
Aurora at MIT

Final Report on MIT's Participation in the Aurora Gigabit Testbed�

David D. Clark, Henry Houh, and David L. Tennenhouse, editorsy

Laboratory for Computer Science

Massachusetts Institute of Technology

The Aurora Gigabit Testbed linked researchers at MIT, the University of Pennsylvania, the Uni-

versity of Arizona, Bellcore and IBM. The Aurora partnership included Nynex, Bell Atlantic and

MCI, who investigated issues related to the gigabit transmission facilities which they provided to

the research teams.

Aurora activities at MIT were undertaken by two groups: the Telemedia, Networks and Systems

(TNS) Group and the Advanced Network Architecture (ANA) Group. Section 1 of this report

describes the work performed by the MIT/TNS group, under the direction of David Tennenhouse;

Section 2 describes the work of the MIT/ANA Group, under the direction of David Clark; the

Appendixes list the publications and students supported by the project.

�This research was supported by the Corporation for National Research Initiatives.
yThe authors can be reached at: MIT Lab for Computer Science, 545 Technology Square, Cambridge, MA 02139;

Tel: (617) 253-6005; Email: fddc,hhh,dltg@lcs.mit.edu

1

Section 1: TNS Group Activities

1 Introduction

The TNS group's testbed activities included: the development of the VuNet, an ATM-framed local

distribution system; research on the design of host/network adapters; and the demonstration of

network-based multimedia applications.

Some of our achievements in the testbed program include: the deployment of the VuNet infras-

tructure (encompassing 8 switches, 11 network-based video appliances, 11 host workstations and

a suite of multimedia applications); demonstration of seamless DAN/LAN/WAN internetworking;

the development of a number of di�erent host/network adapters; and the investigation of ATM

end-working and signaling issues.

Along the way we learned a number of lessons concerning: the distinction between cell switching and

ATM layer functions; the role of memory in the design of host interfaces and end-working software;

the striping of ATM transmission facilities; and the tra�c implications of computation-intensive

multimedia applications.

In the following subsections we describe the research objectives, approach, experimental results and

lessons learned by members of the TNS group.

2 Research Objectives

The TNS group's activities focused on the following subset of Aurora's research objectives [5]:

� The design and evaluation of ATM-framed local distributions systems

� The design, development and evaluation of alternative host interfaces

� The integration of gigabit switching, transmission and multiplexing systems

� The demonstration and evaluation of new paradigms for distributed applications

In accordance with MIT's portion of the Aurora Statement of Work, we also worked with other

interested groups to:

� Develop speci�cations for the ATM layer and to investigate ATM adaptation

The following paragraphs describe the relationship between these goals and the approach taken in

our research.

ATM-framed local distribution

Our work on local distribution focussed on the VuNet, an ATM-based Desk Area Network. The

VuNet, which was developed as part of the testbed, was deployed in individual o�ces and lab-

oratories at MIT and a VuNet node was established at U. Penn. To facilitate VuNet / Sunshine

integration, a VuNet node was located at Bellcore for a brief period.

Host Interfaces

Within the testbed as a whole, several areas of host interface research were investigated by the Aurora

partners and taken together these provide a fairly good map of the design space. The MIT/TNS

group investigated a portion of this design space, with particular emphasis on the adapter's point of

2

attachment, cost, and use of memory. We developed programmed I/O, DMA-based, and coprocessor-

based adapters and collaborated with Bellcore on the design of the Osiris host interface. We also

developed the Vidboard, an ATM-based camera that is directly attached to the VuNet.

Gigabit switching, transmission and multiplexing

The MIT/TNS group investigated a number of internetworking and systems integration issues and

demonstrated the seamless ATM-based internetworking of: the VuNet DAN, the AN2 LAN,

and the Sunshine WAN. We also collaborated with Bellcore on the design of an ATM-based cell

processor for use in the port controllers of the Sunshine switch.

Distributed Applications

The VuSystem, a separately funded project, is a programming system for the software-based

processing of audio and video data. Within the context of Aurora, we demonstrated the operation

of VuSystem applications over the VuNet / Aurora infrastructures.

ATM and Adaptation Layer Issues

MIT researchers helped initiate the development of SEAL/AAL5, which has been adopted for a

wide range of packet-oriented services (frame relay, IP, etc.). During the course of our research

we investigated a number of issues related to ATM end-working and an application-oriented

approach to signaling.

3 Approach

The following sections provide details concerning the approach, design and implementation of key

technologies developed within the project.

3.1 Local Distribution Systems - the VuNet

A Desk-Area Network (DAN), as illustrated in Figure 1, is a small local system in which peripherals,

such as multimedia devices, are taken out of the workstation and connected directly to the network.

Workstations access these devices over the network and coordinate the movement of information

streams among the di�erent parts of the system. Aurora's DAN implementation is known as the

VuNet and the Vidboard, described in section 3.3, is an example of a DAN-enabled peripheral.

The VuNet is a gigabit-per-second desk/local-area ATM network which interconnects general-purpose

workstations, network-based multimedia devices and bridges to other networks. The DAN Approach

replaces the workstation's haphazard collection of peripheral interfaces and connectors (e.g. SCSI,

VGA, EISA) with a generic ATM-based connector that supports a heterogeneous range of periph-

erals including cameras, displays, disks, etc. We envisage a vigorous market for such peripherals

which would be able to operate with any manufacturer's platform. VuNet peripherals are highly

programmable and are connected directly to the VuNet, allowing them to be shared among all hosts,

including hosts not local to the peripheral's desk area.

With small networks, it is possible to rethink the ways certain network design issues are addressed.

Many of these issues also arise in the design of Local-Area Networks (LANs), Metropolitan-Area

Networks (MANs), and Wide-Area Networks (WANs), however their characterization within the

DAN environment is di�erent than in the LAN or WAN. For example, small desk area networks

need not be designed for high utilization as tra�c aggregation is not a principal design objective.

3

Camera

Microphone

Disk

Display

Speaker

Net Link

VuNet Interconnect

Cpu Memory

MemoryCpu

Figure 1: A Desk Area Network where devices are taken out of the workstation and attached directly

to the network. The workstations coordinate the
ow of data from various devices on the network

to other devices.

Larger networks can provide e�cient communications because large numbers of hosts share the

communications medium. In a small working area environment, there is a smaller number of hosts,

making it more di�cult to depend on statistics in sharing the aggregate bandwidth necessary for

e�cient operation. The fact that bandwidth is less expensive over the short distances involved

suggests a VuNet design regime that leverages inexpensive, lightly utilized bandwidth.

Similarly, shared wide area components, such as the line card serving a heavily multiplexed link,

can be relatively expensive. However, in a small desk area network, careful attention must be paid

to the cost per end node. Hence it becomes attractive to trade o� functionality for cost in the non-

multiplexed components such as the end system switch ports and interfaces. Simple, inexpensive

interfaces become an important design objective.

Within Aurora, both regions were explored. Bellcore's Sunshine e�ort explored the wide area, and

the VuNet explored the desk area.

A key goal motivating the design of the VuNet hardware was simplicity. Sophisticated network

functions (e.g. multi-cast, back-pressure, support for ATM adaptation layers, service classes) were

pushed to the edge of the network and became the responsibility of the clients. We believe that a

local environment such as the VuNet can be e�ectively served by a simple switch fabric having a

limited number of access ports and an internal speed that is greater than that of the clients.

The remainder of this section describes the VuNet design and the hardware that was built. The

considerations that drove the design were:

Software intensive philosophy: Wherever possible, the VuNet design favors software-based solu-

tions that reduce the complexity of network hardware by moving functionality into the software

of the end nodes. An important bene�t of this software-intensive approach is the ability to port

the system to higher-performance workstations easily. Over the span of the Aurora project,

four di�erent hardware platforms were used with two varieties of host interfaces, for a factor

of ten di�erence in performance.

Bursty tra�c: Since host processes running within an operating system generate network tra�c

during their time slices, their generation of data is inherently bursty. Similarly, they consume

data in bursts that are not synchronized to the incoming tra�c. Accordingly, sources and

sinks of video and audio information must be able to handle data in bursts and the DAN and

4

its hosts and peripherals must support bursty tra�c.

Asynchronous client interface: Clients should not be slaved to the network clock. Instead, the

network ports should support various input and output rates. ATM, with its small cell size

and variable cell rates, can accommodate this requirement.

Simple client interface: Fast and slow clients alike should see the network as a place to easily

write and read ATM cells. The VuNet uses a modi�ed cell format in which the cell length is

increased from 53 to 56 bytes in order to make cells quadword-aligned.

Data transparency: All classes of tra�c (video, audio, �le transfer, etc.) are treated in a similar

manner until they reach the target application, and multiple video streams are easily supported

since hardware limitations are not placed on their number.

Interoperability and modularity: Multimedia peripherals such as a video capture board were

designed to interface directly to the VuNet rather than to a workstation I/O bus. This allows

the peripherals to be shared among all the hosts connected to the VuNet. It also avoids

redesigning a peripheral for each vendor's computer platform.

These principles were applied to all aspects of the design of the local ATM distribution system.

3.1.1 The VuNet Cell Switch

In the development of the VuNet we separated the switching of cells (between switch ports) from

ATM level functions such as VCI mapping. We started with a simple model of the \ideal" exchange

of cells between two hosts that are directly connected to each other over a communications channel

of zero length and in�nite speed. An important observation is that even this channel requires a

memory-based bu�er or FIFO of some sort, if only to decouple the clock rates, and ultimately the

application burst rates, of the communicating processes.

To satisfy our \ideal" model of cell transfer, the switch fabric, which consisted of bidirectional ports

with �rst-in �rst-out (FIFO) bu�ers which fed a crossbar matrix, allowed each host to accept cells

at a rate that exceeds the aggregate rate at which cells are presented by all of the attached hosts.

Current versions of the VuNet switch have either four or six ports and we clock the crossbar matrix

at a rate of 700 Mbps per port. Given the small number of ports and the rate at which our present

hosts are able to generate tra�c, this provides a close approximation to the model.

The switch provides a straightforward interface that simpli�es the design of client hardware. Since

the timing of the client side of the port FIFOs is decoupled from the internal timing of the switch

matrix, there is no need for clients to synchronize their operation with the internal switch clock, as

is often the case with traditional switch designs. Furthermore, both the transmit and receive blocks

can be operated concurrently. The FIFOs also serve to bu�er cell bursts, an important factor in

our simpli�ed network. Finally, the data bus width to the port is selectable, either 32 or 64 bits,

allowing a simple mapping to workstation and processor buses. All these factors make it easy to

design devices which connect directly to the switch, satisfying the \simple client interface" objective.

The VuNet was designed around a non-standard 56-byte ATM cell, as the switches had 64-bit inter-

faces. While this presented new issues when bridging to other networks (as discussed in Section 3.4),

it greatly simpli�ed the design and complexity of switch and the network-based devices.

3.1.2 Cell Relaying

The preceding section described cell switching among devices that are attached to a single switch.

Inter-switch communication can be modeled by a device (or set of devices) that is connected to ports

on two di�erent switches. This cell relaying host performs two functions: it copies cells between

5

Transmit FIFOs

64 cells

64 cells

64 cells

64 cells

64 cells

64 cells

Receive FIFOs

256 cells

256 cells

256 cells

256 cells

256 cells

256 cells

6 x 6
crossbar
matrix

Control and arbitration

Figure 2: The six port VuNet switch.

Header
Remap

Serial to
Parallel

Parallel
to Serial

Link

Header
Remap

Serial to
Parallel

Parallel
to Serial

Link

Figure 3: The links in VuNet perform header remapping and next output port lookup for hop-by-hop

cell routing.

the switches and it re-maps VCIs. The relay serves as an intermediary with knowledge of the VCI

address spaces associated with the switch ports.

The VuNet link implements a minimal set of relaying functions, cell copying and VCI mapping. To

support the inter-o�ce separation of switches, it is constructed in two parts that are inter-connected

by high speed channels as illustrated in Figure 3. The channels use single mode optics and serial

coding based on the HP G-Link chipset and the links presently operate at 500 Mbps. Link processing

is table driven, and the management of the link tables is left to the communicating end systems.

This will be discussed in further detail in Section 3.5.

The link tables are large enough to remap the entire 64K (16-bit) VCI space to 64K new VCIs

and four bits of switch port information. All other bits in the ATM header remain untouched.

6

The VuNet does not support the Header Error Check (HEC) function on a hop-by-hop basis as we

do not believe that HEC is an essential function for desk area or even local area operation. For

compatibility purposes a cell source can pre-compute the HEC that is expected by the destination.

Management of the link tables is performed using control cells sent with a reserved ATM VCI. Cells

received by the link on these special VCIs cause the link to re-write entries in its header lookup

table. They can also cause the link to emit a cell containing table entries, so link tables can be read

back.

3.2 Host Interfaces

Many researchers believe that host interface performance can be improved through the o�-loading

of network protocol processing, i.e., moving functionality from the host to the interface. Within

Aurora, several di�erent types of host interfaces were developed to explore this hypothesis. For the

VuNet, several types of interfaces were designed. MIT also participated with Bellcore in the design

of their Osiris host interface.

Using these various interfaces, di�erent methods of segmentation and reassembly were investigated;

this spanned the gamut from specialized on-board host interface hardware to extremely simple

host interface hardware combined with software segmentation and reassembly. Di�erent methods

of host-interface synchronization were used including interrupt driven handling and device polling.

The various interfaces also explored di�erent network points of attachment.

The simplest VuNet interface was a programmed I/O interface in which the processor was responsible

for writing data to the interface. Another version supported DMA with variable burst sizes from one

ATM cell size and up. In both cases, the segmentation and reassembly was performed by the host

processor. An ATM-based coprocessor interface was also designed and fabricated. This interface,

which resembled a
oating point unit, connected directly to the coprocessor port of the CPU.

Finally, MIT participated in the design of the Bellcore Osiris interface, a custom segmentation/reassembly

hardware engine attached via the processor I/O bus. In the Osiris design large packets are transferred

to the interface, which segments the packets before transmission into the ATM network.

The following subsections describe the design of these host interfaces.

3.2.1 VuNet Programmed I/O Interfaces

All of the VuNet host interfaces rely on the CPU to perform the ATM segmentation and reassembly

(SAR) tasks. Although this approach was computationally intensive, it provided a
exible envi-

ronment for the study of many host interface issues. Other Aurora partners, working in parallel,

investigated other aspects of the design space, especially hardware-based SAR.

The �rst of VuNet interfaces designed was the VuNet Programmed I/O interface, known as the

VupBoard. This host interface served only as a memory-mapped extension of the read port of

the switch output FIFOs. Cells were read into memory through 14 reads of the memory address

corresponding to the FIFO. Other addresses corresponded to control and status indicators such as

the state of the FIFOs.

Similarly, sending cells into the network required making 14 writes to memory, interleaved with

writes to the address corresponding to the FIFO write control signals.

While better methods of utilizing the processor were later investigated, this initial interface provided

an early development platform that allowed us to explore software segmentation and reassembly of

ATM cells and interrupt-driven packet processing. Using the VupBoard we were able to develop and

debug device driver software that made the VuNet accessible to applications via the standard UNIX

socket services. The driver also made the VuNet accessible via standard IP services, including NFS,

7

 Line
Drivers CRC

control

control

ROM

control

data datadata

Turbochannel
 bus

controlCounter 3 m
cable

Control
PAL

VuNet

Turbochannel
 ASIC

fifo

fifo

Figure 4: A block diagram of the VudBoard, which consists of 11 chips.

Telnet, FTP, etc. Finally, since the programming model for the VupBoard was similar to (though an

order of magnitude slower) that of the cell coprocessor, it provided a vehicle through which we could

benchmark software and project the expected performance of a system with a coprocessor interface.

3.2.2 VuNet DMA Interfaces

The next VuNet-speci�c interface focused on improving the bandwidth and relaxing the temporal

coupling between the host CPU and the interface { building interfaces, that are faster, rather than

smarter.

Although the design does not use any custom ATM circuitry, it does utilize the TURBOchannel

Interface ASIC (TcIA)1 for the DEC TURBOchannel bus. This bus is used in the DEC 3000 line

of Alpha workstations, as well as in the DEC 5000 line of MIPS-based systems. The TcIA performs

the DMA request and arbitration, and contains two 60-byte FIFOs for receive and transmit.

As shown in Figure 4, the single chip PAL controls all data movement between the ATM network

and TURBOchannel ASIC. Since the data bus from the VudBoard to the VuNet switch is shared

by the receive and transmit paths, it arbitrates between reading cells from the switch and writing

cells to the switch, with reception given priority over transmission.

The counter is used to implement an optional transmission timer that controls the pace of cells

injected into the network.2 Finally, the ROM provides device identi�cation information. Although it

is super
uous to our design, it is included on the interface in order to conform to the TURBOchannel

speci�cation.

