue here is how to restrict the number of proof attempts
to reduce compile time while still allowing the proof attempts needed for
effective optimization.

6.4.1 Strategy

The automated proof strategy is a simple one. First, PSC uses term rewriting
to reduce a proof obligation F € 7. to a normal form, F' | R.. Let F be the
set of edges whose program state symbols appear in F' | R. If F/ is empty,
proof-by-cases and proof-by-induction are unnecessary.

Otherwise, the strategy is to select maz, the edge dominated by all edges
in F. Intuitively, max is the edge furthest from the entry edge. max is well-
defined only when FE is totally ordered by the dominates relation. This
definition suffices because, in my formalization, a proof obligation F € 7,
may contain program state symbols of only edges that dominate e (and thus
are totally ordered). Likewise, the edges of program state symbols in I | R,
all dominate e.

If maz exits a merge node, PSC tries proof-by-cases on the merge node
to simplify F' | R, to a term that does not contain oy,y. If maa exits a loop
node, PSC tries proof-by-induction on the loop node to simplify F' | R, to
a term that does not contain op,,¢. Otherwise, the strategy fails.

To better support the goal of simplifying terms towards the entering
edge, the strategy is designed to simplify both Boolean and non-Boolean
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Figure 6.4: A Flow Graph with a Merge Node

terms. For any term ¢, a “proof-by-cases” is to show that the theory of each
edge entering the merge node can be used to reduce ¢ to the same identical
term, which is the simplified form of ¢. Similarly, to simplify a term by
induction, one must prove that it is loop-constant, i.e., that it is equal to a
term that does not contain the program state symbols of edges in the loop.

6.4.2 Example: Case Proof

Fig. 6.4 contains the flow graph for the code

if —intset$member(s, e) then intset$insert(s, e) end
X =y
Suppose the goal is to simplify the term oF™(‘e’) € o5 (oF™(‘s”)) using 7.

R~ will normalize this to of™ (‘e’) € o5 (g™ (‘s’)). Since og exits a merge
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Figure 6.5: A Flow Graph with a Loop Node

node, the strategy is to try proof-by-cases:

e The first case is to simplify o5™(‘e’) € 5" (o5 (‘s”)) using 73. Rs
normalizes this term to true.

e The second case is to simplify of™(‘e’) € 0" (o£™ (‘s”)) using T5. Rs

normalizes this term to true.

The case proof succeeds and the original term simplifies to true.

6.4.3 Example: Induction Proof

Fig. 6.5 contains the flow graph for the code
while i < a.high do

ali]l := 0
end
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Suppose the goal is to simplify the term o5™(‘T1’) using T2. Ro will
normalize this to high(oi" (o7 (‘@’))). Since o exits a loop node, the
strategy is to try proof-by-induction to show that the term denotes a loop-
constant.

Str

e The base step is to simplify high(o5™ (o5 (‘@’))) using 7o. This term
is irreducible.

e The inductive step is to prove
high(og" (g™ () = high(a7" (07" ("2))

using Tg. Re normalizes this term to true. This relies on the axiom
high(store(a,i,e)) = high(a).

The induction proof succeeds, so o5™ (‘T1’) simplifies to high(og" (5™ (‘@”))).

Note that in this example, the inductive step involves proving an equality.
If the original term were Boolean, the inductive step would be to prove an
implication.

6.4.4 Recursion

Proof-by-cases and proof-by-induction each introduce subgoals. To dis-
charge these subgoals, PSC recursively applies the strategy for combined
term rewriting and automated proof-by-cases and proof-by-induction. A key
issue is how to limit the number of proof attempts both to ensure termination
and to improve compiler performance.

Consider the flow graph in Fig. 6.6. Suppose that term rewriting reduces
a goal to a term containing ogg. Since gg exits a merge node, this triggers a
proof-by-cases on the lower merge node. Next, suppose that R4 normalizes
the subgoal for edge s4 to a term containing o3. In a naive implementation,
this will trigger a recursive proof-by-cases on the upper merge node. Later,
when the subgoal for s4 is discharged, the subgoal for s5 may repeat the
proof-by-cases on the upper merge node!

PSC avoids this problem by restricting the merge and loop nodes that
trigger recursive proof attempts. These nodes, called the active nodes, are
described by a pair of edges, top and bottom. A merge or loop node n is
active if top dominates n and n dominates bottom.

Initially, for a proof obligation F € 7T, top is the entering edge and
bottom is e. There are three kinds of subgoals to consider:
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Figure 6.6: Restricting Proof-by-Cases

1. For a subgoal of a proof-by-cases, top is the immediate dominator of
the merge node, and bhottom is an edge entering the merge node.

This restricts the active nodes to one “arm” of the branching code.

2. For the base case of a proof-by-induction, top is unchanged and bottom
is the edge that immediately dominates the loop node.

This restricts the active nodes to nodes above the loop.

3. For the inductive case of a proof-by-induction, top is the edge exiting
the loop node, and bottom is the back edge.

This restricts the active nodes to nodes in the loop body.

In the worst case, the number of case and inductive proof attempts is
exponential in the nesting of loops. For example, in Fig. 6.7, the base case
for the inner loop can trigger an induction over the outer loop, and the
inductive step for the outer loop can trigger a second induction over the
inner loop. (This process terminates because the second inner induction
cannot trigger a second outer induction.) At worst, there may be 2" proof
attempts for a merge or loop node nested in n outer loops.
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Figure 6.7: Nested Loops

Fortunately, loops are rarely nested deeply (more than three levels) in
a single procedure [30]. However, if flow graphs were created by inlining
procedures, the nesting depth would be greater, so more restrictions on
recursive calls would be necessary.

