
Dynamically Reparameterized Light Fields 1
MIT LCS Computer Graphics Group

Dynamically Reparameterized Light Fields
Aaron Isaksen

MIT LCS Computer Graphics Group
aisaksen@graphics.lcs.mit.edu

http://graphics.lcs.mit.edu/~aisaksen

Leonard McMillan
MIT LCS Computer Graphics Group

mcmillan@graphics.lcs.mit.edu
http://graphics.lcs.mit.edu/~mcmillan

Steven J. Gortler
Harvard University
sjg@cs.harvard.edu

http://www.cs.harvard.edu/~sjg

Abstract
An exciting new area in computer graphics is the synthesis of
novel images with photographic effect from an initial database
of reference images. This is the primary theme of image-
based rendering algorithms. This research extends the light
field and lumigraph image-based rendering methods and
greatly extends their utility, especially in scenes with much
depth variation. First, we have added the ability to vary the
apparent focus within a light field using intuitive camera-like
controls such as a variable aperture and focus ring. As with
lumigraphs, we allow for more general and flexible focal
surfaces than a typical focal plane. However, this
parameterization works independently of scene geometry; we
do not need to recover actual or approximate geometry of the
scene for focusing. In addition, we present a method for using
multiple focal surfaces in a single image rendering process.

Introduction
The light field [Levoy96] and lumigraph [Gortler96] rendering
methods use similar four-dimensional data structures for
representing a half-space of rays through a volume of space.
We will refer to this data structure as a ray database. Novel
images are synthesized from this database by querying it for
each ray needed to construct a desired view. The set of
viewpoints that can be generated are restricted to those within
an empty region of space lying outside of the convex hull of
objects in the scene that are composed entirely of rays from
the selected half-space. Several ray databases can be used to
represent a scene, and desired images may combine rays
queried from different databases. A pair of planes is typically
used to parameterize a ray database, although other
parameterizations have been suggested [Camahort96].

A continuous representation of a ray database would be
sufficient for generating any desired viewpoint under the
previously described viewing restrictions. However,
continuous databases are impractical or unattainable for all but
the most trivial cases. In practice, we must work with a
discretely sampled ray databases. As with any sampled
representation the issues of choosing an appropriate initial
sampling density as well as defining methods for
reconstructing continuous representations from the given
sample set are crucial factors in representing the underlying
model. A previous motivation for selecting a new
parameterization for the ray database was to facilitate better or

more uniform sampling. Improving the uniformity of
sampling density helps find an adequate sample rate to avoid
aliasing artifacts. These artifacts due to an initial
undersampling cannot be removed though a subsequent
process unless additional information or constraints are
provided.

The choice of a ray database parameterization also affects
the choice of reconstruction methods that can be used in
synthesizing desired views. Thus, even when supplied with an
adequately sampled dataset, it is frequently the case that a
non-ideal reconstruction filter will introduce artifacts into the
result, whereas a better reconstruction filter on the same
dataset might have generated a more correct result. This
process of introducing artifacts in the reconstruction process is
often called postaliasing [Mitchell88]. Postaliasing artifacts
include excessive high-frequency leakage, sometimes called
ringing, and excessive pass-band attenuation, or blurring. The
standard planar parameterizations of ray databases have a
substantial impact on the choice of reconstruction filters. Here,
we present an alternative parameterization that allows for a
more flexible choice of reconstruction filters.

To date, most light fields are constructed for object-
centered, or outside-looking-in, environments rather than
viewer-centered, or inside-looking-out environments. This is
not entirely coincidental: the original two-plane light field can
best represent points that are located near the exit plane of the
ray database. Objects located a small distance from this exit
plane will appear out of focus (either blurred or ghosted,
depending on the extent of aperture filtering). Thus, an object-
centered model is better suited, as the distance the object lies
from the exit plane is well represented by a plane.

We would like to represent inside-looking-out light fields
with a wide variations in depth. This requires a more flexible
parameterization of the ray database.

