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Abstract

E�cient visible surface determination algorithms have long been a fundamental goal of computer

graphics. We discuss the well-known ray casting problem: given a geometric scene description, a

synthetic camera, and a viewport which discretizes the camera �lm plane into pixels, ray casting

identi�es the visible surface at each pixel, i.e., that scene primitive which is �rst encountered by an

eye ray directed through the pixel center.

Interactive rendering systems have not ordinarily been based on ray casting, due to its computa-

tional cost. Instead, the dominant method for achieving interactive rendering is hardware-assisted

rasterization and depth bu�ering of polygons, often produced by static or dynamic tesselation of

higher-level objects. Modern polygon rasterization architectures are extremely powerful, having

undergone an extensive development path.

Several trends indicate, however, that alternatives to polygon rasterization and depth bu�er-

ing deserve examination in the design of future interactive rendering systems. The �rst trend is

the number and breadth of proposed algorithmic and hardware methods to lessen transformation,

rasterizer and depth bu�er load while viewing models of high complexity. A second, related trend

is that geometric models are, increasingly often, larger than ordinary physical memories, lending

greater importance to memory coherence considerations. Finally, general purpose processors have

grown very powerful, enabling 
exible, dynamic retargeting of computational resources to di�ering

subtasks while maintaining responsiveness. A rendering system based on such processors could have

signi�cant advantages over dedicated hardware.

In light of the above, we explored an alternative, general rendering architecture based on ray

casting. In seeking to build an interactive software ray caster, we studied existing visible surface

algorithms. Combining three such algorithms, we synthesized frustum casting, a novel algorithm for

per-pixel visible surface identi�cation in general scenes. The algorithm samples discretely, but oper-

ates in object space, and is exact and e�cient. We demonstrate a prototype software renderer based

on frustum casting, which achieves interactivity through \just-in-time" sampling, and progressive

image improvement through deferral of intersection and shading operations.

Frustum casting well addresses the technological trends listed above. We believe that it and other

ray-based rendering methods may be practically incorporable by designers of future high-performance

rendering architectures.

Keywords: Rendering, rasterization, ray casting, ray tracing, visibility, occlusion, spatial indexing.
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1 Introduction and Related Work

Achieving visually correct, interactive viewing of complex, general geometric scenes has long been a
fundamental challenge in computer graphics. Early rendering systems were based on software implemen-
tations of \hidden-surface elimination" algorithms for polygonal scenes [28]. Given a scene description,
these elegant algorithms identi�ed and displayed those portions of the scene visible to a speci�ed syn-
thetic camera. Importantly, these algorithms compute analytic (i.e., object-space) descriptions of visible
surfaces and surface fragments. In addition to a method for hidden-surface elimination, rendering sys-
tems formulate a shading model in order to display visible scene elements with simulated illumination
values.

1.1 Depth-Bu�ered Rasterization Architectures

Early hidden-surface algorithms expend considerable e�ort computing descriptions of visible fragments
in object space (or some hybrid of object and screen space, e.g., [30]). This can be wasteful when
visibility information is required only for a �nite set of samples at each pixel. Thus these algorithms are
not ordinarily competitive for very complex, or very general, environments. The z-bu�er, proposed in
[9], resolved visibility independently at each pixel through repeated depth comparisons. Although this
method was initially regarded as overly memory-intensive, it did have time complexity linear in the scene
size; as available memory grew and cheapened, depth bu�ering gained favor over object space methods.
Specialized hardware \geometry engines" eventually emerged to accelerate the extensive calculations
inherent in polygon transformation, clipping, shading and rasterization [10]. Such dedicated rendering
architectures have since formed a major development path, as successive versions have incorporated
depth-bu�ering, texturing, and many other extended capabilities (e.g., [4, 2, 3, 25, 27]).

1.2 Managing Geometric Complexity

Graphics workstations dedicate substantial hardware \pipelines" to geometric transformations, polygon
clipping, application of shading and texturing operations, anti-aliasing and depth-bu�ering. However,
geometric models have grown ever more complex as well, due to CAD, military, scienti�c, entertainment
and other applications. In a curious twist, object-space and hybrid object/screen-space methods have
again regained prominence as researchers attempt to maintain responsive visible-surface identi�cation
and rendering in the face of increasing model complexity. In e�ect, just as visible-surface algorithms
once turned to low-level depth bu�ering hardware to avoid combinatorial blowup, so now do hardware
pipelines turn to high-level visible-surface algorithms to avoid rendering overload!