6.5 Detecting Optimizations

Once the logical systems have been constructed for each edge, they can be
used to detect the optimizations discussed in chapters 4 and 5. To discharge
a proof obligation F € 7., PSC uses term rewriting and automated proof-
by-cases and proof-by-induction to try to simplify F' to true. Only a few
issues remain.
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6.5.1 Common Subexpression Elimination

To eliminate a procedure call, PSC must first find available values to
substitute for the results. Recall from Chapter 4 that a value is available
at edge e if it is bound to an identifier at an edge d that dominates e.
To eliminate a call at edge, PSC tries to discharge the proof obligations
using each the available values of the proper type, one by one, until either
a substitute is found or all available values have been tried.

There are a few points worth noting. First, the results of every procedure
call are bound to identifiers because either the programmer stores the results
himself or else the compiler introduces temporary identifiers. Thus, the
values available at a call site include any value that was computed at nodes
that dominate the call site. Second, Speckle encourages the use of many
types. Because a substitute value must have the same type as the result,
PSC needs to attempt proofs for only a fraction of the set of available values.
Third, to avoid a combinatorial increase in proof attempts, PSC does not
attempts to eliminate procedure calls that return multiple results

To reduce the compile time spent attempting common subexpression
elimination, I use a simple trick. PSC tries to eliminate only calls to
procedures whose specifications

e assert modifies --
Note that this does not prevent the procedure from performing
invisible side effects.

e do not assert New in the ensures clause

These constraints filter out many procedure calls that could never be safely
eliminated.

6.5.2 Hoisting Expressions Out of Loops

PSC does not implement the full loop optimization described in Chapter 4.
There, I described a strategy that could hoist an expression whose value
might change on each iteration, e.g., a call to a procedure whose specification
is non-deterministic.

PSC can hoist only expressions whose values are constant across all
iterations of a loop. A result of a procedure call is constant across all
iterations of a loop if the result simplifies to a term that either

e does not contain program state symbols, or
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e contains only program state symbols of edges that dominate the loop
node.

This condition is sufficient, but not necessary. Checking the condition is
straightforward—PSC simplifies the result to a normal form, n, and checks
whether n contains program states symbols that dominate the loop. For
soundness, PSC also checks that the call always returns normally by proving
the guard for the normal return.

6.5.3 Dead Code Elimination

Recall that an edge is unreachable if its theory is inconsistent. LP may,
in the course of constructing a logical system, detect that the axioms are
inconsistent. PSC relies on this feature to identify edges with inconsistent
theories. Thus, dead code is detected for “free” in the process of performing
the other optimizations.

6.5.4 Order of Optimizations

In conventional optimizing compilers, the order in which optimizations are
performed can have a significant impact on the quality of code produced. For
example, once dead code is eliminated from a program’s FG, the compiler
may detect more common subexpressions because there is less code between
common expressions. To obtain such synergy, the compiler must reconstruct
the FG and related data structures as optimizations are performed.

Because it is expensive to construct the logical systems for each FG
edge, it is impractical for PSC to update the FG and its logical systems
as optimizations are detected. Instead, PSC uses the same FG and logical
systems to detect all optimizations. Such a strategy relies on the fact that
none of PSC’s optimizations conflict, i.e., performing one optimization never
affects the safety of another optimization.

First, dead code is detected as the logical systems are being constructed.
Next, PSC eliminates procedure calls. If a call can’t be eliminated, PSC tries
to discharge the guards for SPIs, if any. Finally, PSC checks to see if the call
can be hoisted.

6.6 Summary

PSC relies primarily on conditional term rewriting, the code for which was
taken from LP. The basic proof strategy is to simplify terms containing a

101



program state symbol o, either to a term containing oenter, the program
state symbol for the entering edge, or to a term containing no program state
symbols. The proof rules for most kinds of nodes (assignment, branch,
procedure call, and iterator call) are converted into rewrite rules that
perform the simplification, while the proof rules for merge and loop nodes
are implemented by a strategy for performing automated proof-by-cases and
proof-by-induction.

102



Chapter 7

Supporting Partial Specifications

Current practice of software engineering in industry makes little use of formal
specifications because the perceived cost of writing them outweighs their
perceived benefits. Thus far, I have explained how specifications offer a
new benefit—improving performance. In this chapter, I explain how to
obtain this benefit without having to write full formal specifications of every
procedure.

The basic idea is to let users write specifications of procedures incremen-
tally. In the extreme case, a specification can be omitted entirely. In other
cases, part of the specification is written and part of it is omitted. The part
of the specification that is written is called a partial specification.

In this chapter, I describe how to write partial specifications in Speckle
and how such specifications affect optimization. One of the key problems in
supporting partial specifications is estimating the modifies clause when it
is omitted. To this end, I extend data type specifications to make it possible
to estimate which locations are reachable by a procedure when one has only
the types of the formals. Finally, I report on the use of partial specifications
in the case study of AC-Unify.

7.1 Writing Partial Specifications

Speckle allows each clause of a procedure or iterator specification to be
written incrementally. FEach requires, modifies, ensures, when, or
ensuring clause may contain 7, which indicates that the clause has not
been fully written yet.

The symbol ? can appear only at the end of a clause. In a modifies
clause, a comma is used to delimit ? from the comma-separated list of
locations and LocSets. In all other clauses, A is used as the delimiter. Only
one 7 per clause is allowed.
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polymer$get_right = proc (p: polymer) returns (m: monomer)
modifies --
except signals not_linear

sort = proc (a: int_array) % deduces modifies a
requires --
modifies a
ensures ascending_order(a’) A ?
except signals empty when ? ensuring 7

reverse_linked_list = proc (c: cons_cell)
returns (c2: cons_cell)
requires 7
modifies c, 7
ensures c¢’.cdr = nil A ?

Figure 7.1: Examples of Partial Specifications

In a Boolean clause, the meaning of ¢ A 7 is that if the specification
were fully written, the clause would be a condition that implies ). The
meaning of modifies x,? is that a procedure may modify x and possibly
other locations.