In the sections that follow, we present an extension of the
light field parameterization that introduces the notion of a
focal surface. Then, we discuss how the treatment of a light
field as a discrete synthetic aperture camera will provide
dynamic variations of depth of field. Next, we explain how
moving and orienting the focal surface will affect the images
created using this ray database. We then present the idea of
using multiple focal planes, how to create them, and how to
use them when rendering. Finally, we present ideas on how
one would optimally make these multiple focal planes.

Dynamically Reparameterized Light Fields 2
MIT LCS Computer Graphics Group

Focal-Plane Abstraction

Overview

Our parameterization of ray databases is analogous to a
two-dimensional array of pinhole cameras treated as a single
optical system with a synthetic aperture. Each constituent
pinhole camera captures an image in clear focus, and this
camera array acts as a discrete aperture in the image formation
process. Because we have a discrete, finite aperture, some
amount of depth of field defocusing will be present in our
renderings. However, by using an arbitrary plane of focus, we
can establish correspondences between the rays from different
pinhole cameras. That is, we can control which items we want
to be in focus. This is essentially the approach used to
simulate depth-of-field effects in ray-traced images [Cook84].

Mathematical formulation

In the standard two-plane ray database parameterization
there is an entrance plane, with parameters (s, t) and an exit
plane with parameters (u, v), where each ray is uniquely
determined by the 4-tuple (s, t, u, v), as illustrated in Figure 1.
It is often instructive to consider and/or interpret subspaces of
such a ray database [Gu96]. A two dimensional subspace
given by fixed s and t values resembles an image, whereas
fixed u and v values give a hypothetical radiance function.
Fixing t and v gives rise to an epipolar plane image, or EPI
[Bolles87].

Figure 1: In the standard light field parameterization, a ray is
referenced by its intersections with an entrance plane and an exit
plane.

Our new parameterization is best described in terms of
three 2-D surfaces, which are shown in Figure 2 below. Our
camera surface, described in terms of two parameters s and t,
is identical in function to the entrance plane of the standard
parameterization. Our image surfaces describe a discrete set of
rays from a given point, (s,t), on the camera surface and has
the form (us,t, vs,t). The elements of the ray database are
accessed via a four-tuple (s, t, us,t, vs,t,). Our focal surface is
described in terms of two parameters, (uF, vF), that are
independent of all others. Our parameterization also requires a
mapping),(),,,(: ,, tstsFFF vuvutsM → ; this maps from focal

surface parameters to image surface parameters given a
specific camera surface coordinate. That is, this mapping tells
us which ray (s,t,us,t,vs,t,) in the ray database is the same as the
ray),,,(FF vuts .

Figure 2: Our new parameterization has added a focal surface.

When querying a discrete ray database, we wish to find the
ray r̂ , a ray that has been recorded in the ray database, that
best approximates a ray r. Given r and a focal surface F, one
calculates the ray’s intersections with the camera surface and
focal surface to get),,,(FF vuts . Then,),,,(FF vuts is

quantized to),,ˆ,ˆ(FF vuts , because the camera surface is

sampled discretly, not continuously. This 4-tuple is passed
throught the mapping),(),,ˆ,ˆ(: ˆ,ˆˆ,ˆ tstsFFF vuvutsM → to obtain

the nearest ray r̂ in the ray database which passes through
)ˆ,ˆ(ts . By varying the focal surface and the focal surface

mapping, different rays r̂ will be returned for a given ray r.
The key difference between our ray-database query

formulation and that used by the light field and the lumigraph
is the identification of independent image and focal surfaces.
In the case of a standard two-plane parameterization the
mapping function from (uF,vF) to (us,t,vs,t) is an identity.
Therefore, every point on the camera surface shares a common
image surface, and the image surface is coincident with the
focal surface.

However, we have separated these surfaces, and the
relationship between them is determined by the focal-plane-to-
image-plane mapping function. This mapping can be modified
dynamically, and these alterations do not effect the
organization of the underlying ray database. Thus, we defer
the selection of the focal surface until image synthesis time,
and make the specification of this surface available to the user.

