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Abstract

The widespread need for encryption for private communication and stored information poses

a problem when there exists an authority, such as the governement or business employer, who

under some predetermined set of circumstances, needs to be able to obtain access to information

and communication of selected users.

Key-escrow is the main solution considered to ensure the ability of an authority to wiretap

communictaion. The main objection to all current Key-escrow proposals is that they assume

complete faith in the authority and its trustees. If the authorities do not follow the rules, or

are replaced by an un-trustworthy authority tomorrow, they can immediately recover the secret

keys of all users, and embark on massive wiretapping automatically scanning everyone's e-mail

and computer �les.

We introduce a new approach to key escrow called veri�able encapsulated key escrow (VEKE),

applicable to any encryption algorithm, which makes it veri�ably computationally possible for

an authority to only selectively wiretap a small number of individual users, and computationally

prohibitive to launch large scale wiretapping. This is achieved by imposing a time delay between

the obtaining the escrowed information of a user and obtaining the user secret key.

We achieve VEKE by a new cryptographic tool called veri�able cryptographic time capsules

(VCTC). The capsules are ways of strongly encoding information, which allow an authority to

verify that it can obtain the contents of the capsule after (and only after) a speci�ed amount

of time delay. When applied to key-escrow, the content of the capsules are secret-keys of users,

and the amount of time it takes to open these capsules is a parameter which is set such that

it is computationally possible to open a few of them, but computationally hard to open large

numbers of them. When several trustees are available, the time capsule is split amongst them

via a secret sharing scheme. When trustees pull their pieces together, they can recover the

capsule and start computing toward opening it.

VCTC's can be constructed under the general assumption that claw-free trapdoor functions

exist. For the purpose of key-escrow for the RSA cryptosystem (and the Di�e and Hellman

cryptosystem), we give very e�cient implementations of VCTC based on the particular assump-

tion that factoring integers is hard (respectively, the assumption that the discrete logarithm is

hard to compute).

Although conceived for the purpose of wiretapping and in the context of key-escrow, VCTC

can be used for \sending information into the future" [May] with applications to auctions with

closed bids, deferred electronic payments, and the sealing of documents for limited time periods.
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1 Introduction

The need to use encryption to guarantee privacy is spreading as more people use electronic mail,
buy products over the Internet, and keep personal records in computer �les. Widespread use of
strong encryption, poses however, a problem for a government or a business employer who believes
that under some circumstances it should be able to gain access to communication and information
of selected users. For example, currently it is possible for the various law enforcement agencies
to wiretap phone conversations, if it obtains proper court authorizations, a process whose bene�t
vanishes if the encryption on the wire is encrypted. Several technical solutions have been proposed,
attempting to balance the privacy of individuals with the needs of law enforcement.

1.1 Previous Technical Solutions and Objections

One suggestion, called weak encryption, is to enforce the use of encryption algorithms which the
law enforcement agency can break, for example by requiring that the size of secret keys not exceed
40 bits, a restriction currently imposed by the US government on cryptographic algorithms used for
export. Since the resulting encryption is then, however, breakable by anyone, this is not a solution
that individuals and business can accept.

The idea currently receiving the most serious attention is Key Escrow. The user's secret key is
either escrowed with the authority in full, or is split into n pieces and each piece is escrowed with a
trustee of the authority so that at least t of the n pieces must be recovered in order to reconstruct
the original secret key. The latter is referred to as split key escrow. The escrowing can be done
either at the time the cryptosystem is set-up or at the time of transmission of secret communications
(i.e escrow session keys). In case of authorized wiretapping (and only in such case), the trustees
should hand over to the authority their pieces, which can immediately can reconstruct the user's
secret key. The pioneering proposals were Micali's fair cryptosystems [Mi1] and the Clipper chip.

The objection to key-escrow is in all key-escrow proposals the individual's privacy relies entirely
on trusting the authority and its trustees to follow the rules. If the authority does not follow the
rules, then it can immediately recover everyone's secret keys, and embark upon mass wiretapping
rapidly scanning everyone's e-mail and �les. Furthermore if the authority in question is the gov-
ernment then, even if it is trustworthy today, it may be replaced by an un-trustworthy government
tomorrow which could suddenly recover the secret keys of all users and embark on mass wiretapping.

The situation may even be worse with respect to commercial usage, where employees in a
company depend on their employer for their livelihood and thus are quite vulnerable. Take a com-
mercial company where e-mail is routinely used by employees for both private and public purposes.
Companies may insist on a system where managers may be able to read o�ce e-mail or �les of
subordinates in special cases (e.g. say when a subordinate sends e-mail to an employee of a rival
company, or when an employee leaves the company). However, this is quite a delicate situation. The
subordinates should be protected from higher rank employee's continuously searching �le-systems
and e-mails of subordinates in search for particular character-strings or data pattern, just as they
must be protected from continuous wiretapping of their phone conversations by their employers.
The danger of serious invasion of privacy via the electronic media within companies does not seem
overly \futuristic". Similarly to the situation with government, a change in business management
could bring a sudden recovery of employee secret keys and encroachment of their privacy. This
problem of abuse of escrow arising from a sudden change in power has been raised by Simmons and
Shamir. The following goal emerges: Design strong encryption schemes for which it computation-

ally possible for the government (or other pre-designated parties) to selectively wiretap individual

users under some pre-speci�ed conditions, but computationally impossible for the government to
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obtain mass quantities of secret keys of users and routinely scan through everyones personal �les

and e-mails.

To meet this challenge, Adi Shamir proposed the following idea of partial key escrow in the
context of private key cryptography. Take a private key encryption system such as DES with a
long key of size k1 bits, and escrow all but k2 bits with the government in a split-key fashionShamir
concretely proposes to set To recover the secret key of an individual, the government would need
to obtain the escrowed bits of the secret-key, and then exhaustively search for the remaining un-
escrowed bits of the key. This will take at most 2k1 steps, which would allow the government to
recover the secret-keys of selected individuals, but not suddenly and simultaneously, so it could not
embark on massive wiretapping. Thus, e�ectively, partial key escrow introduces a time-delay for
the government before it can recover the secret key.

There are several drawbacks to partial key escrow. First, the government cannot verify that the
bits it received are indeed the partial bits of the individuals secret key. Second, when decomposing
the key into two distinct parts { the escrowed and unescrowed parts { one should take great care,
not to make it possible for the government to embark on �nding out the unescrowed bits of a given
secret-key, before �nding out the escrowed portion of the secret-key { an attack which we refer to
as the early recovery. (It is described in detail in Appendix A). Indeed some suggested extensions
[Mi2] to Shamir's partial key escrow idea addressing veri�ability, su�er from this attack as we point
out in Section 1.5. Thirdly and most fundamentally, for partial-key escrow to work, it should be the
case that the fastest way to recover the unescrowed bits of the secret-key is essentially exhaustive
search. However there is no reason to believe this to be true for a generic cryptosystem. The key
might be quite structured, and in general it is hard to isolate a set of bits having the property that
one is forced to �nd all of them to recover the key.