For input models with considerable occlusion, from most viewpoints a signi�cant fraction of scene
primitives do not contribute to the rendered image. Such models are said to have high \depth complex-
ity," resulting in \overdraw" { wasted e�ort1 { during rendering.

E�cient algorithms to identify and render only potentially visible scene elements, thus reducing
overdraw, appear in several forms. Frustum culling algorithms cull those scene elements lying outside
the view frustum, but do not detect occlusion [17]. Occlusion culling algorithms exclude portions of the
scene invisible due to nearer, opaque elements; these algorithms operate in object space [1, 29, 11, 22]
or in both object and image space [20, 24, 19, 32]. All of these algorithms rely on standard rasterization
hardware for rendering, and a standard or generalized screen-space depth bu�er to resolve occlusion
among potentially visible objects.

1The term \overdraw" is used in the game engine community to mean repeated reads and conditional writes of the
depth bu�er. Here we use it to mean any processing of invisible scene elements.
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1.3 Alternative Frameworks for Interactive Rendering

Despite both algorithmic advances and specialized hardware, several trends open to question the suit-
ability of polygon rasterization for rendering ever more complex geometric scenes. First is the number
and breadth of recently proposed methods intended to lessen rendering load when viewing complex
models. This suggests that perhaps the standard approach of transforming, clipping, rasterizing, and
depth bu�ering simply does not scale well; perhaps some fundamentally di�erent visibility resolution
mechanism should be sought.

A second, related factor is the increasing importance of algorithmic memory coherence as geometric
model size routinely exceeds the fast storage capacity of the workstations with which they are to be
viewed. Indeed, one can reasonably expect geometric models to grow so complex that even related
spatial indexing data (e.g., octree structures) will not �t in physical memory. The care with which
algorithms manage access to this spatial index will become an increasingly important, and perhaps
decisive, evaluation criterion. This has already occurred in the GIS community, although so far mostly
for two-dimensional data [6]. We defer a discussion of algorithmic working set considerations to x1.5.

Finally, general purpose processors have grown enormously powerful. Most desktop workstations
make available several hundred MIPS andMFLOPS for general purpose computing. This enables 
exible,
dynamic retargeting of compute bandwith to di�ering rendering subtasks (visibility, lighting, texturing,
reconstruction, etc.), or tasks entirely apart from rendering (e.g., simulation), possibly to signi�cant
advantage over dedicated hardware.

1.4 An Interactive Ray-Based Rendering Algorithm

This paper proposes the viability of responsive, high-�delity rendering algorithms based on object-space
ray casting. We introduce an algorithm, frustum casting, with a number of attractive properties in light
of the above criteria. It uses neither dedicated geometric transformation hardware nor depth bu�ering
(though it could be accelerated by the former). It has a working set equivalent or smaller than that of
existing algorithms in principle, yet handles more general scene geometries. Finally, within a few years,
increasing general compute bandwidth will enable ray-based rendering systems to run interactively on
most desktop systems without dedicated graphics hardware. The frustum casting implementation we
describe may serve only to provide interactivity slightly earlier. Even so, we have engineered it to adapt
gracefully (while sacri�cing or augmenting image �delity) to time-varying, insu�cient, or extra compute
bandwidth on today's systems.

1.5 Algorithm Characterization by Working Set and Overdraw

As the complexity and data size of ordinary models rises, an increasingly important consideration in the
evaluation of visible surface algorithms is each's \working set"; that is, the extent to which, and the order
in which, each algorithm accesses virtual memory regions containing nodes of the spatial index (e.g.,
geometric bounds) or model data (e.g., scene primitives such as triangles or other objects). Working set
is closely related to \overdraw," the e�ort expended to render (transform, light, clip, rasterize, depth
bu�er; intersect rays with; etc.) surfaces which do not contribute to the rendered image.

When the visible scene geometry is larger than physical memory, researchers have proposed substi-
tuting simpli�ed geometry [15] or imagery [13]. Such methods have complex implications for memory
footprint, and are outside the scope of this discussion of visible surface algorithms.

When only a portion of the scene is visible from ordinary viewpoints, an e�ective algorithm could
reduce overdraw by identifying and traversing only this portion. A perfect visibility \oracle" (as yet
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undiscovered) could do so without touching invisible scene elements, thus eliminating overdraw entirely.
For specialized environments, e�ective oracles exist through \preprocessing" [1, 29, 16]. The principal
strength of these methods is their capability to schedule physical and virtual memory accesses both before
and during rendering, avoiding most sudden losses of interaction due to traversal of out-of-memory scene
elements. However, such methods are so far applicable only to those architectural models whose room
and adjacency structure is fairly regular, and readily discernible.