The addition of a focal surface abstraction has only a
minor impact on the image synthesis process. Assume that the
center-of-projection of the desired image lies at the origin. In
the case where the camera, image, and focal surfaces are
defined as planes the mapping from a desired ray to a database
query can be structured as a pair of projective mappings.

camera surface focal surface

image surfaces

r (uF,vF)

(s,t)

),,ˆ,ˆ(ˆ,ˆˆ,ˆ tsts vuts

),(ts

entrance plane

exit plane

),(vu

r

Dynamically Reparameterized Light Fields 3
MIT LCS Computer Graphics Group

d

w

wv

wu

d

r

rt

rs

ts FI

C

ˆ,ˆ=
















=
















In these equations, d is the direction of the desired ray.
The 3 by 3 matrix C gives the intersection of the ray with the
camera plane in terms of s and t. Likewise, the matrix F gives
the (uF,vF) intersection of the ray with the focal plane. The 3
by 3 matrix Is,t maps focal-plane coordinates into pixel
coordinates of the specified camera,)ˆ,ˆ(ts . These mappings

are computed for each image synthesized. In light fields and
lumigraphs, all points on the camera plane share a common
image plane that is also the focal plane. Therefore, only two
mapping functions are required, one for the entrance plane and
one for the exit plane. In our parameterization the focal
surface is defined dynamically. Thus, F is determined by the

user. The composite map, FI ts ˆ,ˆ , must be determined for

every discrete position on the camera plane where an image
plane is specified, for example at 256 points. This quantity can
be computed lazily, but in any case it is only a small overhead
compared to the ray queries.

Discrete Synthetic Aperture Camera

When quantizing)ˆ,ˆ(),(tsts → , the nearest ray r̂ is

constrained to pass through)ˆ,ˆ(ts . Clearly, except in the case

where)ˆ,ˆ(),(tsts = , the ray r̂ is not the same as r, and errors

in the output image are apparent. Evaluating MF only once for
each ray r leads to noticeable discontinuities in the output
image, as the quantization)ˆ,ˆ(),(tsts → suddenly jumps to a

new location on the camera surface, even when),(ts may

only change a small amount (see figure 3 below).
To reduce these discontinuities, one can ask for the four

rays from the four nearest)ˆ,ˆ(ts samples. Then one can

interpolate between these rays to find a better approximation
than any one of these rays alone. In the original light-field
paper, this was referred to as st-interpolation. However, a
more general approach would be to take a linear combination
of a set of nearby rays. This is analogous to a camera
system’s point-spread function. Unfortunately, this trades
discontinuities for focusing problems, as we have now added a
finite aperture and therefore a limited depth of field (related to
the distances between the samples on the camera surface).
Nevertheless, we are used to dealing with real world camera
systems which exhibit these depth of field problems: we
accept them, and even derive artistic value from them.

However, we are not accepting of discontinuities in an image,
and the tradeoff is a useful one.

Figure 3: Although the image is clearly focused, using only a
single nearest neighbor ray creates noticeable discontinuities.

Variable apertures

Depth of Field
One can render depth of field effects by blending a larger set
of approximate rays. If MF is evaluated for all cameras)ˆ,ˆ(ts

within a given radial distance from),(ts , the aperture radius

of the synthetic camera is increased. In Figure 4, 7 different
cameras will be used for a single input ray. Whereas one can
only decrease the aperture radius by sampling the camera
surface more densely, one can increase the aperture at run-
time by averaging more rays together (i.e. changing the radius
of the gray circle in Figure 4).

Figure 4: By including rays from all cameras within a radius of
the actual camera surface intersection, we can increase the
aperture of our synthetic camera.

By combining rays from cameras farther away from),(ts ,

only objects that are near the focal surface will be in focus.
By definition, the set of nearest rays obtained through MF for a

r

(s,t)

)ˆ,ˆ(11 ts)ˆ,ˆ(22 ts

Dynamically Reparameterized Light Fields 4
MIT LCS Computer Graphics Group

given),(FF vu will intersect at),(FF vu , regardless of)ˆ,ˆ(ts .

