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Abstract replication, service location, resource discovery, and group
_ _ communication. While many of these problems are receiv-
Today's Internet naming scheme, the Domain Name System [28], iig attention in the networking community, we believe that

plicitly assumes that applications want to reach an address, Whereeg?f%ting proposals to solve these problems tend to be overly
address signifies location in the network topology. Typically, appg- ecific or unnecessarily complex
cations desire either information or functionality, and do not ofterP )

know the best network location that satisfies their needs. We arg{ugve argue that current efforts to efficiently enable new ser-

Ii;:es have been greatly hampered by the inflexibility of the

group communication, resource discovery, service location, cachiﬂé,ming system and the inability of the name resolution pro-
etc. have been greatly hampered by the lack of a flexible namf@Ss to affect data routing decisions. Significant effort is spent
system and the inability of the name resolution process to affect d&xgreating independent, but similar infrastructure for each sit-
routing decisions. Significant effort is spent in creating independeugtion. We observe that for a number of these services and
but similar infrastructure for each situation. applications, a more flexible and integrated naming and rout-

This paper presents the design and implementation of an interg architecture will greatly simplify and often solve the hard
tional network naming architecture, where applications describe wpabblems that arise, because at a fundamental level, all these
they are looking for (i.e., their intent), not where to find it. In thiproblems are made easier with a “level of indirection” in the
architecture, name resolvers can also route messages to the evewapimessages are routed in the network. Motivated by these
destinations, leading to an integrated approach to resolution and roliiservations, we strive to provide the right, general level of
ing. We present efficient data structures for maintaining intentionatirection via the name resolution system.
names based on attribute-value tuples, efficient algorithms for namgoday, most network naming schemes such as the Domain
lookups, and discovery protocols for disseminating name informatifame System (DNS) [28] implicitly assume that applications
among resolvers and end-hosts. We analyze the performance oithet to reach an address, where the address signifies location
algorithms and present measurements of the system implementaiierthe network topology. Typically, applications desire either
which show that our architecture is practical and feasible. We also fiiformation or functionality, and do not often know the best
scribe a sample application—a mobile, wireless camera applicatiggtwork location that satisfies their needs. We therefore argue
for remote surveillance—demonstrating the utility of the architectutieat what is needed is antentionalnaming scheme and res-
in supporting mobility, group communication, service location amslution architecture in which applications descrileatthey
data caching. are looking for, notwhereto find it. Furthermore, we advo-
cate that the name resolvers also participate in message rout-
ing based on intentional names, thereby integrating name res-
olution and routing, which until now have been kept separate
In the last several years, we have seen the Internet grow dﬂet—h.e Iqternet. This _integration, implemgnted by including
nomenally in terms of n[meer of users, size, traffic, and a_phcaﬂoq pgyloaq with 'Fhe.name resolut|on.req£|ea.4tows
plications. Thus, it now faces a differen,t set ;)f dem:emds %ng ‘late binding” (i.e., binding at packet delivery time) be-

' - . . . AWeen the network routes to the end nodes and the name that

challenges than it did originally—in particular, a demand for

> maps on to those nodes. This enables users and applications
better support for the efficient deployment and performant P PP

e . . . - .
) .. track changes easily, including host mobility, dynamic re-
of new services. People and the applications they use are rge— 9 . Including . dy I

manding features such as mobility, caching, load balancingName resolvers treat the application payload as opaque data.

1 Introduction




sources, and changing data at network nodes. OSPF [29]) or multicast routing (e.g., DVMRP [11]). We are
The main contribution of our work is the design and implectively developing a wide-area architecture to complement

mentation of arintentional Name SysternalledINS. In this our intra-domain INS architecture, which will integrate INS

paper, we describe three aspects of INS in detail: with extensions to DNS.

) . ] The rest of this paper describes our design rationale
e Intentional naming scheme. We present a namingang presents the details of INS. Section 2 discusses the
scheme where applications express the characteristicp\d architecture, describing the intentional naming scheme,

the information or nodes they want to reach as query §me lookup algorithm, entity discovery protocol and self-
pressions in a restricted query language. In particulgrganization protocol. It also describes various optimizations
we show that significant benefits can be obtained usiggq penefits of INS. Section 3 discusses the INS API and our
anexact matctoperator in the language, which enablggpile camera application. Section 4 discusses implementa-
resolution based on matching variables in an incomiggp, getails and Section 5 presents the analysis of the algorithm
name (i.e., attributes) to one among a set of values by Hi&y the results of performance experiments based on our im-

resolvers. These variables are under application consdmentation. We survey related work in Section 6 and then
and not pre-defined. The resolvers can perform resofdnclude.

tion without understanding the semantics of specific ap-
plications.

¢ Intentional Name Resolvers (INRs).We present a res-2 SyStem Architecture

olution architecture composed of a self-organizing néfne gesign of the INS architecture is motivated by our desire
work of INRs to resolve intentional names and route Mg o ape applications to express the destination (and source)
sages. Our architecture incorporates efficient algorithigigejr messages using an intentional name that describes the
for name lookups based on exact matches and a IQWan of the application, rather than a specific end-point. To-

latency discovery protocol for disseminating name i”fo\Wards this goal, we introduce theame-specifierwhich is

mation among end nodes and resolvers. We analyze thes€y in the message header instead of the traditional source

algorithms and discuss experimental performance resfyy qestination addresses, to describe the intent of the appli-
from our implementation to justify the feasibility of our.a4ion  Section 2.1 describes the components of the name-
ideas. specifier, how they are assembled into an intentional name,

« Application architecture. We demonstrate the INS ap&nd the wire representation of the name-specifier. _
plication architecture by describing the design and imple-The name-opecmers are _resolved into their corresponding
mentation of a mobile, wireless camera application fhetwork locations by Intentional Name Resolvers or INRs.
remote surveillance over INS. We discuss how this apdlﬁlﬂRS communicate with each other and applications in an ar-
cation easily leverages INS's APl and automatic Supp@,lfrary topology of tunnels overlald on.the IR netwo_rk. Rather
for mobility, group communication, service location an_ﬁwan having statically configured relationships, as is common
data caching, gaining these advantages from INS with-other overlay networks [13, 17], a self-organization proto-

out any other pre-installed support for these different s&f! IS used to spawn and terminate INRs, and maintain neigh-
vices. bor relationships; this protocol is described in Section 2.4.