Accordingly, further partial key escrow proposals [Mi2, BeGw] have exploited the structure of
the crypto-system to �nd ways to \break up" sk into two parts such that the desired properties
can be guaranteed. This has several disadvantages. First, it is hard to �nd ways to achieve this
break up for particular systems, and even when found their quality is unclear1. Second, there is no
general method for achieving time delayed key escrow for a general, given crypto-system; one has
to exploit the structure of the given system.

1.2 This work

We provide a new approach, called encapsulated key escrow, which applies to any public or private
encryption scheme (with security parameter k1) and to any given level of time delay (speci�ed
by a second security parameter k2) which the government (or authority) should encounter while
trying to reconstruct the secret-key of a user which it wants to wiretap. Our method is veri�able
and provably secure against early recovery attacks, and will provably not a�ect the security of the
underlying encryption scheme. This is achieved, by �rst introducing a new cryptographic primitive
called veri�able cryptographic time capsules .

Verifiable Cryptographic Time Capsules. Intuitively, a cryptographic time capsule (CTC)
is a container into which one can put information, and set a time, so that a computational e�ort of
the set time is required to open it and recover the information in it. In addition our time capsules
are veri�able (VCTC) in that it is possible to verify that the capsule can be opened within the
claimed computational e�ort, without giving any information about the contents, or shortening the
computational e�ort required to open this time capsule.

1For example the solution for Di�e-Hellman used in [Mi2] relies on a relatively untested cryptographic assumption

(that �nding the discrete logarithm of an element of Z�
p which lies in a small subgroup is essentially proportional to

the size of the subgroup). Indeed, new attacks [VW] call this assumption into question.
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We implement VCTCs as protocols between the person encapsulating information and those
that should eventually recover it. In general we show how to implement veri�able cryptographic
time capsules based on the general assumption that claw-free permutation exist, and in particular
on the assumptions that RSA is hard to invert and discrete log is hard to compute. Moreover, our
constructions show how starting from any time capsule to construct a veri�able time capsule.

If the party who should eventually recover the information encapsulated, is not a single entity
but consists of n trustees (as in the usage of VCTC in the key escrow context when the authority
may be split into n trustees), then we show how to give each trustee a piece of the CTC (not the
information encapsulated in it!), so that each trustee individually can verify that they hold a piece
of a proper CTC (i.e the properties of VCTC hold with respect to each trustee). Moreover, less
than t pieces given to trustees (where t is a parameter of the system), yield no information about
the CTC. Only after at least t trustees share their pieces, they can reconstruct the CTC, and start
computing, for the pre-set time delay, toward recovering the contents of the CTC.

Verifiable Encapsulated Key Escrow (VEKE). To use VCTC for key-escrow for any public-
key encryption algorithm (or private key encryption algorithm for which a commitment to the secret
key has been published) whose secret key we denote by sk, we encapsulate sk into a VCTC. The
properties of the VCTC guarantee the central features related to the time delayed recovery. In
addition we implement some cryptosystem-speci�c protocols which verify that the information in
the VCTC is indeed the secret key sk associated to the publicly known key pk.

We stress that our solution applies to any cryptosystem. Typically however we can exploit the
properties of a speci�c cryptosystem to improve the e�ciency of the solutions.

Encapsulated key Escrow is an instance of what we call time delay key escow(TDKE)2, an key
escrow method which imposes a time delay between the authority obtaining the escrow information
from the trustees and recovering the secret key of the cryptosystem. Note, that by de�nition
in a TDKE we require that time delay must take place after the escrowed information has been
recovered. A veri�able time delay key escrow (VTDKE) scheme is one in which the government
can verify thet indeed the secret key can be recovered within the claimed time delay. Throughour
this paper we interchangably refer to our scheme as VEKE or VTDKE.

1.3 The advantages of VEKE over previous approaches

We summarize the advantages of VEKE as follows:

Generality and flexibility of implementation. Our method applies to any cryptosystem
without modifying it and succeeds in escrowing the secret key of this system in a time delayed
but veri�able way without changing the structure of the cryptosystem. In contrast, for partial
key escrow, the methods depended on the structure of the cryptosystem and new methods have to
be devised for each cryptosystem. In particular our method does not depend on any structure or
property of the key (although we can exploit this structure sometimes to improve e�ciency).

We can use an VCTC, and, in implementing the latter, any basic underlying CTC. This has
several advantages. One is that providing time delay is no longer tied to a property of the cryp-
tosystem. Another is the potential available as to choice of methods to provide delays. For a given
setting, we might prefer a weak time capsule or a strong one, or adjust some other parameters of
the time delay. We thus have greater 
exibility and control of the time delays.

Delayed recovery. When the government has n trustees, each of which receives a piece of the
CTC whose contents correspond to the secret key, it is information theoretically impossible for the

2In an earlier version of this paper we refered to EKE by the general name of TDKE
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government to start working on recovering the contents of the CTC before at least t pieces are
shared together, as it is impossible to cryptanalyze something on which you have no information.
Thus the early recovery attack is impossible.

Verifiability. The trustees can verify at escrow time that (1) indeed they hold in their possession
pieces of a time capsule containing the legal secret key of the user encryption algorithm, and (2)
that the computational e�ort to open the time capsule is as claimed.

Provable security against massive wiretapping. Since the secret-key is inserted into a
time capsule which is independent of the encryption algorithm used, we are guaranteed that the
government will have to work a prespeci�ed amount of work, before it can wiretap. In contrast,
in Shamir's partial key escrow enabling wiretapping by the government is achieved by allowing the
government access to part of the secret-key of the user. This access may enable the government to
recover the remaining unescrowed portion faster than by exhaustive search.

Safe Storage of Escrowed Pieces. The physical security of the escrowed information, in
any key escrow system is highly important. In the current proposal, the secret-key itself is never
escrowed. Rather the time capsule of the the secret-key is escrowed. Thus, even if an adversary
can break into the the data base of escrowed information of a trustee, he can still not embark on
large scale wiretapping, as he has to open the escrowed information �rst.

Export Control. Currently, the government enforces the use of weak cryptography for export
purposes. Encryption-software developers �nd it too expensive to create two versions of their
programs { one with strong cryptography for domestic use and one with cryptography that is
weak enough for export. The result is that in the United States, developers sell only the weaker
cryptography software. Our system allows achieving both levels of security at the same time with
the same underlying encryption algorithm, and thus seems especially attractive for export.

1.4 VCTC: Wider Usages

Sending information into future. May [May] points out that it would be extremely useful
to be able to send encrypted messages into the future. A few applications for such a mechanism
would be sending money into the future (e.g. deferred checks, trust funds, deferred mortgage
checks) while protecting it for the time being, writing wills to be opened only after one passes on,
sealing documents for a speci�ed time period, and sealing bids for a contract to be opened only if
you won the contract.

Our veri�able cryptographic time capsules can be used for exactly this purpose. The property
of veri�ability is especially attractive in some of these applications domains.

1.5 Related Work

Since Shamir [Sh2] suggested the idea of partial key escrow, it has been investigated by several
researchers, including [Mi2, MiSh] and a pre-cursor of this work described in [BeGw].

