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ABSTRACT

This paperpresentsien non-intrusie measuremertechniquego
detectsharingof upstreantongestioranddiscover bottleneckouter
link speeds. Our techniquesare completelypassive and require
only arrival timesof pacletsandflow identifiers.Our techniquefor
detectingsharedcongestioris baseduponthe obseration thatan
aggr@atedarrival tracefrom flows thatsharea bottleneckhasvery
differentstatisticsrom thosethatdo not sharea bottleneck.In par
ticular the entrogy of the inter-arrival timesis muchlower for ag-
gregatedtraffic sharingabottleneck Additionally this paperidenti-
fiesmodestructurein theinter-arrival distribution thatenableglis-
covery of thelink bandwidthsof multiple upstreanrouters.

We validatethesddeaswith extensive experimentoonawide-scale
Internettestbedandwith multiple ratecontrollingrouters.We find
thatthemethodcandetectary bottlenecksharingamonghundreds
of flows. The classificationerrors decreaseaxponentiallyin the
numberof tracedpaclets. Further the methodcopeswell with
heavy cross-trafic andtheerrorsdecreasexponentiallyasthefrac-
tion of crosstraffic at the bottleneckdecreasesUnlike prior pro-
posals,our techniquedoesnot inject ary new probetraffic, does
not requireary sendercooperation,and works with ary type of
traffic (UDP, TCP, or multicast),andawide variety of queuingdis-
ciplines. The methodis simpleandfastenoughto be real-timefor
ratesbeyond 10,000pacletspersecond.

1. INTRODUCTION

In this report! we shaw thatthe passie collectionof paclet inter-

arrival timescanreveal substantiainformation aboutthe conges-
tion statealong upstreanmpaths. We addresgwo particularprob-
lems: single-flav bottleneckcapacitiesand multi-flow bottleneck
sharing.The necessaryneasurementsanbe collectedcompletely
at endpoints. The appealof endpointmeasurementss that they

require no additionalinfrastructureand are accessiblgo a large
populationof users.

End-to-endneasurementsanbeactive or passie. Active methods
injectnew traffic (e.g.,probes)nto the network to inducea certain
responsewhich is thenusedto infer a performancemetric while
passie methodsobsere traffic alreadypresent.Despitetheir use-
fulness,active methodshave somedravbacks.Probedncreasehe
load on the network by someadditionaltraffic which could be on
the orderof hundredof kilobytes per experiment[4, 10, 30, 23].
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Moreover, theactive traffic may perturbthenetwork, biastheensu-
ing results,andcomplicatethe analysig[26]. Our work focuseson
deducingasmuchaspossiblefrom passie measurementalone.

First,we devisemethodghatenableanendreceverto discoserthe
capacitiesof potentially multiple bottleneckstraversedby a flow
andtheir traversalorderfrom thearrival timesof thepacletsin the
flow. In particular we shav thatthedistribution of the pacletinter
arrival timesin aflow shavs afew commonpatternsyhichwe an-
alyzeandrelateto the bottlenecksalongthe path. Our resultscon-
firm thatthe commonpracticedor estimatingthe bottleneckband-
width usingthe minimuminter-arrivals of two consecutie paclets
in aflow [4, 10, 30] or the global modein the distribution of its
pacletinter-arrivals[23] canmale significanterrors.Nonetheless,
we shav how to adjustthe useof the inter-arrival PDF so thatthe
minimum capacityalongthe pathstill canbe extracted. Sincethis
methodrelies solely on processingf network-level traceswhich
are easily producibleat ary recever, it provides a general,non-
intrusive, andresourceefficient approacho learninginternetpath
characteristics.

Secondwe develop a novel passie techniguethat exploits the in-
formationembeddedn paclet inter-arrival distributionsto detect
flows thatsharethe samebottleneck.

Detectingsharedottlenecksisingend-to-endneasurements use-
ful for sharingcongestioninformation[12, 18], constructingthe
topology[28], and monitoring and dehugging the network. Per
forming this detectionusinga passie approachs highly desirable
becausét is resourceefficient(i.e., it doesnotgeneratgrobetraf-
fic) andis extremelygeneral(i.e., it makes no assumptiongbout
thetransportprotocolsor the queuingdiscipline).

Our approaclrelieson the obsenation that by clocking (i.e., pac-
ing) the paclets,abottleneckimposessomestructureon the prob-
ability distribution of theinter-arrival timesof pacletsthattraverse
it. This structureis lost when paclets that do not sharea bottle-
neckget mixed together The lossof structureshavs up asmore
randomnesén the inter-arrivals of the aggr@ate. Using entrogy

asourmeasuref randomnesgthelack of structure)we developa
passietechniquehatenablesinendreceveror apassie obserer
to detectflows that sharebottlenecksy minimizing the Réryi en-
tropy of the pacletinter-arrivals?

The papershaws that the developedpassie techniquecan detect
ary bottlenecksharingamonghundredsof flows andis efficient
andpracticalfor useoverthelnternet.In particular usingthe RON

2Reryi entropy is ageneralizedorm of Shannorentropy. Theex-
actdefinitionis in Section3.2



testbed[5], we shawv that our bottleneckdetectionmethodgives
correctresultsin extensie Internetexperimentsrun betweenl7
differentinternetsites.

Themethodrequiresarelatively smallnumbersf pacletsperflow.
In all caseswe find thaterrorsdecreasexponentiallyin the num-
ber of paclets. The exact numberof perflow paclets variesbe-
tweenl0and100pacletsdependingnthenumberof bottlenecks,
classifiedlows, andthetypeof errorsthatmatter TCPconnections
in thelnternetareoftenshort-lived. However, dependingntheap-
plication, the sourcefor a “flow” may be definedasan aggreate.
For example,if the focusis wide-areacongestioranalysis,it may
beacceptabléo definea sourceto betheentireLAN of thesender

Further the techniqueis robust in the presenceof heary cross-
traffic, thoughmore paclets may be required. The methodcanbe
appliedin real-time.On a commodityPC our implementatiorcan
classifysampleswith thousand®f pacletsin lessthanasecond.

The structureof this paperis asfollows. In Section2 we describe
the propertiesof inter-arrival distributionsfor singleflows anddis-

cussthe congestiorand bandwidthimplications. In Section3 we

exhibit the propertiesof multi-flow inter-arrival distributions and

describeour bottleneckdetectionalgorithm. In Section4 we eval-

uatethis algorithmin realisticexperimentalernvironments.Section
5 discussegossiblefuture avenuesandSection6 concludes.

2. INTERARRIV AL TIME STATISTICS

In this section,we studythe time betweenarrivals of consecutie
pacletsin aTCPflow andplot its probability distribution function
(PDF). Our objective is to relatethe characteristicof the inter-
arrival PDF to the congestiorcharacteristicef the pathtraversed
by the flow. In particular we shav how to interpretthe PDF to
discover the capacitieof potentiallytwo traversedbottlenecksto
discerntheir relative location,to assessheir degreeof congestion,
andto probethedistribution of traffic burstsizes.