To learn and share information about names, the INRs com-

A key feature of our architecture is its potential for increnunicate via a name discovery protocol. The protocol uses
mental and easy deployment in the Internet, without changimeriodic updates to convey name information, and uses trig-
or supplanting the existing Internet service model. We achiayered updates for fast changes. In addition, we discuss a novel
this by designing the resolvers to communicate with easptimization to implicitly learn about names by inferring in-
other tunneled over an IP network, using well-understood fermation from message headers. These issues are detailed in
ternet routing protocols to route messages between resolvBestion 2.3.
Our experience with this demonstrates that a variety of newrlhe central activity of INRs, of course, is to resolve name-
services can be deployed effectively by our extensions to Intgpecifiers into their corresponding network locations. INRs
net naming and resolution, without requiring active, generalipport two methods of name resolutiogarly binding in
purpose computation in either the routing [38] or naming [4@jhich the INR returns a handle to the end-hosts (typically a set
subsystems of the Internet architecture. of IP addresses), ardte binding in which the INRs forward

We hasten to note that the INS architecture presented in thaga on behalf of the application, deferring the binding of the
paper isnotintended for a network as large as the global Imame-specifier to the end-host until just before the data is de-
ternet. Rather, it is intended for networks on the order of fdivered to its final destination. Late binding enables highly dy-
hundred or few thousand nodes (e.g., inside an administratiaenic name bindings, since the application is never left with a
domain), much like schemes for intra-domain unicast (e.gtale binding even if bindings change while the message is in



transit. We focus our attention on the late binding case in this root
paper. Section 2.2 describes the INR namespacejahree- iy
tree—a data structure used to store name information, and th@ vwashi ngt on

algorithm used to look up intentional names in the name-treg @ bui ! ding
whi t ehouse
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There are many ways to implement intentional names; in INS@oval -of fi ce
we use query expressions called name-specifiers that replace
traditional addresses in packet headers. Our design decisfigsre 1: A graphical view of an example name-specifier. The
are based on the idea that the name-specifier should provitielow circles are used to identify attributes; the filled cir-
flexible and powerful, yet efficient method of selecting nameasgs identify values. The tree is arranged such that dependent
we were also motivated by the desire to keep name-specifittsbutes are descendants, and orthogonal attributes are sib-
simple and easy to understand. lings. This name-specifier describes a public-access camera

The two main concepts of the name-specifier areatie in the Oval office.

tribute and thevalue An attribute is a category in which an

object can be classified, for example its ‘color” A value is the [city = washington [building = whitehouse
object’s classification within that category, for example, ‘red. [wing = west
Attributes and values are free-form strings that are defined by [room = oval-officelll]
applications; name-specifiers do not restrict applications to us- [service = camera [data-type = picture
ing a fixed or predefined set of attributes and values. Together, [format = jpgl]
an attribute and its associated value formagtnibute-value [resolution = 640x480]]
pair. [accessibility = public]

Name-specifiers are a hierarchical arrangement of attribute-

value pairs. The pairs are arranged in a tree such that a pigure 2: The wire representation of the example name-
that isdependenbn another is a descendant of it. For irspecifier shown in Figure 1, with line-breaks and extra spacing
stance, in the example name-specifier shown in Figure ladided to improve readability.
only makes sense to talk about a building called the White-
house if you are referring to the city of Washington, so the
attribute-value paibuilding=whitehouse is dependent on tributes and values are seperated by an equals sjgriThe
the paircity=washington. Pairs that arerthogonalto each arbitrary use of whitespace is permitted anywhere within the
other, but dependent on the same pair, are siblings in fi@me specifier, except in the middle of attribute and value to-
tree. For example, a digital camera’s data-type and resd@ns.
tion can be selected independently of each other, are mean addition to exact value matches, name-specifiers also
ingful only in the context of the camera service. Thereforegrmit wildcard matching of values. To do this, the value
the pairsdata-type=picture and resolution=640x480 IS simply replaced by the wildcard token, a staj.( Thus
are orthogonal. This hierarchical arrangement narrows dot@nconstruct a name-specifier that refersatb public cam-
the search space during name resolution, and makes na@fias providing 640x480 pictures in the Whitehouse, not just
specifiers easier to understand. the one in the Oval Office, an application replaces the value

A simpler alternative would have been to construct a higval-office with **" in the name-specifier shown in Fig-
archy of attributes, rather than one of pairs. This would resHl€s 1 and 2. The application also sets aingcast/multicast
in building being directly dependent omity, rather than flag to choose whether the packet should be semtliitcam-
city=washington. However, it is also less flexible; our cureras or jusanyone camera. We are currently investigating the
rent hierarchy allows child attributes to vary according to théif€ of inequality operatorsc( >, <, and>) to provide range
parent value. For examplepuntry=us has a child that is Selection operations in name-specifiers.
state=virginia, while country=canada has a child that is
province=ontario. _ 2.2 Name Resolution and Message Routing