That is, these rays are ‘looking’ at the point),(FF vu on the

focal surface F. If there was an object at that location when
the ray database was captured, the rays will agree on the color
of that surface (up to view dependent variations). In the left
side of Figure 5, r1, r2, r3, and r4 agree. However, as the actual
object gets farther from the focal surface, the agreement of the
rays diverge, as in the right side of Figure 5. By increasing the
aperture radius, more rays will be averaged, and these colors
will diverge faster. Thus, we have a control over depth of field
that is intuitive to photographers: the f-stop on a camera is
inversely proportional to aperture radius.

Figure 5: When the focal surface is near the object we are
looking at, the rays agree and the object appears to be in focus
(left). If the object is further from the focal surface (right), then
the rays do not agree, and the object will appear out of focus.

Seeing through Objects
Other algorithms could be used to create effects not available
to photographers. In Figure 6, we used an aperture that
included every camera in our data set. If that were taken with
a single real camera, the aperture would be about the size of a
3-story building! Because our depth of field is so narrow, we
can “look through” objects.

Figure 6: By making the aperture very large, we are able to look
through objects. In this case, there is a tree and island occluding
the hills where the slight haze appears. Figures 8,9, and 10 are
the same scene with a smaller aperture; the tree is visible.

Varying focus

Though we have shown a way to change the size of the
aperture, this could have been done with the standard light
field parameterization. We will now show what can be
accomplished with a parameterization that allows one to
dynamically control what is in focus.

Moving the Focal Surface
A photographer using a camera can not only change the depth
of field, but he can change what is in focus. Using our
parameterization, one changes the focal surface in order to
change what appears in focus. As before, a ray r, a camera
surface, and a focal surface F intersect at),,,(FF vuts . This

4-tuple is then quantized and passed through a mapping
),(),,ˆ,ˆ(: ˆ,ˆˆ,ˆ tstsFFF vuvutsM → to obtain the nearest ray r̂ in

the ray database.
When the focal surface is changed to F’, the same ray r

now intersects the camera and focal surfaces at the new
coordinates),,ˆ,ˆ(’’ FF vuts . Thus, by dynamically changing the

focal surface, we are dynamically changing which ray r̂ in the
ray database is ‘nearest’ to the ray r. When we change the
focal surface from F to F’, we are changing from r̂ , a ray that
passes through),(FF vu , to r̂ , a ray that passes through

),(’’ FF vu (see Figure 7). Since objects nearest to the focal

surface intersection will be in focus when using a finite
aperture, we have added a variable focus into the light field
parameterization.

Figure 7: By changing the focal surface, we can control which
ray in the ray database best approximates a given ray r.

Without the focal surface mapping, the light field always
returned the same ray r̂ for an input ray r. Since this
deficency is tied into the storage of the ray database, light
fields and lumigraphs have a fixed focus. Whereas the
standard light fields implementations could render either
Figure 8 or Figure 9, it could not do both without rerendering
the database, clearly not a dynamic operation. Depth-

),(’’ FF vu

),(FF vu

F F’

r

)ˆ,ˆ(ts

r̂

’r̂

r1

r2

r3

r4

F

r1

r2

r3

r4

F

Dynamically Reparameterized Light Fields 5
MIT LCS Computer Graphics Group

corrected lumigraphs would allow a dynamic focal surface,
but only a single one.

Freely oriented focal surfaces
Since the focal surface determines which regions of space in
the light field will be in focus, moving the focal surface allows
the user to focus on different parts of the scene. For example,
when we use a plane parallel to the image plane as a focal
surface, it makes it easy to see what lies at a given depth in the
scene. In figure 8, we have chosen to make the tree in focus,
while figure 9 focuses on the hills behind the island. Moving
the focal plane only changes 1) the mapping function MF and
2) where the ray r intersects with F at),(FF vu . This is a

simple change that does not affect the storage of the ray
database.