Various hardware and software con�gurations allowed experimentation with interrupt-driven ver-

sus polled packet-processing. This allowed measurements of packet delivery latency and packet

processing/context switching overhead.

3.2.3 Cell Coprocessor Interface

A cell-based coprocessor chip was designed to provide a direct interface between an ATM network

and the coprocessor interface of a conventional RISC processor. The combined RISC processor/cell

1The TcIA chip has been discontinued and is no longer available.
2This could be used as an experimental way for implementing
ow control, and is currently used for implementing

pacing should a target host not have the ability to receive bursts of data at the full rate which can be transmitted.

8

DECODE
UNIT

TIMING
LOGIC

DATA BUS
DRIVERS

CONTROL
AND
STATUS
REGISTERS

CELL BUFFERS

REGISTER FILE

32 32

32

32

512

Interface
to
Network

8

32

CPU
(R3000)

Figure 5: Cell-Based Coprocessor Design

coprocessor complex could form the core of an ATM-compatible workstation or could be used as

a stand-alone cell processor, similar in function to Bellcore's cell processing engine. To perform

network operations, such as reading and writing cells, the RISC processor executes coprocessor

instructions, much the way it performs
oating point operations.

>From a software perspective, this interface was quite similar to our programmed I/O interfaces.

However, from simulations, a considerable performance improvement was to be realized { by com-

pletely bypassing the memory subsystem and permitting the direct transfer of cell data to/from the

CPU's registers.

Figure 5 is a block diagram of the prototype coprocessor which is designed to operate with the 40 Mhz

versions of the MIPS R3000 processor. This work was closely aligned with Bellcore's work on a stand-

alone cell processing engine. The bus interface, timing logic, instruction decoder, and control/status

registers have been substituted for Bellcore's on-chip RISC engine and memory interface. The

instruction decoder includes a pipeline follower that tracks the MIPS instruction stream, decoding

and sequencing any instructions that pertain to the coprocessor. A large fraction of the design,

including the network interface, cell bu�ers and register �le has been directly copied from the

Bellcore chip. The savings resulting from the substantial re-use of chip design and layout is a clear

demonstration of the bene�ts of the close collaborative links established within Aurora.

3.2.4 High Performance Host Interface

One of the other interfaces designed within Aurora was the Bellcore Osiris board [7], designed with

the assistance of MIT. This was a hybrid system with the ability to scatter ATM cell payloads into

host bu�ers corresponding to VCIs. Though some overhead processing is needed to maintain and

set up areas of memory for di�erent packets that come in, no more processing is required than in

transferring fully assembled packets from the host interface.

9

Front End

(Phi l ips Digi ta l
Video Chips)

Format Convert

(Crossbar and
PALs)

Frame Memory

(VRAM) (T I 320C30)

N e t w o r k
I n t e r f a c e

camera

VuNet
Switch Port
Connector

3

(PALs)

Control

Pixel
bus

32

24 32

32 32

DSP

Clocks

Vidboard

Figure 6: Block diagram of the Vidboard

3.2.5 Summary

Host interface functionality can be categorized into three primary functions: data movement, data

processing, and data delivery. Data movement functions include reading data from processor mem-

ory and writing the data to the network, and vice versa, while data processing functions include

demultiplexing data, performing checksums, packet reassembly, and packet segmentation. Data

delivery to the application level often entails working withing the methods used in the operating

system, which may necessitate copying from operating system memory space to application memory

space.

Functions such as packet segmentation and reassembly (SAR) are some of the more complex func-

tions. The complex interface approach would be to perform this processing on the interface itself

through the use of customized hardware and/or a dedicated CPU. In a reduced complexity interface

(RCI) these functions are performed by the host CPU itself, i.e., on the shared and general purpose

processing engine of the workstation.3

Scattering individual cell payloads into di�erent areas of host memory is an attractive mix between

hardware and software SAR. Scatter reassembly is a function that does not require a complex design,

yet may save some per packet assembly costs. Essentially the only di�erence between this hybrid

method and outboard packet reassembly is that the bus transfers occur in ATM-sized chunks in

the former, and packet-sized chunks in the latter. The trade-o� involves a reduction in memory

requirements and latency in exchange for an increase in bus arbitration overhead.

3.3 Information Appliances - the Vidboard

Multimedia systems typically consist of workstations that contain a number of multimedia add-

in boards for functions such as video and audio capture and playback. Our DAN equivalent, an

ATM-based video capture board, known as the Vidboard, was use to explore the properties of a

network-based video source.

The Vidboard is based on a front-end frame-memory processor architecture that is capable of gen-

erating full-motion video streams having a range of presentation (picture size, color space, etc.) and

network (tra�c, transport, etc.) characteristics. The architecture is novel in that it also permits the

decoupling of video from the real-time constraints of the television world. Through a closed-loop

control mechanism, a destination device can dynamically vary the frame rate of a video stream

during the course of a session, which allows easier integration of video into the software environment

of computer systems.

3These concepts are developed further in [10]

10

VuNet
Link

VuNet
Switch

SONET
Framer

SONET
Facilities

Strip
Header FIFO Compute

HEC

FIFOPad
Header

AVlink

WAN−Bound Direction

LAN−Bound Direction

8

8

32

32

SONET
Support

G−Link
Support

Figure 7: Block diagram of the AVlink

3.4 Seamless ATM { DAN/LAN/WAN Internetworking

One of the important ideas of ATM is that of \seamless" interconnection; that is, the concept of a

uniform network service that transcends local and wide areas. Although standardized SONET/ATM

represents one approach, ATM-based networks which do not adhere fully to the SONET standards

and conventions can still be incorporated into the \seamless" network. The use of the ATM protocol

reference model identi�es di�erences between two ATM networks which can then be converged

through relatively simple hardware. To investigate these issues we developed two specialized VuNet

links, the AVlink and the Zebra.

3.4.1 AVlink

The AVlink is an ATM bridge interconnecting the VuNet and the Aurora testbed wide-area facilities.

Di�ering design considerations for each network have caused a number of architectural di�erences

between them. The AVlink overcomes these di�erences and provides low latency interconnection

between the two networks. Performance numbers and several con�gurations in which the AVlink

has been used are described in a Section 4.1.2.

On the VuNet side, the AVlink is similar to other inter-switch links. On the Aurora side, the AVlink

attaches to one of the four available OC-3c channels via Bellcore's STS-3/OC-12 multiplexor. The

use of multiple channels in parallel, a technique known as striping, is complicated by the presence

of varying end-to-end delays between the channels. This e�ect, sometimes known as skew, was also

investigated in the development of the Bellcore Osiris board.

3.4.2 Zebra { Striping

The Zebra is an ATM bridge interconnecting the VuNet to the AN2 switch, an industrial strength

ATM LAN developed by Digital. The AN2 can, in turn, be connected to the Aurora facilities via a

four channel OC-3 card and an OC-3/OC-12 multiplexor developed by Bellcore.

In order to formalize the issues associated with network striping, we developed a reference model

that distinguishes four degrees of freedom of relevance to striping implementations. These are:

� Striping Topology: How and where the path between two hosts is split into stripes. Possible

cases are end-to-end splitting, internal splitting, or some combination of these two.

� Participation of Hosts and Networks: The degree to which the hosts and networks support a

striping implementation.

� Striping Layer: The network layer at which the striping occurs. This can range from the

physical layer all the way up to the application layer, and determines the size of the striping

unit, which is the largest unit of data which is transported intact on a single stripe.

11

DEC
Alpha

VuNet
Switch

VuNet
Link

DEC
Alpha

VuNet
Switch

VuNet
Link

VuNet
Link

To next node
in VuNet ring

From previous node
in VuNet ring

AN2
Crossbar

Common
Board

Common
Board

Zebra 4xOC−3
OC−3c / OC−12
Mux/Demux

4xOC−3 Board
Can be looped back here

To SONET Facilities /
Bellcore

Striping Transmitter

Striping Receiver

Four VCIs routed along
this path

Figure 8: Environment developed for striping experiments.

� Implementation Issues: There are two main problems to overcome when implementing network

striping; these are balancing the loads on the stripes, and maintaining synchronization across

the stripes so that higher layer data may be correctly reassembled. The implementation issues

relate to the various options available for solving these problems and the means by which the

characteristics of the striped facilities are made visible to the layer at which striping is being

performed.

An environment that interconnected the VuNet DAN, the AN2 LAN, and the Sunshine WAN using

the Aurora facilities, was developed (Figure 8) to explore and experiment with the functional space

mapped out by the model. As part of this environment, a bridge between the VuNet and AN2 was

developed. Known as the Zebra, this board converges the di�erences between the two networks. The

con�guration linking these three networks, as well as some lessons learned about network striping,

will be presented in a later section.

3.5 ATM End Working

Using the VuNet as a research platform, several aspects of service integration were investigated.

First, VuNet network communications were fully integrated into the system, directly via ATM-

supported UNIX sockets, and indirectly, via IP-supported interfaces (including UDP and TCP sock-

ets). This allowed all the usual Internet services, e.g., FTP, Telnet, NFS, etc. to be o�ered over the

VuNet.

Also, the Vidboard network based video capture device was used as a platform for real-time tra�c

generation within the network. Source tra�c shaping allowed investigation into real-time tra�c

interaction with the host device drivers. A closed-loop control mechanism was developed for graceful

degradation of real-time tra�c bursts.

Investigations into the jitter arising from the middle and upper layers within the end systems of

multi-service networks were also conducted.

3.5.1 A UNIX Device Driver with Software SAR

Our initial requirements of data transparency, interoperability and modularity dictated the structure

of our network device driver. The driver, as shown in Figure 9, was designed to be organized into

several major levels. At the highest level are the application processes, which receive data over the

UNIX socket interface. Below this are the kernel side of the socket interface level, the reassembly

and protocol processing level, and the bu�er and device management level.

12

Software
Interrupt

VudBoard

Device
Polling

Kernel Buffers

 IP SW
Interrupt

Assembled
Packets

Assembled
Packets

VuNet
Socket

 IP
Socket

VuNet
Socket

 IP
Socket

Application
 Process 1

Application
 Process 2

Application
 Process 3

Network

Figure 9: Cells are read from the network at and passed to the software reassembly process at regular

polled intervals. These assembled packets are then passed to the IP handler or directly to a VuNet

socket.

13

2
Application

Video frame
request cell

Vidboard

Capture loop cell

Frame Buffer
Video frame segment

Continuous capture loop
Transmit on request

1
3

4

Figure 10: Video source control model: 1) A command cell is sent to the Vidboard, starting it in a

2) continuous video capture loop, where, upon 3) receipt of a frame request cell from workstation,

a 4) video frame is delivered.

If cells have been received on the network, the driver temporarily halts the VudBoard in order to

point it to a new kernel bu�er, freeing up the other bu�er to be queued for reassembly. Bu�ers were

allocated and quickly swapped in order to minimize the time the host interface is \deaf." Because

of the size of the output bu�ers on the switch, the driver had to be designed so that cells were not

lost while this was occurring. Thus, the VudBoard was restarted before the bu�ers which contained

network data were processed.

The bu�ers that are queued by the previous level may contain interleaved ATM cells over many

di�erence VCIs. The reassembly process must look up the VCI to determine the type of connection,

and reassemble the cell payloads into packets, stripping out the ATM header information and other

related information. This is done by copying the data into di�erent bu�ers reserved for reassembled

packets.

Depending on the kind of packet reassembled, packets are passed directly to the VuNet application

socket, or may be passed to the IP Packet Handler for additional protocol processing and further

demultiplexing. The UNIX socket mechanism is used as the data delivery mechanism for the appli-

cations that use our network data. Once the data is delivered to the socket level, it can be copied out

to user space on user reads, completing the delivery of data to the application. Integrating UNIX

sockets allowed the seamless integration of the network to the application level.

Clearly, our software-based SAR approach involves considerable copying of network data, and this

is an issues which we will return to in the lessons section of this report.

3.5.2 Vidboard Network Protocols

Hosts in the VuNet are not dedicated to processing and forwarding network data - they are user

machines under varying loads. In order to prevent the backlog and loss of cells while hosts are busy

with user tasks, a protocol was developed for the use of network based peripherals, such as the

Vidboard.

The command cell protocol is used in making the Vidboard execute a particular task. The protocol

consists of using a single ATM cell, which is formatted into a number of �elds, to carry command

14

information to the Vidboard. The command code �eld indicates the task to be executed. Additional

information about the task is carried in the command parameters �eld.

As shown in Figure 10, cells are usually generated in response to a command cell. Other examples

of responses are status information in response to a diagnostic command and a video stream in

response to a video data request. The response to a video request has two types of characteristics:

video adaptation layer and video tra�c shaping.

For sending video data from the Vidboard to a workstation, we adopted an adaptation layer similar to

that speci�ed by the ATMAdaptation Layer 5 (AAL5) standard, except that the cyclical redundancy

check (CRC) value for error-detection has been replaced by a more easily computed checksum value.

In this protocol, scan lines are grouped into packets which are then fragmented into ATM cells. The

size of the packet is user-programmable.

The Vidboard is capable of generating video faster than some workstations can process it. In order

to avoid overwhelming the workstation network interface with video data, the Vidboard implements

tra�c shaping. Video is sent in small bursts separated by delays, during which the burst is processed

by the workstation. The workstation requesting the video sets four parameters in the video request

command cell to tune the video stream's tra�c characteristics to its needs.

As part of the protocols for controlling the Vidboard from across a network, a scheme was developed

which dynamically varied the Vidboard's frame rate during a video session. The Vidboard is placed

in a constant video capture loop and is sent requests for frames as they are needed. The application

can vary the rate of requests to match its ability to process video. As an example, a video-in-a-

window application gracefully halves its rate of requests as a second video-in-a-window is started

and the two applications have to share the available machine cycles.

3.6 Application-oriented Signaling

Each application in the VuNet is responsible for opening, maintaining, and closing its own connec-

tions. This is done in a \wormhole" fashion by way of ATM control cells embedded in the cell

data stream. Applications use library functions that access a shared �le and execute an allocation

algorithm that prevent nodes from stealing other nodes' VCIs. Background processes can be used

to verify link tables and refresh connections when necessary, such as in the case where a link card

has been power cycled. In order to maintain table consistency when the network is recon�gured, it

is possible to run topology daemons that allow each host to discover the network topology.

3.7 The VuSystem

The VuSystem[14, 15] is a programming system for the software-based processing of audio and

video data. The VuSystem was designed to run on ordinary Unix workstations which have no

speci�c support for the manipulation of multimedia data. Because the VuSystem includes an easy

to program and extensible in-band processing component, it is uniquely suited to the development

of applications that perform intelligent processing of live media.

VuSystem applications [13] combine intelligent media processing with traditional capture and display.

Some process live video for more responsive human-computer interaction. Others digest television

broadcasts in support of content-based retrieval. Both classes demonstrate the utility of network-

based multimedia systems that deliver audio and video data all the way to the application.

Examples of some VuSystem applications include:

The Room Monitor processes video data from a stationary camera in a room. It processes the

live video to determine if the room is occupied or empty, and records video frames only when

activity is detected above some threshold. It produces a �le containing a series of video clips

that summarize the activity in the room. A video browser is used to view the segments.

15

Figure 11: The whiteboard program.

Figure 12: The sports browser.

16

The Whiteboard Recorder keeps a history of changes to an o�ce whiteboard. It works by taking

video from a stationary camera aimed at the whiteboard and �ltering it. By following a simple

set of rules, the �ltering distills the video into a minimum set of images. A browser (Figure

11) can be used to view the saved images.

The News Browser provides interactive access to television news articles. CNN Headline News is

automatically partitioned into segments and saved on disk at regular intervals. The stories are

viewed with a video browser program. News stories that are closed-captioned can be retrieved

based on their content.

The Joke Browser records late-night talk show monologues, and segments them into jokes by pro-

cessing the closed-captioned text. It extracts information from a recorded monologue through

the analysis of closed-captions. In addition to the text of the jokes, the captions contain hints

to the presence of audience laughter and applause. A joke parsing module groups captions

into jokes.

The Sports Highlight Browser records and segments a nightly sporting news telecast into a set

of video clips. Each clip represents highlights of a particular sporting event, and the clips can

be browsed as shown in Figure 12. This application generates its annotations through the

template matching of scoreboard graphics.

While many VuSystem applications do not require a high speed ATM network in order to function,

they were easily layered on top of the VuNet. Performance of the applications using VuNet based

devices equaled or exceeded performance using specialized video and audio capture devices.

4 Experiments and Results

4.1 The VuNet

Eight VuNet nodes were deployed at MIT, Bellcore and the University of Pennsylvania over a period

of three years. Each VuNet node consisted of a four or six port switch equipped with a link (or

AVlink), one to three Vidboards, and one or two host interfaces. The nodes at MIT were typically

connected in a ring, with a stub protruding from the ring which connected, through Aurora and

two AVlinks, to a similarly-out�tted VuNet node located at Bellcore in Morristown, NJ, then at

University of Pennsylvania, as shown if Figure 13. ViewStation applications required no modi�cation

to operate over Aurora.