Beforeproceedingo analyzethe PDF of the paclet inter-arrivals,
we clarify threeterms.We use“Minimum capacitylink” to referto
thelink thathasthe minimum absolutecapacityalonga path. We
use“Bottlened” for alink/routerwherea flow experiencesignif-
icantqueuing.A bottleneckis a congestedink; it is notnecessar
ily theminimumcapacitylink alonga path. Finally, the “Nominal
TransmissioTime(NTT)” of alink is thetimeit takesto transmita
1500bytepaclet overthelink. For example thenominaltransmis-
siontime of aT1 is around8 msecwhile thenominaltransmission
timeof al0MbpsEtherneis 1.2msec.(SeeTablel for areference
ontheNTT of variouslink technologies.)

2.1 MeasurementMethodology

We conductedour measurementever the RON testbed[5]. Ta-
ble 1 providesa completdist of the RON nodegheirlocationsand
theiraccessdinks. Notethe heterogeneityn the measuremerervi-
ronmentwhich waschoserto reflectthe heterogeneitpf Internet
paths. Five machinesare locatedat US universities,threeare at
Europearor AsianUniversities threearebroadbandiomelnternet
hostsconnectedy Cableor DSL, oneis locatedat a US ISP and
five are at variousUS corporations. The length of the measured
pathsis betweenl1 and30 hopsandthe minimum capacityalong
apathvariesbetweerD.384Mbpsand100Mbps.

Each experimentinvolved a 5 minute TCP download from one

Name Description Accesslink BW NTT
MS ResidenceCA DSL 0.384 | 31
Sightpath| .COMin MA T1 1.544 | 8
Mazu .COMin MA T1 1.544 | 8
NC ResidenceNC | CableModem | 2 31
M1MA ResidenceMA | CableModem | 10 1.2
Aros ISPin UT FractionalT3 | 12 1.0
CClI .COMinUT Ethernet 100 12
PDI .COMin CA Ethernet 3..100| N/A
CMU Pittskurg, PA Ethernet 10 1.2
Cornell Ithaca,NY Ethernet 100 A2
MIT CambridgeMA | Ethernet 100 12
NYU ManhattanNY | Ethernet 100 A2
ACIRI ACIRI, CA Ethernet 10 1.2
Utah U. of Utah,SLC | Ethernet 100 12
NL Vrije U,Holland | Ethernet 100 12
Lulea Sweden Ethernet 100 12
Korea Korea Ethernet 100 A2

Table1: The RON testbed.Bandwidths arein Mbps. NTTs are
in msec.The top block areordinary Inter nethosts. The bottom
block have additional Inter net2 connectivity.

RON nodeto anothe? The RON machinesun FreeBSD4.4 and
the TCPstackusesanMTU of 1500bytes.Thereceverrant cp-
dunp [2] to log microsecongrecisionarrival timesof the paclets
at the Ethernetcard. We computedthe time differencebetween
successie arrivals andhistogrammedhemto plot the PDF of the
pacletinter-arrival in the flow. We repeatedheseexperimentsto
cover periodsof congestior{e.g.,peakhourson weekdaysandpe-
riods of low traffic (e.g.,weelends). In all, we conductedover a
hundredexperimentsover severalmonths.

Below we presenta summaryresultof our findings. The appendix
presentsnoregraphgthatshav thepersistencef ourfindingsover
various Internet pathsthat differ in their link technologiespath
length, andwhetherthe end nodesare at universitiesor corpora-
tions.

2.2 PDFofPacketinter-Arri valin aTCP Flow

A few commonpatternsappeaiin the inter-arrival PDFsfor TCP
flows. Thesepatternsareillustratedin Figurel. In particular note
the multiple spikesof variousheights widths, locations,andspac-
ings. ThePDFmight shaw a singlespike suchasFigurela,aspike
bumpsuchasFigurelb, a spike train suchasFigurelc, or atrain
of spike bumpssuchasFigure 1d. The roughly equalspacingbe-
tweenthe spikesin a spike train andor a spike bumpis the spike
gap Theroughly equalspacingbetweenthe bumpsin atrain of
spike bumpsandis thebumpgap In thefollowing subsectionsye
shaw how to interpretthesePDFpatternsn termsof thecongestion
characteristicalongthe paththe pacletstook.

Below, we interpretthe patternsn Figurel andshav how aproper
understandingf the PDF allows oneto discover bottlenecklink
bandwidthsor multiple congestedouters.

Single Spike: In this case the flow traversesa bottleneckwith no
substantiatrosstraffic. As such,mostof the pacletsarrive back-
to-backat the recever. The spike in the PDF corresponddo the

3While our experimentsuse TCP, thesemethodsonly rely upon
large,relatively constansizepaclet transmissions.
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Figure 1: Common patterns in the PDF of inter-arri val times
in asingle TCP flow. (a): a singlespike; (b): a spike bump; (c):
aspiketrain; (d): atrain of spike bumps.

NTT of thebottleneck This situationis depictedn Figurelawhere
thebottleneckisaT1.

Spike Bump: In this case the flow traversesalow bandwidthbot-
tleneckfollowed by a high bandwidthbottleneck. The two bot-
tlenecksmight be separatedby a numberof uncongestecops.
We will shav thatthe spike bump is centeredat the NTT of the
low bandwidthupstreambottleneck.Further the gapbetweerthe
spikesis the NTT of the high bandwidthdownstreambottleneck.
Thus,a spike bump carriesinformationabouttwo traversedbottle-
necks.

We explain the spike bumpusingthe examplein Figurelb. In this

experimentthe flow traversesa a T1 bottleneck(the accesdink

at Sightpath) thena lightly congested 2 Mbpsfractional T3 (the
accesdink at Aros). The paclets leave the upstreambottleneck
spacedby its NTT (or someinteger multiple of the NTT). In the
experimentin Figure 1b, mostof the pacletsleft the upstreamr1

with an inter-arrival of 8 msec. Whenary of thesepaclets hits

the congestedlavnstreamhigh bandwidthbottleneck the paclet

is queued.

Therearethen 8 msecuntil our next paclet arrives at the down-
streambottleneck. During this interval a numberof crosstraffic
pacletsarrivesandis queuecbeforeour paclet. After 8 msec,our
secondpaclet arrives at the higher bandwidthqueue. Thus, the
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Figure 2: (a): The cumulative distrib ution of packet sizesfor
crosstraffic at a congestedOC3 link. (b): The probability dis-
trib ution of crosstraffic burst sizesfor the sametrace above.

Notice the spikesat multiples of 1500bytes.

burstof crosstraffic betweerary pair of pacletsin thetracedflow
dependwon the numberof crosstraffic pacletsarriving in 8 msec
atthedownstreanbottleneck Whenall thesebytesaretransmitted
ontheoutputlink, our pacletshave now beenre-spacedThetime
betweerthe arrival of a pair of pacletsfrom thetracedflow atthe
recever is the time taken to transmitthe first paclet in the traced
pair andthe potentialcrosstraffic burstat the dovnstreambottle-
neck. Dependingon the size of the crosstraffic burst, this time is
sometimedargerthan8 msecandsometimesmaller Thatis why
the PDF shavs abump centeredat 8 msec.