As a special case, a clause may be omitted. For the modifies clause, this
is equivalent to a clause with a ?. For a Boolean clause, this is equivalent
to true A 7. If all of the clauses are omitted, the “specification” is nothing
more than the procedure’s header.

Fig. 7.1 contains several examples of partial specifications.  The
specification of get_right states only that the procedure performs no
visible side effects and may signal the exception not_linear. The partial
specification omits the precondition (if any), the postcondition, the guard
for the exception, and the postcondition for the exception.

The specification of sort states that when it returns, a is in ascending
order. However, the intended specification has a stronger postcondition—a’
must be a permutation a”. The missing condition is denoted by A 7 in the
ensures clause. In this example, the specifier wrote when ? ensuring ?
to alert the reader to the missing clauses, which could have been omitted
without changing the meaning of the specification.

The specification of reverse_linked_list also uses 7 to draw attention
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to places where information is missing. Both the requires and modifies
clauses could be omitted without changing the meaning of the specification.

There are two reasons for writing partial specifications in Larch/Speckle.
One is that the specifier, for what ever reason, might not wish to write
the full specification. For example, for the sort specification, the specifier
might be unwilling to write an LSL predicate defining when one array is a
permutation of another.

The other reason is that the interface may use data types that were
supplied by others without the LSL functions needed to express the full
specification. For example, the author of the cons_cell data type may
not have defined an LSL function to denote whether a linked list is acyclic,
i.e., whether nil is eventually reached by following the chain of cdr’s of a
cons_cell. Without a way to express whether a list is acyclic, the specifier
of reverse_linked_list cannot write its precondition.

7.2 Optimizing Programs with Partial Specifications

To optimize programs with partial specifications, I make a minor extension
to the semantics of specifications given in chapters 2 and 3. Recall that the
proof rules refer to the clauses of the specification of a procedure, P, using
the auxiliary predicates P.Pre, P.Post[status], and P.Guard[status], where
status is either norm or an exception name. For example,

P.Post[norm] = “ensures clause” A “modifies clause”

To support partial specifications, these definitions are weakened by
replacing “=" with “=” when an auxiliary predicate refers to a clause that
is either omitted or uses 7. For example, if P’s modifies clause is omitted,
the definition above is replaced by the weaker assertion:

P.Postlnorm| = “ensures clause”

The translation of a Boolean clause ¢ A 7 is (). The translation of an
omitted clause is true. The translation of a modifies clause that uses 7 is
true.

Fig. 7.2 contains a partial specification of the procedure get_left from
the polymer data type, and Fig. 7.3 contains the assertions that constrain
the auxiliary predicates for get_left. Guard[norm] is not defined because
it depends on the exception guard Guard[not_linear], which is undefined.
Post[not_linear] is partially defined, and Post[norm] is fully defined.

105



polymer = mutable type
based on Polymer

get_left = proc (p: polymer) returns (m: monomer)
modifies --
ensures m = p”.left
except signals not_linear when 7

Figure 7.2: A Partial Specification of polymer$get_left

Y pre, post : Store, p : Polymer, m : Monomer

Pre(pre,p) = true
OnlyModifies (pre, post,{})
Post[norm](pre,post,p,m) = A
m = pre(p).left
Guard[norm](pre,p) = true

Post[not_linear]|(pre,post,p) = OnlyModifies(pre, post, {})
Guard[not_linear]|(pre,p) = true

Figure 7.3: Auxiliary Predicates for polymer$get left

7.2.1 Using Partial Specifications to Justify Optimizations

Using partial specifications is no different from using ordinary specifications
to prove that an optimization is sound. The only difference is that a partial
specification provides less information than might otherwise be available.

Fig. 7.4 contains revised specifications for the intset least and choose
procedures from Chapter 4. The specification of choose is unchanged. The
specification of least is partial because it does not specify that the return
value must be the smallest member of the set.

These specifications are still sufficient to replace the call to choose by
il in the example

i1l := intset$least(s)
i2 := intset$choose(s)

There are two proof obligations. The first is to prove that choose will
return normally; this proof is trivial because choose and least have the
same exception guard. The second is to prove that i1 satisfies the normal
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intset = mutable type

based on IntSet

least = proc (s: intset) returns (i: int)
requires --
modifies --
ensures i € s A 7
except signals empty when s" = {}
choose = proc (s: intset) returns (i: int)
requires --
modifies --
ensures i € s’
except signals empty when s’ = {}
max = proc (s: intset) returns (i: int)
requires --
modifies --

ensures i € s A 7
except signals empty when s" = {}

Figure 7.4: Partial Specifications of intset Procedures

postcondition of choose. This is also trivial because the postcondition of
least implies the normal postcondition of choose.
If the order of the statements is reversed to form the code

i1 := intset$choose(s)
i2 := intset$least(s)

it is not possible to replace least by i1 because the normal postcondition
of choose does not imply the normal postcondition of least.

The proof rules are also sufficient to eliminate or hoist calls to procedures
that have partial specifications. For example, the specification of get_left
in Fig. 7.2 suffices to eliminate the second call in the example

ml := p.left
m2 := p.left

The flow graph for this code is
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| s

not_I i near
[ml] := get_left(p)
s2
sl
not_I i near
[nR2]:= get_left(p)
s4

§ s

One proof obligation is to show that the value of m1 at edge 1 satisfies
the postcondition of the call:

get_left.Post[norm]|(o{*, o, o™ (p), o™ (m1’)) € T
With the assertions in Fig. 7.3, this is equivalent to
OnlyModifies(oi", o, {}) A\ oi™(m1’) = oi" (o™ (p)).1left € Tq

The first conjunct is trivially true, and the second follows from the condition
asserted by the proof rule for the first call to get_left.
The other obligation is to prove that the call will return normally:

get_left.Guard[norm](oj", o™ (p)) € Ty

which is precisely the condition asserted by the proof rule for the first call
to get_left.