Figure 8: A focal plane has been placed through the tree.

Figure 9: The same scene as Figure 8, but with the focal plane
passing through the hills behind the island.

We do not need to keep the focal surface parallel to the
image plane. If we orient the plane such that it passes through
various objects in the scene, we can constrain these objects to
be in focus. In Figure 10, we pass the focal surface through
the front rock, part of the tree, and the rock at the left edge of

the island. This non-parallel focal plane is available to
photographers that use a bellows on their camera, but bellows
are not common equipment and can be difficult to align with
the optical system. And, of course the focus cannot be
dynamically changed after film has been exposed. Since
rotating the focal plane again simply causes a change of MF

and a different),(FF vu for a ray r, it no more difficult to

arbitrarily orient a focal plane than it is to move one.

Figure 10: We have placed a focal plane that is not parallel to the
image plane. In this case, the plane passes through part of the
tree, the front rock, and the leftmost rock on the island. The
plane of focus can be seen intersecting with the water in a line.

Non-planar focal surfaces
Clearly, these example scenes can not be entirely focused with
a single plane. Of course, the focal surfaces do not have to be
planar. One could create a focal surface out of a
parameterized surface patch that passes through key points in
a scene. Or, one could even use a depth map of the scene as a
focal surface, insuring that all visible surfaces were in focus.
This would analogous to depth-corrected lumigraphs, where a
proxy surface helps focus the representation But, in reality,
these depth maps would be hard and/or expensive to obtain
with simple hardware, and would likely only be applicable to
synthetic ray databases.

Multiple Focal Surfaces
In general, we would like to have more than just the points
near a single surface in clear focus. One solution is to use
multiple focal surface, something not available to real
cameras. In a real lens system, only one continuous region is
in focus at one time. However, since we are not confined by
physical optics, we can have two or more distinct regions that
are in focus. For example, in Figure 11, the red bull in front
and the monitors in back are in focus, yet the objects in
between, such as the yellow fish and the blue animal, are out
of focus. Using a real camera, this can be done by first taking
a set of pictures with different planes of focus, and then taking
the best parts of each image and compositing them together
[Haeberli94].

Dynamically Reparameterized Light Fields 6
MIT LCS Computer Graphics Group

Figure 11: Using two focal surfaces allows us to make the front
and back objects in focus, while those in the middle are blurry.

Since a ray r will intersect each focal surface, some
scoring scheme is needed to pick which focal surface will be
used. We would like to pick the focal surface which will
make the picture look most focused, which means we need to
pick the focal surface which is closest to the actual object
being looked at. We can augment each focal surface with
some scoring),(FF vuσ , which is the likelihood a visible

object is near),(FF vu . Then, we calculate σ for each focal

surface, and we can pick the focal point with the best score
σ . In Figure 12, we would like 2σ to have the best score, for

it is closest to the object. Note that an individual score
),(FF vuσ is independent of the view direction; however, the

set of scores compared for a particular ray r is dependent on
the view direction. Therefore, although our scoring data can
be developed with out view dependence, we can still extract
view dependent information from it.

Figure 12: To find the best focal plane, we calculate a score at
each intersection and take the focal plane with the best score. If
the scoring system is good, the best score will be the one nearest
the surface we are looking at.

If we are given the light-fields but no knowledge about the
geometry of the scene, we must create these scores from
information in the images alone. We would like to avoid
computer vision techniques that involve deriving
correspondences to discover the actual geometry of the scene,
as vision algorithms may deal with ambiguities that are not
relevant to generating synthetic images. For example, flat
regions without texture can be troublesome to a vision system,
and can make it hard to find an exact depth. However, when
making images from a light field, picking the wrong depth
near the same flat region would not affect us, because the
region would still look in focus. Therefore, we would like a
scoring system that allows us to take advantage of this extra
freedom. And, because we only have the original images as
input, we need a scoring system that can be easily created
from these input images.