To include it in the header to describe the source and desti-
nation of a message, the name-specifier has a wire represéltta-central activity of an INR is to resolve name-specifiers to
tion as shown in Figure 2. This string-based representattbeir corresponding network locations. When a message ar-
was chosen to be readable to assist with debugging, in tives at an INR, the INR performs a lookup on the destination
spirit of SMTP [35], HTTP [16], NNTP [23], etc. Levels ofname-specifier in its name-tree. The lookup returns informa-
nesting are indicated by the use of brackétarid]), and at- tion that includes a set of “routes” to next-hop INRs, as well



as the IP addresses of final destinations. If the application has
chosen to use early binding by setting #eerly-binding flag

the INR simply returns the IP addresses to the application. If

the application desires late binding, the INR forwards the mes-

sage to the next-hop INRs without making any changes to the
name-specifiers or data. This forwarding continues until the

message reaches its final destinations, providing a late bind-
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Name-trees. Name-trees are a data structure used to store I
the correspondence between name-specifiersnamnake-info
records. The principal information that the name-info records
contain are the routes to the next-hop INRs and the IP ad- Tl
T
°

f 1 oor W

dresses of potential final destinations. The records also store
additional information such as the metric for the routes and
the expiration time of the record.

room room

Not surprisingly, the structure of a name-tree bears a close
resemblance to a name-specifier. Like a name-specifier, it con-
sists of alternating levels of attributes and values; but unlikea ‘ - :
name-specifer there can be multiple values per attribute, since \ﬂ
the name-tree is a superposition of all the name-specifiers the

INR knows about. Each of these name-specifiers has a poipief e 3: A partial graphical view of an example INR name-
frpm each of its leaf-valuesto aname—lnfo record. FlgureSqFée_ The name-tree consists of alternating layers of orthog-
picts an example name-tree, with the example name-speciiiel| auributes and their possible values. Leaf-values con-

from Figure 1 in bold. tain pointers to all the routes they correspond to. The part
of the name-tree corresponding to the example name-specifier
shown in Figure 1 is in bold.

)
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Name lookups. The Lookupralgorithm, shown in Figure 4,

is used to retrieve the name-info records for a particular nangeg  Name Discovery

specifiern from the name-tre&. The main idea behind the

algorithm is that a series of recursive calls reduce the canfiRs learn about names by participating in a name discovery

date name-info sef by intersecting it with the name-info sefprotocol with their neighbor INRs and end-nodes. Through

consisting of the records pointed to by each leaf-value. Whiis peer-to-peer protocol, the associations between name-

the algorithm terminatesy contains only the relevant namespecifiers and name-info records propagate throughout the

info records. INR network and to end-nodes and applications. These asso-
The algorithm starts by initializing to the set of all possi- ciations are obtained from the name-tree using an extraction

ble name-info records. Then, for each attribute-value pair@@°rithm, and are then disseminated either during periodic or
the name-specifier, it finds the corresponding attribute in fig9€ered updates. The INRs also employ a novel optimization
name-tree. If the value in the attribute-value pair is a wil{® /€@ new names, which we caifference The following
card, then it compute§’ as the union of all name-info record®aragraphs detail these topics.

in the subtree rooted at the corresponding attribute, and inter-

sectsS with S". If not, it finds the corresponding value in thg s me extractions. Since the INR name-tree is a superposi-
name-tree. If it reaches the leaf of either the name-specifiefg, of all the name-specifiers the INR knows about, extracting
the name-tree, the algorithm intersebtsvith the name-info 5 gingle name-specifier to advertise is non-trivial. The E

records pointed to by the corresponding value. If not, it makgg 1 algorithm, shown in Figure 5, is used to retrieve the

a recursive call to compute the relevant set from the SUth?a‘?ne-specifiers for a particular name-info receriom the
rooted at the corresponding value, and intersects thatith name-treel”. The main idea behind the algorithm is that a

Section 5.1 analyses this algorithm and discusses the expame-specifier can be reconstructed while tracing upwards to
imental results of our implementation. the root of the name-tree from each pointer to a name-info



Lookur(n,T)
S :=the set of all possible name-info records
for each attribute-value pgir:= (n,,n,) inn
T, :=the child ofT such that
name(,) = namef,)
if n, =%
S'=0
for eachT’, which is a child ofT,

> wildcard matching

T, := the child ofT, such that
name(’,) = namef,,)
if T, is a leaf node op is a leaf node then
S := S N the name-info records df,

EXTRACT(r,T")
set all PTRs in the tree rooted’Atto null
T.PTR := a new, empty name-specifier
for eachw which is a parent value element:of
EXTRACT-TRACE(v, null)
return((".PTR)

EXTRACT-TRACE(v,s)

S’ := 8" U all of the name-info records in th if v.PTR !=null > something to graft onto
subtree rooted &f, if s!=null > something to graft
S=5ngs graft(s, v.PTR)
else > normal matching else > nothing to graft onto; make it

v.PTR := a new attr.-value pair consisting @
this value and its parent attribu
if s!=null > something to graft

graft(s, v.PTR)

=

else EXTRACT-TRACE(parent value of, v.PTR)
S := SN LookuP(p, Ty)
return(S) Figure 5: The KTRACT algorithm. This algorithm extracts

and returns the name-specifier for the name-info recaird
Figure 4: The lookup algorithm. This algorithm looks upthe name-tre@. EXTRACT-TRACE implements most of the
the name-specifier in the name-tre& and returns all appro- functionality, tracing up from a leaf-value until it can graft
priate name-info records. onto the existing name-speficier.