The aim of this section is to categorize a wide variety of visible-surface algorithms according to
the above considerations. Although it is di�cult to deduce the detailed memory behavior of so many
complex algorithms without extensive experimentation, it is possible to categorize them by their per-
frame memory footprint with regard to both nodes of the spatial index (if appropriate) and associated
geometric scene elements. We do not consider classical object-space visible surface algorithms, as their
combinatorial complexity makes them impractical for very complex environments.

Algorithms can also be characterized by the degree to which they result in overdraw. Our charac-
terization of visibility algorithms requires the de�nition of the \occlusion frontier" of a frustum (the
bold curves in Figure 1). The occlusion frontier is de�ned, for any ray emanating from the viewpoint,
as the depth at which the ray �rst intersects a scene element. A point in the frustum lies \beyond"
the occlusion frontier if the line segment joining that point and the viewpoint intersects the occlusion
frontier. Finally, we say that a volume is beyond the occlusion frontier if every point of the volume lies
beyond the frontier. Using the de�nitions above, four classes of visibility algorithm can be identi�ed
(Figure 1):

Exhaustive Traversal. In hardware, all model primitives are transformed, clipped, and rasterized;
visibility is determined with a depth bu�er. In ray casting, every ray is checked for intersection with
every object. Either algorithm plainly touches all model data (Figure 1-a), so does not scale well to
complex models, and results in extensive overdraw.

Frustum Culling. The spatial index is traversed from the root. Recursively, cells are examined for
intersection with the view frustum [17]. Disjointness causes a cell's associated scene data and children (if
any) to go unexamined; incidence causes traversal of the cell's children (if any) and contents. Frustum
culling algorithms process nodes outside the view frustum and beyond the occlusion frontier, and scene
geometry beyond the occlusion frontier, resulting in extensive overdraw (Figure 1-b).

Occlusion Culling. A collection of occluders near the viewpoint is identi�ed either o�ine or during
rendering, and maintained either in object space [11, 22] or (hierarchically and conservatively2) in screen
space [20, 19, 32]. The spatial index is traversed from the root. If a cell is occluded by the current
occlusion map, its children are unexamined. Otherwise, its associated geometric data and children are
traversed, possibly updating the visibility map. These methods traverse signi�cant numbers of nodes,
and some scene elements3, beyond the occlusion frontier (Figure 1-c)4, resulting in signi�cant overdraw.

Frustum Advance. The spatial index is traversed starting from a leaf cell, by adjacency, and
constrained so as to maintain incidence with the view frustum. Examples of frustum advance algorithms
are (for conservative interactive viewing of polyhedral, densely occluded, typically architectural environ-
ments) [23, 1, 16, 24], and (for analytic, usually batch rendering of general environments) ray casting
with spatial indexing (e.g., [18, 14]). This class of algorithm has a nearly minimal memory footprint; it
touches no nodes beyond the occlusion frontier (Figure 1-d). The algorithm we introduce falls into this
category.

2The algorithm of [32] is not conservative; that is, it may omit visible polygons.
3The scene in [19] was procedurally instanced, avoiding the problems inherent in global scene traversal.
4In fact each of [20, 19, 11, 22, 32] uses the root-�rst traversal order of [17]. However each algorithm is easily modi�ed

to touch only those nodes incident on the viewing frustum, by adoption of constrained depth- or breadth-�rst traversal.
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a) exhaustive traversal b) frustum culling

d) frustum advancec) occlusion culling

examined cellunexamined cell examined object bound examined object geometryKEY:

Figure 1: Memory footprints of four classes of visibility algorithm.

1.6 Discussion

Consider the latter two classes of algorithms: occlusion culling and frustum advance. Of occlusion culling
algorithms, only [20, 19, 32] are likely to scale well to large environments, and then only if they adopt
the spatial traversal ordering (i.e., eye outward, constrained to within the frustum) of frustum advance
methods.

Now consider the overall processing performed by a hardware rasterization system when augmented
by any of the proposed algorithms of [20, 19, 32], modi�ed to adopt frustum advance traversal. Such
systems would

� Traverse the spatial index eye outward, processing only nodes incident on the view frustum;

� Keep track of scene elements, and their depths, as they are encountered;

� Perform repeated (possibly hierarchical), conservative depth comparisons at each pixel to determine
the visible surface there.