So, we have chosen to look for locations on the focal
surfaces that approximate radiance functions. Whereas we
have usually thought of the light-fields as looking in at
objects, we can also use them to generate radiance functions.
The collection of rays in the ray database that intersect at

),(FF vu is the discretized radiance function of the point

),(FF vu . If the point lies on an object and is not occluded by

other objects, the radiance function will be smooth, as in the
left side of Figure 13 below. However, if the point is not near
an actual object, then the radiance function will not be smooth,
as in the right side of Figure 13.

To measure smoothness, we look for a lack of high
frequencies in the radiance function. High frequencies in a
radiance function identify 1) a point on a extremely specular
surface, 2) an occlusions in the space between a point and a
camera, or 3) a point in empty space. Thus, if we identify the
regions where the there are no high frequencies in the radiance
function, we know the point must be near a surface. Because
of their high frequency content, we may miss areas that are
actually on a surface but have an occluder in the way.

Figure 13: Creating a radiance function from a light field. If the
radiance function is near an object, then the function will be
smooth. If the radiance function is not near an object, it will
vary greatly.

Because calculating the radiance function is a slow
process, we create the scores for discrete points on each focal
surface as a preprocessing step. This allows us to use
expensive algorithms to setup the scores on our focal surfaces.
Then, when we are rendering, we only need to recall the

σ1

σ2

σ4

σ3

F1
F2 F3

F4
r

Dynamically Reparameterized Light Fields 7
MIT LCS Computer Graphics Group

prerecorded scores for each focal surface intersection and
compare them.

To find the best focal surface for a ray, an algorithm must
first obtain intersections and scores for each focal surface.
Since this is linear in the number of focal surfaces, we would
like to keep the number of focal surfaces small. However, the
radiance functions are highly local, and small changes in the
focal surface position can give large changes in the score.
Nevertheless, the accuracy needed in placing the focal
surfaces is not very high. That is, we do not need to find the
exact surface that makes the object we are looking at in perfect
focus; we just need to find a surface that is close to the object.
Therefore, we can first calculate the scores by sampling the
radiance functions for a large number of planes, and then
‘squash’ the scores down into a smaller set of planes using
some function),...,(mii +σσλ . For example, in Figure 14, we

first calculate the radiance scores for 16 planes. Then, using
some combining function λ , we combine the scores from
these 16 planes down to new scores on four planes. These
four planes and their scores will be used as focal surfaces at
run time. We chose to use the maximizing function, that is,

),...,max(),...,(miimii ++ = σσσσλ . Other non-linear or linear

weighting function might provide better results. Figure 22
was created using 8 focal planes combined down to 4.

Figure 14: We can compute scores on many focal surfaces, and
then combine them to a smaller set of focal surfaces, so the run-
time algorithm will have less scores to compare.

Figure 15: Here is a visualization of the scores used on the front
focal plane for the picture in Figures 11 and 20. The closer to
white, the better the score σ, which means objects are likely to be
located near that plane.

Figure 16: Here is a visualization of the scores on the back focal
plane, analogous to Figure 15.

Selecting a Focal Surface through Auto-focus
Techniques

We often select focal planes by hand, allowing a user to select
the subject of the image. However, it is possible to determine
these focal planes algorithmically, much an auto-focus
camera. It is possible that by adapting these algorithms, we
could identify a minimal set of focal planes that would put the
most items in focus.