Next, we considerwhy the bump is composedf equally spaced
spikes. Closeinspectionof mary collectedPDFs(seethe appendix
for more)revealsthatthe spikesarealwaysseparatedy the NTT
of the high bandwidthbottleneck. Thus, the mostcommoncase
wasalwaysfor a crosstraffic burstatthe downstreanbottlenecko
be a multiple of 1500bytes. This is someavhat surprising. Though
the tracedTCP download useda 1500 byte MTU, the crosstraf-
fic paclets have varioussizesandreflectthe variability of paclet
sizesin the Internet.(The appendixshavs similar graphsin which
the downstreambottlenecksarethe accesdinks at big universities
wherethe crosstraffic is fairly representate of crosstraffic in the
Internet.) It thereforeseemsossiblethatthoughcrosstraffic has
variouspaclet sizes themostcommoncrosstraffic burstsaremul-
tiple of 1500bytes.

To confirmthatthisis notapeculiarityof the RON sites,we studied
the distribution of the crosstraffic burstsizefrom tracescollected
by NLANR [1] at variousmonitoredlinks* Sincewe areinter-
estedin burstsof crosstraffic at a bottleneck,we chosetracesin
which the averagetraffic rateexceedswo thirds of the capacityof

4Tracefile is from October2001 and containsover 60,000flows.
It is at http://pma.nlannet/Traces/Taces/daily/20011005/COS-
1002219707-1.tsh.gz



themonitoredlink. Figure2a,shavs the paclet sizeaccumulatre
distributionfor atypical trace.Thedistribution looks similar to the
onereportecby CAIDA [11]. In particular it shavs thatover 50%
of the pacletsarearound40 bytes;10% of the pacletsareaboutx
560bytes;and20%of the pacletsarearound1500bytes.

Figure 2b shaws the crosstraffic burst distribution for the same
trace. To computethe burstsize,we randomlypicked a TCP flow
andrecordedhe sizeof all traffic separatingeachpair of its pack-
ets. This is thereforepreciselythe traffic which, if subsequently
sentthrougha bottleneckink, would be clocked andcorvertedto
inter-arrival times. We repeatedhe procedureover a large num-
ber of active TCP flows andplottedthe PDF of theresultingcross
traffic bursts. The PDF revealsthe existenceof a strongmodeat
40 bytesandstrongmodesatinteger multiplesof 1500bytes. The
first modeat40 byteswould make thetracedpacletslook asif they
arrived back-to-back.The othermodeswould createinter-arrivals
spacedy oneand2 NTTs?

Spike Train: This caseis similar to the single spike caseexcept
that the traversedbottleneckis sharedwith a substantiaamount
of crosstraffic. Consequentlyit becomesnorelikely thata burst
of crosstraffic intervenesbetweenary pair of the tracedpaclets.
Similarly to the spike bump case the gapbetweerthe spikesis the
NTT of thebottleneckasillustratedin Figure2c. Notethoughthat
a spike train neednot alwayshave a decreasingpike length. In a
few of our experimentdt wasmorecommonfor thetracedpaclets
to beseparatetby a paclet of crosstraffic thanto be back-to-back.

A Train of Bumps: In this casetheflow first traversesalow band-
width upstreanbottlenecksharedvith asubstantiahmountof cross
traffic. As aresultthepacletinter-arrival atthe outputof this bot-

tleneckis a decreasingpike train asin Figurelb. Later, theflow

traversesalightly congestedhigh bandwidthbottleneck.Thequeu-
ing atthislatterbottleneckransformsevery spike in thespike train

into a spike bump creatinga train of bumps. The gapbetweerthe

spikesin asinglebumpis athe NTT of the high bandwidthdown-

streambottleneckwhile the gapbetweerthe bumpsis the NTT of

thelow bandwidthupstreanbottleneck For example,in Figure3d,

the upstreanctongestedink is a T1 andthe down streamlink is a

12 Mbpsfractional T3. Pacletsleave the congested'1 spacedyy

multiplesof 8 msec(i.e., thecrosstraffic burstsizeis either0 bytes
or 1500bytesor 3000bytes).However, whenthey reachthedown-

streamlink eachspike is transformednto a spike bumpwith agap

of 1 msec(theNTT of a12 Mbpslink).

2.3 Capacity Inference

The Internetliterature proposesa few approacheso discovering

the minimum capacityalonga path. The mostcommonapproach
is to usethe minimum inter-arrival of back-to-backpaclets [10,

21,4, 27]. Otherproposalsuggesthe mostcommoninter-arrival

(i.e., the global modein the distribution of paclet inter-arrivals).

[23]. Below, we shav thatbothapproachemaygive wrongresults
even in situationswherethe bottleneckbandwidthcan be easily
determinedrom a simpleexaminationof theinter-arrival PDF

Figure 3 (Mazu — Aros) shaws the inter-arrival PDF of a flow

5A Spike bump neednot be symmetric;Figure11in the appendix
shavs a non-symmetricspike bump. The non symmetrythereis
causedby severe congestionand high multiplexing at the down-
streamhigh bandwidthbottleneck. Hence,it was more likely to
spread pair of tracedpacletsthanto squeeze¢hem.
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Figure 3: The NTT of the minimum capacity link is the gap
betweenthe bumps. It shaws the link is a T1. Inferring the
minimum capacitylink fromthe minimum inter-arri val time or
the global mode of the PDF would have yielded wrongresults.

Receiver/
Observer

Figure 4: A simple clustering example; Sources S1 and S2
sharethe bottleneck B1, SourcesS3 and S4 and share the bot-
tleneck B2. The obsewer is co-locatedwith the recever. It
recevesall flows over the samelink yetwantsto cluster S1 and
S2 togetherand S3 and S4 together.

wherethe senderis behinda T1 andthe recever is behinda 12
Mbps fractional T3. The minimum capacityalongthe pathis the
T1link with anNTT of 8 msec.Howevertheminimuminter-arrival
is 1.7 msec.As such,a minimum capacityestimatorbasedon us-
ing the minimum inter-arrival would mistalenly concludethatthe
bottleneckbandwidthin 7 Mbps,muchmorethana T1 bandwidth.

The samefigure shawvs the global modeof the inter-arrival PDF
doesnotleada goodestimatorof the minimum capacityalongthe
path.In particular theglobalmodein thistracehappenst16 msec,
which would yield a 0.77 Mbps minimum capacitylink. However,

onecanseefrom the PDF thatthe minimum capacitylink isa T1

with an NTT of 8 msec. The 16 msecis the result of mary of

thetracedpacletsbeingseparatedby exactly one 1500 byte cross
traffic paclet.

Thus,ouranalysisof the pastfew sectionsshavs how to strengthen
previously proposedechniquesy computingthe bump andspike
gapsandrelatingthemto thetraversedbottlenecks.

3. DETECTING SHARED BOTTLENECKS

In the previous section we have developedanunderstandingf the
statisticsof pacletinter-arrivalsin the Internet.In this section,we
look at applyingthis understandingo multiple flows with the goal
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Figure 5: Packets inter-arri vals in various clusters of flows in

Figure 4. The thick lines representpackets. They are numbered

accordingto the sender The dotted lines emphasizethe alignment in time. The x-axisis time. (a) and (b) are the outputs of B1 and
B2 respectvely, and the correct clusters. (c) is the packet inter-arri vals as seenby the obsewer, which correspondsto putting all
sourcesin the samecluster. (d) is an exampleof an incorr ectcluster, namely {52,53}.

of detectingbottlenecksharing. Particularly, we demonstratéhat
a passie obserer watchingthe arrivals of paclets at somelink

can usethe information embeddedn the paclet inter-arrivals to

clustertheflows into groupssuchthatall flows in onegroupshare
acommonbottleneck.