These three properties apply as well to ray casting algorithms. In other words, the above visible
surface methods, whether formulated as object-space or hybrid algorithms, strongly resemble ray casting
algorithms. We consider this development { that current techniques are converging to ray casting {
strong evidence that ray casting deserves examination as a design alternative for interactive rendering
systems.
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2 Preliminaries

Frustum casting is a novel synthesis of three well-known algorithms: screen-space subdivision [30], beam
tracing [21]; and fast ray walking through a spatial subdivision [18]. Each of these algorithms introduced
a signi�cant innovation to yield e�ciency in an important problem domain. Yet, each has a signi�cant
computational disadvantage, as we describe. Frustum casting combines e�cient aspects of the three
algorithms.

2.1 Screen-Space Subdivision

Warnock's hidden-surface elimination algorithm operates as follows [30]. Given a root (screen space)
viewport and a collection of polygons, all polygons are transformed to screen space (retaining depth)
and classi�ed as disjoint, covering, or incident on the root viewport. The viewport is then recursively
subdivided in quadtree fashion, under the following criteria: subdivision terminates if either 1) no
polygon intersects the viewport; 2) some polygon covers the viewport, and its maximum depth within
the viewport is less than the minimum depth of all other polygons, or 3) the viewport has been subdivided
to a single pixel (in which event special-case processing emits visible vertices and edge fragments, or
simply sorts by depth at the pixel center, depending on application). For e�ciency, polygon incidence
lists are \inherited" by child viewports during subdivision.

The signi�cant innovation of Warnock's algorithm is its introduction of a simple test (of a polygon
versus a viewport edge) which, when successful, shields many thousands of pixels (on one side of the
edge) from any interaction with the excluded polygon (on the other side). However, the algorithm has
a signi�cant disadvantage: to initialize the root viewport, it must classify (e.g., process) every polygon
in the scene, even those polygons eventually determined to be invisible.

2.2 Beam Tracing

Heckbert and Hanrahan's beam tracing algorithm was formulated for ray tracing polyhedral environ-
ments, and operates as follows [21]. A root frustum is de�ned to encompass the entire viewport, and
represents an initial visibility \beam" emanating from the eye. A sweep plane algorithm traverses poly-
gons in depth order5, and \subtracts" them from the beam (using generalized intersection operations
[31]). The masked portion of the beam is then re
ected from the occluding polygon and recursively
propagated through the scene.

Beam tracing's signi�cant innovation is its use of polyhedral beams to advance many rays through
the scene at once, attaining signi�cant acceleration of ray tracing. However, in the balance it surrenders
the ability to handle non-polygonal primitives. Moreover, it necessarily computes all apparent (visible)
intersections among polygon edges, e�ectively subdividing along all such edges. Its running time can
therefore grow quadratically with scene complexity, even in the non-recursive (i.e. ray casting) case.

2.3 Ray Walking

Glassner's octree-based ray-walking algorithm provided for the e�cient propagation of rays through an
axial spatial index [18]. This algorithm's signi�cant innovation was to localize ray-object intersection
tests; rather than involving all scene primitives, ray-walking limits processing to the set of spatial cells

5The algorithm assumes no depth cycles.
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between the ray origin and its eventual encounter with a scene primitive (or the background), and any
scene elements associated with those cells.

Ray-walking signi�cantly accelerates a fundamental operation: tracing a single ray through a complex
scene. Indeed, it exploits coherence by excluding most sets of related scene elements from interaction
with a given ray. However, it does not address the complementary problem, that of excluding most
sets of related rays from interaction with most scene elements. That is, ray-walking does nothing to
accelerate the tracing of successive, similar rays through the spatial index, even though their paths (and
thus the set of objects against which they are tested for intersection) will generally be similar.

In ray tracing, this is perhaps a minor concern, as the origin and direction of recursively spawned
rays decoheres quickly due to re
ection and refraction operations, and such rays form the great majority
of the total rays traced. Thus, the time \wasted" by failing to exploit the coherence of primary rays is
generally insigni�cant in relation to total time. Yet ray tracing is at present a domain in which image
generation may require minutes or hours. Here our goal is the realization of ray casting, of primary rays
only, in a fraction of a second; the failure of individual ray-walking to exploit (the signi�cantly greater)
coherence present in this restricted situation is a signi�cant weakness of this approach.

2.4 Frustum Subdivision

We implemented an exploratory ray casting algorithm which combined Warnock's algorithm and beam
tracing (but not ray-walking), as follows. Given a root frustum and a collection of scene objects, all
object bounds are classi�ed as incident or disjoint with respect to the frustum in object space, that
is, by classifying the objects' 3D bounding boxes with respect to each of the frustum bounding planes.
The root frustum is then recursively subdivided under the following termination criteria: subdivision
terminates if either 1) no element intersects the current frustum; 2) some element covers the frustum,
and its maximum depth within the frustum is less than the minimum depth of all other elements, or 3)
the frustum has been subdivided to a single pixel. Incidence information for children is computed by the
parent frustum and shared as in Warnock's algorithm. In termination case (1), the relevant pixels are
trivially shaded, e.g. with the background color. In termination case (2), the visible element is known
at every pixel in the region; for shading, either its intrinsic color can be used, or (if a depth and/or
surface normal is needed) a fast (unconditional) ray-object intersection can be applied to the element.
In termination case (3), an ordinary ray-object intersection is performed on all incident objects, and the
closest intersection returned as usual.