In total, 8 switches, 11 network-based video appliances, 11 host workstations and a suite of multi-

media applications were deployed to demonstrate seamless DAN/LAN/WAN internetworking.

The following subsections describe some results achieved with the VuNet hardware, using as the

primary example, the Vidboard client connected to the VuNet running the VuSystem software.

4.1.1 Local VuNet Performance

Each switch functioned at a speed of 700 Mbps per port, per direction, for an aggregate capacity of

2.8 Gbps for the four ports switches and 4.2 Gbps for the six port switches. Individual switches were

run at over 1.5 Gbps per port, for an aggregate capacity of 9.0 Gbps, though this speed was not

used in deployed switches. Within the local ATM ring, the inter-switch links operated at 500 Mbps.

4.1.2 AVlink/Zebra Performance

Seamless interconnection really works. Despite the lack of a common physical layer standard, the

integration of the di�erent ATM networks was performed quite easily; cells from the VuNet were

17

Sunshine

Switch

Camera
VuNet
Switch

DEC
Alpha

Aurora SONET
Facilities

Camera
VuNet
Switch

DEC
Alpha

VuNet Switch
at MIT

To More VuNet
Switches

Remote VuNet Switch
at Bellcore

Figure 13: Wide-area con�guration.

routed via the Sunshine switch and accepted by the VuNet node on the other end. The only issues

then become connection management in the separate conjoined networks. The VuNet used cell-based

signaling whereas the Sunshine switch used out-of-band connection management. However, this was

bridged by allowing Sunshine to switch the VuNet connection management cells.

In a separate experiment, the AN2 switch was attached to the VuNet as a stub o� the main ring.

On another port of the AN2 switch was a connection to the Aurora/SONET facilities, using an AN2

line card which generated 4 OC-3c channels and a Bellcore multiplexor board which generated an

OC-12 channel from four OC-3c channels and vice-versa. Since only one AN2 switch was available,

two hosts on the local VuNet ring were connected using a loopback topology. Software was written

for the line card processor which allowed it to support the in-band connection management used

by the VuNet. Using this con�guration, VuNet hosts were able to set up connections through each

of the OC-3c channels, which they could use as stripes. Code could then be written to implement

various striping schemes outlined by our reference model.

4.2 Host/Network Adapters

The work on the host adapters spanned four generations of host workstations. Initially, the VuNet

hosts were DEC 5000/200 (25 Mhz) and later 5000/240 (40 Mhz) workstations based on the MIPS

R3000 processors. During the middle of the project, all the workstations were upgraded to 133 MHz

DEC 3000/400 Alpha workstations. At the end of the project, one 200 MHz DEC 3000/800 Alpha

workstation was acquired and connected to the VuNet.

18

4.2.1 VupBoard

Using the VuSystem software, the performance of the VupBoard was measuring using video generated

by a Vidboard. The VupBoard driver was a very processor-intensive process as it required making

TURBOchannel bus reads for getting data from the network.

While this contributed to the processor load, hence slow interface speed, while reading and writing

to the network, the primary limitation of the VupBoard was due not to this, but to the interrupt-

driven nature of the board. Interrupt service latencies were not guaranteed in any way, causing data

to be potentially lost in the bu�ers of the switch when the device was not able to be serviced while

large amounts of data arrived.

Initially, with the DEC 5000, 10 Mbps of data was delivered to the application level. Upon upgrading

to the DEC 3000/400, 15 Mbps of data was delivered to the application. As the VupBoard was phased

out soon after introduction of the VudBoard, no numbers are available for the DEC 3000/800.

4.2.2 VudBoard

Using an application which reads and writes data to VuNet sockets along with the standard VuSystem

applications, we tested the performance of the current VudBoard.

When a packet is queued for transmission, the packet segmentation occurs before the resulting page

can be moved cell-by-cell over the TURBOchannel to the VudBoard. The peak data transmission

of a single page occurs at 232 Mbps. However, since we can only DMA one page at a time (due to

a bug in the DEC ASIC used), we must process an interrupt for each page to be transmitted. The

performance achieved for transmitting many pages is 67 Mbps. On the receive side, 512 Kbit bursts

at 232 Mbps can easily by processed by the VudBoard. The bottleneck on the receive side, however,

is the host processing.

When data arrives at the host interface, it must contend for the TURBOchannel bus to transfer its

data into host memory. Due to bus arbitration, grant latency, and a wait period between successive

transfers, the host interface is unable to write to memory at a rate greater than 232Mb/sec. However,

since the host cannot process data at this rate, it cannot be sustained inde�nitely. The maximum

sustained rate at which data could be transferred across the bus was 131 Mb/sec.

When host processing is factored in and the data is reassembled and delivered to the application

level, we �nd that we can inde�nitely sustain a data rate of 100.7 Mb/sec of assembled data packets

delivered to the application memory space. The device driver must process and reassemble raw ATM

data at 111 Mb/sec in order to sustain this packet data rate to the application level. The actual

data transfer rate over the TURBOchannel bus is actually 134 Mb/sec, but this re
ects transfer of

64 bytes per ATM cell.

Performance of the VudBoard is summarized in Table 1, along with VupBoard performance numbers.

Throughput measurements are made while running the full suite of ViewStation software within the

UNIX operating system.

Data delivered to the application level

(Megabits per second)

Interface PIO DMA DMA/Improved Driver

DEC 5000/200 10.4 15.4

DEC 3000/400 (133 MHz) 14.7 34.4 66

DEC 3000/800 (200 MHz) 100.7

Table 1: VudBoard performance measured by data delivered to application level.

19

4.2.3 Coprocessor Simulations

A coprocessor chip for the VuNet was designed and fabricated. Though it was not integrated into

a MIPS-based workstation, it was partially debugged to the extent that cell registers could be read

and write data using our logic analyzer/signal generator. A full suite of simulations were performed,

and the following describes our experiments and results.

To measure the throughput attainable by the coprocessor host interface, we performed timing exper-

iments on a
oating point coprocessor. The processes' view of the coprocessor interface essentially

consists of coprocessor general purpose registers and coprocessor control registers. These are avail-

able on a
oating point coprocessor as well, and since the timing of all coprocessors (whether
oating

point or network interface) with respect to the main processor in the R3000 architecture is the same,

the results we obtained can be expected with the network interface cell coprocessor also.

The workstation con�gurations evaluated were a DECstation 5000/200 and a DECstation 5000/240.

We ran a series of experiments in which the Interface Model, Transfer Direction, Cell Oper-

ations, and Processor Speed were independently varied. The results are summarized in Tables 3

and 4. Some of the simulations present optimistic results that provide an upper boundary on the

burst performance that could be achieved by the traditional interfaces. For example, our DMA

values capture the data transfer rate between memory and the registers. Thus, we assumed that the

DMA transfer has occurred at little interference to the processor, and the rate of this DMA transfer

is much higher than the rate at which data can be accessed by the processor.

Name Function

Vup Programmed I/O VupBoard interface. For receive routines, this

consists of loads from TURBOchannel to processor registers, fol-

lowed by stores into memory. For transmit, it consists of loads

from memory to the processor registers, followed by stores to the

TURBOchannel.

Vup1 Same as Vup, except with no header byte swap.

Cop1 Similar to VUP, using the coprocessor approach.

Cop2 For receive, move header from coprocessor to processor registers.

Then store body directly from coprocessor register �le to mem-

ory. For transmit, load header into CPU registers, and load body

directly from memory to coprocessor registers.

Cop3 In the receive direction, store entire cell directly into memory. For

transmit, load entire cell directly frommainmemory to coprocessor

registers.

Cop4 Same as Cop1, except with no header byte swap.

Cop5 Same as Cop2, except with no header byte swap.

Cop6 Same as Cop3, except with no header byte swap.

DMA In the receive mode, load data that has already been stored into

mainmemory by DMA. In the transmit mode, store data into main

memory to be read by the network through DMA.

DMA1 Same as DMA, except with no header byte swap.

Table 2: Interface models

� As expected, the simulated numbers predicted a throughput higher than observed. In the

programmed I/O path, the receive and transmit throughput suggested by the index numbers

are 89 Mbps and 166 Mbps. This can largely be accounted for by the fact that we assumed

that TURBOchannel writes and reads took 3 and 8 cycles respectively. Some logic analyzer

experiments conducted by Chris Lindblad and Dave Tennenhouse indicate that the read per-

formance on the TURBOchannel is 14 Turbo-cycles. This changes our predicted value in the

20

Direction Vup Cop1 Cop2 Cop3 DMA

DECstation 5000/200 (in Mbps)

Receive 57.2 210.3 292.4 304.4 176.2

Transmit 79.7 104.6 120.7 124.9 96.3

DECstation 5000/240 (in Mbps)

Receive 39.1 250.5 314.6 368.2 201.8

Transmit 100.4 187.9 226.1 247.2 151.4

Table 3: Peak Throughput (with header byte swap)

Direction Vup1 Cop4 Cop5 Cop6 DMA1

DECstation 5000/200 (in Mbps)

Receive 63.1 337.1 512.6 535.8 239.3

Transmit 91.4 127.6 150.3 152.3 116.0

DECstation 5000/240 (in Mbps)

Receive 40.5 373.6 529.5 559.4 287.4

Transmit 105.2 243.6 299.8 302.5 180.3

Table 4: Peak Throughput (without header byte swap)

receive direction to 48 Mbps, which is much closer to the observed value. Unfortunately, no

experimental values are available for TURBOchannel write direction.

� The observed throughput in the DMA1 case are 290 Mbps and 196 Mbps, in the receive and

transmit directions, respectively. These values take into account the entire path of data, all

the way from the network DMA device, to the correct location in memory. The Bellcore

Osiris board [7] runs at 480 Mbps and 384 Mbps. However, these �gures are for the direct

path between the DMA device and memory, and do not take into account the copying of this

data into some �nal location in memory. Our predicted throughput �gures (294 Mbps and

268 Mbps), are limited by the memory subsystem, rather than the throughput between the

memory and DMA device. Thus these provide an upper bound on the overall performance

achievable, if a DMA board, such as the Bellcore board, were used. Even if the DMA board

could transfer at higher rates into memory, the total throughput would be bound by the

performance of the memory system.

Direction Predicted Observed

Path Rate Model Rate

Receive IO1 89 Vup1 40.9

IO3 294 DMA1 290.7

REG1 486 Cop4 379.7

Transmit IO1 166 Vup1 111.9

IO3 268 DMA1 196.0

REG1 358 Cop4 259.7

Table 5: Predicted vs. Observed Throughput (in Mbps)

21

4.3 Vidboard Performance

The high speed of the VuNet and the properties of its client interface make it so that the tra�c

characteristics of a data stream injected at one point in the network are preserved as the stream

arrives at its destination. This property was exploited to tailor the tra�c characteristics of a video

stream generated by the Vidboard to the needs of the workstation receiving it.

Our software environment processes multimedia information in small bursts. Video frames are

segmented into transmission frames (t-frames) which are transmitted in bursts separated by delays.

A pseudo-AAL5 segmentation protocol [16] is used to ship the t-frames. The stream is shaped using

the following parameters: number of scan lines per t-frame (LT), number of cells per burst (CB),

interburst delay and interframe delay. These parameters are used to shape the video stream to

match the burst absorption timing properties of the workstation. These properties are related to

the latencies of the interrupts and routines involved in processing a burst of data.

scan lines per t-frame interburst

(480 scan lines = 1 frame) delay

cells per burst 4 16 120 480

(14 cells = 1 scan line)

(frames/s) (us)

14 7.7 8.7 9.1 9.5 150

28 9.1 10.0 10.5 11.7 240

42 9.0 9.5 10.5 11.1 390

56 9.5 10.0 10.5 11.1 510

Table 6: E�ects of tra�c shaping on frame rate

Video type

Picture size Black and white Dithered Color

frames/s (Mbits/s) frames/s (Mbits/s)

640x480 15.0 (37) 4.3 (10.5)

320x240 30.0 (23) 15.0 (9.2)

160x120 30.0 (4.6) 30.0 (4.6)

Table 7: Single Vidboard to Alpha frame rates.

The e�ects of tra�c shaping on the frame rate performance of a video display application are reported

in Table 6. The type of video stream used is 640x480 8-bit monochrome and the workstation used

is a DEC 5000/200 using a VupBoard. The table shows the frame rate achieved for di�erent values

of the CB and LT parameters. For each pair of values, the delays are found that result in the best

frame rate. The results show the intuitive conclusion that larger bursts and t-frames correspond to

higher frame rates. Since the workstation takes a single interrupt to read in a burst, larger burst sizes

mean less interrupt overhead over the course of a frame. The bene�ts of larger burst sizes decrease

as the bursts become larger because the interrupt overhead becomes insigni�cant in comparison to

the time spent reading the burst during the interrupt. Larger t-frame sizes increase the frame rate

because less t-frame processing occurs.

Using the protocols described in Section 3.5.2, experiments have been conducted to determine the

video frame rate which could be achieved between one or more Vidboards and an Alpha workstation

displaying video with audio. Di�erent types of video experience bottlenecks in di�erent parts of

the system: the Vidboard, at any resolution and depth, is limited by the 30 frame per second rate

of the camera signal; at full resolution, the relative timing of the current host software and the

Vidboard limit the performance of a single stream to less than the full frame rate; eight bit color

22

0.1

1

10

100

640x480 320x240 212x160 160x120

M
ill

is
ec

on
ds

 p
er

 F
ra

m
e

Frame Size

VsPuzzle DEC 3000/400

VsPuzzle SparcStation 10/512

VvEdge DEC 3000/400

VvEdge SparcStation 10/512

Figure 14: Processing Times of Representative Filter Modules.

puzzle edge

frame size frames/sec frames/sec

640x480 12 6.67

320x240 30 25

212x160 15 15

160x120 30 30

Table 8: Rates of VuSystem Applications.

video streams are limited by the Vidboard's dithering �rmware; and with twenty-four-bit color video,

the bottleneck is a host software module that dithers the pixels for display on 8-bit screens.

The aggregate video rate to a single workstation, achieved with concurrently active Vidboards, was

about 74 Mb/s. This is equivalent to full resolution (640x480) 8-bit black and white video at 30

frames per second displayed on the host display. The limiting factor was the alpha in that the

segmentation, display and other processing required consumed the processor. In the case of color

streams, dithering was the limiting factor.

4.4 VuSystem

Our experience with the VuSystem has revealed it to be a good platform for the investigation of

concrete ways that computers may become more responsive to their human users. Users of the

VuSystem have developed applications that assist users by performing various tasks that require the

analysis of live video [13].

The VuSystem has also been used to explore the potential of media processing applications to support

content-based retrieval of pre-recorded television broadcasts. VuSystem-based media browsers use

textual annotations that represent recognizable events in the video stream. These annotations are

analyzed and processed to create higher level representations that may be meaningful to a human

user.

We performed a series of throughput experiments to measure the processing rates of the Exercise

and Edge �ltering modules. The Exercise module walks over each pixel in each video frame to

simulate a variety of processing operations. It was chosen as a baseline. The Edge module detects

23

and highlights edges within each frame. It was chosen as an example of an algorithm we use in

practice. Both modules were written in C/C++ and not painstakingly optimized; comparable rates

may be expected from the straightforward coding of other modules.

Both the DEC 3000/400 and SPARCstation 10/512 were found to be able to process video at up to

15 Mpixels per second, regardless of frame size. They may perform edge detection at better than

live rates for 320 x 240 x 8 bit frames. This shows that visual processing of live video in software is

viable. We expect further improvements with future advances in workstation technology.

Module DEC 3000/400 SPARC 10/512

ms/frame (fps) ms/frame (fps)

Exercise 5.0 (200) 4.5 (220)

Edge 18 (55) 20 (50)

WindowSink 8.3 (120) 10 (100)

FileSource 31 (32) 38 (26)

Vidboard 33 (30) {

Table 9: System Throughput

The rate at which video may be passed to the X server for display was measured with a WindowSink

module. The FileSource module was used to measure how quickly video could be sourced from a

local SCSI-II disk. The Vidboard module was used to read live video via a VuNet [11] interface from

a Vidboard [1] video capture peripheral. This last module was available only on the DEC 3000/400s.

Table 9 shows the observed rates for 320 x 240 x 8 bit frames, and includes rates for the Exercise

and Edge modules for comparison.

The WindowSink module was shown to be capable of processing video at over 100 frames per

second. Video can be passed to a windowing system, in this case the X Window System with the

XShm shared memory extension, and displayed without writing directly to the frame bu�er. On

the multiprocessor SPARCstation 10/512, the operating system was able to achieve a considerable

speed-up over a single processor SPARCstation, presumably by running the X server process in

parallel with the video application.

