
Scalable Inter-Cluster Communication Systems for

Clustered Multiprocessors

Xiaohu Jiang and Donald Yeung

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

November 1997

Abstract

As workstation clusters move away from uniprocessors in favor of multipro-

cessors to support the increasing computational needs of distributed applications,
greater demands are placed on the communication interfaces that couple individual

workstations. This paper investigates scalable, e�cient, and reliable communication

systems for multiprocessor clusters that use commodity local area networks (LANs).

Our design provides reliable message delivery using software protocol stacks. High

performance is achieved via an e�cient protocol stack design, parallel execution of

protocol processing on multiple proxy nodes, and transmission of messages through

multiple network interfaces in each multiprocessor. Our communication system is

scalable because the parallel stack design delivers higher throughput as the physical

communication processing and network interface resources in each multiprocessor

are increased.

A prototype of the design is built on the Alewife multiprocessor. The proto-
type inter-cluster communication system is integrated with the Alewife Multigrain

Shared-Memory System, and the performance of 8 parallel applications are studied

on the platform. Our results show that the performance of communication-intensive

applications can be severely impacted by inter-multiprocessor messaging delay due

to software communication processing, and contention at communication proxies.

Contention at proxies can be particularly severe when the number of processors in

each multiprocessor is scaled. Scaling proxies along with compute processors can

greatly relieve contention in the inter-cluster communication system.

1

1 Introduction

While traditional massively parallel processors (MPPs) can achieve good performance

on a variety of important applications, their prohibitively high cost prevents them from

becoming widely available. In recent years, parallel workstations, such as Symmetric Mul-

tiprocessors (SMPs), are quickly emerging. This class of machines can exploit parallelism

in applications to achieve high performance, while bene�t from the economy of high vol-

ume because their small-scale nature allows them to be commodity components. Not only

commodity systems o�er low cost, they often provide better performance in the long run

since they track the rapid advances in hardware and software technologies well. Many

researchers believe that by using these commodity multiprocessors as building blocks,

high performance MPPs can be built in a cost-e�ective way. In this paper, we call these

small- to medium-scale multiprocessors as clusters, and the MPPs built by assembling

these clusters together as clustered multiprocessors.

Though people have proposed to construct scalable multiprocessors by integrating

commodity computer clusters, many chose to build custom hardware ([4], [11], and [7])

to provide e�cient, protected inter-cluster communication. While these systems achieve

impressive performance, their inclusion of complicated custom hardware dramatically

increases the cost and design time of the system, which is undesirable.

This paper studies the problem of how to build scalable, e�cient, and reliable Inter-

Cluster Communication Systems (ICCSs) using unreliable commodity Local Area Network

(LAN) technologies. Commodity LAN technologies, such as Fast Ethernet, ATM, and

HIPPI, are proposed as the hardware substrate for inter-cluster communication systems,

while provide high level network services to applications via software protocol stack. By

not introducing custom hardware, supporting standard communication protocols, and

con�guring communication processing resources in software, our design provides a
exible

and cost-e�ective approach to build scalable clustered multiprocessors.

Building reliability on top of unreliable LANs using software protocol stack involves

complicated protocol processing, which dramatically increases the processing overhead

2

to send and receive messages. Contention for protocol processing resources can also

severely delay message delivery. To provide high throughput and low latency inter-cluster

communication which is absolutely necessary for parallel applications to achieve high

performance on clustered multiprocessors, we propose a design which exploits parallelism

in ICCSs.

Scalability is important in ICCS design since when cluster size scales up, higher com-

munication load will be placed on ICCSs, and the ICCS performance needs to increase

accordingly. A scalable design allows us to dedicate more resources to protocol processing

and more Network Interfaces (NIs) to larger clusters to meet the increased requirement.

In this paper, we provide an qualitative, in-depth study of the impact of protocol

stack processing overhead on Distributed Software Shared Memory (DSSM) applications.

Our design features an e�cient, scalable implementation of standard protocol stacks in

each cluster. By choosing to implement standard protocols, such as TCP/IP or UDP/IP,

many nice features of conventional network services, such as error detection and lost

packets retransmission, end to end
ow control, and in-order delivery, are supported

and the implementation issues are well understood. To achieve high performance, we

choose to only implement features required by the DSSM protocol. Our design is scalable,

since multiple in-kernel protocol processing processes can run on multiple processors and

multiple NIs can be implemented in each cluster, which greatly relieves contention in

ICCSs. Also since our design allocates processing resources between computation and

communication in software, it can potentially change its resource allocation for di�erent

applications.