This \frustum subdivision" algorithm for ray casting signi�cantly outperforms octree-based ray-
walking for scenes of low depth complexity. Yet, for scenes of high depth complexity, it has the same
disadvantage as Warnock's algorithm: it traverses and classi�es all objects \at the root," thereby touch-
ing the entire scene, and potentially wastes signi�cant e�ort on invisible objects. Frustum subdivision
is therefore unsuitable for application in complex environments.

3 Frustum Casting

Recently, several practically-motivated criteria have been proposed for visibility culling algorithms: that
such algorithms be general, run at interactive rates, provide e�ective culling, be amenable to implemen-
tation, and scale well to complex models [32]. Here we suggest a somewhat more theoretically motivated
set of design considerations germane to crafting visible surface algorithms. Such algorithms should:

� Spend little or no e�ort considering occluded objects, thus exhibiting a working set not much
greater than the set of visible objects (and those cells that index them, if any);
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� Classify at once multiple pixels with respect to most objects, and multiple objects with respect to
most pixels, thus exploiting the geometric coherence of primary rays, and the spatial coherence of
scene geometry (when present); and

� Perform no subdivision along object space silhouettes, or at object space vertices (apparent inter-
sections of silhouettes), thus avoiding combinatorial blowup.

We propose a novel algorithm which, in principle, satis�es both sets of criteria. That it indeed scales
to interactive rates on complex scenes is not yet proven, although initial results are encouraging (x5).

3.1 Data Structures and Subdivision

The frustum casting method depends on the following data structures. Before interaction begins, the
scene is organized into a hierarchical spatial index, as in [18], which supports e�cient population of
scene objects and location of the synthetic viewpoint. The spatial index also supports e�cient traversal
by propagating rays, and determination of a given ray's \arrival cell" { the adjacent cell into which a
ray, exiting a given cell, emerges. (If there is no such adjacent cell, the cell descriptor is returned as a
special value, null.)

Another data structure of the method is a frustum descriptor (Figure 2), de�ned by a point of view,
four extreme rays centered on viewport pixels (lower left, lower right, upper right, and upper left) and
four bounding planes (left, right, bottom, and top). Each bounding plane de�nes a \positive halfspace"
in world coordinates; the intersection of these four halfspaces is the spatial \interior" of the frustum.

Figure 2: A frustum descriptor (left), and frustum subdivision (right).

A frustum can be subdivided into four \child frusta," each one quarter the size of the original frustum,
through the computation of two new bounding planes (one separating left from right, one separating
bottom from top) to serve as boundary planes of the child frusta, and �ve rays (one in the viewport
center, and one along the midpoint of each edge) to serve as extreme rays of the child frusta. Whenever
a frustum is divided into child frusta, the child frusta can reuse all of the information contained within
the parent, and share information assembled by the parent. For example, each child frustum reuses
two bounding planes (appropriately oriented) and one extreme ray with the parent. Each child shares
both of the bounding planes generated by the parent, and three of the �ve rays generated by the parent
(shared elements are bold in Figure 2).
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3.2 Recursive Description

The frustum casting method is most simply described as a recursive algorithm, although our implemen-
tation uses non-recursive continuations (x5). Each instance of the algorithm is invoked with a frustum
descriptor, and a cell descriptor which describes the cell in which the frustum's extremal rays are to
commence traversal. A \root frustum" is initialized, to which correspond all pixels in the viewport; the
current frustum is then set to the root frustum, and the current cell to the cell containing the viewpoint
(Figure 3-a shows a two-dimensional example with a nine-pixel viewport).

The set of elements in the current cell whose bounding volumes impinge on the frustum interior is
then determined. If the set of impinging elements is empty, there can be no ray/element intersections in
the current cell (as in Figure 3-a). In this case, the arrival cell for each extreme ray is determined. If all
extreme rays have the same arrival cell, there are two cases. If the arrival cell is null, the frustum has
exited the spatial index, and no element intersections exist for rays within the current frustum (Figure
3-b). Otherwise, the current frustum is cast through the arrival cell (Figure 3-c). If the extremal rays
have di�erent arrival cells, the frustum is divided into child frusta as described above, and the four child
frusta are recursively cast through the arrival cell (Figure 3-d).

b

a

 f 

 e

c

d

Figure 3: Frustum propagation, subdivision, and intersection testing.