In [Mi2] veri�able methods for partial-key-escrow are proposed, for the Di�e-Hellman public key
cryptosystem and for an extended version of the RSA cryptosystem where the composite modulus
has as many prime factors as the number of trustees. We show however that these methods however
su�er from the early-recovery problem. Namely, it is possible to recover the unescrowed portion
of the key, prior to recovering the escrowed portion of the key. See Appendix A for description of
attacks.
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In an earlier work [BeGw] we proposed a veri�able partial key-escrow method for the Di�e and
Hellman public-key escrow system which is provably secure against early recovery and guarantee
that recovering the unescrowed portion of the key can take place only after the escrowed portion
of the key has been recovered. We believe, however, that our VEKE approach is the correct one,
since as we discussed above, the partial key escrow paradigm scales down the security of the users
encryption algorithm in unpredictable ways which do not seem amenable to general theoretical
treatment. In particular, VCTCs yield the �rst solution for the RSA encryption scheme that
achieves delayed recovery, and an alternative solution for DH encryption.

In [Ri2] , Rivest proposes several ideas of how to incorporate into one encryption algorithm
multiple levels of security (which can lead to another generalization of partial key escrow) as follows.
For each encryption algorithm, there are several secret keys, such that obtaining one would enable
you to compute the other with a certain amount of work, and possessing all of them would enable
you to decode. In all his proposals, the secret keys depend on each other and no veri�ability is
provided. In the key escrow context, this yields similar problems to those discussed for partial key
escrow.

The work of Rivest, Shamir, and Wagner [RSW] proposes the concept and two implementations
of time-lock puzzles, any of which can be used as a cryptographic time capsule. [RSW] do not
address veri�ability, but as our construction of VCTC takes any time-capsule as a starting point
and makes it veri�able, it can be used to make any of the time-lock puzzles which they propose,
into veri�able time-lock puzzles.

1.6 Road map

De�nitions for veri�able time delayed key escrow are in Section 2 and de�nitions for cryptographic
time capsules are in Section 3. We then sketch the how we build veri�able cryptographic time
capsules in Section 4 and the resulting approach to VTDKE in Section 5. We provide the de-
tailed construction of a VTDKE for the DH system in Section 6, for RSA is in Section 7, and a
general construction for any cryptosystem is in Section 8. Early recovery attacks are described in
Appendix A.

2 Veri�able time delayed key escrow: De�nition

We provide here an informal de�nition of the notion of veri�able time delayed key escrow.
The parties involved are a user U and n trustees Trustee1; : : : ;Trusteen, with n � 1. We want

to set up for the user a public key pk so that U has the matching secret key, but this key is escrowed
in a time delayed and veri�able way.

For full generality, the keys are of some arbitrary, agreed upon cryptosystem. (For example,
RSA or Di�e-Hellman.) This system is speci�ed by a triple (G;E;D) of algorithms called the
generating, encrypting and decrypting algorithms, the �rst two of which are probabilistic, and
all are polynomial time. The generator G takes a security parameter 1k, written in unary, and
produces a pair (pk; sk) of matching public and secret keys for the user. Another user, given pk,
can encrypt a message M via M 0 = Epk(M), and the user can decrypt this via M = Dsk(M

0).
Security is in the usual sense of probabilistic encryption [GM].

The VTDKE system has several parameters. There is the number t < n of trustees that are not
trusted. There are two security parameters, k1 and k2. The �rst governs the size of keys (pk; sk),
and hence the security of the underlying cryptosystem. The second governs the time for delayed
recovery, and that time is denoted Delay(k2). (In general, the time delay could be di�erent for
di�erent users. This function denotes the chosen time delay for our particular user.)
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The VTDKE scheme for cryptosystem (G;E;D) is speci�ed by an escrow protocol P and a
recovery algorithm Recovery . The �rst step is to execute protocol P. It involves all n+ 1 parties.
At the end of this, U will have a pair (pk; sk) of the cryptosystem, and Trusteei holds some
information which includes pk and usually something more, and which we denote by Ii and will
discuss in the sequel. For any subset T of the trustees we let IT be the set of all Ii such that
Trusteei is in T . Trustees are modeled as polynomial time algorithms in discussing security. We
now list the properties that are required to hold.

Correct distribution of keys. The key pair (pk; sk) is correctly distributed as though it
were obtained by running the generator G. This is true even if up to t trustees deviate from the
prescribed protocol P.

Security of the cryptosystem. Let T be any set of at most t trustees. Then it is infeasible for
them to �nd sk. More formally, consider a set of at most t trustees, allowed to behave arbitrarily
during the execution of protocol P, and later perform arbitrary polynomial time computation based
on their joint view. Their success in �nding sk is negligible.

This means that that encryption under key pk is secure, and users can use their keys without
fear that a number of trustees smaller than the threshold can recover the encrypted data.

Recovery with some effort. After the escrow, it is possible for t + 1 trustees to recover sk,
as long as they invest some computational e�ort. More precisely, let T be any set of at least t+ 1
trustees. Say that following a successful execution of P they pool their received information to
get IT . Then applying the recovery algorithm Recovery on input IT yields sk, and the recovery
algorithm is guaranteed to run in time at most Delay(k2).

No recovery without effort. Informally, the Delay(k2) time e�ort is necessary: t+1 or more
trustees who pool their information can't reduce below Delay(k2) the time to recover sk. It is
important, however, to say this more precisely and explain exactly what it means.

Let B be any set of at most t trustees. Allow them to misbehave during the execution of
P. Furthermore, after the escrow is completed, allow them to pool their information and perform
arbitrary polynomial time computation. Now, after this e�ort, let them join forces with at least
one other trustee. Then this set of at least t + 1 trustees must invest at least Delay(k2) time to
�nd out anything useful about sk.

Note that early recovery is by de�nition ruled out: a pre-computation based on the public
information, or even the information of any t trustees, will not help reduce the eventual recovery
time below Delay(k2). Furthermore, investing time in recovering keys of other users in the system
will also not reduce below the threshold the time to recover the key of our particular user, because
the creation and recovery of other keys can be \simulated" by the group B of bad trustees. We also
stress that it isn't enough to prevent recovery of sk; we are asking for something stronger, namely
that even partial information about it won't leak.

We have not said exactly what are the thresholds, namely to what extent sk remains hidden as
the invested time approaches Delay(k2). This depends on the scheme.

Verifiability. At the end of the escrow protocol P the parties are assured that the above
properties are true. The trustees are assured that (with some e�ort) they can recover a string,
and this string is really the secret key matching the user's public key. (Otherwise the user might
just escrow some garbage, unconnected with his public key.) Furthermore, they are assured that
the recovery process won't take more than Delay(k2) time once t + 1 of them have pooled their
information. On the other hand, the user is assured of the distribution of the keys, the security of
the cryptosystem and that there is no recovery without e�ort. In particular the user is assured the
trustees would need time at least Delay(k2) to recover sk, and that early recovery is impossible.

6



Ensuring this multi-faceted veri�ability is one of the important technical di�culties in the protocols.

Subtleties and assumptions. The above requirements are a simpli�cation in several ways. Let's
discuss one.