Because the guard condition is not fully defined, the second proof would
fail if any location is modified or allocated between the two calls to get left.
This is not a problem—if a user wants to facilitate the compiler’s ability to
eliminate or hoist calls to a procedure, he should give a full specification of
that procedure.

7.2.2 Soundness of Proof Obligations

The proof obligations for performing the optimizations described in chap-
ters 4 and 5 are sound even with the extensions for partial specifications.
The reasons are that

1. Partial specifications only weaken the theory of an edge because they
are translated into auxiliary predicates whose axiomatization is weaker
than the axiomatization for the full specification. This means that
partial specifications lead to theories containing fewer formulas.
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2. The proof obligations have not been weakened.

The second point is obvious for eliminating dead code and for using SPIs
because the proof obligations for these optimizations do not depend upon
the auxiliary specifications.

The proof obligations for common subexpression elimination or for
hoisting expressions out of loops, on the other hand, do depend on the
auxiliary predicates. However, this is not a problem. The meaning of the
auxiliary predicates has not changed: their axiomatization is consistent with
that for fully specified procedures. Only the axiomatization of the auxiliary
predicates is weaker.

For example, consider the code

i1l := max(s)
i2 := least(s)

The partial specifications of least and max in Fig. 7.4 do not allow the
compiler to replace the call to least by the result of max, even though the
specifications are identical. The reason is that there is no way to discharge
least.Post[norm] because it is not fully defined.

7.3 Bounding Reachability

The biggest problem of supporting partial specifications is what to do when
a modifies clause is omitted. Frequently, the safety of an optimization
depends upon the modifies clause of a procedure call be between two
relevant sections of code. Without the modifies clause to bound side effects,
the optimization cannot be proved to be safe.

The compiler must have a way to deduce a conservative estimate for the
modifies clause when it is omitted. Otherwise, partial specifications will
provide little benefit: a user who invests the time to specify the procedures
in one module will find that most of the optimizations that should work
don’t—because the compiler lacks the modifies clause of a procedure from
another module. For example, some modules might have no specifications
for any of their procedures.

In Speckle, the strategy I use is to bound the modifies clause of a
procedure from its arguments. The strategy is based on two observations:

1. A procedure can modify only locations that are reachable from its
arguments. (Recall that Speckle has no global variable names.)
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Mut abl e Types | mut abl e Types

node -= node_seq
edge_info
term
edge_set — edge
l vari abl e
| p_system oper at or

Figure 7.5: Reachability Graph

2. A data type can specify which locations are reachable from one of its
values.

In Chapter 2, reach” and reach’ were introduced to specify reachability.
A problem with these functions is that they are not fully defined unless the
value sort of every data type has a function contents that maps a value to
the set of locations contained by the value.

To better support partial specifications, Speckle provides a mechanism
for bounding reachability without having to define the contents functions.
The mechanism is coarse-grained—it does not distinguish locations of the
same type—but effective. FEach data type must list the mutable types
whose locations may be directly contained by instances of the type. These
lists are specified in a contains clause for each data type. The modifies
clauses deduced using contains clauses are often sufficient to prove that an
optimization is safe, so users can avoid defining contents functions.

Because contains clauses are mandatory, each data type most provide at
least a small specification. These specifications can then be used to deduce
modifies clauses for every procedure.

Fig. 7.5 is a picture of reachability constraints for a set of types like
those used to implement PSC. The meaning of an arrow from 77 to T5 is
that instances of 77 may contain locations of mutable type T5. Only a
mutable type can be the target of an arrow. Fig. 7.6 shows how the graph
in Fig. 7.5 is specified in Speckle.

In the picture, the useful information is the arrows that are absent. For
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node = mutable type
contains edge

edge = mutable type
contains node, lp_system

edge_set = mutable type
contains edge

lp_system = mutable type
contains --

node_seq = immutable type
contains node

edge_info = immutable type
contains lp_system

term = immutable type
contains --

variable = immutable type
contains --

operator = immutable type
contains --

Figure 7.6: Specifications of Reachability

example, the graph in Fig. 7.5 can be used to deduce that a procedure with
only arguments of types edge_info and term can modify only locations of
type lp_system. The justification is that only 1p_system is reachable from
edge_info or term.

The information in contains clauses cannot always be deduced from
code. Suppose, for example, that the implementation of node uses edge_set
to represent the set of edges that enter a merge node. Because the
representation of a node is concealed within the implementation of node,
the values of type node never contain locations of type edge_set. Thus,
there is no arrow from node to edge_set in Fig. 7.5-—even though edge_set
is reachable from the representation of node. It is sound to omit the arrow
from node to edge_set because the implementation of node encapsulates any
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edge_sets in the representation, i.e., clients can never access the edge_sets
directly.

7.3.1 Approximating Omitted modifies Clauses

To approximate omitted modifies clauses, I extend the formalization of
Larch/Speckle.  For each location sort TLoc, | introduce AllLocs[T], a
constant of sort LocSet that is axiomatized to denote the set of all locations
of type T.

To approximate the modifies clause of a procedure whose signature is

P = proc (al: T1, a2: T2, ... an: Tn) ...

I construct a LocSet L that is a superset of the locations that P may modify.
The deduced modifies clause is OnlyModifies(pre, post, L), where L is

L= U Reachl(T;) U

i=1...n

{a;} if T; is mutable
{}  if T; is immutable

The definition of Reachl is

Reach1(T)= | ] AllLocs[T"]
T+T

T —t T’ means T’ is reachable from 7 in one or more steps in the
reachability graph.
For example, the deduced modifies clause for

assert = proc (1: lp_system, t: term) ...

would be OnlyModifies(pre, post, {l}), which is equivalent to modifies 1.
Note that the modifies clause does not include AllLocs[lp_system|.