record, and grafting on to parts of the name-specifier that havéNRs use the Bellman-Ford algorithm [4] to calculate the

already been reconstructed. shortest distance to the end-nodes. Unlike traditional routing
All the values in the name-tred;, are augmented with protocols that use the algorithm [20, 27], the INS architecture

a “PTR” variable, which is a pointer to the correspondirdpes not require unique end-nodes—if a name is advertised

attribute-value pair in the name-specifier being extracted. Iffibm more than one location, the algorithm computes the best

tially, all the PTRs are set to null, since they have no cdiverall metric based on INR hop count.

responding attribute-value pairs; the root pointBrRTR) is

set to point to a new, empty name-specifier. Then, for €agfiarence. Here, INRs learn about new names by passively

parent value of, the algorithm traces upwards through thgyseing the headers of messages they receive. When an INR

name-tree. If it gets to part of the name-tree where there igaejyes a message that is travelling fratto b, in addition to

corresponding attribute-value pair.PTR = null), and it has toyarding it towards, it also adds a hame-info record to the

a name-specifier subtree to graft on $a% null), it does s0. ame tree for, noting that its next-hop INR is the INR the

If not, it create; the corresponding part of the name—specifﬁ@ssage arrived from. The metric for the name-info record is

setsv.PTR to it, grafts ors if applicable, and continues they,, g by looking at theip-countefield in the header, which is

trace with the parent value ofand the new subtree. Figure 6, remented as the message travels from source to destination.

illustrates the progress of the algorithm. Learning about routes via inference is especially important for
learning about clients who have just made a request in large

Updates. INRs use updates to keep each other informed #ftworks. Using inference, only the INRs on the path from
the name-specifiers they know about. Triggered updates odBgrSource to the client need to learn about this client.

when an INR receives an update from one of its neighbors

(either an INR or an application).that causes a change ingt$;  |NR Self-Organization

name-tree; this allows new advertisments to propagate through

the network rapidly. Periodic updates are used to prevent INR machines are not static, pre-configured servers, but are
aging out of data that has not changed and to refresh entriedyinamic, in order to reflect load, node locality and the need for
neighboring INRs. This combination of periodic and triggereadficient routing in the face of mobility. We achieve this with a
updates enables us to treat the disseminated name statft aself-organization protocol that spawns INRs as needed, forms
[9], and therefore does not require a fully reliable transparéighborhoods of active nodes, and kills existing INRs when
protocol such as TCP. they are no longer useful. Being highly distributed with no
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Figure 7: A name-tree with a cached copy of packet data. The
cached data is indicated by a ‘$'.

r name-info

them. These include caching, group communications, mobil-

. . . . ) ity, and resource discovery.
Figure 6: An illustration an in-progress execution of the-E

TRACT algorithm. The subtreeis being grafted onte.PTR.
The traced paths and PTRs are shown with dotted lines;
PTR being used and graft are shown in bold.

8—network caching in today’s Internet is that packets aren’t

named in a way that is both application-independent and
reusable. For example, an IP address/ TCP port number/ TCP

centralized control, it has the potential to scale with increasipgduence number can be used to identify a packet in the mid-
load and perform well even when failures or partitions occufl/® 0f an HTTP transfer, but it isn’t reusable since there is no
INRSs run on machines in the general computing infrastrgérmanent mapping from sequence number to the source data.
ture of an organization: typically there is a pool of machind® make this reusable, one has to sacrifice the application-
that are candidate INRs, of which a subset are active at 4MjePendence of the name by interpreting the HTTP transfer.
time. The administrators of these machines can limit the!ntentional names give each packet a reusable, application-
amount of processing and communication expended by I\igépendent name—the source name-specifier. Thus, adding
on a node. This means that nodes can join and leave the a@ffing requires only two modifications to the INR behavior:

INR set at any stage based on external conditions 1. When transmitting a packet, make a copy of its data and
Bootstrapping is based on a list of candidate INRs that is  store a pointer to it under the route entry for gmurce
available to applications (e.g., from the DNS). If an applica- name-specifiein its name-tree.
tion detects that none of these candidate nodes are active, it ) o .
can spawn an INR on any of these nodes. This is especiall§: When looking up thedestination name-specifiesf a
useful for efficientad hocmobile networking in remote loca- ~ Packet, check to see if there is a cached copy of the data
tions, such as a meeting room or network isolated from the Which could be sentinstead.
rest of the Internet. An illustration of a name-tree from such an INR is shown in
Neighbors are dynamically maintained by a SGQFigure 7; in addition to the regular route, it also has a cached
LICIT/ACCEPT protocol.  The neighbor relationship ircopy of the data. Theache-TTLfield of the packet indicates
our design is explicitly designed to be symmetric. Thisow long the data is valid and is also stored in the name-tree.
simplifies routing by eliminating the need to deal witlNRs may also inform their neighbors that they have a cached
uni-directional paths and allowing the use of inferred routesopy by using regular name advertisements.
As the load increases on a resolver, additional INRs are

spawned on other candidate nodes, and INR functionality @@fbup communication. Despite the development of multi-

be terminated at any time (e.g., if the load is too light @ast routing (detailed in [10, 11, 3, 12, 24]) and a proposal
heavy). Our design uses a probabilistic birth/death algorithg} anycast routing ([32]), unicast transmission remains the
W|th |Oca| IOad monitoring fOI’ th|S, th|S algorithm iS Sim”arpredominant Communication paradigm Of the Internet. In con-
to the one described by Amét al. in the context of an Ac- trast, INS makes no assumption that any service resides on any
tive Service framework [1]. It has the desirable property thgrticular host, or even on only a single host. In particular, our
all nodes make autonomous decisions to achieve good glgRghe lookup algorithm uses set operations to determine the