Before describingour approachto passie bottleneckdetection,
we notethat detectingsharedbottleneckss a clusteringproblem,
wherethe clusteredobjectsareflows. A correctclusteringgroups
flows that sharea bottleneckinto the sameclusterand produces
one clusterper bottleneck. An incorrectclusteringfails to group
flows that sharethe bottleneckor groupsflows that do not share
a bottleneckinto the samecluster We alsonotethat for the pur
poseof detectingbottlenecksharing,a“flow” is astreamof traced
IP paclets with the samesourceidentifier The sourceidentifier
is definedby the userto fit the applicationof interest. It is usu-
ally definedasthe sourcelP-addresén the paclets,becauséraced
pacletswith the samesendeisharethe upstreanpartof their path.
However, whenNAT boxes[16] aresuspectedhe usermaydefine
the sourceidentifierto bethe sourcelP-addressndport pair.

Finally, we notethatwhena flow traversesmorethan one bottle-
neck, bottlenecksharingis resoled basedon the mostdominant
bottleneckalong the path. For example,considertwo flows that
have the samerecever. Eachof theseflows experiencessevere
queuingatits senderaccessink. However, occasionallybothflows
sharea transientqueueat therecever accesdink. In this casethe
flows do not sharethe samepoint of congestiorandthe clustering
technigueshouldnot groupthemtogether

3.1 Basicldea

We usethesimpletopologyin Figure4 to describeheintuition un-
derlyingourapproacho discriminatingthesharingof abottleneck.
In this scenariofour sourcessendto the samerecever. S1 andS2
arebehindthe samebottleneckB1, andtheir total sendingrateis
largerthanthe capacityof B1. S3 andS4 sharethe bottleneckB2
andtheirtotal rateexceedsdts capacity The passie obsereris co-
locatedwith therecever. It recevespacletsfrom all four sources
onthesamelink yetwantsto grouptogetherthe sourceghatshare
thesamebottleneck.

Figure5 shaws the paclets’ inter-arrivals at differentpointsin our
simpletopology FiguressaandSbshaw theinter-arrival of paclets
attheoutputof B1 and B2 respectiely. Furthermorethey repre-
sentthe inter-arrivals of pacletsin the correctclusters({51,52}

and{S3,54}). Figure5c shaws the paclet inter-arrivalsat there-
ceier. It is the overlay of the outputof B1 and B2. Notethat5c
doesnot shav the constaninter-arrival obseredin 5aand5h. If

the recever succeedsén clusteringthe flows that sharethe bottle-
neck,it endsup with two clustersin which the paclet inter-arrival
is constantIf therecever mistalenly groupsthe flows S2 and.S3

togethertheresultingincorrectcluster{ 52,53} exhibits moreran-
dompacletinter-arrivalsasillustratedin 5d.

Thus,theinter-arrival of interleaved pacletsfrom flows thatdo not
sharea bottleneckis morerandomthanthe inter-arrival of inter-
leaved pacletsfrom flows thatdo sharea bottleneck.We canfur-
therconfirmthis intuition via the following experiment.We usean
MIT machineto downloadsimultaneousl file from bothMS and
Sightpath.Theresultingtwo TCP flows experiencebottlenecksat
the sourceaccesdinks, namelya T1 anda 0.38 Mbps DSL (very
little bandwidthcomparedo the 100 Mbps Ethernetto which the
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Figure 6: The PDF of the inter-arri vals over the aggregated
trace of unassociatedflows. The heavy near-uniform distrib u-
tion before the first peak and betweenthe peaksis exactly the
sort of smoothvalue-diversity measured by entropy.

MIT machineis connected).Thus, they do not sharea common
bottleneck. We log the arrival of the pacletsat MIT andplot the
inter-arrival PDF of the aggr@atetrace. Figure 6 shavs that the
PDF of this incorrectclusterexhibits an areaof almostuniform
distribution beforethe first mode. Considerthat sinceall of the
inter-arrival PDF’s of Section2 were single flows, they de facto
sharedwhatever bottleneckshey passedhrough. Comparingthis
new aggreyatetracePDF againsthe PDFsin Figurel we seethat
theinter-arrival PDF’s for incorrectlyclusteredflows hassubstan-
tially morerandomnessA quantitatve measuref thisrandomness
shouldthereforediscriminatebetweercombinationf flows shar
ing bottlenecksandcombinationsot sharingbottlenecks.

3.2 GeneralizedEntropy

We startwith the definition of Shannorentropy, atraditionalmea-
sureof theuncertainty(i.e.,randomnessgj arandonvariable.The
Shannorentrofy H (z) of a discreterandomvariablez thattakes
onthevaluewv; with probabilityp; is definedas:

H(z) = Z pi log, pi (1)

In [20], the authorsproposeminimizing the Shannorentropy as
a meansfor discriminatingbetweenbottlenecksharingand non-
sharingflows. They provide simulationresultsthat shav the va-
lidity of theapproachn ervironmentswith low to moderatecross-
traffic. We foundthis measureo do areasonablyoodjob of dis-
criminating sharedfrom non-sharedlow aggr@ations. However,

the spiky natureof the inter-arrival distributionscausegroblems.
Even for correctflow combinationsmary newv small probability
spikes can arisein the PDF asit simply fills out with more data
pointsfrom the larger, combinedtrace. The Shannorentrogy can
increasen this circumstanceeventhoughthe smallspikesareat a
placethatmakesthema continuationof existing PDF structure.

To overcomethis difficulty we proposethe useof Reryi entropy
[29], ageneralizatiorof the Shannorentropy, definedas:

1
Kq(z) = =g log, ZP? (2

The parameter; specifiesthe order of the Reryi entropy. In the
limit asq — 1 theReryi entropy corvergesto the Shannorentropy

(i.e.,limg_; Kq(z) = H(z)). Reryi entrofy sharesnary propek
tieswith Shannorentropy. Both entropiesachiere their maximum
for uniform distributions. Neitherdependsuponthe value where
the probability occurs.Also, for bothentropiesthe entropy of two
independensubsetf a datasetis the sumof the individual en-
tropies.

Theeffectof the Reryi entropy is to weighthigh probabilityvalues
morethanthe problematidow probability incidentalnoisecaused
by small sampleeffects. This is becauseaising probabilitieson

(0,1) to high powers(i.e., large q) spreadgshemout, lifting peaks
and depressinginy values. On the other hand, one should not

choosevery large ¢ sincethenonly the peakswould matter We

choseq by assessinghe end-to-enctlassificatiornperformancdor

a few experiments.We foundof ¢ = 4 andq = 5 to yield good
results.

3.3 Practical Issues

The simple scenariosn Figure 4 and Figure5 are useful for ex-
plainingtheintuition underlyingpassie detectiorof sharedottle-
necksusing entrofy minimization, but they do not reveal the full
compleity of the problem. In this section,we discusshe various
complicationghatarisein practice.Nonethelessve shaw thatthe
mainideastill holds;namely thata bottleneckmposesdetectable
structureontheinter-arrivals of pacletsthattraverseit. This struc-
tureis lostwhenthepacletsgetmixedwith otherpacletsthathave
not crossedhe samebottleneck.