The deduced modifies clause for
foo = proc (e: edge) ...

would be OnlyModifies(pre, post, {e} U AllLocs[node] U AllLocs[edge] U
AllLocs[1lp_system]).
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7.4 Related Work

The idea of writing formally only part of a procedure’s specification is
hardly new. For example, in [25], a procedure header may contain
a formal postcondition, but the full postcondition need not be written
formally. ANNA [40] provides a similar mechanism for both pre- and
postconditions. Speckle differs in that it distinguishes partial specifications
from full specifications. This distinction is used to prevent the compiler from
performing unsound optimizations.

The idea of writing specifications incrementally has also been studied for
algebraic specifications. In [4, 5], Bidoit distinguishes between “achieved”
and “draft” specifications—a draft specification is analogous to a partial
specification. His focus is on how to combine the theories of achieved
and draft specifications in a modular fashion. The specification language
is independent of any programming language.

The SETL compiler uses types to reason about reachability [14]. The
compiler relies on definitions of containment and reachability for primitive
types to identify when the source of a copy operation would always become
garbage, obviating the need for the copy. SETL does not support data
abstraction explicitly, so there is no use for contains clauses.

In Speckle, contains clauses could be used to perform storage optimiza-
tions, such as copy elimination or freeing an object when it becomes garbage.
However, these optimizations might require the more precise specifications
of reachability of Chapter 2 to work well in practice.

Other Larch interface languages also allow requires and modifies
clauses to be omitted for terseness. However, the semantics of an
omitted clause is very different: an omitted requires clause is equiv-
alent to requires --, and an omitted modifies clause is equivalent to
modifies --.

7.5 Summary

Speckle allows users to write interface specifications incrementally. A
specification can be omitted entirely, or it can be written in part. Each
specification clause that is not written fully is flagged as partial, either
explicitly by the use of 7, or implicitly by the absence of the clause. The
distinction between partial clauses and regular clauses is used to prevent
optimizations that are unsound.

The primary problem in supporting partial specifications is how to
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estimate the modifies clause when it has been omitted. The approach
in Speckle is to compute a coarse upper bound for the set of locations
accessible to a procedure from the types of its formal arguments. To allow
this approximation, each data type uses contains assertions to specify the
mutable types that may be directly accessible from a value of the type.
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Chapter 8

Experience

My experience with PSC falls into two categories: hand-constructed
examples used to test PSC during development, and later, a case study
on small pieces of a large program. This chapter contains some general
observations of PSC and a report on the case study.

8.1 Observations

At a high level, the job of PSC is to take code and specifications and use
them to discharge proof obligations for optimizations. On the surface, this
task seems no easier than the problem of program verification. Fortunately,
however, the proofs required to justify optimizations are often quite simple.

One common proof obligation is to show that a predicate that is true
at one point in a program is still true at a later point. PSC is usually
able to discharge such obligations. For example, consider the statement
alil:= £(alil), where ais a dynamic array. Because the fetch procedure
checks that i is in bounds, the store procedure need not repeat the check
unless £ can change the bounds of the array. Here, the predicate needed
to use the SPI of store is identical to the predicate asserted by the fact
that fetch did not signal an exception. The main task of PSC is to use the
modifies clause of £ to show that the predicate is not affected.

The same kind of proof works to eliminate common subexpressions
or hoist expressions from loops. Recall the can_1ink ends example from
Chapter 4, p. 52, where the goal is to eliminate a call to polymer§get _left.
Here, the compiler needs to prove that both the postcondition and the guard
condition asserted when the first call to polymer$get_left returns normally
are still true when the second call is made. Once again, the proofs are easy,
given the modifies clauses.

Another common proof obligation is to show that a predicate that is true
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at one point in a program implies another predicate at a later point. This
kind of obligation is bit more challenging, because PSC must use information
that relates the predicates to one another. For example, a statement
t:= table$create() might establish t = empty. At a later point, a call
table$store(t,k,v) might be optimized to use an SPI if —defined(t,k).
Here, in addition to showing that t is still empty, PSC relies on the LSL
assertion ~defined(empty,k), which makes the proof easy.

In the previous example, the necessary LSL assertion was an axiom of
tables, i.e., an assertion that is unlikely to be missing from the trait. How-
ever, proofs may also rely on assertions in the implies section of a trait, i.e.,
assertions that are intended to provide redundant information. For example,
in the substitution example from Chapter 5, p. 71, the precondition for
the faster implementation of extendis v ¢ vars(apply(unbind(s,v),t)).
(Recall that this precondition is used to preserve the invariant that sub-
stitutions have no cyclic definitions.) To discharge this precondition in
a context where vars(t)={}, PSC could use the lemma vars(tm)={} =
vars (apply(sub,tm))={} if it is asserted in the implies section of a trait.

Because there is no guarantee that LSL traits will contain the lemmas
needed to detect optimizations, the author of an SPI may wish to add lemmas
that are likely to be useful, such as the one above. One of the problems I
encountered, however, is that an implication is essentially useless unless LP
can convert the implication into a conditional rewrite rule. E.g., in the
previous example, the rewrite rule

(vars(tm) = {}) = (vars(apply(sub,tm)) = {}) — true
cannot simplify the goal
v ¢ vars(apply(unbind(s,v),t))
However, the conditional rewrite rule
vars(tm) = {} : vars(apply(sub,tm)) - {}

will simplify the goal to v ¢ {} in a context where vars(t)={}.

Unfortunately, some implications cannot be converted into condi-
tional rewrite rules because they would make the rewriting system non-
terminating. For example, the implication

x<y = ((y<x)=Tfalse)
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cannot be converted into a conditional rewrite rule because x<y is no simpler
than y<x. In this case, the user can explicitly write the implication as a
deduction rule. However, many implications cannot be written as deduction
rules because they would trigger infinite loops. For example, the implication
x<y = x<y+1, if written as the deduction-rule when x<y yield x<y-+1,
would trigger an infinite loop in the presence of an assertion such as 0<1.