%aching. The main difficulty with implementing middle-of-

behavior. _ ~correct routes, rather than just looking for a single route. This
We have currently not implemented the self-organizati@fows INS to easily support features akin to multicast and
protocol, but expect to do so shotly. anycast, with unicast merely being a special, single-host case
of either of those.
2.5 Benefits and Optimizations Since intentional names represent a service rather than an

end-point, multiple hosts can announce that they are provid-
In this section we discuss some of the benefits that our aréhg the service. Rather than just choosing the best route to-
tecture offers and the optimizations one can make becauswalfds a hame-specifier, the INRs maintain a list of all of the



routes towards that service. When the INR forwards a packat, Using the System
it checks theanycast/multicast flagf the packet header to de-
cide how to handle it. If the flag is set émycastit forwards 3.1  Application Programming Interface

it to the neighbor with théestmetric; if it is set tomulti- . _ .
cast it forwards it toall neighbors for whom it has a route?rhe INS API provides a flexible framework for developing

This anycast/multicast feature is useful for implementing mitP plications t.hat take a'dvantage.of its applice}tion-controll'ed
rored or redundant services and load balancing. It is furt € resolution. It provides functions for creating and manip-

enhanced by the ability to use wildcards in intentional nam% ting intentional names (nargel-speCIfl_ers),ll\ellgvernsmg E;”d
as described in Section 2.1. iScovering new services, and leveraging support for

caching, anycast, group communication and late binding.

In the application, a name-specifier is represented as pairs
of attribute and value objects with an implicit assumption that
the resolution operator is an exact match or wildcard opera-
Mobilit Mobility in the Internet relies ubon a com IeXtorz. The API provides functions to link these objects and con-

Iy Y . P P4 ect them to other similar objects to form a complete name-
Mobile IP scheme that involves the deployment of Homse cifier
and Foreign Agents [33]. This compexity arises because 8 Lo . . )
: NS provides name-specifier functions to:
the overloading of the IP address as both a permanent end-
e add a query clause,

point identifier, and a topologically sensitive address that must

change as a host moves through the network. Another posst* retrieve a component,

ble solution is to use a naming system to provide a perma® Séarch fora query clause, _
nent identifier, and then update the naming system as the ho&t 9enerate a readable text representation, and
moves. DNS cannot easily accomplish this since it is statically® compare another name-specifier to it.
configured, though dynamic updates in the DNS improve theA

) ) fter creating a name-specifier describing a service, the ap-
situation [42]. g P g P

plication can advertise the new service to the network using
INS, on the other hand, is explicitly designed for rapi@n INS function. Similarly, to discover new services, the ap-

updates. Periodic updates ensure that the name-tree mpligation can use an INS function to find out whether services

tains long-term consistency, while triggered updates allow anatching a given name-specifier have been discovered; if they

nounced changes to occur almost immediately. Thus whehaye, it may communicate with them by using INS functions

host moves, all it has to do is announce the intentional nart@gonstruct the appropriate name-specifiers.

for the services it provides to its new neighbors, and these ardhe INS API also allows applications to enable caching,

quickly propagated through the INR network. This featugmply by setting the length of time the message should be

can also be used to implemesgrvice mobilitywhich can be cached by intermediate nodes. Applications choose whether

used to move services from one machine to another (perhapycast or multicast is used by setting a flag in the message

to allow upgrades), or even among many machines (perhapaaader.

have a service follow a particular person). To accomplish this,

the hosts just coordinate the passing of the intentional nag'® A Mobile Camera Application

announcement among each other.
In order to evaluate the utility of our system for enabling appli-

cations that are difficult to create in today’s Internet, we have

implemented a mobile camera application for remote surveil-

lance using INS. We present an example scenario from it here
Resource discovery. Intentional names are inherently 4C reinforce system concepts and demonstrate how an appli-
method of resource discovery: rather than specifying the h6&ion uses the API. The camera service consists of a num-
it wants to access, users and applications convey their intenPgY ©f Physically mobile nodes equipped with cameras, each
supplying an intentional name that describes the service thiggning atransmitterapplication, and a number of nodes run-
desire. INRs learn about the services that exist in the netw8#Rd receiverapplications displaying images from the remote
via the name discovery protocol, and either pass this inforn¢&meras. Figure 8 shows the network topology used in this

tion on to applications in the form of a handle, or simply pa§%ample. y _
the application data on to the service provider on its behalf.The application uses name-specifiers with four orthogonal

The passing of a handle is similar to the operation of the Siributes: servicesrc) identifies that it is a camera appli-
vice Location Protocol (SLP) [41, 34]. INS is designed for GatioN, location {oc) describes its physical location, entity
sim_ilar scgle network, but operates Wi_thout th.e use O_f & CeN-2as we incorporate other operators such as range checks, this assumption
tralized Directory Agent or any other single point of failure. will change.
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Figure 8: Network topology for the camera application exam- .\Er’.

ple. INRsa andb run a receiverg runs a transmitter, andis
an intermediate INR without an application.

root

m node
Tcar'ﬂera ?hone ixm Tc
M‘ [svc=camera] [1oc=home] [ent=rcv] [node=a].
Note that thenode attribute is omitted from the desti-
nation name-specifier, since the receiver only wants an

Figure 9: Name-tree at INRafter Step 2. image from camera at home, and doesn't care which
particular node supplies the image.

Figure 10: Name-tree at INRafter Step 7.

(ent) indicates whether it is a transmittem(t) or a receiver g
(rcv), andnode is a unique identifier for each node.