A numberof issuescould potentially confoundthe passie detec-
tion of sharedottlenecksvith entrofy metrics.First, mary effects

addrandomnesso the PDF of the inter-arrivals in a correctclus-

ter, e.g. the dynamicsof TCP congestioncontrol. For example,
whena relatively smallnumberof TCPssharea Drop-Tail bottle-

neck, the bottlenecklink might cycle betweenperiodsof severe

congestiorwith large numberof dropsfollowed by periodsof un-

derutilization. During the periodsof underutilization,paclets do

not leave the bottleneckequallyspaced However, theseperiodsof

underutilizationareshortor absentvhenthe numberof competing
flows is large. More importantly the durationof suchperiodsat a

bottleneckis relatively shortcomparedo the durationof the peri-

odsduringwhich the bottleneckclocksthe paclets. Consequently
the structureimposedon the paclet arrival timesby the bottleneck
clocking shoulddominateary randomnestroducedby TCP dy-

namics.Thisis supportedy our empiricalfindings.

A secondreasonfor randomnesén the inter-arrival of pacletsin
a correctclusteris the factthat routersdovnstreamfrom a bottle-
neck might build transientqueueswithout being congested. For
lower capacityrouterswith very occasionafjueueghe numberof
pacletsandinter-arrivals affectedis small (sincetheseroutersare
by definitionnotthebottleneck) For highercapacityrouters single
spike structuremay be transformednto a spike bump (or a spike
train may be transformedinto a train of bumps), but the overall
entrofy remainsquitelow comparedo aggreationsof unclocled
flows (seeFigure6).

Anotherissuethat complicategpassie detectionof sharedbottle-
necksis that mostof the traffic at the outputof a bottleneckmay
endup beingunobseredby therecever. For example,in Figure4,
if thepacletssentby S1 donotcrossthelink monitoredby the ob-
senerthenthecorrectclusteringis {{52}, {S3 S4}}. Inthiscase,
thoughthecluster{ 52} doesnotexhibit aconstantnter-arrival, the



obserer is likely to discover the correctclustering. In particular
althaughthe cluster{.S2} hashigh entropy, ary attemptto put.S2

in thesameclusterwith S3 or S4 (or to put.S3 and.S4 in different
clustersjslikely to furtherincreaséheentroyy of theclustering.In

generalgcross-trdfic playstherole of noiseonthesignalof interest.
As moreof the outputtraffic at bottlenecksbecomesross-tréfic,

the informationembeddedn the inter-arrival PDF becomegnore
immersedn noise.In Section4.2,we investigatehe robustnesof

thealgorithmagainstheary cross-trafic.

Anotherpotentialobstaclecomesfrom the factthat pacletsdo not
have thesamdength;consequentlthetime to transmitonepaclet
over the bottleneckis not constant.In practice thisis notanissue.
To seewhy, recallthatthe distribution of pacletsinter-arrivalsin

the single TCP flows of Section2 shaved a considerableamount
of structuredespitethe factthat cross-trafic paclets have various
sizes.

3.4 lIterati ve Passve Techniquefor Detecting
Shared Bottlenecks

To develop a clusteringtechniquebasedon entrofy-minimization,
two designissueamustberesoled.

Thefirst issueis choosingthe function that shouldbe minimized.
Equation2 shavs how to computethe Réryi entrofy of the inter-
arrivals of pacletsin a cluster However, it doesnotindicatehow
to combinethe entropiesf the variousclustersinto a quantitythat
we canminimize. We call the quantitywe wantto minimize the
‘cost function’, which we defineasfollows:

N
Cost = Z ne Kq(pe) (3

c=1

wheren, is the numberof pacletsin clustere, K, is the Réeryi
entrogy of p. of theinter-arrivals of the aggr@ateflows in ¢, and
N is thenumberof clusters.

Weighting the entrogy by the numberof pacletsin the clusteris
importantbecausét preventsthe clusteringtechniquefrom reduc-
ing the costby collapsingall of the flows into the samecluster
For example,theremight be two correctclusterseachhaving an
entrofy of 2 hits. The entropy resultingfrom combingall flows
togethercouldbe 3 bits. Although,this latterentrofy is largerthan
the entroy of ary of the correctclusters,without the weighting
factorthealgorithmcanreducethe entrogy by puttingall the flows
in the samecluster which would producean incorrectoutcome.
In general,a statisticalunderstandingf the paclet-weighting of
entrofy in a global costderives from the subsampleadditiity of
both ShannorandReryi entrogy. Thatis, the entropy of two inde-
pendensubsetof a datasetis the sumof theindividual entropies.
Thustheentropy of awholeaggregatedsampleof pacletsis simply
the entrogy of the parentdistribution multiplied by the numberof
paclets. This notionalsomakesit meaningfulto sumtheentropies

of eachclusterto definethetotal entrogy of the entirearrangement.

The secondssueis the computationatompleity of the optimiza-
tion problem. The searchspaceis exponentialin the numberof
flows. In particulay thereare C¥' /C'! waysto group F flows into
C clusters[15]. Whenthe numberof bottleneckss unknavn the
searchspacds evenlarger A bruteforcesearchs infeasiblefor all
but a small numberof flows andsimplecandidategopologies.The
optimizationsurfaceis also quite rough. E.g, changingthe clus-
ter of a flow of n pacletscanchangeup to 2n inter-arrival times

in bothits old andnew clusters.Simplerdistance-basedustering
problemsarealreadyNP-completecomplexity [17, 7].

To reducethe computationatompleity, we useaniterative proce-
durewhich startswith aninitial randomclusteringanditeratesby

moving asourcefrom oneclusterto anothetto obtainanincremen-
tal reductionin the Réryi entropy. Despitethatthistechniqués not
guaranteedo find the global minimum, our empiricalresultsshav

thatit almostalwaysyieldsthe correctclusteringwhichis afterall

theendgoal.

Theoptimizationstratey is asfollows:
1. Startwith eachflow in aclusterby itself.
2. Pick asourceS; in round-robinfashion.
3. Try maoving S; fromits clusterto every othercluster
4. Acceptthemove thatmostreduceghetotal cost.
5. Repeafrom step2 aslong asprogressanbemade.

Finally, afew importantpointsareworth noting. First, our cluster
ing techniqueis designedso that the errorsdecreasasthe num-
ber of flows increases.In particular it is conceptuallypossible
to clusterthe flows that sharethe samebottleneckbasedon some
similarity metricdefinedover a pair of sourcesinter-arrival PDFs.
However, clusteringbasedon similarity would causethe errorsto
accumulateas the numberof flows increases.In contrast,since
our algorithmcomputeghe entrogy of entireclusters(ratherthan
flows), the moresourcegherearethe morepacletswe getandthe
easielit is to identify the structureresultingfrom bottleneckclock-
ing. Having the errordecreasewith the numberof flows is anim-
portantfeaturegiven thatthe compleity of the problemincreases
with the numberof flows. Furthermoreclusteringbasedon sim-
ilarity may not distinguishbetweentwo differentbottleneckshat
have the samebandwidth. For example, It may not differentiate
betweentwo flows that sharethe sameT1 link andtwo flows that
crossdifferentT1 links.