A prototype implementation of the design is built on the MIT Alewife multiproces-

sor [3]. We integrate our prototype with the MIT Multi-Grain Shared-memory system

(MGS) [15], which is a DSSM system also implemented on Alewife. The prototype pro-

vides a
exible platform for studying the following problems:

� How much overhead needs to be paid for inter-cluster protocol processing?

3

� By how much does contention in ICCSs impact application performance? To what

extent can this impact be reduced by exploring parallelism in protocol processing?

� How should an ICCSs scale with their cluster size to deliver the best application

performance.

A suite of eight parallel applications have been studied on our prototype. For com-

putation intensive applications, the impact of protocol processing overhead on their per-

formance is marginal. For communication intensive applications, the run time of their

unoptimized versions can be more than doubled due to protocol processing overhead.

But the slowdown can be greatly reduced by dedicating more processing nodes in each

cluster to protocol processing for clusters which have two or more compute nodes.

The next section presents the system architecture of our ICCS design. Section 3

describes the the prototype system implemented on Alewife. Section 4 presents application

performance results on our implementation. Section 5 discusses related works. Finally,

section 6 summarizes the paper.

2 System Architecture

Parallel applications, such as some of the shared memory applications we test in later

sections, generate large amount of inter-cluster messages in very short period of time.

E�cient, reliable ICCSs are essential for these communication intensive applications to

achieve good performance on clustered multiprocessors.

2.1 Why parallelism and scalability are important in ICCS de-

sign?

To understand the inter-cluster communication requirement of parallel applications, we

did some measurements on MGS. Our results show that on a machine with two clusters, 8

compute node each, average inter-cluster communication load can reach to 500 messages

per million machine cycles, with average message size at a few hundred bytes. On a

4

 Water

||0

|50

|100

|150

|200

|250

|300

 Cluster Size

 M
sg

 B
an

dw
id

th
 (m

sg
s/

M
eg

 c
yc

s)

1 2 4 8

Figure 1: Application inter-cluster communication load on a 2 cluster machine.

200MHz commodity processor, these translates to a throughput of 100,000 messages per

second and hundreds of Megabits per second. On a larger con�guration, the aggregated

ICCS load will further increase.

For ICCSs built using commodity components to achieve such a high throughput, while

maintain contention at a low level to ensure short delay, parallelism has to be exploited

in both protocol processing and physical network connections.

Figure 1 shows the inter-cluster communication throughput requirement of Water, a

shared memory application, also on MGS. The �gure shows clearly that as the cluster

size scales up, inter-cluster messages are sent more and more frequently.

We propose a scalable ICCS design based on three observations. First, when clus-

ter size increases, more processes run concurrently in each cluster, each processes send

and receive messages at a high rate through the ICCS, creating an enormous aggregated

communication load, a scalable ICCS will be able to meet this increasing demand by ded-

icating more processing resources to inter-cluster protocol processing, and adding more

NIs to each cluster. Second, occasionally, a process might send many inter-cluster mes-

sages at a burst, which can cause contention and long delays in ICCS. A parallel ICCS

can greatly reduce the contention by distributing the messages among multiple commu-

nication channels and deliver them in parallel. Third, when a process needs to send out

or receive a very long message, such as a large �le, the ICCS can break the message into

5

Transport

Network

Physical

Transport

Network

Physical

Transport

Network

Physical

Application Thread

Convergence

Interface

Inter-Cluster
Communication
System Layers

Figure 2: A model for parallel protocol stacks.

many small pieces, and send them through many channels in parallel, and reassemble

them back together at the destination. The issue here is how to break, distribute, and

reassemble the message pieces together e�ciently. We will discuss techniques to solve

these problems in the following sub- sections.

2.2 Parallel Protocol Stack

Figure 2 shows a parallel version of the layered protocol stack model. Standard protocol

stacks, which include transport, network, and physical layers, are replicated, each runs

as an independent protocol processing thread. A convergence layer is added between the

application thread and the protocol processing threads of the cluster. One convergence

module (either as a library function linked with the application thread or an indepen-

dent thread) is assigned to each application thread. The convergence module distributes

outgoing application messages to multiple replicated protocol stacks, and serializes the

incoming messages before submiting them to the application thread. The convergence

module's task is to hide the underlying multiple message paths from the application

thread, which \thinks" that it has a single logical connection with the application thread

in another cluster. All application thread/convergence module pairs share the same set

of protocol stack threads in a cluster.