For a single plane, this would be analogous to using an
auto-focus camera [Pentland87]. To do auto-focusing, one
can create a series of images with an extremely narrow depth
of field, where each image would put the focal plane at a
different depth. This narrow depth of field can be
implemented by increasing the aperture radius so that a ray
from every camera is averaged to produce a single output ray.
The resulting images will have out-of-focus and in-focus
regions. The out-of-focus regions will have little high-

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14 σ15 σ16

λ(σ1,σ2,σ3,σ4) λ(σ5...σ8) λ(σ9...σ12) λ(σ13...σ16)

1Fσ
3Fσ

4Fσ
2Fσ

Dynamically Reparameterized Light Fields 8
MIT LCS Computer Graphics Group

frequency energy, where as the regions in focus will. Since
only structure very near the focal planes will be in focus, we
know that the in-focus regions identify regions where there is
structure. Thus, if we pass a high-pass filter over these
narrow depth of field images and then identify the regions
with high-frequency energy, we will find the regions in space
where structure exists. Then, we can use the plane (or set of
planes) which gives rise to the image with the most high-
frequency energy: this plane is our auto-focus plane.
Likewise, we could take the n-best planes for a multiple focal
plane rendering.

Objects with little high-frequencies, even when they are in
focus, such as flat regions with little texture, will not be
detected by this process. However, objects with little high-
frequency will look as good if they are out of focus as if they
are in focus. Whereas using computer vision techniques to
find depth from a set of images would have to further analyze
these ambiguous regions, we do not have to delve further since
several values will be good enough: we can simply take the
best one that we find.

Results
The two light field data sets shown in this picture were created
as follows. The tree data set, with 256 input images, was
rendered in Povray 3.1, each image at 320x240. The stuffed
animal data set was more complex to create. We attached an
Electrim EDC1000E CCD camera (654x496) with an 16mm
variable aperture lens to an X-Y motion platform from Arrick
Robotics (30”x30” displacement). Then, we took 256 pictures
on a (approximately) 16”x16” grid, which took approximately
30 minutes. To calibrate the camera, we first used a Faro
Arm, a submillimeter accurate contact digitizer, to measure
the 3-D spatial coordinates (x,y,z) of the centers of 24 large
circular calibration pattern on two perpendicular planes filling
the camera’s field of view. Then, using a picture of the
calibration pattern, we found the centroids (i,j) of these dots in
the images with MATLAB. We then fed the 24 5-tuples
(x,y,z,i,j) into the Tsai-Lenz camera calibration algorithm
[Tsai87] which reported focal length, CCD sensor element
aspect ratio, principle point, and extrinstic rotational
orientation. We ignored radial lens distortion, which was
reported as less than 1 pixel per 1000 pixels. Finally, we
resampled the raw 256 654x496 images down to 327x248
before using them as input to the renderer.

Internally, our light fields used no compression techniques
as presented in earlier papers. Our particular high frequency
filter looked for the mean energy in a sampled radiance
function that had been processed by a gradient magnitude
Sobel edge detection filter [Lim90]. The scores on the focal
surface were rendered at 920x690 and not interpolated. We
use bilinear interpolation between samples on the image
surfaces. When rendering with the variable apertures, we used
cone weighting to combine the rays from each camera.

Using our renderer, we can typically render images with
the four nearest cameras in about one second. In our code, we
have maintained a general interface that allows for flexibilty

and fast development. In the near future we plan to implement
a real time renderer that will optimize for speed.

Conclusions
Previous implementations have tried to solve focusing
problems by 1) using scenes that were roughly planar, 2) using
aperture filtering to blur the input data, or 3) using
approximate geometry. Unfortunately, most scenes can not be
confined to a single plane, aperture filtering can not be undone
or controlled at run time, and proxy surfaces can be hard to
obtain. We have presented a new parameterization that allows
run-time control of what should be in focus. In addition to
describing focus control through aperture size and a moving
focal surface, we have presented a strategy for using multiple
focal planes and methods to create them. This new
parameterization allows light fields to capture data sets with
depth, and helps bring us closer to truly photorealistic virtual
reality.

There is much future work to be done. We would like to
improve our scoring system for our multiple focal planes: we
need a method to differentiate between high frequencies in the
radiance function caused by occlusion and those caused by
empty space. In Figure 20, the errors surrounding the red bull
identify how these errors affect the final images. Also, we
would like an algorithm for optimally picking the n best focal
planes, perhaps using the presented auto-focus techniques.
The camera calibration step is somewhat tedious, and we
would like to self-calibrate using the light fields. This would
give us the optimal camera model for each light field, as
opposed to assuming the light field to works with a prior
camera calibration. Finally, we are working on methods to
speed up the renderer so that we can view these light fields in
a head-mount-display.