The application operates as follows: First, receivers learn
about available camera locations via discovery protocol up-
dates sent by transmitters. Then users of the receiver appli-
cation may request an image from a particular location. Th&. INR r knows to forward this message to INRsince
request message will be routed to the transmitter(s) that can its name-tree (Figure 9) contains this route information.
service a request for that location, independent of their net- Using inference as before, INRknows that the source
work location and the transmitter that announced the service. name-specifier of the message must be in the direction of
Inference is used by intermediate nodes to create a path back INR a, and adds this information to its name-tree. This
to the receiver. Finally, the transmitter sends back a response is shown in Figure 10.
containing the image requested.

The sequence of INS events in an example operation is: 8- Upon receiving the message from INRINR ¢ passes

it to the transmitter. INRc¢ also adds an inferred
1. The transmitter orc is started, and informg’s INR route for the source name-specifier. The transmit-
that it wants to receive all messages destined to it. ter notices this request and sends back a message
The transmitter registers a route to it for name-specifier with the requested image, destination name-specifier
[svc=camera] [loc=home] [ent=xmt] [node=c] and [svc=camera] [loc=home] [ent=rcv]l and source
also tells the INR to announce this to its neighbors. name-specifier:
[svc=camera] [1oc=home] [ent=xmt] [node=c].
Note that thenode attribute is omitted from the desti-
nation name-specifier. This can be used to sendatlto
receivers who request the image, not just naddNS
uses this to perform group communication.

. While handling the message, INR infers that
[svc=cameral [loc=home] [ent=rcv] [node=a] (the
sourcename-specifier of the message) is coming from
the application receiver. INRthen forwards it to INR-.

2. INR ¢ sends a triggered-update to INR with
[svc=camera] [1oc=home] [ent=xmt] [node=c] in it.
INR r updates its name-tree to include the new name, as
shown in Figure 9. It then sends the update to INRsd
b, which update their name-trees.

9. Nodec receives the message from the transmitter appli-
cation and forwards it to INR. Similarly, » forwards the
message ta, which then passes it on to the receiver ap-
plication. All these nodes know the route to the receiver

4. INR a, which has received an update from INR because of the inferred routes acquired during the flow of
r for [svc=camera] [1oc=home] [ent=xmt] [node=c] the request message from the receiver to the transmitter.
passes this name-specifier to the receiver, which informs
the user that a new camera has been discovereshat .

4 Implementation

5. The user requests an image frawwme. The receiver
sends a message with destination name-specifiene INS architecture has been fully implemented and tested
[svc=camera] [1oc=home] [ent=xmt] using the mobile network of cameras as the test application.
and source name-specifier: Our implementation of INR is in Java, to take advantage of

3. When the receiver om is started, it asks INR
a to let it know about any name-specifiers match
[svc=camera] [ent=xmt].



Messagef Header | Data Name-tree Name-specifier

Header{v]p1[p2[p3[IP[id[TTL[ct[af[cTTL]eb[s-ng d-n| [y

where: E
Vv = version ct = up-counter R S 2d .-
pl = pointer to s-ns af = anycast flag o a ° ) 0-"-0
p2 = pointer to d-ns cTTL = cache-TTL .
p3 = pointer to data eb = early-binding flag e0---', ---0 v
IP = IP address S-ns = source name-specifier
id = packet ID d-ns = source name-specifier

TTL = time to live (TTL)

Figure 12: A uniformly grown name-tree. Note that=
(tree depth/2 =1 for this tree.

Figure 11: The INS message format.

_ N o Performance Analysis and Evalua-
its easy cross-platform portability. User applications are not

constrained to be written in Java. tion

In this section, we present the implementation details of two

key aspects of INS: the architecture of an INR node, and tRethis section, we analyze performance of the INS name
packet formats for intentional names. lookup algorithm and present the results of our experiments

with the lookup algorithm and name discovery protocol. Our

. ) results are encouraging and demonstrate the practical feasibil
INR node architecture. INRs use UDP to communlcatgty and deployability of INS.

with each other. At an INR, thiéode is the manager of all net-
work resources and running applications at a resolver. It main-
tains thelameTree that is used to resolve an intentional nanre-1 ~ Name Lookup Performance

to its corresponding route information,FarwardAgent 10 Apalysis. Since INS scalability with load is a major con-
forward messages, andiadeListener that receives all in- cern it is important to analyze the performance of the lookup
coming packets. In addition, there are two useful applicgrorithm as the demands on it increase. While many of the
tions that run at each INR: aBntityDiscovery applica- (asks involved in resolving a name take the same amount of
tion, which implements the name dissemination protocol, ag¢e (e.g., copying the data, transmitting it over the network),
alNetworkManagement application that provides a graphicahe time to perform a name lookup depends on a number of
interface to monitor and debug the system and view the namgqors. It is therefore important to determine the worst-case
tree. run-time of the algorithm.