The FileSource and Vidboard modules were observed to process video at approximately 30 frames

per second. This is a lower rate than that for the WindowSink and Exercise/Edge modules, but the

�gures are less conclusive.

The Vidboard result exceeded the frame rate of live video and is primarily bounded by the structure

of the network interface. It again serves a lower bound.

The rates of Exercise and Edge �ltering modules, from 50-200 frames per second, compared favorably

with those of the sources and sinks. We consider this a positive result for our approach, since

the incremental cost of processing video does not dominate. Applications such as live video edge

detection and display run at approximately 15 frames per second.

VuSystemmodule-level dispatching is non-preemptive, and depends on the Unix process scheduler for

dispatching operations. To verify that this scheduling system is adequate for many perceptual-time

processing tasks, we measured the exact time that Timeout member functions run. We instrumented

the system to compare the actual time at which a Timeout is called to the time for which it was

scheduled. If the VuSystem performs well, the di�erence between the actual time and the scheduled

time will be slight. We recorded this Timeout precision for runs of the vsdemo program. Four

runs were taken, each indicating Timeout precision under di�erent system loads, created by running

multiple concurrent vsdemo processes.

Figure 15 shows a histogram of the percentage of Timeout calls, as a function of the number of

milliseconds after the scheduled time that Timeout was called. It has been truncated at 20ms.

24

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
er

ce
nt

ag
e

O
f T

im
eo

ut
 C

al
ls

Milliseconds From Scheduled Time

One vsdemo process

Two vsdemo processes

Three vsdemo processes

Four vsdemo processes

Figure 15: Timeout Precision Histogram.

one two three four

process processes processes processes

5ms 98.9% 89.2% 86.4% 69.8%

10ms 99.9% 96.0% 91.5% 77.6%

15ms 99.9% 98.8% 94.3% 82.8%

20ms 99.9% 99.3% 96.7% 85.7%

Table 10: Timeout Precision.

These measurements were made on the Digital DEC 3000/400, where the precision of the time-of-

day clock is one millisecond.

Table 10 indicates the cumulative percentage of Timeout calls made within 5ms, 10ms, 15ms, and

20ms of target, as a function of the number of multimedia processes running on the Digital DEC

3000/400. The chart shows that almost all of Timeout calls were made well within the universally

accepted 15 ms of jitter introduced by the \3-2 pulldown" process used to convert motion pictures to

NTSC video. The chart also shows that precision of timeout calls gracefully degrades with increased

system load.

5 Lessons Learned and Concepts Demonstrated

The TNS group's testbed activities covered the development of the VuNet, an ATM-framed local

distribution system; research on the design of host/network adapters; and the demonstration of

network-based multimedia applications.

Through deployment of the VuNet infrastructure, the seamless integration of the wide-area Aurora

facilities, and the use of the VuSystem software, we were able to demonstrate a wide variety of

concepts and draw lessons concerning:

� The distinction between cell switching and ATM layer functions

� The striping of ATM transmission facilities for seamless integration

� The integration of ATM-based Information Appliances

� The host interface design space

� The tra�c implications of computation-intensive multimedia applications

25

5.1 Cell Switching and Desk Area Networking

By simplifying the switch design and integrating certain functions into links and end nodes, we

e�ectively separated the cell switching functions from the ATM level cell relaying functions. This

was an important distinction which may prove useful in a number of ways.

Minimal hardware functionality in the switch is an important consideration for a local area ATM

network. The switches need not perform complex functions such as those incorporated into the

Sunshine switch. In a desk area, only a small number of switch ports need full ATM functionality.

For example, serial to parallel conversion and VCI mapping are not required by directly attached

devices; they are needed only at switch ports supporting inter-switch links.

Although current ATM standards intertwine cell relaying and ATM level functions, we suggest that

the relevant standard bodies (ATM Forum, ITU-T) consider dividing the present ATM layer into cell

switching and ATM functions. The former could then be used as the basis of a universal I/O system

based on cell switching. Such an approach would unify the haphazard and expensive collection of

connectors found on the backs of existing PCs and workstations. While some of the devices attached

to such an I/O system might be fully ATM compliant, others, such as keyboards, mice, etc., may only

implement the cell level functions. These non-ATM devices could use the features of cell switching

without the complexity of VCI mapping, etc.

5.2 Seamless ATM and Striping

The AVlink demonstrated that one advantage of using ATM in both the local- and wide-area net-

works is the simplicity of interconnecting them. The AVlink only needs to make minor cell changes

at the ATM and physical layers, which can be done as the cells pass from VuNet to Aurora. The

design of the AVlink allows the LAN/WAN boundary to appear seamless to clients on either side of

the interface. Hence, applications which worked within the local area worked just as well over the

wide area.

The e�ort to solve the skew problem caused by the SONET facilities highlights striping as an

important architectural issue. There is an innovation mismatch between local area networks and the

wide area facilities provided by the telephone carriers. Telephone companies will only upgrade their

facilities when the aggregate demand of their customers is large enough to recover their investment.

Local area networks cost much less to upgrade and maintain than the wide area facilities. Aggressive

users of LANs who want a leading edge wide area connection �nd themselves in a position where

they are unable to get the amount of bandwidth they need or want at a cost that is acceptable.

This coupling of technology in the two domains is a barrier to innovation and migration to new

equipment. Network striping is a method to decouple the selective adoption of technology in the

local area from its wholesale deployment in the wide area.

Striping at the ATM layer is particularly attractive as it permits us to implement an end-to-end

striping scheme but still derive the low level bene�ts of using a small, �xed-size striping unit. Striping

at a higher layer reduces the range of upper layer protocols and applications that bene�t. Striping at

lower layers prevents us from implementing an end-to-end solution. Whereas most previous striping

e�orts have focussed on providing increased bandwidth for all tra�c over a single hop, there is a

need for end-to-end striping solutions that can provide increased bandwidth to the aggressive users

who require it and that are not dependent on the deployment of striping support at nodes within

the network. End-to-end methods that are (responsive to but) independent of the characteristics of

the underlying physical layer will adapt as the equipment in the network is gradually upgraded.

26

5.3 ATM-based Information Appliances

A number of important conclusions, concerning the properties of a network-based video capture

module, can be drawn from the Vidboard research. The ability to temporally decouple video from

its television source combined with a closed-loop control model facilitates the integration of video into

the virtual-time computing world. Video service can be adapted to the available system resources

and degrades gracefully as resources become scarce. A second conclusion is that a capture module

needs to be able to accomplish tasks related to the distributed nature of the environment and not

only capture/transmit video. Task examples are network transport, tra�c shaping and distributed

control.

With the trend towards integration of video into the digital domain, research groups are devel-

oping cameras which produce video in a digital format [18] that will come to replace television

camera/capture board systems for computer video applications. Similarly, with the trend towards

distributed computing, video capture systems which connect directly to a network are becoming

desirable. A digital network camera would consist of a lens, a CCD array, and circuitry for network

interfacing, distributed control and frame bu�ering. The Vidboard architecture could provided the

basis for this camera of the future.

5.4 The Host Interface Design Space

A thorough approach to host interface design can be taken by answering �ve questions|the division

of protocol processing between the host and the interface board, the method of data transfer, the

role of memory, the point of attachment to the host's memory hierarchy, and the synchronization

means by which the processor and interface coordinate their actions. Most of the previous work on

host interfacing, including comparative studies of di�erent approaches, has focussed on one of these

issues at a time. Furthermore, there has been relatively little work concerning the role of memory.

The above questions should be answered within the context of a speci�c operating environment.

Speci�cally, it is important to consider whether or not the processor is expected to touch all the

words of the network data. For example, a �le server may move data (via its memory) between its

disk and network interfaces without moving the data to or from the processor registers or caches.

Similarly, applications receiving network data are often blocked, leaving the processor available for

protocol processing, whereas a server might have other clients, not waiting on the incoming data,

that could make better use of the available cycles.

Although the TNS group's activities considered many aspects of interface design, we made a con-

scious e�ort to avoid the issue of hardware-based segmentation and reassembly(SAR). Other groups

within Aurora (Bellcore, Penn, Arizona) were actively investigating this question and we did not

want to duplicate their e�orts. Accordingly, our results and lessons should be viewed as comple-

mentary to theirs, rather than competitive.

5.4.1 Protocol Processing and Data Transfer

Using the VudBoard, we explored the design and use of a simple DMA interface to a gigabit network.

The primary functions of the interface and the driver software - are to move, process and deliver

data. While our host-based SAR approach involves considerable copying and processing on the

part of the host, we �nd that reduced complexity interfaces (RCI) can deliver good performance at

reasonable cost.

Changes to our driver's API, such as Arizona's FBUFs and Penn's bu�er strategy, could be used to

avoid one of the copies. An important question is whether or not to adopt a hardware-based SAR

approach to avoid the other copy. The answer to this question will depend on a number of factors,

including cost and the environment in which the host will be used. In many cases, especially server

27

VuNet Workstation

buffers memory

driverVudBoard

kernelInterface

Virtual Buffer

Figure 16: The memory distributed throughout the various parts of the system can be thought of

as a large virtual bu�er.

environments, we would opt for the reduction in memory copy tra�c made possible by our partners'

work on hardware-based SAR.

Nonetheless, the VudBoard's simple approach, even without an FBUF-style API, achieves a level

of performance that is compatible with commercially available (OC-3) switches. Furthermore, the

relative performance of memory subsystems, which had been rather stagnant, is now improving,

partly in response to lessons learned within the testbeds. As memory subsystems continue to improve

{ driving down the cost of the SAR-imposed memory copy { gigabit rate host SAR may become

viable, possibly by the time OC-12 switches are widely available.

5.4.2 The Role of Memory

The design of the VudBoard and its associated device driver demonstrates an important lesson

concerning the role of memory. Since the bu�ers of the switch port are limited to a small number

(256) of cells, the interface must maintain a nearly continuous
ow of cells into host memory. In

practice, the switch and host bu�ers are concatenated together by the interface and can be thought

of as one large \virtual bu�er," as shown in Figure 16.

The interface and device driver are designed to preclude lapses that would cause cells to be lost at

the network boundary. Interestingly enough, it was this consideration rather than raw throughput

that drove us towards a DMA based design { one in which the transfer of cells would continue while

the processor was performing other tasks. The only time that cell transfer is interrupted is for brief

periods, measured in tens of instructions, during which the device driver updates the control registers

(especially the bu�er pointers) of the interface. Cells arriving during these periods are absorbed by

the switch bu�ers.

In retrospect, we are now more sensitive to the roles that various bits and pieces of memory play.

The switch output bu�ers absorb bursts of cells from multiple sources and are also used to absorb

cells while the host is performing DMA maintenance; the memory on the interface board (e.g. the

FIFO of the TcIA chip) is used to decouple the timing of the host from the network; and the kernel

bu�ers are used to hold large bursts while the host is processing the data. Ultimately, the caches

feeding the processor registers decouple the timing and throughput of the processor from that of the

memory subsystem.

28

Processor

Registers

Cache

Memory

I/O

I/F

I/F

I/F

I/F

Network

Network

Network

Network

T

T

T

T

T
T

T
T

T
T

T
TPR

RP

RC
CR

CM
MC

MI
IM

RI

IR

RM

MR

Figure 17: Model Connection Architecture

5.4.3 Network Point of Attachment { Coprocessors and Temporal Decoupling

A study of modern RISC architectures reveals a remarkable similarity in the organization of the var-

ious modules of the memory and I/O system. To focus attention on the relatively under-emphasized

question of the choice of the point of attachment, we have developed a model of the memory-I/O ar-

chitecture of a workstation which allows us to identify potential \plug-points" for network interfaces.

This \Model Connection Architecture" is shown in Figure 17. The �gure re
ects the functional re-

lationship of the various modules of the memory hierarchy, and does not necessarily describe the

physical placement of the various modules.

In Figure 17, we see the di�erent modules that a network adaptor can emulate, to make the network

appear to reside at the di�erent levels of the architecture. Thus, the network can be made to appear

to reside in an I/O device of the workstation, in main memory, in cache4, or in registers. Di�erent

issues arise when the network adaptor emulates each level.

Within Aurora, the I/O and register (coprocessor) approaches were investigated. Other projects

such as Alewife [2] have investigated pseudo-caches, and yet others have experimented with pseudo-

memories.

Although the coprocessor approach appears attractive, we learned that it is only suited to a limited

range of environments, such as single task embedded applications. In these environments, the

receiving or transmitting application is always active and the processor registers are available to

perform timely cell processing. In e�ect, the processor is synchronized with the cell streams arriving

and departing through the coprocessor interface.

In a multi-tasking environment, applications run in timeslices during which bursts of data are gener-

ated and/or processed. During these bursts, the applicationmay process data at rates faster than the

4Most systems have several levels of cache

29

network. Between timeslices, the network runs faster than the application. For these non-embedded

applications, approaches such as DMA, that leverage the burst absorption properties of the memory

subsystem, are more appropriate than a coprocessor.

The broader lesson that we have learned is the importance of temporal decoupling, i.e., allowing var-

ious system components to manipulate data at di�ering rates and granularities. Memory subsystems

(including caches) have been carefully designed to absorb bursts and handle speed and granularity

mismatches.5 Therefore, it is our current belief that general purpose interface designs should not

bypass the memory subsystem.

5.5 VuSystem Applications - Implications for Network Tra�c

Although recent network and multi-media research has paid considerable attention to the support

of long-lived streams of continuous tra�c, we believe that the network tra�c generated by media-

intensive applications will be dominated by its available bit rate (ABR) components. Our chain of

reasoning is as follows:

� Actual multimedia capture tra�c is not continuous, but instead is periodic bursts of cells.

Data is captured at a low average rate, but transmitted in packets at the available bit rate.

Furthermore, our closed-loop capture approach [1] allows us to adapt to the available bit rate

during video capture. This type of feedback has long been used in video displays.

� Intelligent applications might have radically di�erent display tra�c patterns. For example, a

security monitoring programmight only update the display when it recognizes suspect activity.

In e�ect, much of our display tra�c is of the X-windows variety.

� Through increased bu�ering at capture and display, we relax the temporal constraints on data

transfer, thereby allowing available bit rate surpluses to o�set shortages.

� For every bit transferred over the network for capture and display, there is a multiplier e�ect

| many more bits are transferred in support of storage and media-intensive processing. This

tra�c is totally decoupled from the real world, since our �le servers and media processing

programs are decoupled from real-time capture and display phenomena, such as sensors and

phosphor.

The impact of the technology curve on the �nal two points is signi�cant. Declining memory prices

will lead to larger capture and display bu�ers. Similarly, exponential growth in processor and

network capacity will yield increasingly intelligent applications that have larger multiplier e�ects.

Although some continuous bit rate (CBR) and predictable variable bit rate (VBR) components may

remain they will be relatively insigni�cant.

Table 11 categorizes the network usage for the capture and browsing components of the ViewStation

applications we have developed. The table indicates the video data format, network tra�c type,

bits transferred, subsession duration, and subsession frequency for example application components.

For application components that pass data in periodic packet-trains for long periods of time, the

number of bits transferred is indicated per second. Otherwise, the number of total bits transferred

is indicated. We de�ne a subsession as a single transfer of a video segment. One program session

could include many subsessions. For example, a Joke Browser session consists of a subsession for

each joke replayed.

Historically, as computer networks have increased in capacity, tra�c becomes burstier. Tra�c

patterns are bimodal, with the bulk of the data transferred in a relatively small number of large

bursts. Over time, the size of the large bursts continues to grow, and we expect this pattern to

continue. The video server of the future will closely resemble the �le server of the present | but the

units of transfer will be measured in gigabytes instead of kilobytes and megabytes. Consequently,

5The VudBoard design, in which we pour network data to / from memory leverages this burst absorption property.

30

Component Video Network Bits Duration Time

Data Tra�c Transferred of Between

Format Type Subsession Subsessions

Room Monitor

capture raw periodic 6 Mb/s days -

storage processed �le 100 Mb seconds minutes

retrieval processed �le 100 Mb seconds seconds

display X protocol periodic 6 Mb/s seconds seconds

Whiteboard Recorder

capture raw periodic 600 Kb/s days -

storage 1 frame �le 600 Kb 1 frame minutes

retrieval 1 frame �le 600 Kb 1 frame seconds

display X protocol interactive 600 Kb 1 frame seconds

Video Rover

capture raw periodic 6 Mb/s minutes minutes

display X protocol periodic 6 Mb/s minutes minutes

News Browser

capture raw periodic 6 Mb/s 1/2 hour daily

storage processed �le 10 Gb 1/2 hour daily

retrieval processed �le 500 Mb minutes minutes

display X protocol periodic 6 Mb/s minutes minutes

Sports Highlights

capture raw periodic 6 Mb/s 1/2 hour daily

storage processed �le 10 Gb 1/2 hour daily

retrieval processed �le 100 Mb seconds seconds

display X protocol periodic 6 Mb/s seconds seconds

Joke Browser

capture raw periodic 6 Mb/s 10 minutes daily

storage processed �le 3 Gb 10 minutes daily

retrieval processed �le 100 Mb seconds seconds

display X protocol periodic 6 Mb/s seconds seconds

Table 11: The network usage classes for some ViewStation application components.

future networks must support tra�c patterns that are at least as bursty as those on present-day

LANs, at speeds and burst sizes that are orders of magnitude larger.