As Figure 3 illustrates, an inter-cluster connection between a pair of application pro-

cesses has two levels. Each proxy node has a protocol stack thread running on it. Low

6

Thread a

Proxy Proxy Proxy

Proxy Proxy Proxy

Thread b

In
te

r-
C

lu
st

er
 C

om
m

un
ic

at
io

n
S

ys
te

m

Cluster B

Cluster A

sub-connections

parallel connection

parallel connection

Convergence Module

Convergence Module

Figure 3: A schematic of parallel connections.

level sub-connections are established between transport layers of protocol stacks in di�er-

ent clusters. A high level logical connection, which we refer to as a parallel connection,

connects two processes in di�erent clusters together. Note sub-connections can be estab-

lished independently of higher level parallel connections and shared by multiple parallel

connections.

Reliability and in order delivery can be easily supported in this layered design. Each

sub-connection guarantees delivery of every inter-cluster message distributed to it in order

to their destined transport layer. The fact that sub-connections are reliable greatly sim-

pli�es the implementation of the convergence layer. Error detection and re-transmission

are completely handled in the transport layer of each replicated protocol stack. Each

sub-connection message contains a sender port id and a receiver port id, and a parallel

connection sequence number. Together, the sender and receiver's port id identify the mes-

sage's parallel connection. The sequence number indicates the position of the message in

the whole message sequence of this parallel connection, which is used by the convergence

layer to maintain the order of which it presents the received messages to the destination

7

process. To support in order delivery, received messages with larger sequence numbers

need to be queued in the convergence module until all messages with smaller sequence

numbers are passed to the application thread. Some applications, such as software shared

memory systems, do not require in-order delivery, which makes the convergence layer even

simpler.

End-to-end
ow control and bu�ering are also handled at two levels. At the sub-

connection level, traditional techniques are well studied and can be implemented in

straightforward manner. At the parallel connection level, no
ow control is needed if

in-order delivery is not required, otherwise a simple windowing protocol can solve the

problem. Only very simple operations need to be carried out for the windowing protocol,

which is not likely to become a bottolneck.

Balanced load on proxies is preferred since contention in a heavily loaded sub-

connection can severely delay its message delivery. If another lightly loaded sub-

connection between the two clusters is available, by sending new messages through this

alternative path, much communication time can be saved.

2.3 Connection Establishment and Application Interface

A standard, simple interface is preferred between application processes and inter-cluster

communication. We propose two ways to establish a parallel connection.

The �rst way is used to establish parallel connections within a single logical machine.

We refer to a group of connected clusters as a single logical machine if each cluster in

the group can be addressed by a unique cluster id. Machine wise sub-connections are

established at the machine's initialization phase. Similar to a UNIX socket, to establish

a parallel connection, a server process �rst registers itself to the system by binding itself

to a port, and then wait for other processes to connect to it. A connect system call at

the client side, which addresses the destination process by its cluster id and port number,

establishes a parallel connection between itself and the server process.

The second way is used to establish parallel connections between processes in di�erent

8

machines (a single cluster can also be a logical machine), i.e., the clusters can not address

each other by their cluster ids. All steps are similar to establishing parallel connections

within a machine. The only exception is when the client process calls the connect system

call, instead of addressing the destination cluster by its cluster id, it speci�es all NI

addresses of the cluster. The sub-connections will be established before the requested

parallel connection establishes, assuming the destination cluster is ready to accept the

sub-connection requests.

3 A Scalable ICCS Implementation on Alewife

As a demonstration, we implemented a scalable ICCS on the MIT Alewife multiprocessor.

The system is integrated with the MGS system to provide inter-cluster shared memory

support. This prototype provides a
exible environment to evaluate application perfor-

mance on a physical implementation of clustered multiprocessors, as well as the impact

of various inter-cluster communication system con�gurations on end-application perfor-

mance. In this section, we �rst give a brief overview of Alewife and MGS, and then discuss

the implementation in detail.