A secondadwantageof the entrofy-basedtechniqueis its gener
ality. In particular the approachdoesnot make ary assumptions
aboutthe bandwidthof the bottlenecksnor abouttheir queuing
disciplines. It works whenthe different bottleneckshave exactly
the samecapacitiest alsoworkswith Drop-Tail, RED, andother
work-conservingjueuedisciplines.

4. CLUSTERING EVALUATION

We usedextensve Internetmeasurement® evaluatethe effective-
nessof the passie techniquesn detectingflows that crossedhe
samebottleneck. Although simulation-based@valuationis an op-
tion it doesnot reflectthe variability encounteredn the Internet.
By evaluatingthe techniquen the environmentit is meantto work
in, we ensurethatit workswith thedifferentlink technologiesteal
crosstraffic patternsgxisting routerpolicies,andvariousTCPim-
plementations.

4.1 MeasurementMethodology

The basicproblemin evaluatingary bottlenecksharingdetection
techniqueon real Internettracesis to verify thatthe outputof the
algorithmmatchesottlenecksharingin the network. In particular
we mustdesignexperimentsn whichwe areconfidenaboutwhich
flows sharebottlenecksWe addresshis problemwith two different
approachethatcreatethreeclasseof sharingtopologies.

In thefirst approachwe exploit our knovledgeof the topologyof



the RON network to ensurethatthe flows sharecongestiorat spe-
cific bottlenecks.In particular we know the capacitiesof access
links connectingcertainRON nodesto the Internet. Thus,we can
createsxperimentsn whichthesenderareconnectedo 100Mbps
Ethernetsaandthereceveris behindaT1 link. By inspectingaggre-
gatethroughputachieredby sendersve canverify thattheflowsall
facedcongestiorat the T1 link connectingthe recever siteto the
broadernternet.

Similarly, we cancreateexperimentsn which eachof the senders
is behindalow bandwidthlink suchasaT1,aDSL, or acablemo-
dem, while therecever is connectedo a 100 Mbps Ethernetand
locatedat a big universitywith goodconnectiity. By checkingthe
throughpubf eachsendemagainsthecapacityof its accesdink, we
canensurethat eachsenderhasfacedcongestiorocally. We can
furtherconfirmlocal outboundcongestiorby checkingthatthe ag-
gregatethroughputof the senderss significantlylessthanthetyp-
ical bandwidthshareavailable on the recever accesdinks. Thus,
ourknowledgeof thetopologyandconnectiity of theRON testbed
provide us with a non-intrusve way to constructexperimentsthat
have reasonablyinambiguousutcomes.

Our seconcapproactor creatingexperimentswith controlledout-
comesrelies on the useof the Click router[22]. Click wasde-
signedto allow flexible reconfigurationpacletre-writing, andtraf-
fic shaping.In particular we uselP masqueradingndbandwidth
throttling to very closely emulatethe behaior of a pair of real
routerswith diminishedcapacity The IP masqueradinge-writes
paclets so that TCP connectionsan be transparentlyestablished
betweerarbitraryRON hostseventhoughtheroutesof pacletsare
pinnedto go throughthe Click routersunderour control. This ar
rangemenensuresinambiguoudottlenecksharing.

Using the methodologydescribedabove, we conductechundreds
differentinternetexperiments Eachoneinvolvesanumberof TCP
sendersstreamingdatato the samerecever. Using tcpdump,we
recordarrival timesattherecever andfeedthelog filesto our clus-
teringprogram.

4.2 Clustering Accuracy

Thereis no standardnethodfor evaluatingtheaccurag of cluster
ing algorithms[15]. To evaluateour technique we usethreeerror
metricsthatwe judgeusefulto the specificapplicationof the bot-
tleneckdetectiontechnique.

Thefirst metricis the probability of any error, which providesthe
mostconserative view of the accurag. For ary particularbottle-
necksharingscenariothe probability of ary erroris computedby
clusteringmultiple differentdatasetsandtaking the percentag®f

outcomeghatdo notcompletelymatchthecorrectanswer Thedif-

ficulty with usingthis metricalonearisesfrom thefactthatnotall

clusteringerrorsareequialent. For example,assumehatwe have
50flowsthatsharehesamebottleneck A clusteringtechniquethat
puts49 flows in the sameclusterandoneflow in a differentcluster
is definitely betterthanatechniquethat putseachof thefifty flows
in its own cluster Yet, both outputswould be treatedthe sameif

we usethe probability of arny errorasour metric of accurag.

The secondmetricis the probability of creatingincorrectclusters
wheresomeof the flows do not sharethe samebottleneck. We
call this metricthe probability of falsegrouping This metricmea-
suresthe correctnessof the algorithm. For example, if the user

Send- | Bottle- | Configuration P[Any | Pkts/
ers necks Error] | flow
7 1 Sharectong.at M1IMA 2% 90
10 1 Sharedtong.atMS 0% 90
10 1 Sharecdtong. at Sightpath 1% 65
10 1 Sharedtong. at Mazu 1% 60
11 1 Sharedtong. at Aros 0% 50
11 1 Sharedtong.at CMU 5% 90
6 6 Separateong.;RecvatMIT 7% 25
6 6 Separateong.;Recvat CCl 1% 30
6 6 Separateong.;RecvatCornell | 2% 35
6 6 Separateong.;RecvatNYU 0% 10
12 2 Click Bottlenecks 0% 50
24 2 Click Bottlenecks 0% 60
48 2 Click Bottlenecks 1% ~100
88 2 Click Bottlenecks 0% ~100
102 2 Click Bottlenecks 2% ~100
170 2 Click Bottlenecks 2% ~100
88 2 Click; 50%crosstraffic 3% ~200
40 2 Click; 75%crosstraffic 1% ~800
25 2 Click; 85%crosstraffic 8% 2000

Table 2: Efficiency of the iterati ve technique. Summary results
showing that the technique eventually convergesto almost per-
fect accuracy even for scenarioswith large number of senders
and fairly complexbottleneck sharing.

wantsto identify theflowsthattraversethesamebottlenecko share
their congestiorinformation,thenthe probability of falsegrouping
would tell theuserhow lik ely thetechniquds to produceincorrect
resultsthatwould leadto thewrongsharingof congestioninforma-
tion. For ary particularbottlenecksharingscenariothe probability
of falsegroupingis computedoy clusteringmultiple differentdata
setsandtakingthefractionof clustersghatcontainflowsthatdo not
sharea bottleneck.

Thethird metricis the probability that the algorithmmight fail in

groupingsomeflows that sharethe bottleneck which we call the
probability of falsesepaation. This metricmeasuresheefficiency
of thealgorithm. For example,considera userwho is interestedn

sharingcongestiorinformation betweerflows that crossthe same
bottleneck.Thenthe betterthetechniquds in collapsingthe flows

that sharethe bottleneckinto the samecluster the morethe user
can sharetheir congestionstateand the lessthe total numberof

statesmaintainedby the system. To find the probability of false
separatiorfor a particularbottlenecksharingscenariowe run the
clusteringtechniqueover multiple differentdatasets. The prob-
ability of falseseparationis the differencebetweerthe numberof

generatedlustersandthecorrectnumberof clustersdividedby the
numberof generatedlusters.