If the set of elements impinging on the current frustum is non-empty, there are two cases. If the
frustum has reached a resolution of two by two (in 3-D; two by one in our 2-D example), there can be
no advantage to further frustum subdivision; the four extremal rays are simply propagated individually
through the spatial index until they encounter a scene element or exit the spatial index (Figure 3-e).
Otherwise, the frustum is divided into child frusta as described above, and the four child frusta are cast
through the current cell (Figure 3-f).

It is easy to see that frustum casting terminates, as all rays of the root frustum either (1) eventually
become extreme rays through frustum subdivision, then propagate through the spatial index until an
element intersection is found or the ray exits the spatial index, or (2) are known to have no intersection
with the scene, as their containing frustum has exited the spatial index. Upon termination, then, the �rst
(i.e., visible) scene element, if any, has been determined at every pixel. A shading operation can then
be performed at the identi�ed visible surface point, to produce a color for display at the corresponding
pixel.

9



4 Optimizations

There are a few immediately apparent optimizations. Frusta can be classi�ed with regard to sign and
major propagation direction, and checked against incidence lists using 1-D object sorting, as in [12]. The
di�erence is that, while unitized rays always have a unique major direction, frusta may not.

Second, if all four extreme rays hit the same convex element in the current cell, and it is the only or
minimum-depth element impinging on the frustum, all rays interior to the frustum must have their �rst
intersection with the element.

Third, a ternary classi�cation (above, below, straddling) can be deduced from each plane/bound
test; once an object is found to be straddling with respect to both left and right (or top and bottom, or
all four) frustum planes, it is known to be straddling for all analogous planes bounding child frusta, and
need be subjected to no further tests.6

Finally, the four planes de�ning the root frustum can be augmented by \near" and \far" clipping
planes as in the standard graphics pipeline, eliminating ray-object intersection checks close to the eye
and deep in the spatial index.7

There is one special case to be considered. If the initial viewpoint is outside of the spatial index
root node, the current cell is set to null, signifying that the spatial index hasn't yet been encountered.
Frustum subdivision (unhindered by plane tests, as there can be no impinging objects) ensues until all
child frusta identify appropriate arrival cells.

4.1 Discussion

We revisit the discussion of x1.6. Modern visible-surface algorithms resemble ray casting; frustum casting
resembles ray casting. Both require a spatial index in order to scale. What then is the distinction between
these algorithms and frustum casting?

Hierarchical depth bu�ers are \bottom up"; they rasterize, then cluster up to produce conservative
z bounds. They essentially subdivide the viewport to full resolution, then rasterize into it. Hierarchi-
cal queries determine occlusion of subsequently rendered objects/bounds, ordered by forward traversal
through a spatial index. Scene elements are polygonal, though may be tesselated, and have easily com-
putable bounds. Primitives map to pixels through a screen-space inclusion test. Rendering a single
primitive requires state proportional to the resolution of the depth bu�er.

Frustum casting is \top down"; it makes queries of the whole viewport, then subdivides if the query
can not be simply answered. Hierarchical queries determine whether further propagation into the spatial
index is required. Scene elements are implicit, generally requiring no tesselation, but computing their
bounds is in general more di�cult than for polygons. Primitives map to pixels implicitly, through an
object-space intersection test. Rendering a single primitive requires state proportional to the visual
complexity of the scene in the vicinity of the primitive.

It remains to be seen which of these algorithms, when a�orded equivalent computational bandwidth,
is superior in practice, and in what regime of performance, model complexity, and viewport resolution.

6A related idea has been developed independently [8].
7Note that near and far planes are not required by ray casting, in contrast to approaches which use standard perspective

transformation.
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5 Implementation and Example Results

We implemented a simple software prototype of a progressive rendering system based on frustum casting.
The major modules of the system are the spatial index module, the visible surface module, a shading
module, and a reconstruction module which performs just-in-time, progressive reconstruction of succes-
sive rendered images. All of these are controlled through an extensive graphical user interface, enabling
interactive motion, visualization of the algorithm data structures and queries, control of rendering qual-
ity and resource tradeo�s, and display of generated frames. We describe each module in turn, then give
some examples of the system in use.