3.1 The Alewife Multiprocessor

Alewife is a CC-NUMA machine with e�cient support for Active Messages. The machine

consists of a number of homogeneous nodes connected by a 2-D mesh network. Each node

contains of a modi�ed SPARC processor called Sparcle, a
oating point unit, a 64K-byte

direct-mapped cache, 8M-bytes DRAM, a 2-D mesh routing chip, and a communications

and memory management unit. Alewife supports DMA, which relieves the processor of

bulk data transfer overhead. There are four hardware contexts in each Sparcle processor.

The hardware contexts are used for fast context switching, which enables fast active

message invocation.

9

3.2 The Alewife MGS System

The Alewife MGS System is a system built on Alewife to study shared memory application

performance on clustered multiprocessors. It logically partitions an Alewife machine into

multiple clusters, and supports memory sharing at two level of granularities. Within each

cluster, MGS relies on Alewife hardware to support sharing at cache-line grain. Sharing

between clusters is supported at page grain by using a software layer that sends messages

through the inter-cluster communication system, which is designed in this thesis.

3.3 Protocol Selection

Our parallel protocol stacks each implements the Internet Protocol (IP) [2] in the network

layer, and the User Datagram Protocol (UDP) [1] augmented with a simple sliding window

protocol in the transport layer. The sliding window protocol provides end-to-end
ow

control, bu�er management, and lost message re-transmission. UDP provides a checksum

for message payload integrity, and IP performs fragmentation and message routing.

3.4 Proxy Protocol Processing Thread

Figure 4 shows the implementation of protocol processing on a proxy. Active Messages [13]

are used for message passing through both intra- and inter-cluster networks. The design

can be easily modi�ed to handle message passing model. Inter-cluster messages are sent

from a source compute node to a proxy in its cluster, processed and routed to a proxy of

the destination cluster, and eventually delivered to the destination compute node.

When an out-going data message arrives at a proxy through the intra-cluster network,

an interrupt handler is invoked on the proxy which bu�ers the message into a message

bu�er, and queues the bu�er to the slid win send (sliding window send) module. When

the slid win send module dequeues the message from its message processing queue, it

�nds the message's destination cluster from its destination descriptor, and dispatch the

message to the corresponding connection. The slid win send module appends its header

10

.

..ou
t b

u
f h

an
d

ler in
 p

k
t

h
an

d
le

r

ip_receive

udp_receive

IP_packets

IP_packets

In
tra−

C
lu

ster N
etw

ork

In
te

r−
C

lu
st

er
 N

et
w

or
k

IP header UDP header Sliding Win header data

Protocol Stack Thread

dispatch

con
n

ec 1

con
n

ec 0

slid_win_send

dispatch

con
n

ec 1

con
n

ec 0

slid_win_rcv

udp_send

ip_senddata_msg

data_msg

Figure 4: The protocol stack implementation on a proxy.

to the message, starts a SEND timer for the message, and passes the message to the

udp send module. A UDP header will then be appended to the message, which contains

a checksum of the message contents and a port number to identify the receiving thread in

the destination cluster. The ip send module fragments the message, if necessary, and adds

an IP header to each fragment. Finally, the individual fragments are sent out through

the physical network interface.

To receive messages, IP packets arrive at a proxy from the Inter-cluster network. The

in-bu�er handler queues them to the ip receive module through the same queue used by

the out-bu�er handler. IP fragments are reassembled in the ip receive module, and passed

to the udp receive module, which validates the checksums, dropping those messages with

11

Cluster 0 Cluster 1

Cluster 2 Cluster 3

32 Node Alewife Machine

A

B

msg A −> B

block 0 block 1

block 2 block 3

Compute Partition (MGS)

Proxy

Proxy

ProxyProxy

Proxy

Proxy Proxy

Proxy

Communication Partition

Figure 5: Con�guration on a 32-node Alewife Machine.

inconsistent checksums. Messages with valid checksums are passed to the slide win rcv

module. The slid win rcv dispatches the messages to the corresponding connections and

eventually delivers them to their destination compute nodes via the intra-cluster network.

3.5 Scalable ICCS Testbed

Figure 5 shows the testbed used to evaluate our scalable ICCS design on a 32-node Alewife

machine, divided into two partitions. The compute partition runs MGS on 16 nodes; all

application computation is performed in this partition, and MGS further partitions it

into equal sized cluster. The communication partition consists of 2 to 16 nodes (proxies),

depending on the desired con�guration.