The presence of bursty tra�c may have signi�cant implications with respect to the distribution of

memory bu�ers across the network, and the presence of short subsessions may a�ect the design

of network signaling systems. If network tra�c is fundamentally bursty even at large bit-rates,

then high-speed networks must be designed to support higher peaks in load than if the tra�c is

less bursty. Except for backbone networks that support highly aggregated tra�c, gigabit network

designers should not plan for high utilization, but instead should accommodate highly variable loads,

especially during peak busy hours.

31

Section 2: ANA Group Activities

1 Introduction

The research of the Advanced Network Architecture group had several high level objectives.

The �rst was to demonstrate that workstations, not just supercomputers, could be high performance

components of a fast network. While supercomputers represent a valid target for experimentation,

there are several reasons to concentrate on the workstation. The workstation architecture represents

the form of computing that will have the major economic impact on the market. The supercomputer

will represent, in any generation, that machine too expensive to produce in quantity. So experimen-

tation that leads to advances in workstation performance are most directly relevant to advancing

the state of the art in broadly applicable ways.

The second objective was to show that in order to achieve high performance, it is not necessary

to restrict the network to one technology, such as ATM or HIPPI. While much of the attention at

gigabit rates has been focused on speci�c technology options, our experience with IP has taught

us that no one technology is likely to dominate the marketplace: today we have competing high

speed LAN technology, speci�cally 100 mb/s Ethernet and ATM, and we have ATM, SMDS, Frame

Relay and IP as competing wide area transport o�erings from the telecommunications industry. We

saw no reason why the gigabit arena should be di�erent. We thus proposed, as a core research

goal, to recognize the issues of heterogeneity at high speeds, and to understand if there were critical

issues that needed to be addressed. We desired to show that high performance can be achieved in

heterogeneous networks with di�erent sorts of technology bases combined within them, in the way

the Internet is today built out of di�erent sorts of technologies.

It is interesting to see how expectations have changed since the �rst proposals for Aurora were

drafted. At that time, many people wondered if IP and in particular TCP were suitable for use

at gigabit speeds, and many people thought that gigabit communications implied supercomputers.

During the time of the project, these perceptions were essentially reversed. It became clear that

because most supercomputers had I/O architectures poorly suited to networking and processors

targeted heavily towards numerical computation, advanced workstations could execute network pro-

tocols as fast or faster than these larger machines. Further, most people now assume that once

computers have su�cient processing power and memory bandwidth, IP and TCP will operate at

gigabit rates.

This change in perception caused us to alter the speci�c objectives of our research. For example, at

the beginning of the project, we proposed to build a high speed router, both to further our research

objectives and because it was not clear that people knew how to structure such a device. Later, it

became obvious that the construction of this device would be a waste of time, because commercial

products were proceeding toward the target naturally.

2 Research Goals and Approach

To address these top level concerns, we identi�ed a number of speci�c research areas. We looked at

several aspects of heterogeneous computing, including the performance aspects of interconnection.

We looked at issues of resource management, in particular support for explicit Quality of Service

(QoS) control and approaches to congestion control. We looked at alternative models of protocol

modularity, and alternative models of link multiplexing. We looked, to a limited extent, at issues

of scale in high speed systems. We participated in the testbed e�orts in switch design. Finally, we

constructed a number of experimental devices to evaluate our concepts.

32

2.1 Heterogeneous Interworking

We de�ne heterogeneous network architectures as those which can
exibly incorporate many net-

work and end-system technologies, and which can easily evolve over time as new technologies are

developed. Within the Aurora project, our overall goal was to demonstrate that heterogeneous net-

work architectures are e�ective and appropriate for communication at gigabit rates. We looked at

existing paradigms for heterogeneous interconnect, in particular IP packet forwarding, and assessed

the performance requirements of this task. We then mapped these performance requirements to

possible architectures for a gigabit forwarding element (the gigabit successor to a IP router). Fi-

nally, we proposed a novel approach to organizing protocols, an approach we call Application Level

Framing, or ALF. We hypothesized that ALF might have better characteristics as an approach for

heterogeneous interconnect. We discuss these study areas in the sections below.

In general, heterogeneity is closely aligned with architectural structure and modularity. Systems with

modular organization and well-de�ned interfaces are more
exible and evolvable than those designed

as a single, uni�ed entity. However, these otherwise desirable principles may introduce signi�cant

performance limitations if not carefully executed. A goal of our work was to carefully di�erentiate

between fundamental performance limits and those created as an artifact of poor structuring, and

to identify new structuring abstractions appropriate for use in high-speed networks.

As an aid to understanding the real problems of heterogeneous interconnect, we coded a high per-

formance IP forwarder, in order to understand its performance implications, both fundamental and

structural. We measured its performance, and used software tools to assess where the performance

issues lay.

It has been suggested that any use at all of operating system or similar modular abstractions inside

the high-speed forwarding path of a router will introduce unmanageable overhead, and instead one

must implement the forwarding software as stand-alone code or in hardware. To understand this

issue, we explored one operating system, the x-kernel [12], which is specialized for the implementation

of network protocols, but at the same time attempts to provide an abstract interface to key system

services such as bu�er management.

2.2 QoS

An overarching research objective of our group has been the development of models and mechanisms

for the support for Quality of Service. This term is generally taken to mean the capability of a

network to o�er multiple, controlled levels of service, and of an application to request from the

network service which explicitly o�ers the needed values of key performance parameters such as

bandwidth, delay, and loss rate. Our core work in this area includes the study of application

requirements vis a vis traditional network service models, the development of new service models that

the network can present to the application, the development, simulation and implementation of new

algorithms which implement these service models through queue management and packet dropping,

and the development related protocols for setting up resource reservations and for admission control.

Our work in this area is broadly based, combining activities within the Aurora context, collaborative

e�orts within the ARPA-funded DARTnet testbed, and within our local research group. This broad

perspective has enabled us to identify and focus on solutions applicable to a wide range of networking

environments. Our work has led to proposed standards for providing this capability in the IP protocol

family, and in part to the current approach to adaptive bit rate service in the ATM forum.

Within Aurora, our objectives have been the following. First, we wished to determine if any fun-

damental, as opposed to implementation, issues arose from the high speeds involved. Second, since

ATM is a key technology for emerging broadband networks, we wished to apply our overall results

speci�cally to the ATM context.

33

A key issue arose with respect to ATM. While ATM carried the promise of sophisticated QoS sup-

port, the standards at the time did not realize this capability. Rather, they de�ned an interface to

the capability from higher layers, without giving any guidance as to how ATM network elements

might actually support it. This implied the need to develop a framework for management of band-

width within ATM. We approached this by adapting our more general framework to the speci�c

requirements of ATM We then studied our adaptation through simulation, and through the use of

a programmable output port controller board for the Bellcore Sunshine ATM switch, which allowed

us to demonstrate cell-level tra�c management in the ATM portion of the Aurora network.

High speeds imply that the data forwarding path in the router or switch must process a large number

of packets or cells per second; at 622 mb/s the cell rate for an ATM link is over one million cells per

second. This implies that any cell-level processing must be simple and e�ciently implementable.

We thus undertook the speci�c project of tuning our basic QoS control algorithms, which support

a rather sophisticated model for allocation of network bandwidth, for the speci�c case of ATM

forwarding. Our approach was to evaluate the detailed performance characteristics of the algorithm,

and to propose approximations to the exact algorithm that may be more e�ciently implemented.

2.3 Congestion Control

A topic closely related to support for QoS is the problem of congestion control at high speeds,

especially in ATM networks. Two general approaches to this problem are available; hop-by-hop

control and end-to-end control. Our work focused on the end-to-end approach, which is used in the

Internet today.

Congestion control in the IP protocol family is handled primarily by TCP1. TCP contains an algo-

rithm for rate adaptation, based on packet loss as a feedback signal. Early experiments with TCP

over ATM, performed at a number of sites, demonstrated that improper design of the output bu�ers

in the switch were causing cell losses, which interacted with the TCP algorithms to cause very poor

performance. For this reason, we studied the congestion control and avoidance algorithms for TCP,

which might be implemented in the host running the TCP, or perhaps even in the network. Our

approach was based on simulation using highly detailed models of a current best-practice TCP and

of the Sunshine ATM switch.

Current congestion control algorithms in TCP hunt for the correct sending rate; increasing their

sending rate until they encounter an indication of congestion (a lost packet) and then backing o�,

after which they begin again to increase their rate. The current backo� algorithm can reduce the

achieved sending rate to one packet each round trip, which is such a reduction that it can e�ectively

prevent e�ective use of any high speed link. We thus explored a number of modi�cations to the

current implementation practice for TCP, with the goal of improving its e�ective performance over

links of high delay and bandwidth. These were evaluated using our network simulator and real tests

over portions of the testbed and the Internet.

2.4 Alf

Application Level Framing, or ALF, is a proposal to restructure the modularity of network protocols.

There are a number of objectives for this remodularization, but the one relevant to the gigabit

environment was the hypothesis that the breaking of the data into transmission units would be more

e�cient with ALF than with traditional packet switching. In particular, for ATM, the application

data unit, which might be substantially larger than a packet, could be directly broken into cells

rather than being �rst broken into packets.

1This is becoming more and more unacceptable as UDP-based real-time data tra�c grows to be a signi�cant
percentage of total internet tra�c.

34

These architectural ideas were �rst proposed by us in 1990 [4]. We hypothesized a number of

advantages, one of which related to speed. We thought it might be possible to build a faster router

forwarding ALF elements than forwarding IP packets. The reason for this is that the ALF approach

appeared to reduce the number of routing and scheduling decisions needed to achieve the same data

throughput rate.

To better understand the real issues in this approach we reduced the conceptual framework of

ALF to a speci�c technical proposal, which included details such as header formats and forwarding

algorithms.

To validate this speci�cation, we coded the core of ALF, including the operating system support,

in the Unix operating system. The �rst implementation was not targeted towards an aggressive

performance target, but allowed us to understand the issues of state maintenance, the structure of

demultiplexing and so on.

Our experience with this implementation allowed us to construct a performance pro�le for the ALF

forwarding process, which we then mapped on the hardware requirements for a high performance

forwarder.

2.5 Alternatives for Link Multiplexing

A key issue for ALF is the problem of access latency at the switch. The transmission of a large

application data unit over a slow link might delay the sending of a subsequent unit beyond acceptable

limits, especially in the case of data
ows requiring bounded real-time delivery QoS. It is thus

necessary to break the ADU up into link-layer multiplexing elements, such as packets or cells. We

explored an alternative, transmission of integral ADUs, but with pre-emption of the transmission if

a higher priority data unit arrives. This approach permits us to build a system with the transmission

latency of ATM cells, but which has none of the disadvantages of the small cells. We explored this

approach as a way of better understanding the intrinsic issues in interleaving tra�c with di�erent

QoS requirements and di�erent data unit sizes. We proposed a speci�c switch design based on

pre-emption, and performed detailed simulations on this design. By detailed simulation of links and

switches, we uncovered a number of interesting issues, including a data clumping phenomenon that

arises when small and large data units are mixed.

2.6 Large Scale Distributed Systems

While the major focus of the testbed was on speed, we explored issues of scale and decentralization.

We discussed with Bellcore the design of the signaling system proposed for the Sunshine switches,

called Expanse. We installed the package from Bellcore called Touring Machine, both to evaluate

the possibility of using it as an application platform for Aurora, and to understand its basic control

framework.

2.7 Switch Design

While our top-level interests are architectural, architecture must be validated by an understanding

of the technology issues that arise in reducing architecture to practice. We participated in the design

discussions for the Sunshine switch, both to assist in assuring that the switch would be suitable for

the range of intended experiments and to learn about the interplay of design issues in developing

the key network components.

We also developed, as a part of the MIT network simulator, a component modeling the Sunshine

switch, that could form the basis of detailed comparisons between the simulated and real environ-

ment.

35

2.8 Prototyping Platforms

A core component of our experimental program is the development of forwarding and end-node

protocol software, both to understand the structural issues in reducing architectures to practice

and to understand where the performance bottlenecks lie. This objective required the selection and

development of a hardware and software environment for these experiments.

The focus of the testbed generally was on workstations and high-end RdesktopsS rather than on

supercomputers. While we understood that workstations might have intrinsic performance limits

that would preclude operation at a gigabit rates, we felt that workstations were more representative

of the eventual context for high performance networks, that workstations presented a more obvious

and less convoluted memory and I/O architecture, and that workstations were likely to o�er a more

open and malleable programming environment than a supercomputer.

For this reason, our focus in developing a software testbed environment focused on the issues of

operating systems and network interfaces to machines of the workstation class.

3 Experiments and Results

3.1 Heterogeneous Network

We implemented a fully functional IP packet forwarder with in the x-kernel protocol implementa-

tion framework. We then analyzed the performance of this implementation and developed several

modi�cations to the x-kernel framework which removed arti�cial performance limitations. Our goal

in this experiment was to understand and measure the ratio of required functionality to overhead

in this implementation, and by extension in other well-tuned protocol implementation frameworks.

Understanding this ratio o�ers an approach to determining whether high-performance routing ele-

ments can be implemented within a framework, or must be implemented completely Rfrom scratchS

on raw hardware.

The implementation of IP in the x-kernel was �rst tested in the context of a null network interface,

an interface that required no instructions and thus imposed no overhead on the processing. Running

on a Mips 3000 processor (a 33 MHz machine), the code was capable of forwarding approximately

30,000 packets a second, and faster RISC processors continue to yield faster forwarding rates. The

instructions executed were about equally divided between the IP forwarding code itself, and the

x-kernel. This level of performance is consistent with what other careful implementations of IP

have demonstrated on RISC processors. The major overhead of the x-kernel is the creation of a

thread to handle the forwarding of each packet. However, the consequence of this approach to

kernel organization, the factor of two in performance to run the x-kernel, is probably not acceptable

for any context except an experimental platform.

We next proposed and implemented some extensions to the x-kernel to reduce the overhead of thread

and message bu�er management. These modi�cations allowed us to increase packet forwarding rate

of our experimental system to approximately 55,000 packets per second. After these modi�cations,

approximately 60 percent of the CPU cycles were used to perform core forwarding requirements,

while 40 percent re
ected overhead. The additional increase in performance is due to improved

instruction scheduling and memory cache utilization.

These experiments gave an upper bound on the IP forwarding performance of our experimental

hardware platform's CPU and memory subsystems. Note that they intentionally elided the cost of

managing hardware interfaces.

We then extended our forwarding code to drive Ethernet (AMD RLanceS controller), ATM (Bellcore

ROsirisS interface constructed for Aurora) and MIT's FLORB interface. Detailed performance

results for the experimental interfaces are given below. With our implementation of the ethernet

36

interface driver as the only hardware interface, the experimental forwarder operated at approximately

3000 packets per second. This number is lower than the �gure suggested by the raw capabilities of

the hardware. We determined that the packet rate was limited by the workstations I/O subsystem

and bus arbitration scheme.

The core costs of processing a packet at the IP level are minimal. While it is di�cult to extrapolate

from speci�c implementations to a general conclusion, some rough estimates are helpful in getting a

perspective on the requirements. Our code audits suggest that IP forwarding can be coded in from

50 to 200 RISC instructions. The important processing steps, with costs in our context, are the

following.

� Checking header �elds for correctness { 15 inst.

� Computer header checksum { 15 inst.

� Decrement TTL �eld { 5 inst.

� Look up route in cache { 25 inst.

� Add local network header to packet { 20 inst.

One in three of these instructions touches memory, either the packet or the forwarding data struc-

tures. If we assume one cycle per instruction plus one cycle extra for a memory reference, the total

cycle count to process a packet is 107. A 100 mHz processor could thus process IP headers at a little

less than 1,000,000 packets per second. At this rate, the minimumpacket size that would allow a 622

mb/s link to be fully utilized is 83 bytes. Based on this sort of analysis, it is reasonable to conclude

that a practical gigabit IP forwarder can be constructed using a software forwarding engine based

on a general-purpose RISC CPU.

Our assessment of the processing overheads of the IP and ALF forwarder (see below) led to the

conclusion that the burden of the IP processing was not the dominant cost of forwarding. In our

initial experiments, described above, the cost of managing hardware was substantially greater than

the processing cost at the IP level, as shown by the greatly reduced packet rate when the hardware

interface was added to the system. Analysis of the code required to drive other common commercial

network interfaces suggests that this is a generally accurate conclusion.