The goal of enabling the trustees to recover sk is to enable them to decrypt information sent to
the user. As long as the users in question use the cryptosystem in the prescribed way, sk indeed
enables decryption. But they may not. In particular, as pointed out by [KiLe], it may be possible
to set up \subliminal channels." However, [KiLe] also show some simple and quite general ways
in which this can be avoided so that we may e�ectively assume the user does use the prescribed
system. (The idea is that the choice of keys is not left to the user alone, but is done jointly by both
parties in the protocol.) So we stick to the simpler setting of [Mi1]. A full and formal de�nition
of time delayed key escrow would follow and extend the de�nition of [KiLe] to the time delayed
setting.

3 Time Capsules: De�nitions and Construction

We build veri�able time capsules, our main primitive, on top of basic time capsules. Here we
provide de�nitions and sketch a few constructions for the latter.

Roughly a time capsule is a container into which one can put information, and set a time, so that
a computational e�ort of the set time is required to recover the information. The de�nition is by
necessity \concrete:" since we want to talk about speci�c amounts of time we eschew asymptotics.
We point to various parameters that measure the quality of time capsules. For example, the
tightness of the recovery threshold: in \weak" capsules, as more e�ort is made, the recovery
probability increases; in \strong" ones, until something approaching the set time is invested, on
has no particular advantage in recovering the encapsulated information.

De�nition 3.1 An encapsulation scheme, or cryptographic time capsule (CTC) is a pair (Encap;Decap)
of deterministic functions, the �rst being polynomial time computable. Associated parameters are
a key length Kl(�), an input length Il(�) and an output length Ol(�), all integer valued functions of
the security parameter k. The encapsulation function Encap takes 1k, a Kl(k) bit key K, chosen
at random, and a Il(k)-bit string (the information or plaintext) s to be encapsulated, and produces
a string C = Encap(1k;K; s) which we call the capsule. Its length is Ol(k). Given 1k and a capsule
C, the decapsulation function Decap(1k; C) returns the information s.

Ideally we want that de-capsulation is unique: ifC = Encap(1k;K; s) for someK thenDecap(1k; C) =
s. However, we ask less. Namely that it is computationally infeasible to �nd distinct pairs (K; s)
and (K 0; s0) for which Encap(1k;K; s) = Encap(1k;K 0; s). (Computationally infeasible means there
is no poly(k) time algorithm for the task.)

An encapsulation scheme is a little like an encryption scheme: think of Encap as the encryption
algorithm and Decap as the decryption algorithm. But notice some di�erences. The \decryption"
algorithm doesn't take the key K, and needn't be polynomial time computable, and the encryption
algorithm is not randomized. We'll see that one way to think of it is as a sort of \one-time"
encryption scheme which can encrypt just one message under a given key and has very particular
security levels.

We now need to de�ne security. It is important to measure computation time precisely, so we
�x some RAM model of computation in which to do this, like one used in an algorithms textbook.
The security of the capsule is measured by two parameters, T (�) and S(�; �). The �rst, called the
decapsulation time, is the running time of Decap. (That is, Decap(1k; C) runs for T (k) steps when
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C is the encapsulation of some Il(k) bit string s.) Typically it will be exponential in k. The second
parameter S measures the success in \breaking" the capsule as a function of the time invested by an
adversary. It is a function of k and the running time of the adversary, and needs more elaboration.

The most straightforward de�nition of breaking a capsule C would be obtaining the information
s. But an e�ective capsule ought to meet a stronger requirement. Namely, partial information
about s should also be hidden, just like in an encryption scheme. Our approach to formalizing
this follows [GM]. A capsule-cracker is an algorithm A that takes 1k; C and a pair m0;m1 of
plaintexts, and outputs a bit. Let P i

A(1
k;m0;m1) be the probability that A(1k; C;m0;m1) = 1

when C = Encap(1k;K;mi) for a randomly chosen, Kl(k) bit key K (i = 0; 1). The advantage of
A, denoted AdvA(1

k), is the maximum of jP 1
A(1

k;m0;m1) � P 0
A(1

k;m0;m1)j over all pairs m0;m1

of Il(k) bit strings. We denote by TimeA(k) the maximum, over all Il(k) bit strings m0;m1, of the
running time of A(1k; C;m0;m1) in the experiments we have just de�ned.

De�nition 3.2 Encapsulation scheme (Encap;Decap) is (T; S)-secure if the decapsulation time is
T and for all � it is the case that AdvA(1

k) � S(k;Time(k)) for all capsule-crackers A.

Notice that S(k; T (k)) = 1. Barring this we have said nothing about how S behaves. Thus this is
a very general de�nition. The question is to �nd schemes with nice S functions. What we would
like is that S(k; �) be very small for � < T (k). The quality of the scheme is the extent to which
this is true.

This is the most basic version of the de�nition. One can further classify capsules according to
various features. One such is the extent to which parallelism helps reduce the decapsulation time.
This is considered in [RSW] whose \time locks" try to ensure not only that a certain amount of
time must be invested but also that this be sequential time.

To get a better understanding and also to see what kinds of encapsulation schemes are available,
let's look at a few examples.

Encapsulation by ciphers. Let F be a variable key length cipher, like RC5 [Ri1]. A key �

describes the function F� used to encrypt and its inverse F�1
� used to decrypt, and there is some

associated input length l = Il(k). We let Kl(k) = k + l. The key K of the encapsulation scheme
is a pair (�; r) and we let Encap(1k; (�; r); s) = (FK(s); r; FK(r)). The function Decap works by
exhaustive search: given C = (u; r; v) it searches through the space of k-bit strings, and for each
candidate x computes Fx(r) and checks if it equals v. If so, it outputs F�1

x (u) as the plaintext.
This sort of thing is typically understood by modeling F as a collection of 2k independent,

randomly chosen permutations on l bit strings. Then one can see that decapsulation is unique
with high probability. The opening time T (k) is clearly 2k computations of the underlying cipher.
The question is the security. As long as the capsule-cracker has not tried the right key, it has no
information about s. So the security is essentially the probability of having got the right key. One
can compute that roughly S(k; �) = 2�m if � is 2k�m steps, where a step is a computation of F or
F�1.

The squaring puzzle. This is a scheme due to [RSW] for constructing \time locks." Its advantage
is that parallelism does not seem to speed up opening process. (There is no formal de�nition or
proof of security in [RSW], but the scheme they design is conjectured to be a good time lock.)

4 Veri�able Cryptographic Time Capsules (VCTC)

In the previous section we in essence were trusting the user (or encapsulator) to put a secret s into
a capsule and seal it for a speci�ed delay. What's lacking is veri�ability. There are two elements of
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veri�ability. The �rst is content veri�cation. The user may put junk into a capsule, instead of the
required object. The second is time veri�cation. The user may set the timer on the capsule too
high, some infeasible amount rather than the agreed upon delay. We want to construct veri�able
cryptographic time capsules, in which the party who eventually is to open the time capsule can
verify that the encapsulation was done properly, in the sense that both the contents and the timer
were correctly set.