Since the Alewife mesh network has very high performance relative to its processor

speed, we ignore its message transmission delay and the interference between intra- and

inter-cluster messages. This allows us to place a cluster's compute nodes and proxies in

separate partitions, which leads to a simpler implementation.

We further divide the proxies in the communication partition into blocks, and dedicate

each block to a single cluster for running its protocol stacks. As shown in Figure 5, to send

12

a message from node A in one cluster to node B in another cluster, node A �rst chooses

a proxy in its cluster's block, then it DMAs the message to the proxy. This proxy will

then pick a connection to a destination proxy of node B's cluster, package the message in

one or more IP packets, and send them through the Alewife network to the destination

proxy. The destination proxy will examine the correctness of the received packets, extract

the correctly delivered message data from them, and DMA the message to its destination

node B.

3.6 Proxy Load Balancing

When each cluster is equipped with more than one proxy, load balancing among the

proxies is an important issue. By sending messages to the most lightly-loaded proxies in

in the cluster, contention can be reduced.

Two di�erent approaches are implemented to distribute inter-cluster messages to prox-

ies. The �xed algorithm always dispatches messages from one compute node to the same

proxy, while the round-robin algorithm routes out-going messages from each compute

node to the proxies in its cluster in a round-robin fashion. Other more intelligent algo-

rithms which try to dynamically determine the most lightly loaded proxy are possible.

Such algorithms route messages to proxies based on real-time load information. However,

such algorithms are complex and di�cult to justify. As our experiment results turn out,

simple algorithms such as the round-robin algorithm provide adequate proxy load balance

on the applications we studied.

4 Experimental Results

In this section, we present the experimental results obtained on our ICCS testbed. A

total of eight parallel applications are studied.

13

| | | | ||0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

|55

| | | | |

| 0

| 5

| 10

| 15

| 20

| 25

| 30

| 35

| 40

| 45

| 50

| 55

 Message length in bytes

 E
nd

 to
 e

nd
 la

te
nc

y
in

 k
cy

cl
es

0 1000 2000 3000 4000

Figure 6: End to end latency vs. message
size.

1 2 3 4 5

767 1371 720 1316 992

Total Latency 5166 cycles

1. compute node to proxy

2. sending protocol processing

3. inter-cluster network

4. receiving protocol processing

5. proxy to compute node

time

Figure 7: End to end timeline for a 100-
byte message.

4.1 End-to-End Latency

Figure 6 depicts the end-to-end message latency as a function of message size. Message

size ranges from 0 to 4000 bytes. We choose the network layer Maximum Transmit Unit

(MTU) as 1500 bytes, which is the MTU for Ethernet. The latency curve jumps at 1500

bytes and 3000 bytes, because of fragmentation in the IP layer.

The breakdown of message transmission cost for a 100-byte message that we measured

on our scalable ICCS is shown in Figure 7. The inter-cluster network latency, 720 machine

cycles or 36 �s (at a 20 MHz Alewife clock frequency), closely matches the reported latency

on Fast Ethernet and ATM networks [14].

4.2 Parallel Applications Performance

Table 1 lists eight shared memory applications studied on our ICCS testbed. Jacobi is

a 2-D grid relaxation program. Matrix Multiply multiplies two square matrices. Gauss

performs Gaussian elimination on a matrix. FFT computes a one-dimensional fast Fourier

transform. Traveling Salesman Problem (TSP) computes the solution to a 10-city trav-

eling salesman problem using a branch and bound algorithm, and a centralized work

queue to distribute work. Water is a molecular dynamics application taken from the

14

Application Problem Size
Jacobi 2048 x 2048 Grid, 3 Iterations
Matrix Multiply 384 x 384 Matrices
Gauss 512 x 512 Matrix
FFT 32K Elements
TSP 10-City Tour
Water 343 Molecules, 2 Iterations
Barnes-Hut 2K Bodies, 3 Iterations
Unstructured 2800 Nodes, 17377 Edges, 1 Iteration

Table 1: List of applications and their problem sizes.

SPLASH [12] benchmark suite. Barnes-Hut is also taken from the SPLASH benchmark

suite. Finally, Unstructured is a computation over an unstructured mesh from the Uni-

versity of Wisconsin, Madison, and the University of Maryland, College Park [10].

Figure 8 through Figure 15 present performance results of the eight applications mea-

sured on our platform, all using the round-robin algorithm for proxy load balancing. The

horizontal axes of these �gures are cluster size, which is explained in Figure 5. The total

number of nodes dedicate to computing are �xed to 16 for all con�gurations.