Even with specialized operating systems and device drivers, we found that the cost of the device

drivers for traditionally designed interfaces dominates the processing costs at the IP level. Adding

to the cost of the device driver the cost of queue management for QoS scheduling, we conclude that

the overhead of the device driver is the key to high-performance processing. One does more to speed

up packet processing by changing the way one controls the I/O interface than by changing IP.

3.2 High Performance Flow Forwarder

On the basis of the above analysis, we proposed a design for a high performance packet or
ow

forwarder. While the time-frame of the project did not permit us to implement this device, we

believe that the original design approach, �rst proposed in June of 1991, remains correct. This

design, which is illustrated in Figure 1, involves a processor to manage each device, a processor to

execute the forwarding code for each input path, and a processor to perform the background control

tasks such as route computation and network management services. We estimated that given the

processing rates of advanced RISC processors, this architecture could support reasonable packet

processing rates for gigabit links.

In addition to the packet processing limits, a forwarder must have su�cient memory and bus band-

width to pass the data at gigabit rates, and su�cient decouplingJbetween the modules outlined

above to allow the modules to function in parallel. To deal with the data rates implied by this

architecture, we proposed two designs. In one, there is a bu�er at the middle of the data path, with

a data moving element attaching each network device. In the other design, especially suited to a

37

 Buffer
memory

 Buffer
memory

DMA

RISC

Forwarder

 Buffer
memory

 Buffer
memory

RISC

DMA

Forwarder

RISC

DMA

RISC

DMA

RISC

DMA

RISC

DMA

Device
control

Device
control

Device
control

Device
control

RISC

Management
 processor

In

Out

In
te

rf
ac

e
to

 N
et

w
o

rk
 1

In
terface to

 N
etw

o
rk 2

In

Out

Figure 1: Block Diagram of High-Performance Flow Forwarder

two-port device, there is a e�cient data mover at the center of the data path, which cross-connects

the bu�ers on each side. This latter design seems to o�er some advantages, and was used in the

development of the FLORB interface, discussed below.

3.3 Memory Architecture of Workstations

We performed a number of tests on a (then) state of the art workstation (Digital Equipment Corp.

Model 3000/400) to characterize latency and throughput across the I/O interface and the memory

bus, and CPU caches. Our intention was to understand the workstation's performance adequately

enough that we could later relate network performance to these fundamental properties of the

hardware implementation. Our goal was to di�erentiate between limits imposed by the hardware

and limits imposed by poor structuring of software, and to be able to determine how fast a particular

network-intensive application, protocol or driver should run.

The rather obvious model holds. When data arrives from the network, it is placed in memory.

Then the application picks it up. There will thus be a minimum of two memory cycles as a part of

receiving data. (Sending is the same). Protocol overhead will add to this count of memory cycles.

So to attach (usefully) a gigabit network to a host, we need a host with a memory bandwidth

of 2 gigabits/second. Very few workstation-class computers have that memory bandwidth even

today, and thus end-to-end gigabit applications were not literally achievable in the time frame of

this research. In time, these speeds will naturally come. What we showed is that one can push

up against this limit in practice. One actually can build implementations that run at the speed of

memory. For traditional workstations (some parallel and supercomputers are special cases) since

memory is the expensive component, and processors seem to get faster than memory does, we do

not anticipate a sudden protocol processing bottleneck. Memory bandwidth to move the data will

continue to be the fundamental throughput limit.

3.4 QoS

A major thrust of our research into QoS management was to investigate theoretical and imple-

mentation issues related to resource management and control algorithms for an Integrated Services

Packet Switch (ISPS). Our Aurora objective in this area was to show that the processing necessary

to enforce QoS scheduling in switches could be done at high speed. To accomplish this, we developed

algorithms that completely realized our proposed model, characterized their performance, and then

38

developed approximations that were more e�cient to execute but still close in functionality. We

tested these in simulation and in the Sunshine switch to verify their performance and correctness in

various situations.

The ATM framework, which includes explicit circuit setup, can in principle support a very sophis-

ticated range of QoS management capabilities. However, in practice the �rst products and the �rst

standards depended only on admission controls at connection setup time, together with a very simple

queue discipline such as �rst come, �rst served. Early simulations performed at Bellcore suggested

that in real-world conditions (tra�c with realistic levels of burstyness), this simple approach would

support only very low levels of link utilization before failing. We thus concluded that we should

develop and propose a cell queuing scheme to improve link loading in ATM networks.

Working with Bellcore, we determined that we would propose to the ATM Forum as a �rst scheme

a very simple weighted fair queuing (WFQ) mechanism. After some discussion, we found that the

overhead and complexity of even this simple scheme was a major source of concern to implementors.

With our collaborators at Bellcore we responded to this concern in a number of ways, including the

development of the high-e�ciency approximate HWFQ algorithm described below, and development

of the second generation Sunshine Output Controller Card. Given the concern with the performance

of a simple WFQ scheme, we recognized that the complexity of our full scheme, which required a

number of queues, would be even more problematic. Oumar Ndiaye and Christopher Lefelhocz

investigated one solution to remove the complexity.

As part of his master's work [17], Ndiaye laid out the groundwork of the link sharing algorithm,

developed a more e�cient algorithm, and simulated the new algorithm. We brie
y mention each

of these areas below. In our full model for link bandwidth allocation, the bandwidth a customer

requires can be thought of as a service. Since a customer may also be a provider of service, the

service can be broken down into several sub-services. A service that is broken into sub-services is

called a service class. A service that is not broken into sub-service is called a real service. A tree

structure that shows the sharing of a link's bandwidth among customers can be generated. This

tree structure has service classes as internal nodes in the tree and real services as leaf nodes in the

tree.

Ndiaye identi�ed two goals to the sharing of a link's bandwidth :

� At any active period of the link (when there are cells to transmit), each active customer is

guaranteed a share of the link no less than the portion of the link bandwidth it owns.

� For any sub-service, the amount of link resource at its disposal that it is not using is distributed

to all its sibling sub-services that need more link usage than the amount they are entitled to.

This distribution is done proportionally to the rates of the sub-services.

To support these properties, our original link sharing algorithm used a Hierarchical Weighted Fair

Queuing(HWFQ) mechanism. Weighted Fair Queuing is a scheduling discipline that classi�es each

incoming packet into a service class, and then maintains a sorted list of classes, based on a computed

departure time for that class given its service allocation. Hierarchical WFQ consists of a WFQ

mechanism at each non-leaf node of the tree. Each leaf node contains a queue of cells to be sent.

For each non-leaf node, weights are assigned in proportion to the amount of service requested by

each child. The entire mechanism can be thought of as a WFQ of WFQ's. This mechanism was

found to be accurate in preserving the properties stated above. However, the complexity was large

since the number of di�erent WFQ's involved in the sending/receiving of a cell was proportional to

the depth of the tree. We performed a study to determine where the costs were in our algorithm,

by actual audit of path lengths, and determined that the major cost was entering the data structure

representing its service class into the ordered list representing the WFQ at each level during the

queuing stage. This complexity is particularly troublesome in an ATM network where the number

of cells to send/receive is large.

Bellcore had developed a sequencer chip [3] which performed WFQ sequencing in hardware, but

that chip only implemented one ordered queue, while our full algorithm depended on a hierarchy of

39

queues. This complexity made it impossible to implement our scheme directly using that chip.

We concluded that a
at, single-level queue structure, in addition to matching the particulars of

the Bellcore sequencer chip, was likely to lead to e�cient implementation in a number of cases For

this reason, we sought an algorithmic approximation to our hierarchy of queues that depended on a

single queue.

Ndiaye proposed a way to approximate the behavior of the HWFQ by mapping the weights of the

real services into a single
at WFQ. To preserve property 2, periodically a separate algorithm was

run which determined which classes in the HWFQ were active and recalculated the mapping from

service classes to real services in the single WFQ. Whether a real service was active was based on

whether it had cells waiting to be sent.

This simpli�ed the complexity of the send/receive algorithm. Given that the sorting portion of

the WFQ mechanism was implemented in hardware, the receiving of a cell was estimated to take

55 instructions and the sending of a cell to take 70 instructions. These were estimates since the

algorithm was tested through simulation rather than on a physical output port of a switch.

In simulating the new algorithm, Ndiaye varied the period of update of the mapped weights. It was

found that for smaller periods, the results were almost the same as the original algorithm. For larger

periods, the results were a good approximations to the original algorithm. Thus it is believed that

for larger sharing trees where the updating algorithm takes longer, the performance of the simpler

algorithm will be a good approximation to the performance of the complex algorithm.

While Ndiaye's work was being completed, an ATM Output Port Controller (OPC) was being

developed for the Bellcore Sunshine switch, which contained the features necessary to test out the

complexity of the algorithm. Lefelhocz took the algorithm developed by Ndiaye and implemented it

on the new output port controller. The intent was to learn more about the coding of the algorithm

while showing that such an algorithm was �t for use in an ATM environment. Also it was discovered

that the updating algorithm could be done in a simple pipelined manner. These results are described

below.

The processor used on the OPC for implementation of our proposed algorithm was an Intel 960CA

33 MHz microprocessor. Given the bandwidth of the output port, the number of instructions which

can be executed in one cell time is approximately 80. Simplifying Ndiaye's algorithm to the extreme

it was found that C code compiled into assembly took 32 instructions to receive a cell and 46

instructions to send a cell. Since during periods of congestion, two cells can arrive at the OPC

during the time one cell leaves, the receive algorithm is run twice in the worst case. Thus, the

processing cycle would take a total of 110 instructions to complete. Simple analysis of the compiled

assembly revealed 7 instructions could be removed from the receive algorithm and 6 instructions

from the send algorithm. This resulted in a instruction count of 88 instructions only slightly above

the ceiling of 80. It is believed with only slightly faster processors, this algorithm could run at full

rate.

It was hoped that the same microprocessor could be used for both the send/receive algorithm and

for the background task to recompute the weights based on the current activity of the classes. The

speed of the processor used did not permit this. However, two options exist for making the weight

recomputation algorithm run as a \background process". The �rst is to add another microprocessor.

The mapping algorithm can run independently of the send/receive algorithm. The second is to use

a faster microprocessor. Since the number of instructions is only slightly larger than the current

speed, a processor which is twice as fast would be capable of running the mapping and send/receive

algorithm and meet the cell time performance.

Finally, in the process of developing the mapping algorithm for the i960, Lefelhocz found that the

weight recomputation algorithm proposed by Ndiaye could be improved so that it computes a new

set of weights for each tree traversal. The original proposal required two distinct phases to check

for activity and to recalculate the rates. The former phase is a post-order tree traversal. The later

phase is a pre-order tree traversal. The two phases cannot be combined. However, the phases can

40

be pipelined such that the �rst rate mapping occurs after the second tree traversal, the second

rate mapping occurs after the third tree traversal, etc. In this way, the algorithm is pipelined to

constantly update the mapped weights of real services.

3.5 Congestion Control

The current algorithms for TCP congestion control are rather complex, and depend on speci�c

details of the design. Prior experiments in our simulator have been limited by the ability of the

simulator's TCP component to represent all these details. To remedy this limitation, we began our

work on TCP congestion control by adding to our simulator a very detailed representation of the

TCP congestion control mechanisms. Our approach was to modify our simulator so that we could

incorporate into it code directly derived from a real TCP implementation, so that the behavior

of the simulator and the TCP in the real network were based on the same implementation. This

eliminated any concerns as to whether the simulation component was a proper representation of the

real world.

Based on this code, we explored a number issues in the operation of TCP, to understand better how

it might be tuned to perform better over long delay high bandwidth circuits.

We identi�ed two major e�ects that limit performance. First, the so-called long timeout event, in

which a lost packet is detected only when a retransmission timer at the source expires, represents a

degradation of performance whose impact becomes much more important as the speed of the link

increases. Thus, it becomes increasingly important to avoid this class of event by �nding alternative

techniques for detecting packet losses. Second, reducing the window size to one after a loss event

slows the throughput to such a degree that reasonable throughputs are not regained for much too

long a period of time. Thus, a less conservative backo� algorithm should be employed when it can

be justi�ed.

A MS thesis by Janey Hoe [9] proposed algorithms to achieve these goals. To respond to a higher

percentage of lost packets without invoking retransmission timeouts, she proposed an extension to

the currently used \fast retransmit" scheme. In the current scheme, the sender concludes that there

has been a lost packet when three duplicate acknowledgments have been received, since duplicate

ACKs are sent by the receiver when arriving packets do not come in a continuous sequence. Her

modi�cation was to extend this idea to incorporate a fast recovery mode. Fast recovery mode is

initiated whenever a fast retransmit trigger event (three duplicate acks) occurs. Once fast recovery

mode is initiated, additional packets are retransmitted whenever an acknowledgment is received

that acknowledges fewer than the known number of outstanding packets. This modi�cation is very

e�ective in distinguishing between lost packets and other sequences of ACKs that re
ect normal

operation, and allows rapid recovery from an instance of multiple packets being lost within a single

round-trip time; a circumstance signi�cantly more common in networks with a high bandwidth-delay

product.

Hoe's second proposal involves allowing a larger window size after a loss event, but explicitly limiting

the size of a burst of packets that a sender can emit at any one time. By limiting the burst size,

it seems possible to be more liberal in setting the window size after a congestion slowdown. This

allows the TCP to keep the pipelined
ow of data active, while still providing protection against

repeatedly triggering episodes of congestion.

3.6 ALF

Our assessment of the code implementing the ALF forwarder and end-node is that there is a slight

increase in overhead in processing ALF in a forwarder. This increase is o�set by a slight simpli�cation

of the processing in an end-node. The increase in the forwarder is caused by the fact that while the

forwarder must now deal with forwarding at the ADU level rather than the cell or packet level, it

41

is still necessary to recognize and deal with the transmission multiplexing unit to some extent. So

there is some aspect of packet processing together with the higher level ADU processing.

In exchange for this increase in cost, there are substantial simpli�cations in the processing at the end-

node. The bene�t is not a reduction in code path lengths, but in scheduling and system overhead.

In the case of ATM networks, for example, there is no intermediate processing of packets, which will

reduce the interrupt rate and process scheduling rate of the system. More importantly, the ALF

framework defers virtually all processing of messages until the application can actually act on the

data present. This allows the operating system scheduler to e�ciently manage processes which are

using the network, and eliminates the unfortunate e�ects of \layered multiplexing."

ALF and ILP were �rst proposed in the context of a speci�c alternative architecture to the IP and

TCP architecture. As the ideas became more widely understood, they instead served as a model

to reason about designing and coding protocols and applications in the context of IP. An example

is the work on Light Weight Sessions [8]. At this time, ALF is best thought of as a new model for

thinking about how to use existing protocols and mechanisms.

3.7 Alternatives for Link Multiplexing

One of the system level objectives for ALF was to use the native multiplexing mode of the network,

for example packet or cell switching, in an e�cient manner. However, one could ask the question

in another way and inquire, once the application has broken the data into ADUs, what the most

e�cient network multiplexingmode would be. Cell switching o�ers the advantage of very low latency

in admitting high priority data into the network, since the network can be reallocated at the end

of every cell. The penalty for this is the cost and complexity in the switch controller of making a

scheduling decision for every cell. Since cells are small, the processing rate is high. One could make

the data units larger, as in a classical packet switch, and thus reduce the header processing rate,

but the longer latencies waiting for a packet to complete transmission may cause undesirable delays

for high priority tra�c.

Chris Lefelhocz, in a MS thesis, explored a new scheme which avoids this tradeo� by constructing

a network based on pre-emption. The basic mode of operation is that an entire ADU is scheduled

for transmission over a network link, but the ADU can be pre-empted as needed if a higher priority

ADU arrives. The required processing rate in the switch controller is thus reduced; it corresponds

to ADU arrivals rather then cell or packet arrivals. At the same time, the latency to forward a

high-priority ADU is minimized. We hypothesized that this architecture might provide the best of

both previous approaches: better than the low latency of the cell architecture but lower processing

demands than the packet architecture.

We developed a detailed simulation of such a switch, and explored its operation with a variety of

tra�c loads and switch con�gurations. In the abstract, the basic scheme seems to o�er the expected

bene�ts. With a realistic set of estimates for ADU sizes, a system with less than one tenth the

processing power of a cell switch seems to o�er e�ective operation with the same latencies. The

detailed results are presented in LCS-TR-621 (in publication).

In practice a new scheme such as this is not likely to completely displace either the classical packet

switching schemes or the rapidly advancing ATM schemes. The results of this study, in addition to

suggesting a new type of link-level technology, can be extrapolated to show how an ATM switch,

for example, might be implemented more e�ciently. If the default behavior of an ATM switch was

to send a continuous
ow of cells from one VC, unless a cell from a
ow of higher priority were to

arrive, this algorithm might reduce the expected processing cost for each cell.