Table 2 shaws the efficiengy of the iterative clusteringtechnique
in dealingwith large numbersof sourcesandfairly complex bot-

tlenecksharing. Thetable hasthreeblocks. Experimentgeported
in the first and secondblocks do not usethe Click router The
crosstraffic in theseexperimentsis uncontrolled. Experimentsn

the third andfourth blocksare controlledusingtwo Click routers.
The probability of ary erroris computedover 100 differentsam-
ples.Thetableshaws thatalthoughtheiterative techniquedoesnot
try all possiblecombinationsof sourcesandbottlenecksit always
corvergesto almostperfectresult. This convegencehappengven
whenthe numberof sourceds 170 andthe searchspaces on the
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Figure 7: Probability of any clustering error at all vs. sample
sizefor two simple topologies: every flow sharing and no flows
sharing. Note that preventing false grouping errors requires
very little data. Preventing false separationis harder, but not
onerous. Trendlinesin the bottom graph shaw the exponential
corvergenceof error probabilities.

orderof 2'7°/2!. A key obsenrationin Table2 is thatascrosstraf-
fic increase®r the clusteringexperimentbecomesnore complex
(i.e., more flows or more crosstraffic) more paclets per flow are
neededor correctclustering.Below, we examinetheseaspectsn
moredetail.

First, we addresshe numberof pacletsperflow necessarfor cor
rectclustering.Figure7aillustratesthe probability of ary erroras
a function of the averagenumberof pacletsfrom eachflow. The
figure shaws two representatie graphs: The first graph, labeled
“CMU Shared”,is for the casewhereall sendersharethe same
bottleneck;the secondgraph,“labeledNYU Unshared” s for the
casewhereeachsenderhasa separateéottleneck. The probabil-
ity is computedover 500 differentsamples.The figure shaws that
a few dozenpaclets areenoughfor correctclustering. Figure 7b
shaws trend line on the log scale. It indicatesthat althoughthe
absolutenumberof pacletsrequiredfor correctclusteringdiffers
from onetype of experimentto the next, the error probability dies
off exponentially

Note that thoughthe dataplotted in Figure 7 is the probability
of ary error, the natureof the two typesof “natural” experiments
makesthe themrepresentate of our two othertypesof errormet-
ric. The uppercune is the probability of ary error for the case
whereall flows sharea bottleneck.In thatcasethe only type of er
ror is falseseparationThe lower curve, barelyvisible onthe same
scale,is the probability of ary error for the casewhereno flows
sharebottlenecks. In that casethe only type of possibleerroris
falsegrouping. The extremelyfastcorvergenceof falsegrouping
errorsis a highly desirablepropertyof our technique.This is be-
causegroupingsenderghatdo not sharethe bottleneckogetheris
a more severe error thanfailing to recognizesenderghat sharea
bottleneck.

Next, we considerthe robustnessof the techniqueagainstheary
cross-trafic. The experimentsin Table 2 were run during mid-
day As suchthey experiencedhaturalcrosgraffic alongtheirpath.
Giventhatmary of thesitesinvolvedin theseexperimentsarelarge
universitieswith continuoudnternetactiity, we arguethatthere-
sultsin Table2 arerepresentatie of thetechniques behaior under
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Figure 8: Err or probabilities vs. obsewed traffic fraction. The
first graph shows the error rate rapidly vanisheswhen more
than 15% of the bottleneck traffic is obsewed. The secondis a
log-scalegraph which shows the trend is consistentwith expo-
nential impr ovementin traffic fraction. (The scaleon the x-axis
is reducedsincethe error reacheszero for larger fractions of
obsewed traffic)

commoncrosstraffic situations.

Todiscoverthebehaior of bothfalsegroupingandfalseseparation
underheavy crosstraffic, we funnel a large numberof TCP flows
from mary senderghrougha pair of Click routersandbackoutto
arecever acrosgthe Internet. We considered/ariouscross-tréfic
fractionsby censoringvarioussubsetof flows from our dataset.
This effectively givesthe algorithmexactly the datait would have
hadif the censoredlows had beendiverted before reachingthe
recever. We ranthe algorithmon mary randomcensoringgo get
reasonabléailurerateestimates.

Figure 8a shaws the clusteringerror as a function of the fraction
of thebottlenecKink traffic seenatthe obserer. The probabilities
arecomputedy takingtheaverageof 1000differentmeasurements
for samplesizesof on average800 paclets/flav. Thegraphshavs
thatthe clusteringtechniqueprovidesperfectclusteringaslong as
atleast20% of traffic crossingthe bottleneckcanbe obsered. As
obseredtraffic dropsbelonv 20% of thetotal bottleneckraffic, the
techniquebeginsto malke minor falseseparatiorerrors(i.e., occa-
sionally separatinglows that sharethe samebottleneckbut never
groupingflows that do not sharethe bottleneck). Falsegrouping
errorsdo notbecomeanissueuntil over 95% of thetraffic goesun-
obsered. Thestraighttrendline on the semi-logplot in Figure8b
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Figure 9: Samplesize convergencefor 25% cross-traffic. The

first graph shows how falsegrouping rates are only marginally

worse than when 100% of traffic can be obsewed. The second
graph shawsthat substantialamountsof hidden traffic doesnot

destroy the exponential corvergence.

shaws that the probability of error decreasesxponentiallyasthe
fractionof obseredtraffic increases.

Figure9 shawvsthatthenumberof pacletsperflow requiredfor cor-
rectclusteringwhen75% of thebottleneckdtraffic is crosstraffic.
Notethatthis numberdecreaseasthe fraction of obsered bottle-
necktraffic increasesOnly afew hundredpacletsperflow arere-
quiredfor correctclassificationgvenwhen75% of the bottleneck
traffic is unobsered crosstraffic.

A final noteis thatthesimplicity of thealgorithmlendsitself to effi-

cientsoftwareor hardwareimplementationsAll theprogrammust
do is iterateover the aggr@atedarrival time trace of a potential
flow combinationsndbin successie differencesWhile onemight

imaginean O(Npgcket 10g Npacket) algorithmbasedon sorting
the arrival times of potentialcombinationsit is actually possible
to memgethearrivalsin O(Npacket 10og Nyiow) time sincethein-

dividual arrival lists canbe pre-sortedust once. The histograms
canbe keptcompactandin fastmemoryandthe entropiescanbe
computedalmostentirely with lookup tablesfor logarithmssince
the rangeof bin countsis relatively small for reasonablesample
sizes.Ourimplementatiorcanclustersampleswith 1,000paclets
in under10 msecon commodityPC hardware. This translateso

over 10,000paclets/sec.

The principal scalingissuefor large numbersof flows is thelarger
numberof total paclets involved and the much larger numberof
combinationghat mustbe tried. Even so, our algorithmsuccess-
fully classifiestraceswith tensof thousandf paclets and 170
flowsin underasecondf CPUtime.

5. FUTURE WORK

This work lendsitself to extensionin several directions.Oneopen
issueis determiningcongestionsharingin a multiple bottleneck
scenario. Namely sharingor not sharingis more than simply a

binary variable. Considertwo flows that sharecongestionat the

accesdink of their commonrecever; yet, one of themcrossesa

separateupstreambottleneck. In sucha scenario,somekind of

hierarchicalcongestiorclassificatioris desirable.