For content veri�cation, such contents have to be well-de�ned. This depends on the setting
in which the time capsule is used. For example, in the context of key escrow for a public-key
cryptosystem, if sk is the supposed content of the time capsule, pk de�nes this information uniquely
and one can discuss verifying the contents of the time capsule. Alongside we have a general way
to provide time veri�cation, namely to ensure that the capsule can be opened within delay(k2),
without in the process revealing the information or decreasing the e�ort that would eventually be
required to open it. We now proceed to describe the paradigm we use to achieve this.

The paradigm at a high level. Let s be the information which should be recovered with
delay(k2), and ps be a public commitment to s. Let m be a security parameter. For example, let
ps = f(s) where f(s) = gs mod p where p is a prime and g is a generator for Z�

p and 1 � s � (p�1).
The general plan to achieve veri�ability is as follows.

� First, �nd a way to split s into pairs (s0; s1), and a corresponding public value h such that
(1) given a pair (so; s1), s is easily reconstructed, and (2) Given si, ps and h, it is easy to
verify that si is a half of a valid pair. (For example, for the above f , choose at random
1 � s0; s1 � (p� 1) such that s = s0 + s1 mod (p� 1), and let h = (f(s0); f(s1)).)

� Second, A (who has the secret s), chooses m pairs (sj
0
; s

j
1
) and hj as above for j = 1; :::;m,

encapsulate sj
1
of each pair, letting Cj = Encap(1k;Kj ; s

j
1
), where Kj is a randomly chosen

k2 bit key, and sends Cj; h
j to B (the party who should eventually recover the secret s).

� Third, to ensure veri�ability, the following protocol is carried out between A and B:

1. B chooses a random subset J � [1; :::;m] and sends J to A.

2. A sends to B, for every j 2 J , sj
1
;Kj and for every j not in J , sj

0
. B accepts unless for

some j sji is not a half of a valid pair, or if for any j 2 J , Cj 6= Encap(1k;Kj ; s
j
1
). In

case j 2 J he also checks that Kj is of the appropriate length, which is what tells him
that the timer was properly set.

� This convinces B that for most j 62 J , the capsule Cj is correct; namely, it contains s
j
1

encapsulated under a key of the appropriate length. B can now invest the necessary time
to break one of these capsules and get sj

1
; he already has sj

0
, and from that he would get

s. (Technical point: B might need to work on a couple of capsules Cj for j 62 J , but the
probability he needs to look at more than one is only about 0:02.)

Splitting the secret. Here we have considered a setting in which there is only one receiver B.
In the split key escrow setting, B is a collection of trustees. Rather than providing information
to B, information must be shared amongst the trustees via secret sharing. This yields a threshold
VCTC which t+ 1 out of n players can open but not less. See the following sections.

Removing interaction. As written the above paradigm and the following protocols require in-
teraction between A and the receiver(s). However, the whole protocol can be made non-interactive.
(That is, the user sends a single message, after on receipt of which the receiver decides whether or
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not to accept the capsule.) This is done by specifying the challenges via a hash of the committals
and other information. This is a heuristic transformation, but one that seems secure in practice. It
is typically justi�ed under the assumption that the hash function behaves like a random oracle. We
refer the reader to [BeRo] for discussions of the random oracle setting in which this can be modeled,
de�nitions of zero-knowledge in this setting, and discussions of the meaningfulness of instantiating
random oracles via hash functions.

5 VCTC and VEKE

Basic encapsulated key escrow. The basic paradigm is like this. The user puts the secret
key sk of the cryptosystem into a time capsule C. Now he shares C amongst the trustees, via a t
out of n threshold secret sharing scheme. (For example, Shamir's scheme.) At recovery time, t+ 1
trustees will pool their shares to get C, and then open this capsule, which takes the allotted delay
time.

The approach works even for just one trustee, and in both the private and public key settings.
Notice that early recovery is at once avoided. A group of at most t trustees does not even have

the capsule C. In particular they have no information about sk other than that given by pk. So
there is nothing they can pre-compute to enable them to open C faster, or recover sk quicker, after
t+ 1 of them get together and recover C.

However there is something lacking in this approach, namely veri�ability. We are trusting
the user to put sk into a capsule and share it. He might put rubbish into the capsule, or share
incorrectly. He might also cheat by setting the timer on the capsule too high, some infeasible
amount rather than the agreed upon Delay(k2).

There are settings in which one might decide to trust the user to use pre-scribed software, or
have protected hardware for the basic time delayed escrow task, and then the above su�ces. Most
often, however, one imagines veri�ability is needed. Providing this is the main technical challenge.

We cannot open the capsule to verify its contents because we don't want to reveal the con-
tents. Let's now discuss our approach to veri�ability, and then some discuss why some plausible
alternatives are ruled out.

Achieving verifiability. The idea is to use the procedure described in Section 4 with the secret
s being the secret key sk. Thus, a way must be found to make \certi�able claws." We split sk
into two pieces s0; s1 to which is also associated some public object h. The properties are that
(1) Given s0; s1 one can �nd sk; (2) Given one of s0 or s1 but not both, it is infeasible to �nd sk;
(3) Given si and h;pk it is possible to be assured that si is half of a valid claw. Now, instead of
encapsulating the secret key, we encapsulate one of the claws. The resulting capsule, and the other
claw, are shared amongst the trustees, and then a cut and choose is used to ensure that all this
was properly done. This builds a VCTC for the key sk.

We apply this paradigm with the Di�e-Hellman system and the RSA system, using in each
case speci�c, e�cient ways to make certi�able claws that depend on the algebraic structure of the
cryptosystem in question. We then propose ways to make certi�able claws for any cryptosystem
and get a general solution. Before heading into the technical part, though, let's discuss some of the
considerations underlying this approach and ruling out others.

Efficiency considerations. The task is to veri�ably escrow the given key sk of the given crypto-
system. (Example, the prime factors of the modulus in the RSA cryptosystem.) That is, the job
is not to show the existence of a VTDKE for some crypto-system, but rather for the given one.
We do not allow a modi�cation of the cryptosystem. This is crucial because certain cryptosystems
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like RSA and Di�e-Hellman are already deployed and part of the infrastructure, and we want to
escrow the corresponding keys. In particular, there should be no loss of e�ciency to the underlying
usage of the crypto-system as the results of escrow: Encryption and decryption times should not
be impacted.

We stress this because simple solutions, based on generic cut and choose, come to mind if one is
willing to allow a \composite" cryptosystem with many keys. But we don't permit such a system.

Since our solutions will in fact work for any crypto-system, we achieve the above.
The VTDKE protocols must be as e�cient as possible. (Yet this is less important than keeping

the crypto-system intact, because the VTDKE protocols is run only once to set up the keys, but
the crypto-system is used every day by users across the net.) Our protocols meet this goal quite
well.

We could treat the statement that the content of capsule C is the secret key as an NP statement
and providing a zero-knowledge proof using the general tools for proving NP statements. However
this will result in an extremely ine�cient protocol. (This is not so much due to the ine�ciency
of the actual protocols, where work on e�ciency has been bringing lots of improvements. Rather
the issue is that translating the NP statement to a SAT formula via Cook's theorem incurs an
enormous blowup so the ZK protocols is applied to a very large instance.) So we want a direct
solution.