The simulations described above identi�ed one very important issue, which applies generally to

packet, cell and pre-emption systems. The issue is the phenomenon which we have seen and de-

scribed as \ack compression" in packet systems [20]. In a pre-emption system, if data packets and

acknowledgments are at the same priority level, then a number of acks can accumulate behind a large

42

ADU, leading to a burst of acks being later delivered to a end-node, which in turn results in a burst

of subsequent data packets. One solution to this is to assign acks a higher priority, which solves the

problem, both in the packet and the pre-emption case. However, this solution requires the switch

to distinguish acks from data packets, which is not consistent with most layering architectures. The

alternative of giving all small packets a higher priority leads to other anomalies, in which users

can obtain preferential treatment by using the network in very inappropriate ways. (Small packets

represent a very ine�cient use of the network.)

3.8 Development of Workstations Environment

As part of our development of a software environments suitable for forwarder and end-node network-

ing research, we undertook a number of development projects to obtain a useful operating system

for a current generation workstation. We imported an implementation of Mach, and explored its use

in this context, but concluded that its internal structure did not naturally lead to the most e�cient

and straightforward implementation of network code. Our current target for an open system (free of

license restrictions) is one of the variants of the openly available Unix BSD 4.4 derivatives. We have

worked with the community to support these packages, and have imported and incorporated into

our computing environment such open systems on Digital's Alpha-based workstations, Intel-based

PC's and Sun workstations. This hardware independence allows us both to adopt new technology

as it appears and to compare the e�ects of di�erent hardware designs on the performance of highly

tuned scheduling and forwarding algorithms.

Another of our projects involved the importation and evaluation of the x-kernel, an framework

for the implementation of network protocols done at the University of Arizona. We performed a

number of projects with the x-kernel. We implemented an IP forwarder and a version of our queue

management for QoS to evaluate the architectural features and the performance. We identi�ed no

architectural problems inserting these features into the system, but, as noted above, the cost of the

x-kernel task abstraction may be somewhat too high to permit the system to be used as a basis for

a specialized situation such as a packet forwarder.

3.9 FLORB

As part of developing our prototype platform for implementing forwarders and related software, we

developed a network interface called a Florb (a contraction of Flow to Orbit interface). The interface

was �rst designed to interface to the IBM Planet/Orbit technology, but in fact is a very general 32

bit high speed interface suited to a wide variety of network devices. Our prototyping platform at

the time was the DEC workstation, and the Florb interfaces to the Turbochannel interface for that

family of machines.

A block diagram of the Florb is shown in Figure 2. The novel aspect of the Florb is its architecture

for moving data, which we believe is suited for a wide variety of high speed applications. At the

center of the Florb is a CPU, fast SRAM, and high speed data bus, which connects all the relevant

inputs and outputs of the interface card. At the periphery of the card are a number of retiming

FIFO's which allow the various interfaces to operate with some degree of asynchronicity. Data

movement between the FIFOs and connected devices (the host I/O bus, the network or any other

device) may utilize a DMA controller or an external FIFO clock, as required. The data is moved

from external devices into FIFOs, and the FIFOs are in turn connected to this central bus.

Transfers of data across the bus are controlled by a RISC processor (in our implementation, an Intel

80960). However, the way the processor controls the bus is somewhat unusual. Rather than issuing

read and write instructions to move data to and from the various FIFOs, individual address lines

of the processor are wired directly to the read and write ports of the FIFOs. Thus, to read from a

particular FIFO, the CPU simply issues any instruction which loads the external data bus onto its

onboard registers, with the particular memory bit set on.

43

D
at

a
F

IF
O

 L
o

ca
l

m
em

o
ry

D
M

A

D
M

A

Interface to Network InO
u

t

R
IS

C

Interface to HostIn O
u

t
D

at
a

F
IF

O

D
at

a
F

IF
O

D
at

a
F

IF
O

D
at

a
 b

u
s

F
ig
u
re

2
:
B
lo
ck

D
ia
g
ra
m

o
f
F
L
O
R
B
H
o
st
-N
et
w
o
rk

In
te
rf
a
ce

O
n
e
in
st
ru
ct
io
n
,
b
y
se
tt
in
g
se
v
er
a
l
o
f
th
e
a
d
d
re
ss

li
n
es
,
ca
n
ca
u
se

a
n
u
m
b
er

o
f
re
a
d
s
a
n
d
w
ri
te
s
to

o
cc
u
r
si
m
u
lt
a
n
eo
u
sl
y.
M
u
lt
ip
le
re
a
d
s
in
g
en
er
a
l
w
o
u
ld

re
p
re
se
n
t
a
n
er
ro
r,
b
u
t
o
n
e
re
a
d
a
n
d
m
u
lt
ip
le

w
ri
te
s
h
a
s
th
e
e�
ec
t
o
f
p
u
tt
in
g
a
v
a
lu
e
o
n
th
e
b
u
s
a
n
d
ta
k
in
g
it
o
�
a
t
a
n
u
m
b
er

o
f
o
th
er

p
o
in
ts
.

T
h
u
s,
in

o
n
e
in
st
ru
ct
io
n
,
o
n
e
co
u
ld

re
a
d
a
b
y
te

fr
o
m

th
e
h
o
st
,
w
ri
te

it
to

th
e
n
et
w
o
rk
,
a
n
d
w
ra
p
it

b
a
ck

to
th
e
h
o
st
.

T
h
e
p
ro
ce
ss
o
r
is
th
u
s
ca
p
a
b
le
o
f
b
ei
n
g
u
se
d
in

tw
o
m
o
d
es
;
o
n
e
a
n
o
rm

a
l
R
IS
C
p
ro
ce
ss
o
r,
a
n
d
th
e

o
th
er

a
m
ic
ro
-s
eq
u
en
ce
r.

It
ca
n
sw
it
ch

b
et
w
ee
n
th
es
e
tw
o
m
o
d
es

o
n
a
n
in
st
ru
ct
io
n
b
y
in
st
ru
ct
io
n

b
a
si
s,
b
a
se
d
o
n
w
h
ic
h
re
g
io
n
s
o
f
th
e
a
d
d
re
ss

sp
a
ce

a
re

re
fe
re
n
ce
d
.

T
h
e
k
ey

to
th
e
p
er
fo
rm

a
n
ce

o
f
th
e
F
L
O
R
B
is
th
a
t
ea
ch

d
a
ta

tr
a
n
sf
er

ca
n
b
e
a
cc
o
m
p
li
sh
ed

in
o
n
e

p
ro
ce
ss
o
r
cy
cl
e.

O
u
r
im

p
le
m
en
ta
ti
o
n
o
f
th
e
F
lo
rb

u
se
s
a
m
o
d
es
t
2
5
M
H
z
cl
o
ck
,
w
h
ic
h
im

p
li
es
a
p
ea
k

d
a
ta

tr
a
n
sf
er

ra
te

o
f
8
0
0
m
b
/
s.

M
o
re

a
g
g
re
ss
iv
e
p
ro
ce
ss
o
rs

w
it
h
h
ig
h
er

ex
te
rn
a
l
cl
o
ck

ra
te
s
co
u
ld

d
ri
v
e
a
b
u
s
a
t
ev
en

h
ig
h
er

sp
ee
d
s.

T
h
e
p
er
fo
rm

a
n
ce

o
f
th
is
d
es
ig
n
is
a
ch
ie
v
ed

w
it
h
g
re
a
t
si
m
p
li
ci
ty
.
T
h
e
co
re
F
L
O
R
B
h
a
rd
w
a
re
co
n
si
st
s

o
f
a
si
n
g
le
ci
rc
u
it
b
o
a
rd

a
p
p
ro
x
im

a
te
ly
4
in
ch
es

b
y
5
in
ch
es

in
si
ze
.
A
n
a
d
d
it
io
n
a
l
ca
rd

o
f
th
e
sa
m
e

si
ze

m
a
y
b
e
m
o
u
n
te
d
in

a
p
ig
g
y
-b
a
ck

fa
sh
io
n
to

h
o
ld

th
e
co
m
p
o
n
en
ts
re
q
u
ir
ed

fo
r
a
sp
ec
i�
c
n
et
w
o
rk

in
te
rf
a
ce
,
su
ch

a
s
a
n
A
T
M

p
h
y
si
ca
l
la
y
er

d
ri
v
er
.

W
e
co
n
d
u
ct
ed

a
n
u
m
b
er

o
f
ex
p
er
im

en
ts

w
it
h
th
e
F
L
O
R
B
.
O
u
r
in
it
ia
l
g
o
a
l
w
a
s
to

d
et
er
m
in
e
th
e

v
a
li
d
it
y
o
f
th
e
co
n
ce
p
t
a
n
d
d
em

o
n
st
ra
te

it
s
p
er
fo
rm

a
n
ce

ca
p
a
b
il
it
ie
s.

T
h
is
w
a
s
a
cc
o
m
p
li
sh
ed

b
y

co
n
n
ec
ti
n
g
tw
o
F
L
O
R
B
's

b
a
ck

to
b
a
ck

to
fo
rm

a
p
o
in
t-
to
-p
o
in
t
n
et
w
o
rk

li
n
k
.
T
o
v
er
if
y
co
rr
ec
t

o
p
er
a
ti
o
n
o
f
th
e
d
ev
ic
es
,
w
e
a
ls
o
d
ev
el
o
p
ed

d
ev
ic
e
d
ri
v
er
s
fo
r
D
ig
it
a
l'
s
O
S
F
/
1
o
p
er
a
ti
n
g
sy
st
em

w
h
ic
h
tr
ea
te
d
th
e
d
ev
ic
es

a
s
st
a
n
d
a
rd

n
et
w
o
rk

in
te
rf
a
ce
s.

T
h
e
p
er
fo
rm

a
n
ce

in
it
ia
ll
y
a
ch
ie
v
ed

w
it
h
th
is
a
rr
a
n
g
em

en
t
w
a
s
lo
w
er

th
a
n
ex
p
ec
te
d
.
W
e
fo
u
n
d
th
a
t

th
e
li
n
k
o
p
er
a
te
d
a
t
a
th
ro
u
g
h
p
u
t
o
f
a
p
p
ro
x
im

a
te
ly
2
8
0
m
b
/
s.
A
t
th
is
sp
ee
d
,
th
e
F
L
O
R
B
's
p
ro
ce
ss
o
r

w
a
s
o
p
er
a
ti
n
g
a
t
a
p
p
ro
x
im

a
te
ly

5
0
p
er
ce
n
t
o
f
fu
ll
ca
p
a
ci
ty
.
F
u
rt
h
er
,
th
e
p
o
o
r
p
er
fo
rm

a
n
ce

co
u
ld

n
o
t
b
e
ex
p
la
in
ed

b
y
k
n
o
w
n
li
m
it
a
ti
o
n
s
o
f
th
e
w
o
rk
st
a
ti
o
n
h
a
rd
w
a
re
.

T
o
st
u
d
y
th
is
p
ro
b
le
m

fu
rt
h
er
,
w
e
ch
a
ra
ct
er
iz
ed

th
e
p
er
fo
rm

a
n
ce

o
f
th
e
O
S
F
/
1
n
et
w
o
rk

p
ro
to
co
l

im
p
le
m
en
ta
ti
o
n
it
se
lf
b
y
im

p
le
m
en
ti
n
g
a
R
n
u
ll
S
n
et
w
o
rk

in
te
rf
a
ce

w
h
ic
h
g
en
er
a
te
d
a
n
d
a
cc
ep
te
d

p
a
ck
et
s
w
it
h
o
u
t
a
ct
u
a
ll
y
to
u
ch
in
g
h
a
rd
w
a
re
.
U
si
n
g
th
is
m
et
h
o
d
,
w
e
d
is
co
v
er
ed

th
a
t
th
e
o
v
er
h
ea
d
o
f

th
e
O
S
F
/
1
IP

p
ro
to
co
l
im

p
le
m
en
ta
ti
o
n
w
a
s
su
b
st
a
n
ti
a
ll
y
h
ig
h
er

th
a
n
ex
p
ec
te
d
.

W
e
n
ex
t
el
im

in
a
te
d
th
e
u
se
o
f
O
S
F
/
1
a
n
d
d
ro
v
e
th
e
F
L
O
R
B
d
ev
ic
es
d
ir
ec
tl
y
fr
o
m
o
u
r
x
-k
er
n
el
b
a
se
d

4
4

IP router. In this con�guration we achieved an overall e�ective throughput of approximately 400

mb/s for a mix of IP tra�c created by tcplib [6]; a library which arti�cially synthesizes network

tra�c based on statistics from real networks. At this processing rate, the FLORB's cpu's were

operating at approximately 65 percent of capacity.

To determine the bottleneck limiting performance to this �gure, we pro�led our forwarder's operation

using the Alpha's hardware cycle counters. We learned from this experiment that our performance

was limited by I/O bus arbitration and memory contention e�ects within the workstation, and could

not be further improved.

We conducted one further experiment with the FLORB in this con�guration, varying the tra�c mix

to cover a range of packet sizes. We determined that as we moved to smaller packets the per-packet

handling overhead never became high enough to exceed the capacity of the FLORB's cpu, although

the overall throughput of the system fell signi�cantly with very small packets.

The development of the FLORB demonstrated two points. One was that the control interface

to an I/O device need not be awkward and slow. As noted above, processing overheads in packet

forwarders are not typically dominated by IP level processing steps, but by the overhead of controlling

the associated I/O devices. The FLORB was designed to demonstrate that device control can be

e�cient. In our tests, the e�ciency of the overall device handler was limited by the workstation's

bus arbitration, showing that the FLORB design itself was not a limiting factor.

The second point it proved is that a general purpose RISC chip can be the basis of a very high

performance network interface. The FLORB incorporated a Intel 960, but used this processor in

a novel way. There has been a continuing debate as to whether it is worth designing and using

special chips for I/O control. Such a chip can have special functions on it, which could conceivably

lead to higher performance. On the other it is a more specialized product with less anticipated

total demand, a chip vendor cannot a�ord to put as much e�ort into such a chip as into the next

generation RISC processor. So by the time the special I/O control chip comes out, the RISC chips

then appearing can go just as fast. Our design, by showing a creative way to exploit a RISC chip

for micro-control, lends support to the thesis that special control chips are not worth the e�ort to

build.

4 Lessons Learned

4.1 Performance and Architecture of Packet Forwarding

We observed that in a packet forwarder (a router or
ow forwarder) the device driver and queue

management algorithms constitute the major source of overhead. This is a critical observation,

because it suggests that there are limited opportunities for speeding up a packet forwarder by

parallel processing. The device driver seems to be intrinsically serial. It involves device registers

and packet queues that must be updated automatically, and per-packet operations that must be

done at each arrival and departure time. Since the network hardware sends packets in a serial

manner, the resulting timing of the device code is serial. One can use a separate processor for each

device, and one or more for the IP processing, but one cannot speed up the processing by massive

parallel execution of the code. Given that the cost of IP is already not the dominating cost, making

it parallel will not be strongly e�ective.

This line of reasoning suggests the following approach to forwarder design. Instead of a focus on

silicon for the forwarding code (e.g. IP in hardware) there should be a focus on very e�cient

hardware for network interfaces, and for key processing steps in the queue management, for example

the cell sequencer chip from Bellcore described elsewhere in this report. Even hardware support for

the allocation and freeing of bu�ers can have a signi�cant impact on the processing overhead. Our

overall conclusion is thus that while a massive parallel forwarder is not an e�ective approach, that

selective hardware support combined with a state of the art RISC processor is an e�ective way to

45

build a high performance router. This is a very desirable conclusion, since we argue very strongly

that to support
exible evolution of the network services, it is critical that the parts of the algorithm

that re
ect the details of the o�ered service be coded in a
exible manner, for example in software,

so that the packet forwarder can evolve as the service de�nition does.

There is an evolutionary path which forwarders and switches will follow, both in the current product

o�erings and in the higher speed context. The �rst generation packet forwarders { gateways or

routers { combined in one element the format conversion implied in moving from one network type

to another and the cross-connect capability of switching packets between a multiplicity of interfaces.

This was reasonable, as a very cost e�ective way to build a router at current mainstream product

speeds is to put the packets into a central shared memory bu�er. However, at higher speeds, memory

is not as e�ective a cross-connect architecture as parallel switch fabric designs, because the single

shared communication point (the shared memory) must operate at very high speeds. However, with

a switch fabric at the core of the switch, it is di�cult to utilize a single processor to perform the

forwarding decisions necessary at all ports of the switch. The architecture thus more naturally

becomes a separate forwarding processor for each switch port.

In this more evolved architecture, the format conversion is performed in each of the switch port

controllers, and the traditional router becomes a two-port device connecting the line to the switch

port. This simpli�cation of the router architecture makes it much easier to build a cost-e�ective high

performance router element. Unfortunately it also introduces some limitations, in that it becomes

much harder to implement global resource management algorithms. In the shared-memory switch

these algorithms can be implemented on a single processor, while in processor-per-port design they

must be implemented in a distributed manner. Managing this and other tradeo�s implicit in the

processor-per-port design is a topic requiring further exploration.