Generally, the proofs least likely to succeed are those requiring induction,
because it is difficult to obtain suitable loop invariants. One exception is the
case when the goal is to prove that a value is constant during the execution of
a loop. For example, in the remove_duplicates procedure from Chapter 1,
p. 17, one of the optimizations is to show that a.low, the low bound of the
dynamic array a, has the same value before and after the loop—this makes
it possible to replace the occurrences of a.low after the loop by the value
of a.low computed before the loop. Using induction, case analysis, and the
LSL axiom that storing an element into an array does not change its size,
PSC proves that the optimization is legal. Here, the proof succeeds because
the value of a.low is constant over the loop.

8.2 Case Study: AC-Unify

To test the ideas in this thesis and to test PSC, I did a case study of AC-
Unify, a program that unifies terms containing associative and commutative
operators. | chose AC-Unify for several reasons. First, AC-Unify is not a toy.
It is roughly 8,000 lines of commented source code, and the VAX executable
is roughly 100 kilobytes. Second, AC-Unify is a well-structured program
that makes good use of data abstraction. The program has 33 user-defined
types and roughly 300 procedures. Finally, AC-Unify is written in CLU, so
translating the code to Speckle did not introduce significant changes.

The purpose of the case study was to see what kind of performance
improvements might be possible using the ideas in this thesis. Because of
the program’s size, I focussed on the critical portions of the code rather than
translating all of it. The method 1 used was:

1. Profile the program to identify frequently executed routines.

2. Identify sections where SPIs, common subexpression elimination, or
hoisting expressions might improve performance.

3. Translate the relevant sections into Speckle, adding both SPIs and
specifications deduced from the comments and code.
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4. Run the translated code through PSC.

5. Manually perform the source optimizations identified in the previous
step on the original CLU code.

6. Recompile and measure the difference in execution time.

For the SPIs, I simulated my strategy for propagating the guard condition
of an SPI through a level of data abstraction (see Section 5.4).

I wrote three SPIs—one for each of three procedures. Of these
procedures, one had a guard condition propagated to a caller, so there were
effectively four SPIs in total. The four SPIs were called from a total of 14
places in the code. Of the 14 call sites, eight could be optimized and six
could not. PSC detected all of the optimizations.

Together, the eight specializations improved performance by 14%. Once
I had identified the frequently-executed sections of code, it took me roughly
a week to write the necessary specifications and invariants. It took PSC
roughly five and a half minutes running on a 25 Mhz MIPS R3000 to process
the 74 lines of code surrounding the eight call sites.

I deliberately wrote the weakest partial specifications needed to detect
the optimizations. Partial specification worked well: specifications were
necessary for only nine of the roughly 300 procedures in AC-Unify. In total,
I wrote 67 lines of Larch/Speckle and 137 lines of traits—a small fraction
of the 8,000 lines of source code and comments. Using the information in
contains clauses, PSC deduced six modifies clauses that were essential for
three of the optimizations.

Although I didn’t find any places where eliminating a common subex-
pression or hoisting an expression would have improved performance no-
ticeably, I did find several places where these optimizations could have been
performed. I conjecture that these optimizations, when applied to the whole
program, could lead to a noticeable improvement.

The next two sections describe the SPIs and the optimized call sites.

8.2.1 Specialized Procedures Implementations

Fig. 8.1 contains the signatures of the CLU procedures for which I wrote SPIs.
(The [1’s in type expressions are used to delimit CLU’s type parameters.)
The guard conditions of the SPIs are given as comments. The SPI of each
procedure avoids executing code to check each guard condition. For set and
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set$insert = proc (s: setl[elem], e: elem)
% special when — (e € s")

mapping$insert = proc (m: mappingl[dom,ran], d: dom, r: ran)
signals (exists)
% special when —defined(m”, d)

assignment$create = proc (env: sequencelvar])
returns (assignment[var,val])
signals (empty, duplicates)
% special when NoDuplicates(env)

Figure 8.1: SPI of AC-Unify

substitution$store = proc (s: substitution,
v: variable,
t: term)
signals (exists)
% special when —defined(s”, v)

Figure 8.2: Propagated SPI

mapping, the savings is linear in the size of s or m. For assignment, the
savings is quadratic in the size of env.

Fig. 8.2 contains the signature of a procedure that was specialized
by propagating the SPI of mapping$insert. The type substitution is
represented as mapping[variable,term], and substitution$store is the
equivalent of mapping$insert. (AC-Unify makes substitution a separate
data type to maintain invariants about substitutions that are not enforced

by mapping.)

8.2.2 Optimized Call Sites
First Call to set$insert
Fig. 8.3 on p. 124 contains the CLU code where a call to set$§insert was

optimized. Irrelevant code is denoted by ellipses. The goal is to prove
—(d € m.domain). This goal follows directly from
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e the precondition of insert pair: requires —defined(d,m)

e a representation invariant maintained by mapping
The invariant is that the domain field of the representation is equal to

the domain of the mapping.

To make the representation invariant available to PSC, I included it in the
precondition of insert pair.

Second Call to set$insert

Fig. 8.4 on p. 125 contains the CLU code where a second call to set$insert
was optimized. The goal is to prove =(pt.values[i] € result). The proof
depends on

e the representation invariant NoDuplicates(pt.values) maintained
by partition_tree
This invariant is encoded as a precondition of value in the Speckle
version of the code.

e the fact that t_seq is immutable

This fact is true for the Speckle version of the code, in which the type
parameter t is instantiated by an immutable type.