In Section 6 we provide the solution for the special case of the DH system, Section 7 we provide
it for RSA and then in Section 8 for an arbitrary cryptosystem. All our solutions follow the VEKE
paradighm outlined above.

6 A VTDKE Scheme for the DH Crypto-system

The DH system. Recall that in the Di�e-Hellman cryptosystem, a user A will have a public
key gSA and secret key SA, where g is a generator of the group Z�

p for some large prime p and
SA 2 Zp�1. Secure communication between two users is enabled via the Di�e-Hellman property|
another user B, having public key gSB and private key SB, shares implicitly with A the Di�e-
Hellman key gSASB , and can use this shared key to send messages privately, or to derive a session
key to this end, as desired. This properties make the system very convenient to use, so that it is
amongst the foremost choices of public key systems. We now describe how to achieve VTDKE for
this system.

Setup and choice of keys. A prime p and a generator g of Z�
p are assumed �xed and known

to all parties. We let k1 be the length of p; this should be at least 512 bits, preferably 1024. We
let logg(�) denote the logarithm in base g. (That is, logg(b) = a i� ga = b.) These system wide
constants can be chosen a priori by some center and published.

A (T; S)-secure encapsulation scheme (Encap;Decap) is �xed. The security parameter k2 is
chosen so that the desired delay time for our user in our escrow scheme, i.e. Delay(k2), is equal to
T (k2). Letting Kl(�); Il(�);Ol(�) denote the key length, input length and output length parameters
of the encapsulation scheme, it is also assumed that Il(k2) � k1.

The user has a secret key s which is uniformly distributed in Zp�1, and P = gs is the corre-
sponding public key.3

The VTDKE protocol. The protocol that is now executed is described in Figure 1. It consists
of m independent executions of a basic protocol which we now discuss.

3 Think of these as having been chosen by the user. As we have already indicated, however, this is a simpli�ca-

tion: in reality some joint protocol is executed to yield these keys.
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Parameters and ingredients| Number of trustees n (say n = 5); Assumed bound t

on number of bad trustees (say t = 3); Prime p and generator g of Z�
p ; Length k1 of p;

Security parameter k2 governing desired time delay; Encapsulation scheme (Encap;Decap)
with key length Kl(�), input length Il(�) � k1 and output length Ol(�); Field F with lg(jF j) �
max(Ol(k2); n).

User keys and their components| Secret key s 2 Zp�1 of user; Public key P = gs 2 Z�
p

of user.

Protocol: Repeat the following protocol, independently, m = d100n=(n � t)e times|

1. Claw generation and encapsulation: User chooses s0 2 Zp�1 at random and lets
s1 = s0� s. He then chooses a random Kl(k2) bit key K for the encapsulation scheme and
encapsulates s1 via C = Encap(1k2 ;K; s1). He lets h = gs0 and sends h to the trustees.

2. Sharing: User sets f0 = C. Next he picks at random f1; : : : ; ft from the �eld F and
creates the polynomial

f(x) = f0 + f1x+ � � � + ftx
t 2 F [x] : (1)

For j = 1; : : : ; n he sends f(j) to Trusteej over a private channel. Let �j denote the value
received by Trusteej .

3. Challenge: The trustees send the user a random bit c.

4. Response: The user responds according to the value of c:

If c = 0 then the user sends s0 to each trustee and the trustee checks that h = gs0 .

If c = 1 then the user sends f0; : : : ; ft to the trustees. He also sendsK and s1. Trusteej
now has the polynomial f(x) via Equation 1, and checks that �j = f(j). Each trustee
also checks that jKj = Kl(k2) and Pgs1 = h and Encap(1k2 ;K; s1) = f0.

Figure 1: The VTDKE Protocol for the DH system. See text for details.

The user �rst chooses s0 at random and lets s1 = s0 � x. He also lets h = gs0 . Notice this
means that gs0 = h = Pgs1 . This makes something we call a certi�able claw. If someone has both
s0 and s1 then they can recover x = s0� s1. If someone has only one of s0 or s1 then they have no
information about x since each of s0 and s1, taken alone, is random. But if someone has only one
of s0 or s1 then can check that they have a half of a valid claw: If s0, check that gs0 = h and if s1
check that Pgs1 = h. The user sends (broadcasts) h to the trustees.

The user doesn't encapsulate the secret key. Rather, he encapsulates one of the claws (but not
the other), and shares the encapsulated claw and its un-encapsulated sibling. Then he \opens" one
or the other sharings according to a challenge from the trustees, and the latter verify the correctness
of the opened information via the claw properties and the capsule properties.

Speci�cally, a random Kl(k2) bit key K is chosen for encapsulation, and the capsule C =
Encap(1k2K; s1) is computed. The capsule C is not provided to the trustees; were we to do
this, early recovery would be possible. Instead, C (not s1!) is shared amongst the trustees via
Shamir's secret sharing scheme [Sh1]: C is made the constant term of an otherwise random degree
t polynomial f(x), and f(j) is sent privately to Trusteej. (We work here over a �nite �eld F chosen
so that lg(jF j) exceeds max(jCj; n).) Now the trustees (jointly) issue a challenge which is a bit c.
(Recall we are executing the basic protocol m times. The easiest way to do the challenges is that
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each trustee is responsible for issuing some number, say 100=(n � t), of them.) If c = 0 then the
user reveals s0 and the trustees check that it is a proper left-half of a claw by checking that h = gs0 .
If c = 1 the trustees want to check not only the claw but also that the encapsulation was properly
done. The user opens f (opening a polynomial means the user broadcasts all the coe�cients and
the trustees check their shares, provided above, were correct). This reveals C (the constant term of
the polynomial f). He also provides K and s1. A trustee can check that s1 was a correct right-half
of the claw by checking that Pgs1 = h. A trustee can recompute Encap(1k2 ;K; s1) and check that
he does indeed get back C, which means the encapsulation was proper. If all m rounds pass the
user key is accepted.

In discussing the protocol, we will super-script the quantities by an index l (1 � l � m) which
indicates the iteration.

Recovery. Let L = f l 2 [m] : cl = 0 g. For each l 2 L the trustees already have the value sl0
satisfying gs

l
0 = hl, because this was revealed in the challenge phase. Now consider the following

recovery procedure Recover(l). The trustees use their shares of f l to recover f l0 which is the capsule
C l. They now run the T (k2) time recovery procedure Decap(1k2 ; C l) to get sl1, and output sl0 � sl1
as the key s of the user.

However, the above will not work for all l 2 L, because there may be some chance a cheating
user was lucky in the challenge phase. But what we will be guaranteed, from the VTDKE protocol,
is that it will work for most l 2 L. So, the trustees pick a random l 2 L and run Recover(l). If it
doesn't work, they pick another random l and try again. They may have to do this a few times, but
not too often. Speci�cally, with the parameters as we have set them, it is possible to show that the
probability that the trustees have to run the procedure twice is at most 0:02, and the probability
that they have to run it three times is at most 0:006. (So 98% of the time it takes T (k2) time to
recover s; however 2% of the time it may take twice as long, etc.) Thus for all practical purposes,
the recovery procedure is run just once, so the trustees compute for essentially T (k2) time.