We would like to thank Hughes Research Labs, Intel
Corporation, and Microsoft Corporation for monetary,
equipment, and software donations. Also, thanks to Neil
Alexander for his "Alexander Bay" tree model, and to Charles
Lee for help in making our pictures and animations.

Figure 17: Using a single focal plane, only the red bull is in focus,
while the yellow fish and the monitor are out of focus.

Dynamically Reparameterized Light Fields 9
MIT LCS Computer Graphics Group

Figure 18: By moving the focal plane back in the scene, we can
make the fish in focus, while the red bull and the monitor are out
of focus.

Figure 19: Finally, the focal plane is at the back of the room,
making the monitor in focus, while the fish and red bull are
blurry.

Figure 20: By using two focal planes, we can make the bull and
the monitor in focus, while the regions in between are still out of
focus.

Figure 21: Using the standard light field parameterization, only
one fixed plane can be in focus. Using the smallest aperture
available, this would be the best picture we could create.

Figure 22: By using 4 focal planes (originally 8 focal planes with
scores compressed down to 4), we can clearly do better than the
image in Figure 21. Especially note the hills in the background
and the rock in the foreground.

References
[Bolles87] Bolles, R. C., H. H. Baker, and D. H.

Marimont, “Epipolar-Plane Image Analysis:
An Approach to Determining Structure from
Motion,” International Journal of
Computer Vision, Vol. 1, 1987.

[Camahort98] Camahort, E., A. Lerios, and D. Fussell,
“Uniformly Sampled Light Fields,”
Proceedings of the 9th EUROGRAPHICS
Workshop on Rendering, Vienna, Austria,
June/July 1998

Dynamically Reparameterized Light Fields 10
MIT LCS Computer Graphics Group

[Cook84] Cook, R.L., T. Porter, and L. Carpenter,
"Distributed Ray Tracing," Computer
Graphics (SIGGRAPH’84 Conference
Proceedings), July 1984, pp. 137-145.

[Gortler96] Gortler, S.J., R. Grzeszczuk, R. Szeliski, and
M.F. Cohen, “The Lumigraph,” Computer
Graphics (SIGGRAPH’96 Conference
Proceedings), August 1996, pp. 43-54.

[Gu96] Gu, X., S.J. Gortler, M.F. Cohen, "Polyhedral
Geometry and the Two-Plane
Parameterization," 7th Eurographics
Workshop on Rendering, 1996. (also,
http://hillbilly.deas.harvard.edu/~sjg/papers/tpp.ps)

[Haeberli94] Haeberli, Paul, “A Multifocus Method for
Controlling Depth of Field,”
http://www.sgi.com/grafica/depth/index.html,
October 1994.

[Levoy96] Levoy, M. and P. Hanrahan, “Light Field
Rendering,” Computer Graphics
(SIGGRAPH’96 Conference Proceedings),
August 1996, pp. 31-42.

[Lim90] Lim, J.S., Two-dimensional Signal and
Image Processing, Prentice Hall P T R, New
Jersey, 1990, pp 476 –483.

[Mitchell88] Mitchell, D.P. and A.N. Netravali,
“Reconstruction Filters in Computer
Graphics,” Computer Graphics
(SIGGRAPH ’88 Conference Proceedings),
August 1988, pp. 221-228

[Pentland87] Pentland, A.P., "A New Sense for Depth of
Field," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 9,
no. 4, July 1987, pp. 523-531.

[Tsai87] Tsai, R. Y., “A Versatile Camera Calibration
Technique for High-Accuracy 3D Machine
Vision Metrology Using Off-the-Shelf TV
Cameras and Lenses,” IEEE Journal of
Robotics and Automation, Vol. RA-3, No. 4,
August 1987.