The INR implementation consists of approximately 5000 1 simplify the analysis of our lookup algorithm, we
lines of Java code. Using the INS API, applications are relssyme that name-specifiers grow uniformly in the following

atively easy to develop. For example, the camera applicatigpensions (illustrated in Figure 12):
was implemented in less than 1000 lines of Java, of which over

60% was for the user-interface and image display. d | One-half the depth of name-specifiers
r, | Range of possible attributes in name-specifiers
Range of possible values in name-specifierg
Actual number of attributes in name-specifigrs

Packet format of intentional names. Figure 11 shows the| "
INS packet format for intentional names. Because nameéle
specifiers are of variable length, three pointers,( p2, p3) In each invocation, the algorithm iterates through the at-
point to the start of the source name-specifier, destinatiebutes in the name-specifier, finding the corresponding at-
name-specifier and data fields of the message. INR nodesribute and value in the name-tree and making a recursive call.

not process application data. Thus, the run-time is given by the recurrence,
The IP field contains the IP address of the source node,
and is used by applications to perform “early binding” of in- T(d) =ng - (ta +to + T(d — 1)),

tentional name to addressd is a monotonically increasing ) ] )
32-bit unique 1D for the message, used in conjunction with wheret, andt, represent the time to find the attribute and

to detect routing loops. In addition to the standard, field, Va/Uue respectively. F.or now, assume that it takes firfee the
messages containa field that counts up from zero at eact@S€ case such that:

INR. When an INR performs route inference, it usgsas a T0)=>b

hint to initialize the metric for the route. Settingt = t, + t, and performing the algebra yields:
Theaf field indicates whether the destination specified by

the d-ns field is meant to be an individual (“any”) entity or T(d) = ne - (t+T(d-1))

a group (“all”) of entities. cTTL field stores the TTL of (op- n?—1 it

tional) cached data. = 1 t+mng -b
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Lookups per second as the number of names change
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However, using a straightforward hash table to find thes 0

reduces the running time to:

If linear search is used to find attributes and values, the rui
ning time would be:
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T(d) =O(ng - (1+1)) Figure 13: Performance of name-tree lookups. This graph

shows how the name-tree lookup performance of an INR goes

Implications.  From the above analysis, it seems that th{o\yn as the number of names in its name-tree increases.
nd factor may suffer from scaling problemsdfgrows large.

However, bothn, andd, will scale up withthe complexity of
a single applicatiorassociated with the name-specifier. Thetnproved significantly for narrower name-specifiers, reaching
are only as many attributes or levels to a name-specifierseveral thousand lookups per second.
the application designer needs to describe the objects that ¢ These experiments give us a practical idea of how the
used by their application. Consequently, we expect that thase casé affects performance. We believe that this order-
n, andd will be near constant and relatively small; indeed@f-magnitude of lookup performance is adequate for intra-
our mobile camera application has this property. domain deployments, because of the load balancing provided
The cost of the base cade,is the cost of an intersectionby the INS self-organization protocol and the parallelism in-
operation between the set of route entries at the leaf of tierent in independent name lookups.
name-tree and the current target route set. Taking the intersec-
t!on of the two sets of size; and s, takes@(mam(§1, S2)) 5[_2 Name Discovery Performance
time, assuming the two sets are sorted (as in our implementa-
tion). In theworstcase the value dfis on the order of the sizeOne of the claims we made about INS was that it was capable
of the universal set of route entrig8(|U|)), but is usually sig- of tracking rapid change and dynamism in services and hosts.
nificantly smaller. Unfortunately, an average case analysisTgfis section substantiates this claim by discussing the perfor-
b is difficult to calculate analytically since it depends on th@ance of the name discovery protocol.
number and distribution of names. We measured the performance of INS in discoveriegy
network entities, which advertise their existence via hame-
Experiment. To experimentally determine the name lookugpecifiers. Figure 14 shows the average discovery time of a
performance of our (untuned) Java implementation of an INRgw name-specifier as a functiomafthe number of hops in
we created a number of randomly constructed name-trees, dedINR network from the new name. The machines used in
timed how long it took to perform 1000 random lookup oghe experiments off-the-shelf Intel Pentium Il 450 MHz PCs
erations on the tree. The name-tree and name-specifiers wen@ing Red Hat Linux 5.2 and Windows NT Server 4.0. The
chosen to be uniform with same parameters as the analysigetwork nodes were connected over 100 Mbps Ethernet and
Section 5.1. We varied, the number of distinct names in thelO Mbps wireless RF links.
tree, and measured lookup times. We performed our experiwhen an INR observed a new name-specifier from a pe-
ment on an off-the-shelf PC with an Intel Pentium Il processoodic node announcement, it processes the update message
running at 450 MHz with 512 KB cache and 128 MB RAMand performs a lookup operation on the name-tree to see if
The machine was running Red Hat Linux 5.2, and the codaoute already exists. When it does not find the route, it
was compiled and run under Sun’s Java version 1.1.7. grafts the name-specifier on to its name-tree and propagates
We fixed the parameters at, = 3, r, = 3, n, = 2, a triggered-update to its neighbors. Thus, it is easy to see
andd = 3, and variedn from 1 to 2500. Our results arethat the name discovery time in a network of identical INRs
shown in Figure 13. For this name-tree and name-specified links,Ty(n) = n(T; + T, + Typ + d), whereT; is the
structure, our performance went from a maximum of abdobkup time,T} is the graft timel%, is the update processing
1060 lookups per second to a minimum of 220 lookups pgéne, andd is the one-way network delay between any two
second. We did see occasional large variations in similar mbdes. That is, name discovery time is to first-order linear in
als, and conjecture that it is a consequence of quirks in Jathis number of hops. The key experimental question is what
memory allocation. We also found that lookup performante slope of the line is, because that determines how agile INS
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Entity Discovery Performance and its application to Semantic File Systems [18]. The de-

_ Average discovery time as the number of hops change sign of content names is very different from ours and so is its
£ Zg application, but the underlying philosophy is similar.
§ 70 Another suggestion similar to our intentional naming
> 60 scheme was made by Jacobson [21]. Presented in the con-
g Z’g text of multicast-based self-configuring Web caching, the pro-
% 30 posal was to use the URL namespace and “instead of ask-
g 20 ing X to send yout’, simply ask forY".” More recently, as
g 10 part of the Simple Systems DARPA ISAT group, Esteiral.