Correctness and security. We now brie
y argue that the above VTDKE protocol meets the
conditions outlined in Section 2, namely|

Theorem 6.1 The protocol of Section 6 constitutes a veri�able time delayed key escrow scheme

for the Di�e-Hellman cryptosystem under the assumption that the discrete logarithm problem is

hard.

Let us now sketch the proof. The correct distribution of keys is true by assumption on the way
they are chosen. The main technical claim to see that other requirements are satis�ed is that the
protocol is zero-knowledge (under the assumption that the discrete logarithm problem is hard).
Intuitively, because in a given iteration we provide information only about one half of the claw,
and this is a random string, independent of s. (The information about the other half is hidden as
long as the trustees cannot compute discrete logarithms.) This implies that s is not revealed, which
means the security of the cryptosystem requirement is satis�ed. We have already discussed why
the recovery with some e�ort requirement is met. That there can be no recovery without e�ort,
and in particular no early recovery, is what we argue next.

Recall that to recover the trustees need to decapsulate a capsule C corresponding to an iteration
of the protocol with challenge c = 0. In this case, to any subset of the trustees of size at most t, the
cipher-text C is information-theoretically hidden, by the properties of the secret sharing, and s0
alone gives them no information about s or s1. So they have no a priori advantage in decapsulation.
Once they have a capsule, that the delay corresponds to the security of the time capsule itself.

Now we discuss veri�ability. The trustees are assured recovery by t+1 of them is possible and
won't take more than the prescribed time because the cut and choose guarantees them that most
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un-opened polynomials do have degree t and do contain a properly encapsulated s1. The cut and
choose also guarantees that most of the claws are proper.

Implementation. As written the protocol requires several rounds of interaction. The analysis
applies to this protocol. As we noted in Section 4, however, in practice interaction can be eliminated
by specifying the challenges as a hash of other quantities, a heuristic but seemingly sound approach
justi�ed in a random oracle model [BeRo]. This is suggested for an implementation. The same
applies to the following protocols and we won't mention it again.

7 A VTDKE scheme for RSA

Many popular cryptosystems are based on factoring. Speci�cally, in these systems, the public key
of the user is a composite modulus N product of two primes, and the secret key of the user is the
prime factorization of N [RSA, BlGo, BeRo]. It is important to be able to accomplish VTDKE for
such systems as well.

In the solution for DH provided in Section 6 we seemed to use the properties of the discrete
logarithm function quite strongly in the way we generated s0 and s1. So it may not be clear a
priori how we can get a VTDKE system for RSA. However, there is in fact a very general technique
underlying the protocol in Section 6, based on \splitting" the secret key into \certi�able claws."
Such a split can be made for RSA too. We now describe this and the resulting protocol and then,
in Section 8, generalize this to arbitrary cryptosystems.

First, some notation. Recall that JN (�) is the Jacobi symbol. We let Z+1

N � Z�

N be the Jacobi
symbol +1 elements, and Z�1

N � Z�

N the Jacobi symbol �1 elements. The number N is the product
of two primes, p and q.

The idea is to let s0 and s1 be square roots, of opposite Jacobi symbol, of a random square h.
Indeed, we can see that given both s0 and s1 we can recover the prime factors of N . On the other
hand, each alone gives no information, and also given si one can check that s2i = h mod N . Then
we would use the same cut and choose mechanism as before, each time opening and verifying one
of the \claws." The protocol is in Figure 2. In summary:

Theorem 7.1 The protocol of Figure 2 constitutes a veri�able time delayed key escrow scheme

for any cryptosystem in which the public key is a modulus product of two primes and the secret

key is the primes, under the assumption that factoring is hard.

Note the protocol assumes that the given N is really a product of two primes. Guaranteeing
this is not the job of our protocol. Rather it should be done by the protocol which is run between
user and trustees prior to the beginning of the escrow process to set up keys for the user; as we
have mentioned before, such a protocol is necessary anyway to prevent subliminal channels. Several
protocols to guarantee that N is a product of two primes exist in the literature, so we won't get
into this.

8 A general transformation

We generalize the protocols of Section 6 and Section 7 to work with any cryptosystem for which
we can de�ne a way to split the secret key via \certi�able claws." (This notion of claws is weaker
than the notion of a claw-free pair of permutations [GMRi].) Certi�able claws can actually be
de�ned for any cryptosystem so the method is general, but the e�ciency depends on how we de�ne
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Parameters and ingredients| Number of trustees n (say n = 5); Assumed bound t on
number of bad trustees (say t = 3); Security parameter k1 of cryptosystem; Security parameter
k2 governing desired time delay; Encapsulation scheme (Encap;Decap) with key length Kl(�),
input length Il(�) � k1 and output length Ol(�); Field F with lg(jF j) � max(Ol(k2); n).

User keys and their components| Secret key p; q of user; Public key N = pq of user,
of length k1. These keys are guaranteed to be of the right form and distribution.

Protocol: Repeat the following protocol, independently, m = d100n=(n � t)e times|

1. Claw generation and encapsulation: User picks s0 2 Z+1

N at random and lets h =
s20 mod N . He then computes a random Jacobi Symbol �1 square root s1 2 Z�1

N of h. He
then chooses a random Kl(k2) bit key K for the encapsulation scheme and encapsulates s1
via C = Encap(1k2 ;K; s1). He sends h to the trustees.

2. Sharing: User sets f0 = C. Next he picks at random f1; : : : ; ft from the �eld F and
creates the polynomial

f(x) = f0 + f1x+ � � � + ftx
t 2 F [x] : (2)

For j = 1; : : : ; n he sends f(j) to Trusteej over a private channel. Let �j denote the value
received by Trusteej .

3. Challenge: The trustees send the user a random bit c.

4. Response: The user responds according to the value of c:

If c = 0 then the user sends s0 to each trustee and the trustee checks that s
2
0 = h mod N

and JN (s0) = +1.

If c = 1 then the user sends f0; : : : ; ft to the trustees. He also sendsK and s1. Trusteej
now has the polynomial f(x) via Equation 2, and checks that �j = f(j). Each trustee
also checks that jKj = Kl(k2) and Encap(1k2 ;K; s1) = f0 and s2

1
= h mod N and

JN (s1) = �1.

Figure 2: The VTDKE Protocol for RSA.

the claws, and for speci�c algebraic systems it is best to search for speci�c claws that lead to an
e�cient construction.

Let us now brie
y discuss how the generalized protocol goes. We will be quite informal.
Assume that we have a cryptosystem with the following properties. Let sk be the secret key

and pk the public key of the user. Then there is a way to (probabilistically) generate from sk a
triple (s0; s1; h) such that:

� Given sk it is easy to generate pairs triples (s0; s1; h)

� Either member si of the pair, taken individually, reveals no information about sk

� Given both members s0; s1 of a pair, sk is easy to compute.

� Given si and h it is easy to check that there is a s1�i such that (s0; s1; h) is a valid triple

� It is easy to generate (si; h), one member of a pair and the auxiliary information, without even
knowing sk, so that they are distributed as though they were part of a triple.