Because both rep and t_seq areimmutable, NoDuplicates(pt.values)
is trivially preserved by any code that does not assign to pt. There is
no assignment to pt in the implementation of value.

e the ensures clause of t_set$create, which establishes that result is
initially empty

e the modifies -- clauses of t_seq$indexes, sequence[bool] $fetch,
and t_seq$fetch

e the ensures clause of t_seq$fetch

e the specification of t_seq$indexes, which ensures that i is within the
bounds of pt.values

e the ensures clause of t_set$insert

e LSL axioms for sets
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e the three lemmas
VY sq: Sequence, i,j: Int, s: Set

(NoDuplicates(sq)

A (s C seq2set(prefix(sq, i-1)))

A InBounds(sq, 1))

= - (sqli] € s);

(InBounds(sq, i) A i < j)

= (8ql[i] € seq2set(prefix(sq, j)));

(s C seq2set(prefix(sq, i)))
= (s C seq2set(prefix(s, i+1)));

where prefix(sq, i) is the subsequence of sq from index 1 to i, and
seq2set(sq) converts a Sequence to a Set.

PSC uses proof-by-induction and proof-by-cases to discharge the goal.

In addition to specializing set$insert, PSC detects that no bounds
checks are needed for pt.values[i] and that pt.values can be hoisted
out of the loop in Fig. 8.4. However, these optimizations do not improve
performance significantly.

Call to mapping$insert

Fig. 8.5 on p. 125 contains the CLU code where a call to mapping$insert
was optimized. The goal is to prove -defined(v, compose). The proof of
this goal depends on

e the ensures clause of predict

The procedure predict ensures that it returns a new, empty mapping.
The integer argument is merely a hint as to how many domain elements
are likely to be defined.

e the ensures clause of elements

The iterator elements ensures that all no variable is yielded twice.
e the modifies -- clause of elements

e the ensures clause of insert

The procedure insert ensures that the only possible addition to the
domain of compose is the variable v.
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e the modifies clause of apply

From the contains -- clauses of types mapping and term, PSC
deduces that apply cannot modify compose. At most, apply may
modify s1, and s1 and compose are distinct.

e the lemma

V s,s1: VariableSet, v: Variable
when v € s == false
yield (s1 C s) = - (v € s1);

e the LSL axioms for mappings

PSC discharges the proof obligation by induction on the loop.
Calls to assignment$create

Fig. 8.6 on p. 126 contains the CLU code where two calls to assignment$create
were optimized. For the purpose of the optimization, the two call sites
are essentially identical. The only differences are that assigns and
assign_total use different instantiations of assignment, and they elided
code also changes.

The goal is to prove NoDuplicates(vs). This goal follows from

e a representation invariant of solution
The invariant is that the vars field of the representation does not con-
tain duplicates. This invariant establishes NoDuplicates(s.vars).

e the ensures clause of var_vec$v2seq

The type var_vec is closely related to the type var_seq. The only
difference is that a var_vec has a unique identifier, which a var_seq
does not. The procedure v2seq ensures that the var_seq it returns is
the equal to the sequence contained in vs. Thus, NoDuplicates(vs)
= NoDuplicates(s.vars).

Calls to substitution$store

Fig. 8.7 on p. 127 contains the CLU code where three calls to substitution$store
were optimized. For the first call site, the goal is to prove —~defined(sigma,v2)
The proof of this goal relies on
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e the ensures clause of substitution$new
The procedure substitution$new ensures that it returns an empty

substitution.

e the LSL axioms for substitutions (mappings), which specify that
nothing is defined in the empty substitution.

e the deduced modifies -- clause of term$similar
PSC deduces this modifies clause from the specification of immutable
type term, which asserts contains --.

The proofs for the second and third call sites also rely on

e the deduced modifies -- clause of term$get _vars
PSC deduces the modifies clause from the specification of term.

(In the general unify, the calls to term$get_vars are written as
t2.vars and t1.vars, which exploit CLU’s shorthands.)

o the deduced modifies clause of var_set$exists

Since the specification of mutable type var_set asserts contains --,
PSC deduces that var_set$exists can at most modify its argument,
a var_set.

8.3 Summary

In a case study on small pieces of a large program, PSC detected
optimizations that lead to an 14% improvement in performance. None
of the eight optimizations would have been performed using conventional
techniques, including interprocedural analysis. Each optimization depended
on the representation invariant of a data type or on properties of data values
specified in LSL axioms. Also, some optimizations depended on deduced
modifies clauses.
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mapping = cluster [dom, ran: typel

rep = record[domain: dom_set, % domain of mapping
]
dom_set = set[dom]

% Requires: "d" is not defined in "m"
insert_pair = proc (m: rep, d: dom, r: ran)

dom_set$insert(m.domain, d) % optimized call

end insert_pair

Figure 8.3: First Optimized Call Site of set$insert
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partition_tree = cluster [t: typel

rep = struct[values: t_seq, % contains no duplicates
]

t_seq = sequencel[t]

t_set = set[t]

value

proc (pt: rep) returns (t_set)

mask: sequencel[bool] := ...

result: t_set := t_set$create()

for i: int in t_seq$indexes(pt.values) do
if mask[i] then

t_set$insert(result, pt.values[i]) % optimized call
end

end

return(result)
end value

Figure 8.4: Second Optimized Call Site of set$insert

substitution = cluster ...