Anotherdirectionfor future work is a moredetailedinvestigation
of the shapeof theinter-arrival distributions. In particular the en-

velopesformedby thetips of the spikesin Figurel traceout very

regular curves. It would be informative to fit the spike train and
the spike bumpto well-known distributionsandanalysethe shape
of theirtails. This mayleadto a betterunderstandingf the distri-

bution of the crosstraffic burst. Furthermorefinding goodmodels
for theinter-arrival distributionin a flow would improve the ability

to clusterflows that sharethe bottlenecks.Particularly, if a cata-
log of commonshapesds developedthenit might be possibleto

embedahisin aclusteringalgorithmto improve recognitionof cor

rectclusterings.In principleit shouldalsobe possibleto improve

recognitionof incorrectclusterings As Figure6 shavs, thenoisein

theinter-arrival PDFdueto unsynchronizegacletsdoesnotoccur
justarywhere.

6. RELATED WORK

Much prior work hasstudiedlearninginternetpathcharacteristics
from endpointmeasurements[1@0, 4, 27, 28, 30,12, 18, 13, 25,
8, 19, 24]. The objective of thesemeasurementsould be bot-
tleneckbandwidthdetection[4,28, 14, 13, 23], topology discov-
ery[28,12, 18], detectingthe stateof congestiorandthe available
bandwidth[9,12, 18, 25, 8, 19, 24], or simply understandinghe
network andthetraffic patterns[6].

For example,pathcharand cprobeare usefultools for discovering
the bandwidthavailable along a path. However, they consumea
large amountof network resources.In particular pathchamgener
atesatleastl0Kbytesof probetraffic perhopandcprobegenerates
5 Kbytesof probetraffic perhop[30]. Theaccurag of thesetools
is acceptabldor low bandwidthlinks (lessthan10 Mb/s), yet they
becomesignificantlyinaccuratdor high bandwidthlinks [14].

ThePacletBunchMode (PBM) estimatesheraw bottleneckband-
width of aconnectiorby looking for modalitiesin thetiming struc-
turesof groupsof back-to-baclpaclets. Althoughmorerobustthan
pathcharit requiresinformationfrom boththe senderandrecever
sides[27].

Traceroute[3]is a widely usedtool for learningthe intermediate
routersandthe lateny alonga path. It requiresthatintermediate
routersreply to ICMP echomessages featurethat might be dis-
ableddueto securityconcerns.

The authorsin [9] proposethe useof multicastloss-correlatiorto
infer the lossratesover individual links alonga path. Their simu-
lation shaws thatthe estimatortracksthe changesn thelossrate.
However, the proposedapproachsendgprobepacletsinto the net-
work andrequiresthe existenceof a multicastservice.

The authorsof [28] useloss correlationamongthe receversin a

multicastgroupto infer thelogical shapeof a multicasttree. Their

approachdoesnot inject probetraffic in the network; however, its

relianceonlossinformationlimits its useto significantlylong mul-

ticast sessions. The authorsin [25] useloss pairsto infer some
characteristic®f input buffering behaior suchas RED parame-
ters. While this work usedactive probesthey note that their ap-
proachmightbeusedin a passie context.

Paclet pair dispersiorandbandwidthhistogramshave beenexam-
inedin [13] towardthe endof bandwidthestimation.The focusof
the analysistherewasfixed bin-width bandwidthhistograms.We



foundhowever thatthereis alsomuchsignificantinformationto be
gleanedrom the equalspacingsn inter-arrival time distributions.

Recently thereweretwo proposalgor detectingwhetherpairs of
flows sharethe samebottleneck[12, 18]. Despitethe usefulness
of theseproposalsn simplecircumstanceghey have a numberof
practicaldisadantageghat limit applicability Sincethey gener
ateprobetraffic, bothproposalsarenon-passie andrequiresender
cooperation. Additionally they male strongerqueuingdiscipline
assumptions.Also, theseproposalsdo not generalizetheir tech-
niguesto more than two flows while ours handlesmary. Thus,
the clusteringproblemthatwe addressn this paperis intrinsically
harderthanthe problemaddressetly theseproposals.

7. CONCLUSION

This paperdemonstratesffective, efficient, androbusttechniques
for inferringinterestingoropertieof networksseerby pacletflows.
The only input datarequiredis a completelypassie collection of
time stampf pacletarrivalsatendnodesor atintermediatenon-
itors.

We demonstratedhat correctinterpretationof inter-arrival PDFs
allowsinferenceaboutthebandwidthanddegreeof multiplexing at
potentiallymultiple bottlenecKinks. In the spike bump andspike
train caseswe relateinter-arrival distributionsto the distributions
of crosstraffic burstsizes. Finally we shav how to correctlyin-
fer bottleneckcapacityfrom the locationsand gapsof spikesand
bumpsin theinter-arrival PDF

Higherorderstatisticsdefinedon thearrival timesof combinations
of flowsallow sensite detectiorof bottlenecksharing.We demon-
stratethatthis detectioncanbebothfastandreliablegivensmallto
moderateamountsof dataevenin thefaceof substantiafractions
of unobsered crosstraffic atthe bottleneckroutersin question.

We validatedthesetechniqueswith extensive experimentson the
RON testbedandwith controlledexperimentausinga pair of Click
routers.We foundthatthe methodcandetectary bottleneckshar
ing amonghundredsf flows. Nearperfectsharingdetectioneffi-
cieng requiredon the orderof 100 pacletsperflow. The classifi-
cationerrorsdecreasexponentiallyin the numberof tracedpack-
ets. Further themethodcopeswell with heavy cross-trafic andthe
errorsdecreasexponentiallyasthe fraction of crosstraffic at the
bottleneckdecreases.
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Figure 12: Here we compare our classificationperformanceus-
ing Shannonand fifth order Renyientropyfor 25% crosstraffic
with a pair of Click routers. The y-axisis a log scale.Note the
impr oved statistical efficiencyat small samplesizes.



APPENDIX

A Mazu <-> CMU Experiment

A Sightpath <-> Aros Experiment
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Figure 10: Several additional experiments. In each experiment, we choosea pair of RON nodesand senda TCP flow from the
first nodeto the second,record the arri val times and construct the inter-arri val PDF of the forward path. Then, we start a second
TCP flow from the secondnodeto the first one,log the arri val times and construct the inter-arri val PDF of the reversepath. Using
the reversepath is a device to construct a comparison casewhere it is lik ely that a bottleneck whosebandwidth is the sameasthe
accesdink of the forward path. In all experimentsthe inter-arri val PDF of flows traversing a high bandwidth accesdink then a low
bandwidth accesdink shaws a singlespike at the NTT of the low bandwidth link. On the other hand, the inter-arri val PDF of flows
that first traversea low bandwidth accesdink then a high bandwidth accesdink shows a bump of spikeswhoselocal mode (tallest
spikein the bump) coincideswith the NTT of the low bandwidth link and with gapthat coincidewith the NTT of the high bandwidth

link.
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Figure 11: Here we exhibit the effect of congestionat the downstreamhigh bandwidth bottleneck.