4.2 The Fundamental Limit of Memory Bandwidth

One fact that came up repeatedly in this project is that there was widely varying expectations among

members of the project as to how fast a computer of a given design would be able to deal with data

coming across a network. A number of possible performance limits were postulated as the real

bottleneck, including the design or implementation of the network protocols. What we concluded,

based on a number of experiments and calibrations, is that in most cases, the real determinant of

achieved throughput is the bandwidth of the computer memory, and the e�ectiveness of the I/O

connection into that memory.

In general, the bandwidth of the memory must be at least twice, and more practically, four times the

speed of the desired overall throughput. Looking at arriving data (departing data is similar) there

are at least two memory cycles required to move the data from the network: the network controller

must write the data to memory, and the application code must pick it up. Protocol processing may

add perhaps another two cycles, to move the data between system and user bu�ers and to compute

checksums. Creative design can eliminate one or more of these cycles, but the memory bandwidth

still remains the basic limit to achieved throughput.

On the other hand, with careful design of system software, these limits can actually be reached.

While overhead in the system and the protocols can be a practical cause of lost performance, these

issues can be sidestepped if the e�ort is justi�ed.

This balance of limitations will continue to hold into the future. We do not anticipate some reverse in

the current situation, in which processing overheads become more of a bottleneck, and memory less.

Current trends in silicon design are making processors continuously faster, while memory chips are

getting bigger, rather than faster. The speed of a memory architecture can, of course, be increased

by use of wider memory busses, cache architectures, and so on. But these approaches add more cost

than a faster processor, and thus we can expect, for future machines, that as memory speeds are

increased, the processor speeds will increase to match.

46

This analysis does not address one key issue, which is the potential for a mis-design in the way the

network is connected into the memory. Most memory designs today focus on providing a high speed

transfer path between the memory and the processor. This objective can, in simple cases, lead to

designs in which network interfaces cannot interact with the memory at highest speeds. Both we

and other members of the project spent a substantial amount of time dealing with this issue as a

practical impediment to progress. However, we conclude that this issue is not fundamental, and

could be resolved as an engineering issue in the design of future generations of workstations if the

objective is warranted.

4.3 The Flexibility of Software

One means to increase speed is to cast the critical processes in hardware, in the hope of making

them go faster, or of going faster at a lower cost. While this approach is technically feasible, it can

essentially lead to a disaster if the desire for speed is not balanced by the need for
exibility.

ATM is a good example of this tradeo�. ATM cells are small, and must thus be processed at

high rates in order to service a high speed link. At 622 mB/s, ATM cells arrive at over a million

per second. The concept, when ATM was �rst proposed, is that the actual processing of the cells

would be a very simple act that could thus be performed in hardware. Only the higher level control

functions, such as opening connections, would need to be performed in software.

This assumption has not been totally justi�ed so far, and has led to some of the growing pains of

ATM. For example, some of the QoS work done here cannot be implemented without changing the

actual cell processing in the switch. If that process is cast in hardware, there is no way to upgrade

an existing ATM switch to support explicit QoS. In contrast, in packet switches that perform these

steps in software, this migration is just a new software load.

Data networks have evolved rapidly over the past several years, in part because the �eld is young

and new approaches emerge, and in part because customer expectations for service evolve, as for

example the desire for multi-media networking. This evolution calls for products with
exibility.

Part of our research was to show that high speed packet processing could be done in software. Our

conclusion is that indeed, packet switches that employ general purpose processors for forwarding

are reasonable. Our research suggested two factors that can contribute to a high performance, cost

e�ective network device, whether packet switch or host interface. The �rst is to engineer the actual

network interface hardware so that it does not represent a high overhead to control. Some current

controller chips require as many instructions to control as the packet processing computation.

The second point is less obvious. There are indeed simple, basic building block operations in the

forwarding of a packet that could be cast in silicon, and would result in increased performance at

reduced cost. However, there may not yet be enough understanding to let us say with con�dence

what these modules are, and getting the design wrong can have a disastrous e�ect on the �nal

exibility and performance of the resulting device.

Perhaps the most simple building block that could be cast in hardware is allocation and freeing

of bu�ers. Hardware support for a free list of bu�ers would represent a useful component. The

Bellcore sequencer chip represents a more ambitious step in this direction, in that it implements

a list of bu�ers sorted by hardware according to departure time. This chip allowed us to realize

an ATM output port controller that could implement a WFQ cell scheduler at OC-3 rates, and

indeed which could approximate a hierarchical WFQ scheme at essentially this speed. However, the

interface to the chip, in retrospect, could itself have been lower overhead, due to issues of dealing in

software with the possibility of �eld over
ow. Simple issues such as this must be resolved as ideas

for hardware building blocks mature.

47

4.4 Speed May Not Be The Hardest Problem

We concluded that the issue of speed alone represented only the obvious problem of e�cient imple-

mentation and adequate bandwidth. What we showed in our research is that it is possible to build

devices that perform well enough to hit the fundamental limits of memory and link bandwidth. We

did not see any issues that suggested that this would change in the short term future. The more

complex issue of high delay-bandwidth product paths may represent more signi�cant problems, as

issues of
ow and congestion control need to be rethought. This matter is not a simple one of speed,

however, but an issue of speed coupled with scale. It seems quite practical to implement a transport

protocol such as TCP on a suitable hardware platform and expect it to go at a gigabit. The interest-

ing question is what will happen when many copies of this implementation contend for bandwidth

over a shared link, and deal with issues of congestion. These testbeds were not large enough to

reveal any of these issues, which for the moment must be dealt with through the somewhat arti�cial

means of simulation.

4.5 The Importance of a Suitable Experimental Platform

Especially at high speeds, attention to detail and careful design is required for success. It only

takes one bottleneck to throughput to limit the overall experiment. This situation meant that it

was necessary, in almost all of the experimental situations, to tune all parts of the system for good

performance, and to understand what the root causes were of apparent performance problems.

This is work that, while highly necessary, is not directly related to the research question at hand.

It is thus important to structure the project such that the di�culty of this work does not come to

dominate the whole project. We identi�ed two success factors in this desire. First, the experimental

platforms should be shared among as many as possible of the participants, so that experience could

be shared. Second, proprietary aspects of the experimental apparatus should be minimized, so that

time is not wasted trying to deduce how a hidden part of the system is in
uencing the overall

performance.

5 Conclusions

The gigabit objective, in retrospect, should not be thought of as an actual numerical goal to which

performance should be pushed. While it may not have been obvious at the beginning of the project,

the gigabit objective will be achieved in due course as processors and related devices become faster.

Rather, the objective of the project was properly to push performance forward to the extent possible,

both to understand what the fundamental limits were and to excite people to the prospects of

achieving higher performance in practice. Other parts of the testbeds looked at di�erent issues,

such as speculation on how applications might change if these bandwidths were available. What

we concluded that we can indeed build systems with high performance, and that we understand

what the fundamental limits to performance are, and how to reach those limits. Those limits are

not absolute numbers, but derive from the capabilities of key system components, most particularly

memory bandwidth. When we have a workstation with a memory bandwidth somewhere between

two and four gigabits per second, we will have a workstation that can be networked at a gigabit.

Depending on how the I/O architecture is constructed, we are not far away from that objective

today.

48

References

[1] Adam, J., \The Vidboard: A Video Capture and Processing Peripheral for a Distributed Mul-

timedia System," Proceedings of the 1993 ACM International Conference on Multimedia, pp.

113-120, ACM Press, August 1993.

[2] Agarwal, A. et al. \The MIT Alewife Machine: Architecture and Performance," Proceedings of

ISCA '95.

[3] Chao, H., Architecture Design for Regulating and Scheduling User's Tra�c in ATM Networks,

Appeared in Proceedings of ACM SigComm, October 1992.

[4] Clark, D., and Tennenhouse, D., Architectural Considerations for a New Generation of Proto-

cols, Appeared in Proceedings of ACM SigComm, September 1990.

[5] CNRI, \Gigabit Testbed Initiative Program Plan," Corporation for National Resarch Initiatives,

November, 1990.

[6] Danzig, P., et al., An Empirical Workload Model for Driving Wide-area TCP/IP Network Sim-

ulators, Appeared in Internetworking Research and Experience, March 1992.

[7] Davie, B., \The Architecture and Implementation of a High-Speed Host Interface," IEEE Jour-

nal of Selected Areas in Communications, February 1993, 11 (2), pp. 228-239.

[8] Floyd, S., et al, A Reliable Multicast Framework for Light-weight Sessions and Application Level

Framing, Appeared in Proceedings of ACM SigComm, September 1995.

[9] Hoe, J., Start-up Dynamics of TCP's Congestion Control and Avoidance Schemes, MIT Masters

Thesis, May 1995.

[10] Houh, H. and Tennenhouse, D., \Reducing the Complexity of ATM Host Interfaces," Proceed-

ings of Hot Interconnects II, Stanford CA, August 11-12, 1994.

[11] Houh, H., Adam, J., Ismert, M., Lindblad, C. and Tennenhouse, D. The VuNet desk area

network: Architecture, implementation, and experience. IEEE Journal on Selected Areas in

Communications, 13(4):710{721, 1995.

[12] Hutchinson, N., and Peterson, L., The x-Kernel: An Architrecture for Implementing Network

Protocols", Appeared in IEEE Transactions on Software Engineering, January 1991.

[13] Lindblad, C., Wetherall, D., Stasior, W., Adam, J., Houh, H., Ismert, M., Bacher, D., Phillips,

B. and Tennenhouse, D. ViewStation Applications: Implications for Network Tra�c. IEEE

Journal on Selected Areas in Communications, 13(5), June 1995.

[14] Lindblad, C., Wetherall, D. and Tennenhouse, D., \The VuSystem: A Programming System

for Visual Processing of Digital Video," Proceedings of ACM Multimedia 94, October 1994.

[15] Lindblad, C., \A Programming System for the Dynamic Manipulation of Temporally Sensitive

Data," MIT/LCS/TR-637, MIT Laboratory for Computer Science, Cambridge, MA, August

1994.

[16] Lyon, T., \Simple and E�cient Adaptation Layer (SEAL),"ANSI T1S1.5/91-292, August 1991.

[17] Ndiaye, O., An E�cient Implementation of an Hierarchical Weighted Fair Queue Packet Sched-

uler, MIT Lab for Computer Science TM 509, June 1994.

[18] Nikoh, H. and Kuwajima, T., \The Full Digital Video Camera System and Simulation of its

Essential Parameters," Proceedings of the IEEE International Conference on Consumer Elec-

tronics, 1989, pp. 48-49.

[19] Tennenhouse, D., et al, \The ViewStation: A Software-Intensive Approach to Media Processing

and Distribution," ACM Multimedia Systems Journal, vol. 3, No. 3, July 1995.

49

[20] Zhang, L., and Shenker, S., Observations on the Dynamics of a Congestion Control Algorithm:

The E�ects of Two-Way Tra�c, Appeared in Proceedings of ACM SigComm, September 1991.

50

Appendix A: List of Publications

1. Adam J., \The Vidboard: A Video Capture and Processing Peripheral for the ViewStation

System," Master's Thesis, MIT, September 1992.

2. Adam J., \The Vidboard: A Video Capture and Processing Peripheral for a Distributed Multi-

media System," Proceedings of the 1993 ACM International Conference on Multimedia, pp.

113-120, ACM Press, August 1993.

3. Adam J., Houh H., Ismert M., and Tennenhouse D., \A Network Architecture for Distributed

Multimedia Systems," Proceedings of the International Conference on Multimedia Computing

and Systems, May 1994.

4. Adam J., Houh H., Ismert M., and Tennenhouse D., \Media-Intensive Data Communications in

a `desk-area' Network," IEEE Communications, August 1994.

5. Adam J., Houh H., and Tennenhouse D., \Experience with the VuNet: A Network Achitecture

for a Distributed Multimedia System," The IEEE 18th Annual Conference of Local Computer

Networks, Minneapolis, MN, September 1993, pp 70-76.

6. Adam J. and Tennenhouse D., \The Vidboard: A Video Capture and Processing Peripheral for

a Distributed Multimedia System," ACM Multimedia Systems Journal, vol. 2, No. 2, April

1994.

7. Bauer M., \Self-Framing Packets in the ATM Adaptation Layer," Bachelor's Thesis, MIT, May

1992.

8. Charny A., Clark D., and Jain, R., \Congestion Control With Explicit Rate Indication", Pro-

ceedings of the ICC Conference, June 1995.

9. Clark, D., Davie, B., Farber, D., Gopal, I., Kadaba, B., Sincoskie, D., Smith, J., and D. Ten-

nenhouse, \An Overview of the AURORA Gigabit Testbed", INFOCOM '92, Florence, Italy,

May 1992, Pages 0569-0581.

10. Clark, D., Davie, B., Farber, D., Gopal, I., Kadaba, B., Sincoskie, D., Smith, J., and D.

Tennenhouse, \The AURORA Gigabit Testbed," Computer Networks and ISDN Systems, vol

25, No. 6, January 1993.

11. Clark D., Shenker S., and Zhang L., \Supporting Real-Time Applications in an Integrated

Services Packet Network: Architecture and Mechanism," Proceedings of SigComm 1992 Con-

ference, ACM, August 1992.

12. Clark D., and Tennenhouse D., \Architectural Considerations for a New Generation of Proto-

cols," SigComm Symposium, ACM, September 1990.

13. DeAddio M., \TCP/IP UNIX Ealuation in a High-bandwidth ATM Network," Master's Thesis,

MIT, May 1992.

14. Gautam N., \Host Interfacing: A Coprocessor Approach," Master's Thesis, MIT, January 1993.

15. Heybey A., \Video Coding and the Application Level Framing Protocol Architecture," MIT

Lab for Computer Science TR #542, June 1992.

16. Hoe J., \Start-up Dynamics of TCP's Congestion Control and Avoidance," MIT Masters Thesis,

May 1995.

17. Houh H., Adam, J., Ismert, M., Lindblad, C. and Tennenhouse D., \The VuNet Desk Area

Network: Architecture, Implementation and Experience," IEEE Journal on Selected Areas in

Communication, vol. 13, No. 4, May 1995.

18. Houh H. and Tennenhouse D., \Reducing the Complexity of ATM Host Interfaces," Proceedings

of Hot Interconnects II, Stanford CA, August 11-12, 1994.

51

19. Ismert M., \The AVlink: An ATM Bridge between the VuNet and Sunshine," Bachelor's Thesis,

MIT, May 1993.

20. Ismert M., \ATM Network Striping," Master's Thesis, MIT, February 1995.

21. Lefelhocz C., \Investigation of a Preemptive Network Architecture," MIT Lab for Computer

Science TR #621

22. Lindblad C., \VuSystem Performance Measurements," Proceedings of NOSSDAV 95, Durham,

NH, April 1995.

23. Lindblad C., and Tennenhouse D., \The VuSystem and its Implications for the OS Designer,"

Technical Note, Laboratory for Computer Science, MIT, March 1995.

24. Lindblad C., Wetherall D., Stasio W., Adam J., Houh H., Ismert M., Bacher D., Phillips B., and

Tennenhouse D., \ViewStation Applications: Implications for Network Tra�c," IEEE Journal

on Selected Areas in Communication, vol. 13, No. 5, June 1995.

25. Martin D., \The Design of a Tranceiver Chip for Broadband ISDN ATM Cells," Master's Thesis,

MIT, June 1991.

26. Ndiaye O., \An E�cient Implementation of an Hierarchical Weighted Fair Queue Packet Sched-

uler," MIT Lab for Computer Science TM #509, June 1994.

27. Sun K., \ATM Adaptation Protocols for MPEG Video: An Experimental Study," Master's

Thesis, MIT, May 1993.

28. Tamashunas B., \Supporting Service Classes in ATM Networks," Master's Thesis, MIT, May

1992.

29. Tennenhouse D., Adam J., Houh H., Ismert M., Lindblad C., Stasior W., Wetherall D., Bacher

D., and Chang T. \A Software-Oriented Approach to the Design of Media Processing Envi-

ronments," Proceedings of the 1994 International Conference on Multimedia Computing and

Systems, May 1994.

52

Appendix B: List of MIT Student Supported by the Aurora Project

� Adam, Joel

� Bose, Vanu

� Dukach, Semyon

� Guatam, Nikhil C.

� Heybey, Andrew T.

� Hirschfeld, Rafael

� Houh, Henry H.

� Ismert, Michael

� Lindblad, Christopher J.

� Martin, David

� Maw, David

� McGraw, Janet

� Shepard, Timothy

� Troxel, Gregory D.

� Wetherall, David

� Yip, Patrick

53