Results for six sets of ICCS con�gurations are reported in Figure 8 through Figure 15.

The �rst set of con�gurations are marked as \no delay". In this set of con�gurations MGS

are con�gured to send inter-cluster messages directly through the fast Alewife network,

thereby bypassing all proxies and protocol stack processing overhead. This is equiva-

lent to having an extremely high-performance ICCS which delivers inter-cluster messages

instantly. Not only MGS allows us to con�gure it to transmit inter-cluster messages di-

rectly through the Alewife network, it also allows us to insert an arbitrary delay before it

launches every inter-cluster message into the network. In the set of con�gurations marked

as \no contention", for each application, we �rst measure its average inter-cluster message

length, then send a message of the same length through an idle ICCS, measure its latency,

con�gure the MGS to use this latency as the inserted delay, run the application on this

MGS, and record its execution time. In some sense this execution time represents the ap-

15

 no delay
 no contention
 2-proxy system
 4-proxy system
 8-proxy system
 16-proxy system

||0

|50

|100

|150

|200

|250

|300

|350 |

| 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8
Cluster Size

Figure 8: Jacobi

 no delay
 no contention
 2-proxy system
 4-proxy system
 8-proxy system
 16-proxy system

||0

|100

|200

|300

|400

|500

|600

|700

|800

|900

|1000

|1100 |

| 0

| 100

| 200

| 300

| 400

| 500

| 600

| 700

| 800

| 900

| 1000

| 1100

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8

Cluster Size

Figure 9: Matrix Multiply

 no delay
 no contention
 2-proxy system
 4-proxy system
 8-proxy system
 16-proxy system

||0

|50

|100

|150

|200

|250

|300

|350

|400

|450

|500

|550

|

| 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350

| 400

| 450

| 500

| 550

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8
Cluster Size

Figure 10: Gauss

 no delay
 no contention
 2-proxy system
 4-proxy system
 8-proxy system
 16-proxy system

||0

|20

|40

|60

|80

|100

|120

|140

|

| 0

| 20

| 40

| 60

| 80

| 100

| 120

| 140

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8
Cluster Size

Figure 11: FFT

 no delay
 no contention
 2-proxy system
 4-proxy system
 8-proxy system
 16-proxy system

||0

|20

|40

|60

|80
|100

|120

|140

|

| 0

| 20

| 40

| 60

| 80

| 100

| 120

| 140

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8

Cluster Size

Figure 12: TSP

 no delay
 no contention
 2-proxy system
 4-proxy system
 8-proxy system
 16-proxy system

||0

|100

|200

|300

|400

|500

|600

|700

|800

|900

|1000

|1100 |

| 0

| 100

| 200

| 300

| 400

| 500

| 600

| 700
| 800

| 900

| 1000

| 1100

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8

Cluster Size

Figure 13: Water

 no delay
 no contention
 2-proxy system
 4-proxy system
 8-proxy system
 16-proxy system

||0

|50

|100

|150

|200

|250

|300

|350

|400

|450

|500

|550

|600

|650

|700

|

| 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350

| 400

| 450

| 500

| 550

| 600

| 650

| 700

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8
Cluster Size

Figure 14: Barnes-Hut

 no delay
 no contention
 2-proxy system
 4-proxy system
 8-proxy system
 16-proxy system

||0

|200

|400

|600

|800

|1000

|1200

|1400

|1600

|1800

|2000

|2200

|2400

|2600

|2800

|

| 0

| 200

| 400

| 600

| 800

| 1000

| 1200

| 1400

| 1600

| 1800

| 2000

| 2200

| 2400

| 2600

| 2800

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8
Cluster Size

Figure 15: Unstructured

16

plication performance on an ICCS with zero contention, though in general this approach

over delays short messages, and under delays long messages. All other four sets of con�g-

urations send inter-cluster messages through the ICCS, with the total number of proxies

available as 2, 4, 8, 16. The total number of proxies per cluster in all con�gurations varies

from 1 to the cluster size. When fewer proxies are available, more messages have to be

sent through the same proxy. Contention in the ICCS will increase inter-cluster messaging

latency, thus negatively impacting application performance.