5.1 Spatial Index

The spatial index is an implementation of k�d trees [7], augmented to support ray casting and primitive
intersections tests as in [18], and frustum casting as described here. (Note that any spatial decomposition
{ �xed grid, octree, tetrahedralization, hexahedralization, etc. { would serve here so long as it supports
object population, point location, and ray traversal.) The currently supported set of objects includes
spheres, axial parallelepipeds and polygons (but is of course generalizable to any primitive amenable to
intersection with a ray). At run time, each object is read into memory; its world-space bounding box
is determined, and the object is stored in the root node of the spatial index. The spatial index is then
recursively subdivided, and objects are distributed to its leaves in standard fashion.

5.2 Visible Surface

The visible surface module is a straightforward implementation of the frustum casting algorithm pre-
sented in x3, with two modi�cations. First, instead of a depth-�rst, recursive formulation, we use a
statically scheduled, dynamically dispatched \job queue" as follows. Each job record contains an ac-
tive/inactive 
ag, a frustum descriptor and the current spatial cell to be traversed. Every job record
also has a pointer to its four children (subfrusta) in the static job queue (Figure 4).
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Figure 4: The job queue, and interleaved screen subdivision.

At the beginning of time an interleaved, breadth-�rst elaboration order is de�ned for the root view-
port. The invariant maintained is that all subfrusta at depth q are scheduled after completion of all
subfrusta at depth p < q, while subfrusta at the same depth are scheduled in interleaved order. The
queue is initialized with a single job representing the root frustum (which includes the entire screen space
viewport) advancing from the spatial cell containing the viewpoint. When a frustum f subdivides, it
inserts coherent subdivision information (current cell; incident and straddling lists; etc.) into its children
in constant time, and marks the children active. If f does not subdivide, its children are left untouched.
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A simple dispatching algorithm executes jobs in order, while monitoring the elapsed time (in the �rst
case) or the number of completed samples (in the second case), ceasing work on the current frame when
appropriate. Any inactive job records encountered on the queue (due to prior termination of the parent
frustum) are simply skipped. All completed samples are then subjected to reconstruction to produce
the displayed image (x5.4).

This formulation has several advantages. First, it allows state (in the form of uncompleted jobs) to
persist across multiple frames, allowing deferred intersection and shading computations. Second, the
interleaved sampling schedule ensures that samples are distributed roughly equally throughout the view-
port, regardless of whether or when job queue execution is interrupted (for periodic reconstruction and
display). This interruptable scheduling mechanism supports either �xed-time or �xed-quality rendering.

5.3 Shading

The shading module implements Phong lighting [26], as well as di�use texture lookups and shadow
rays [5], at each pixel. From visible surface points identi�ed by frustum casting, the shading model
generates \con�rmed" sample values for use by the reconstruction module and eventual display (x5.4).
Shading tasks can be interactively designated as either \immediate" or \deferred." During user motion,
the shading module performs only immediate subtasks. When the user pauses (i.e., when the synthetic
camera is identical to that of the previous frame), any deferred subtasks are invoked. This exploits the
fact that users want responsiveness, yet frequently pause to inspect the displayed scene; during such
pauses, progressively higher-�delity images are produced.

5.4 Reconstruction

The rendering system is designed to guarantee either image quality (by working until a speci�ed number
of samples are gathered), or frame rate (by sampling until a speci�ed frame interval elapses). In either
case, the number of samples gathered may be less than the number of pixels in the image to be displayed.
We therefore face the well-known \reconstruction" problem of deducing values at every image pixel from
a set of samples. However, in our case the problem has speci�c structure, in that samples arise from the
interleaved order of x5.2.

Every sample in the sample bu�er maintains a con�rmed value (written only by the shading module)
and an interpolated value (written only by the reconstruction module). The reconstruction algorithm is
invoked with four con�rmed sample values at the corners of the root frustum, and operates recursively
as follows. If samples along the boundary midpoints have no con�rmed values, they are generated by
interpolation of the two relevant corner values. Similarly, the viewport's center sample is generated by
interpolation of boundary values if necessary. The root viewport is recursively subdivided until all pixels
are found to have been con�rmed, or are interpolated.

This formulation allows the reconstruction algorithm to use the most recent values produced by
the shading module; it is a kind of \just-in-time" rendering algorithm crafted in anticipation of our
prototype's extension to a small number of simultaneously working processors. Our reconstruction �lter
is admittedly naive; however the choice of �lter is an issue largely independent of our concerns here.