0 T 52 5 4 5 & 7 5 9 [14] suggested a naming scheme based on attributes to enable

Number of hops diffusion-based sensor tracking and control applications. Our

intentional naming scheme has some features in common with
Figure 14: Discovery time of a new network name. This grafiat proposal, but differs in the details of the resolution and
shows that the time to discover a new network name is lingaessage routing processes and in the self-organization mech-
in the number of INR hops. anisms.
Cisco’s DistributedDirector [7] intelligently resolves ser-
. . vice names (in the URL namespace) to the IP address of the
Is In tracking changes. closest server, based on client proximity and client-to-server

In our experiments the structure of the name-tree on el |atency. Unlike our system, DistributedDirector is not a
INR was relatively constant (except for the new grafts), sing& 4| framework for naming and resolution and it does not

we were not running any other applications in the system djjfro yrate resolution and routing the way INS does using inten-
ing the measurements. Thus, the lookup and graft times at ABfal names

INR and the others were roughly the same. As shown in Fig_IBM’s

ure 14,Ty(n) is indeed linear im, with a slope of less than

A ; . . lications in a network by providing a lightweight distributed
10 ms/hop. This implies that typical discovery times are Orﬁd)%tabase model. Network entities can perform queries on

xse;/\ilotr?r;selg;;nllIlseconds, and dominated by network tranpﬁ_eces of data that are described by tuples (similar to attribute-

' value pairs in name-specifier expressions) and have been set
by other entities. However, this system has been optimized
6 Related Work for client-server applications rather than for (ad hoc) peer-to-

peer communication, and uses a central database to maintain

We are unaware of an application-controlled network arcftP'e mappings. Sun Microsystems’ Jini project [22] aims to
tecture that integrates naming and routing the way the [REvide a framework for users to discover and access local
architecture does. We believe that the flexible naming and ré&tvices, by forming a “federation of networked devices” over
olution provided by INS is well-suited to the future Internefava's Remote Message Invocation (RMI). Jini does not ad-
infrastructure because it enables a variety of network servi€tgss either how naming should be done or the name resolu-
and applications in an easily deployable manner. tion process.

There has been significant research in wide-area namindp the past few years, several schemes for distributed Web
and resolution, including some recent proposals. Vaktlacaching have been proposed including Harvest [6], Squid
al. [40] present scheme factive names.Similar in spirit and the Internet Cache Protocol (ICP) [43], Adaptive Web
to active networks that incorporate general purpose comf#ching [2], diffusion-based caching [19], Summary Cache
tation into the routing infrastructure [38, 44], active namé$5], Cisco’s Cache Engine [8], Web caching using active
allow applications to define arbitrary computation that exgaetworks [25], multicast-based caches [39], hierarchical Web
cutes on names at resolvers. We believe that active namegaghing [36], meta-data caching, etc. We believe that by be-
overly general and therefore complex; for many applicatiori8g able to incorporate data caching into the name resolution
the benefits they obtain can be accomplished using a flexitsemework as an important optimization, INS has the poten-
but non-Turing-complete naming system with a carefully chéial to simplify the complex problem of Web caching. Using
sen set of operators such as the one we have proposed. mNp-would lead to an infrastructure similar to that described
thermore, the active names scheme does not specify a redeulacobson [21].
tion protocol that incorporates message routing or name disThe Service Location Protocol (SLP) [41, 34] is a protocol
semination for resource discovery. designed to facilitate the discovery and use of heterogeneous

To our knowledge, the first proposal to decouple namestwork resources using centralized Directory Agents. In con-
from object locations was described in a paper by O'Toole atndst, INS enables highly robust, dynamic, and flexible entity
Gifford [30], where they describe a content naming scherfservice) discovery.

“T Spaces” [26] enable communication between ap-
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Retaining network connectivity while mobile requires ature sensors in a building that have recently observed a tem-
level of indirection so that all traffic to the mobile host caperature greater than some threshold, to actuate an action such
be redirected to its current location. Mobile IP [33] achieves turning on air vents. We believe that INS has the potential to
this using a Home Agent in the mobile host's home domaisecome an integral part of future device and sensor networks.
With INS, the required level of indirection is obtained using Although our current experiences with INS are very encour-
the intentional naming system, since all traffic to the mobiéging, there remain some important areas of fruitful research
host would go through a name resolution process. The tihefore the full benefits of this intentional naming architec-
integration of naming and routing enables continued netwdtke can be realized in the Internet. First, we need to care-
connectivity in the face of mobility. Furthermore, INS systeffiully expand the set of supported operators in the resolution
is a highly distributed and fault tolerant architecture avoidimgocess, such as incorporating range matches. Second, the
central points of failure that Mobile IP suffers from. A numeurrent INS architecture is intended for intra-domain deploy-
ber of protocols for ad hoc or infastructureless routing hameent. We are actively developing a wide-area architecture to
recently been proposed [5, 31, 37]. These protocols, whilemplement INS, which will integrate INS with extensions
very useful to enable IP connectivity, do not support routing DNS for ease of deployment. Ultimately, the benefits of
of queries via name-specifiers like INS does. such a system are in enabling or facilitating the development

of new applications and services; to this end, we are design-
) ing new services (e.g., transparent performance-based server
7 Concluding Remarks selection, location-dependent services, etc.) using INS. This

_ _ _ _ will demonstrate the benefits of INS and help us characterize
In this paper, we established the need for an intentional nafs class of applications that INS facilitates.

ing scheme, where applications descnitdgatthey are look-

ing for, notwhereto find data. We presented the design, im-

plementation and evaluation of an Intentional Name SysteﬁqunOW|edgmentS

called INS, to realize this vision. The components of INS in-
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