Three out of the eight applications, Jacobi, Matrix Multiply, and Gauss, are

computation-bound. Their performance is insensitive to the latency in the ICCS and

therefor to ICCS contention. For communication intensive applications, TSP, Water,

Barnes-Hut, and Unstructured, a much higher inter-cluster messaging frequency is ob-

served. These applications are much more sensitive to ICCS latency. They put heavy

load on the ICCS, increasing contention and decreasing application performance. Fig-

ure 11 to Figure 15 clearly show that by increasing the number of proxies per cluster,

application performance improves dramatically since the increased throughput greatly re-

duces contention in the ICCS. By comparing application execution time between the \no

contention" con�gurations and that with various number of proxies, the impact of con-

tention in the ICCS on application performance is obvious. This supports our argument

made earlier in the paper that scalable ICCSs are important for the success of scalable

clustered multiprocessors.

4.3 Scalability of Intra-cluster communication system

An important question we intend to answer in this paper is when building a balanced

clustered multiprocessor, how should an inter-cluster communication system scale with

its machine and cluster size? This section presents some early intuition about the answer

to this question, and some data which supports our intuition.

Our intuition suggests that while cluster size increases, the number of proxies needed

2Part of the data presented in these tables are not measured. Instead they are computed by linear

interpolating values from the nearest measured points.

17

clu size 1 2 4 8
clu proxies 1 1.41 2 2.83
msg time 8920 9232 8017 8243
que len 0.534 0.636 0.502 0.556

proxy util 0.352 0.387 0.362 0.382
slowdown 2.403 2.256 1.918 1.567

Table 2: Scaling inter-cluster communication size with cluster size 2 (Water).

per cluster should scale up as well, but not as fast. Communication between clusters

in a clustered multiprocessor occurs via message passing through an inter-cluster com-

munication system, which is always more costly compared to local access of data within

the same cluster. To achieve good performance, applications should always carefully

place data to exploit locality, either manually or automatically using compiler technol-

ogy. Due to communication locality, when cluster size increases, the average messaging

rate between clusters decreases, which means when cluster size increases, the aggregate

inter-cluster messaging rate will also increase, but less rapidly. Furthermore, the increase

of the average interval between two inter-cluster messages at compute nodes reduces the

sensitivity of application performance to inter-cluster communication delay.

Results in Table 2 show for Water, the average message delay in the ICCS, average

queue length in proxies, average proxy utilization, and run time slow down comparing

with \no delay" measurments when cluster size and number of proxies per cluster scales.

When we scale the number of proxies per cluster as the square root of cluster size, the

message processing time, queue length, and proxy utilization remain relatively the same.

The application slowdown even improves with the scaling. This result consistent with our

discussion above.

We also carried out similar analysis for the other three communication intensive ap-

plications. Those results support our intuition as well.

18

5 Related Work

This paper focuses on building scalable inter-cluster communication system using unre-

liable commodity LAN technologies. Reliability and
ow control are built in software

protocol layers. Three main issues need to be addressed to build a highly e�cient sys-

tem this way, namely, low cost user kernel boundary crossing, parallel protocol stack

processing, and low network latency.

Traditional user kernel boundary crossing are very expensive since expensive context

switch are used. Lim[9] and el. suggested a zero context switching design which dedicates

a proxy node in each SMP cluster to handle inter-cluster network services. Their design

achieves good performance for small clusters. When cluster size scales up, contention in

proxies quickly degrades the overall application performance.

Parallel protocol stack processing has not been carefully studied for clustered multi-

processors that target parallel applications. Results from researchers often assume that

networks are reliable. Related work ([6], [8], and [5]) have concentrated on increasing

throughput rather than reducing contention to reduce latency.

Commodity LAN technologies are getting faster. Welsh et. al. [14] have studied how

to provide fast user-level communication on Fast Ethernet and ATM. Their results are

impressive, but to provide e�cient inter-cluster communication for parallel applications,

parallelism still has to be exploited.

Much work ([4], [11], and [7]) has been done to provide e�cient, protected inter-cluster

communication by building custom hardware. We focus on commodity hardware given

the enormous cost advantage of leveraging commodity components.

6 Summary

This paper describes issues of how to design scalable, e�cient, reliable inter-cluster com-

munication systems using commodity components. The design achieves high performance

by parallel execution of protocol stack processing on multiple proxy nodes, and by provid-

19

ing multiple physical network connections from each cluster to the inter-cluster network.