We note that for e�ciency there is no case in which large program bu�ers (e.g., of samples or job
descriptors) are synchronously cleared. Instead, such frame-related variables maintain a monotically
increasing frame time; if it does not match the globally-maintained time, the variable is treated as
uninitialized by the �rst relevant routine to consider it.
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5.5 User Interface and Display

The user interface is based on XForms [33]. Signi�cantly, the UI copies successive reconstructed sample
bu�ers to the framebu�er for display. It also provides for interactive motion of a synthetic camera
through a geometric scene, and control methods to specify either �xed frame rate or �xed quality, but
not both (\pegging" either attribute causes the other to vary freely; this portion of the UI is shown in
Figure 5).

Each of the shading calculations (ambient, emissive, di�use, specular, shadowing) can be made
immediate or deferred, as can di�use texture lookup. Finally, many program data structures and queries,
such as the spatial index, object bounds, and ray traversal algorithms, can be visualized directly in a
second window (Figure 6).

Figure 5: Pegging frame rate (left) or number of samples
(right). The strip charts scroll o� the right; for about
half the frames number of samples was pegged, whereas
for other half frame time was pegged. The spike in sam-
ple number at the midpoint of the right-hand strip chart
this occurred when the user pressed the \peg frame time"
button (bottom left), and paused to observe the results.

Figure 6: The spatial data structure visu-
alization window.

5.6 Examples and Discussion

We include here a series of example operating conditions and accompanying screen snapshots to illustrate
the 
exibility of the prototype system. Rather than show the system running on a fast multi-processor,
we show two scenarios of modest uniprocessor operation to show its adaptability. All render window
snapshots are shown at 129� 129 = 16; 641 pixels.

The �rst set of examples (Figures 7 - 10) was run on a single MIPS R4400 at 200 MHz.

The second set of examples (Figures 11 - 12) was run on a single MIPS R5000 at 200 MHz, a
considerably more powerful machine. The model contains 1,685 polygons. Frustum casting in no way
assumes or depends upon architectural structure. Figure 12 shows the model viewed from \outside," i.e.
as an ordinary geometric object.

Although our prototype system uses only general-purpose computational resources, it could of course
bene�t from dedicated hardware, already present in principle in at least one modern hardware rasteriza-
tion pipeline [27], to transform rays and normals, perform plane sidedness tests, fetch object bounding
volumes, object geometry, and texels from main memory, and perform sample bu�er reconstruction.
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Frame 1 Frame 2 Frame 3 Frame 4

Figure 7: Phong lighting per-pixel at two FPS; progressive rendering enabled.

Frame 1 Frame 2 Frame 5 Frame 8

Figure 8: Phong lighting with texturing and immediate shadow rays, 5 FPS.

6 Conclusion

This paper makes a case, on several grounds, for the consideration of ray casting as a useful, fundamental
primitive for interactive rendering. Ray casting straightforwardly enables high-�delity imagery, with
correct per-pixel depth, silhouettes, highlights, texturing, and shadowing. It is argued, from observations
of several classes of visible surface algorithms, that the working set of ray casting is equivalent or superior
to that of existing polygon-based rendering algorithms which rely on standard graphics pipelines.

Ray casting is computationally expensive. After analysis of three visible surface algorithms, we
synthesized frustum casting, a novel, simple method which propagates rays in groups, rather than indi-
vidually, yet samples in screen space, avoiding combinatorial growth and robustness problems inherent
in analytic object space algorithms, while maintaining a working set equal or superior to that of existing
visible-surface algorithms.

A prototype software implementation of frustum casting is demonstrated, which achieves interactivity
through \just-in-time" rendering, and progressive image generation through deferral of intersection and
shading operations. This sort of dynamic resource allocation { for example, tradeo�s between resolution
and shading quality { is not easily attainable on today's hardware rasterization systems without idling
a large fraction of dedicated hardware.

Finally, we observe that many of the atomic operations in ray casting (e.g., matrix transformations,
texture fetching) are similar to those in modern polygon pipelines, and could therefore be similarly
accelerated in a hardware-assisted ray casting architecture. We conclude that the adoption of visible
surface techniques based on ray casting is a design alternative worthy of consideration in the development
of future responsive, high-�delity rendering systems.
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Frame 1 Frame 5 Frame 17 Frame 28

Figure 9: Phong lighting with texturing and deferred shadow rays, 5 FPS.

Frame 1 Frame 2 Frame 3 Frame 4

Figure 10: Sampling speci�ed at 2,500 per frame; frame rate about 2 FPS.

Interior, 10 FPS. Interior, 5 FPS. Interior, 2 FPS. Interior, 1 FPS.

Figure 11: All rendering is immediate mode.

Exterior, 10 FPS. Exterior, 4 FPS. Exterior, 2 FPS. Exterior, 1 FPS.

Figure 12: All rendering is immediate mode.
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