rep =

mul =

mapping[variable, term]

proc (s1, s2: rep) returns (rep)

compose: rep := rep$predict(rep$size(sl))

for v: variable, t: term in rep$elements(s2) do
rep$insert(compose, v, apply(sil, t)) % optimized call
end

end mul

Figure 8.5: Optimized Call Site of mapping$insert
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solution = cluster [vartype: typel

rep = record[vars: var_vec, ¥, vars contains no duplicates
var_vec = vector[vartype]
var_seq = sequencel[var]
var_int_assn = assignment[vartype, int]
vis_assn = assignment[vartype, int_seq]
assigns = proc (s: rep) returns (vis_assn)
vs: var_seq := var_vec$v2seq(s.vars)
a: vis_assn := vis_assn$create(vs) % optimized call

end assigns

assign_total = proc (s: rep) returns (var_int_assn)
vs: var_seq := var_vec$v2seq(s.vars)
a: var_int_assn := var_int_assn$create(vs) ), optimized call

end assign_total

Figure 8.6: Optimized Call Sites of assignment$create
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general_unify = iter (t1,t2:term, ur:unif_registry, gs:gen_sym)
yields (substitution) signals (not_unifiable)
sigma: substitution := substitution$new()
if term$similar(ti, t2) then
yield (sigma) return

end
tagcase t1
tag var (vl: variable):
tagcase t2
tag var (v2: variable):

sigmalv2] := t1 % optimized call
yield (sigma)
tag nonvar (nv2: nonvar):
if var_set$exists(t2.vars, vil)
then signal not_unifiable
end
sigmalvi] := t2 % optimized call
yield (sigma)
end
tag nonvar (nvl: nonvar):
tagcase t2
tag var (v2: variable):
if var_set$exists(tl.vars, v2)
then signal not_unifiable
end
sigmalv2] := t1 % optimized call
yield (sigma)
tag nonvar (nv2: nonvar):

end
end
end general_unify

Figure 8.7: Optimized Call Sites of substitution$store
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Chapter 9

Summary and Conclusion

Specifications have been advocated because they make it easier for people
to reason about programs. The primary conclusion of this thesis is that
specifications can make programs run faster because they make it easier for
compilers to reason about programs.

The key ideas leading to this conclusion are:

e Enhancement of Conventional Optimizations. In most conven-
tional compilers, optimizations like common subexpression elimination
and code motion are restricted to expressions that don’t contain
procedure calls. In this thesis, I used specifications to generalize such
optimizations to handle procedure calls as well. This eliminated one
of the disparities between operations that happen to be primitive to
a source language from operations that are defined by the user. I also
used specifications to improve side effect analysis, which is needed to
detect many kinds of optimizations.

The primary advantage of using specifications is that specifications
are simpler than code. For example, code analysis is impractical for
deducing the axioms of a data type or for distinguishing between visible
and invisible (benevolent) side effects.

Another advantage is that specifications contain information not
found in code, such as the fact that an implementation need not be
deterministic. However, while this information enables optimizations
that are impossible without specifications, it is unclear how often such
optimizations would apply in practice.

e Specialized Procedure Implementations. SPIs allow the pro-
grammer to hide several related procedures behind a single interface.
This reduces the burden on clients, who would otherwise have had to

129



choose which version of the procedure to call, because the compiler
chooses the appropriate version. SPIs also improve modularity, since
the programmer can add or remove a specialized implementation and
let the compiler worry about updating client code.

User-defined optimizations like SPIs were previously studied in [25].
Because the approach there was based on transformation rules rather
than specifications, it lacked modularity. Furthermore, this thesis
appears to be novel in that it addresses the problem of propagating
optimizations across levels of data abstraction.

e Partial Specifications. Partial specifications allow users to write
specifications incrementally. This makes it easier to use specifications
to improve performance because not all of the specifications have
to be written—some specifications can be omitted altogether, while
others are written in part or in full. It also allows users to
focus on common library routines, where the investment of writing
specifications is amortized over many callers.  Although writing
partial specifications has been proposed before, this work is novel
in distinguishing partial specifications from other specifications to
prevent unsound optimizations.

To make partial specifications work well, the compiler must be
able to estimate modifies clauses when they are omitted. This
thesis presented a way of computing estimates from specifications of
reachability. Code analysis would be another possibility.

To evaluate the potential utility of these ideas, I designed a programming
language that incorporated them and built PSC, a prototype implemen-
tation. PSC, which identified but did not apply optimizations, was then
used on several small programs and one large one. These experiments
demonstrated that several issues need to be addressed before these ideas
can be put to practical use.

The first is compiler running time: PSC is too slow. There are several
ways in which attempts to prove the soundness of optimizations can be
sped up. First, the functions and axioms used to model program states
could be implemented in a more efficient way than by relying on general-
purpose inference mechanisms. Second, the strategies for proofs by cases
and induction could cache previous proof attempts to avoid repeating proofs.
Finally, the compiler could improve sharing of common data between the
logical systems of the different edges.
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A different way to make PSC faster would be to focus its attention on only
the potentially most useful optimizations. For example, one could integrate
the optimizer with profiling tools.

Because the compiler relies on specifications, bugs in specifications can
lead to unsafe optimizations. Therefore, a pragmatic issue is how to identify
bugs in specifications.

One way to locate bugs is to verify that the specifications and code
are consistent, but there are other possibilities. A specification checker
could perform sanity checks on specifications. For example, an interface
cannot modify an immutable value. Another possibility is for the user
to supply code to check the pre-condition of a specialization and for the
debugger to insert this code wherever the optimizer has “proved” that the
pre-condition is satisfied. The compiler might list the optimizations and/or
the proof obligations that it discharges so that the user could check the list
for suspicious ones. Finally, the user could direct the compiler to ignore
suspect specifications and see if a problem disappears.

A final issue is that of “tuning” specifications to enhance the compiler’s
ability to find opportunities for optimization. PSC is particularly sensitive to
the way specifications are formulated. Attention should be devoted to char-
acterizing the impact of different formalizations of the same specification,
so that useful advice can be given to specifiers.

Despite the above concerns, I remain optimistic about the utility
of the ideas contained in this thesis. The experiments with PSC were
encouraging, demonstrating that significant performance improvements
could be obtained. In the AC-Unify case-study, just four SPIs improved
performance by 14%. Furthermore, these experiments made it clear that
partial specifications can be used productively. They allow one to obtain
performance enhancements that are large relative to the effort required of
the programmer. In time, specifications will greatly reduce the need for
programmers to compromise code readability, safety, and modularity when
tuning programs for performance.
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