We addresses several issues necessary in a scalable design, such as application interface, re-

liability, in-order delivery, end to end
ow control, and proxy load balancing. A prototype

of the design is implemented and integrated with the MGS software shared memory sys-

tem. Performance of numerous shared memory applications are studied on the platform.

We draw the following conclusions from this study:

� On clustered multiprocessors with small cluster size, for communication intensive

applications to achieve good performance, proxy performance should be comparable

with those of the compute nodes.

� When cluster size scales up, contention at proxies can be signi�cant, making the

exploitation of parallelism in inter-cluster communication systems crucial.

� For �xed machine size, when cluster size scales up, to deliver the speed up potential

provided by the larger cluster size, the number of proxies in each cluster also needs to

increase. However, a sub-linear increase is likely to be su�cient. For the applications

and con�gurations we tested, an increase of the number of proxies per cluster as the

square root of the cluster size stables the application slow down factor.

� Simple round-robin message dispatching algorithms achieve good results for proxy

load balancing within each cluster. More complicated algorithms will not likely

increase application performance much. (measurement results are omitted to keep

the paper from getting too long).

In conclusion, our results suggest that scalable, e�cient, reliable inter-cluster commu-

nication systems built using commodity components are possible.

References

[1] RFC 768, User Datagram Protocol.

20

[2] RFC 791, Internet Protocol.

[3] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Kranz,

John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald Yeung. The

MIT Alewife Machine: Architecture and Performance. In Proceedings of the 22nd

Annual International Symposium on Computer Architecture, pages 2{13, June 1995.

[4] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, and Edward W. Fel-

ten. Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer. In

Proceedings of the 21nd Annual International Symposium on Computer Architecture,

pages 142{153, April 1994.

[5] Schmidt D.C. and Suda T. Measuring the Performance of Parallel Message-based

Process Architectures. In IEEE INFOCOM, pages 624{633, Boston, MA, April 1995.

[6] Yates D.J., Nahum E.M., Kurose J.F., and Towsley D. Networking Support for Large

Lcale Multiprocessor Servers. In Proceedings of the 1996 ACM SIGMETRICS Con-

ference on Measurment and Modeling of Computer Systems, pages 116{125, Philadel-

phia, PA, May 1996.

[7] Richard Gillett, Michael Collins, and David Pimm. Overview of Memory Channel

Network for PCI. In Proceedings of the 41st Annual IEEE Computer Society Com-

puter Conference, pages 244{249, Santa Clara, CA, February 1996.

[8] N. Jain, M. Schwartz, and T.R. Bashkow. Transport Protocol Processing at Gbps

Rates. In SIGCOMM, pages 188{199, Philadelphia, PA, September 1990.

[9] Beng-Hong Lim, Philip Heldelberger, Pratap Pattnaik, and Marc Snir. Message

Proxies for E�cient, Protected Communication on SMP Clusters. In Proceedings

of the 3rd International Symposium on High-Performance Computer Architecture,

pages 116{127, February 1997.

[10] Shubu Mukherjee, Shamik Sharma, Mark Hill, Jim Larus, Anne Rogers, and Joel

Saltz. E�cient Support for Irregular Applications on Distributed-Memory Machines.

21

In Proceedings of the 5th Annual Symposium on Principles and Practice of Parallel

Programming, pages 68{79, July 1995.

[11] Steven K. Reinhardt, Robert W. P�le, and David A. Wood. Decoupled Hardware

Support for Distributed Shared Memory. In Proceedings of the 23rd Annual Interna-

tional Symposium on Computer Architecture, pages 34{43, May 1996.

[12] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications

for Shared-Memory. Technical Report CSL-TR-92-526, Stanford University, June

1992.

[13] Thorsten von Eicken, David Culler, Seth Goldstein, and Klaus Schauser. Active

Messages: A Mechanism for Integrated Communication and Computation. In 19th

International Symposium on Computer Architecture, May 1992.

[14] Matt Welsh, Anidya Basu, and Thorsten von Eicken. ATM and Fast Ethernet Net-

work Interfaces for User-Level Communication. In Proceedings of the 3rd Inter-

national Symposium on High-Performance Computer Architecture, pages 332{342,

February 1997.

[15] Donald Yeung, John Kubiatowicz, and Anant Agarwal. MGS: A Multigrain Shared

Memory System. In Proceedings of the 23rd Annual International Symposium on

Computer Architecture, pages 44{55, May 1996.

22