We call (s0; s1) a claw. For example for the DH system we chose s0; s1 so that s0 � s1 is the secret
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Parameters and ingredients| Number of trustees n (say n = 5); Assumed bound t on
number of bad trustees (say t = 3); Security parameter k1 of cryptosystem; Security parameter
k2 governing desired time delay; Encapsulation scheme (Encap;Decap) with key length Kl(�),
input length Il(�) � k1 and output length Ol(�); Field F with lg(jF j) � max(Ol(k2); n).

User keys and their components| Secret key sk of user; Public key pk of user. These
keys are guaranteed to be of the right form and distribution.

Protocol: Repeat the following protocol, independently, m = d100n=(n � t)e times|

1. Claw generation and encapsulation: User splits sk into (s0; s1; h) according to the
splitting property of the cryptosystem. He then chooses a random Kl(k2) bit key K for
the encapsulation scheme and encapsulates s1 via C = Encap(1k2 ;K; s1). He sends h to
the trustees.

2. Sharing: User sets f0 = C. Next he picks at random f1; : : : ; ft from the �eld F and
creates the polynomial

f(x) = f0 + f1x+ � � � + ftx
t 2 F [x] : (3)

For j = 1; : : : ; n he sends f(j) to Trusteej over a private channel. Let �j denote the value
received by Trusteej .

3. Challenge: The trustees send the user a random bit c.

4. Response: The user responds according to the value of c:

If c = 0 then the user sends s0 to each trustee and the trustee checks that s0 is valid
with respect to h

If c = 1 then the user sends f0; : : : ; ft to the trustees. He also sendsK and s1. Trusteej
now has the polynomial f(x) via Equation 3, and checks that �j = f(j). Each trustee
also checks that jKj = Kl(k2) and Encap(1k2 ;K; s1) = f0 and s1 is valid with respect
to h.

Figure 3: The VTDKE Protocol for a general cryptosystem.

key s and h = gs0 . The veri�ability is that given s0 we can check gs0 = h and given s1 we can
check that Pgs1 = h where P = gs is the public key. Or, for the RSA system, h is a random square,
s0 is a Jacobi symbol +1 square root of h, and s1 is a Jacobi symbol �1 square root of h. The
veri�ability is that given si and h we can check that s2i = h mod N .

There is one very simple and general way to generate claws: just let s0 be a random string
and let s1 = sk � s0. Let h = (h0; h1) where hi is a committal to si. For the veri�ability one can
use ZK proofs to show that the committals are valid. This means any cryptosystem can be put in
the above framework, but, in the most general case, it may be at a loss in e�ciency, since the ZK
proofs may be ine�cient. Typically we look for better ways to make the split into claws, such as
we found for DH and RSA.

The protocol for this general case is similar to the DH and RSA ones and is provided in Figure 3.
Notice we ask that the public and secret key of the user be guaranteed to be of the right form

and distribution before our protocol begins. This should be guaranteed by the protocol between
user and trustees that is run, prior to our protocol, to choose the keys.
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A Early recovery attacks

The best way to introduce the issues is by example. We are in the DH system discussed in Section 6.
We will recall what is the standard fair DH system of [Mi1]. Then let us look at some existing
approaches to partiality [Mi2, MiSh]. This will enable us to illustrate the early recovery problem.

The fair DH system. In Micali's fair Di�e-Hellman cryptosystem-system [Mi1], the user, having
published gS , escrows S by simply sharing it via a veri�able secret sharing (VSS) scheme based
on techniques of Feldman and Pederson [Fel, Pe1]. The veri�ability is in the fact that the trustees
are able to check that they really have pieces of S, meaning that if later they try to recover the
shared secret, they will really get the secret key S of the user, and not some garbage. (A feature
of this VSS we stress is that it requires that g raised to the power the secret, here S, be published.
We will see the relevance later.) Of course, there is yet no partiality in the key escrow; that is the
problem we propose to address.

Guaranteed partial key escrow scheme. The suggestion of [Mi2, MiSh] is to make the public
key have the form P = gx+a where x is long but a is only, say, 80 bits. Now one can escrow x as
before, via the VSS of [Fel, Pe1]. (This requires publishing gx. It is important to note that this
means that ga = P=gx also automatically becomes known.) Then they provide a ZK proof that a
is indeed only 80 bits long. By Shank's baby-step giant-step method, 240 computation steps are
enough to get a given ga, and no faster algorithm is known. Thus, the suggestion is that partiality
is achieved because it takes 240 steps to recover a from ga.

A weakness of the above scheme. As mentioned above, the details of the ZK proof in a
scheme such as the above do not concern us. The weakness we pin-point is based only on the fact
that ga is made available to the trustees right from the beginning. We suggest that this defeats the
purpose of partial key escrow. The reason is that a trustee can work, for time 240, and recover a,
at any time, and in particular before the trustees receive a court order enabling them to recover x.

Then, when the trustees do get the court order to recover x, they straightaway have the full secret
key x+ a. That is, after the court order is issued, there is no extra work to be done at all. We call
this the problem of early recovery.

In contrast, our view is that even after the trustees know x, some work must remain to recover
the secret key. That is, we suggest one should have delayed recovery, and that this is crucial.
Indeed, partial key escrow with early recovery is not much better than standard key escrow, and in
some ways worse, because there is a \promise" of extra security to the individual which is in fact
not upheld.

Discussion. Let us again emphasize the issue of timing. Certainly, a scheme such as the above
provides an extra (ie. over and above normal escrow) deterrent to the trustees: they have to work
an extra 240 steps for each key they want to recover. The issue is when they can do this. In the
above scheme, any trustee can do it as soon as the veri�cation protocol ends and the public key is
published, and in particular without the court order enabling recovery of x.

One might suggest that the timing is not important since, to recover, say, hundreds of millions
of keys could still take a while. But nobody wants to recover hundreds of millions of keys. A bad
government is likely to have in mind some set of \important" users, say 10,000 of them, whose keys
it wants. Before it comes to power, it can, via a single compromised trustee, compute the a values
for these users, and store them. Upon coming to power, court orders to uncover the x values for
these users are issued at once, and now, by tapping into the stored a values, the full secret keys of
these users come at once into the bad government's hands.

One might say that a trustee will not compute a beforehand, since, after all, he is trusted.
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But all trustees are not trusted| that is after all the entire point of split key escrow. Thus it is
reasonable to assume one trustee is in cahoots with the opposition and will pre-compute a table of
users and their a values.

Surmounting early recovery. One obvious suggestion is to periodically update the public �le;
the user would pick a new 80 bit value a0, publish ga

0
, update his secret key to S0 = x+ a0 and his

public key to gS
0
. But the updating would have to be quite frequent, putting a huge burden on the

key management center, and defeating the idea of public key cryptography. So this does not sound
like a reasonable solution. In fact there is a technical challenge here.

The VCTC based methods in this paper achieve delayed recovery. A partial escrow scheme
extending the above to achieve delayed recovery is also presented in [BeGw], based on the same
assumption that Shank's algorithm is the best.
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