
Ownership Types and Safe Lazy Upgrades in Object-Oriented Databases

Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira

MIT Laboratory for Computer Science

200 Technology Square, Cambridge, MA 02139

{chandra,liskov,liuba}@lcs.mit.edu

Abstract
This paper describes a novel mechanism for upgrading ob-
jects in an object-oriented database. Unlike earlier systems,
our mechanism is expressive, supporting a rich set of up-
grades; it is efficient and does not stop application access to
run an upgrade; it avoids making copies of the database; yet
it provides good semantics. Expressive efficient upgrades
can lead to problems for the code that upgrades objects.
For example, the code might observe broken invariants or
interfaces unknown at the time it was written. The paper
shows how to use a variant of ownership types to avoid such
problems and enable programmers to reason about the cor-
rectness of their upgrades. Our approach to correctness is
novel, and is a significant contribution of this paper.

This paper also presents a new ownership type system. Pre-
vious ownership type systems only supported a weak en-
capsulation property. Enforcing object encapsulation, while
supporting subtyping and paradigms like iterators, has been
an open problem. Our type system provides a satisfactory
solution to this open problem. The novel idea is that we han-
dle inner classes specially—our type system allows objects
of inner classes to have privileged access to the representa-
tions of the corresponding objects of the outer classes. This
principled violation of encapsulation allows programmers to
express paradigms like iterators, yet they can reason locally
about program correctness.

1 Introduction
Object-oriented databases (OODBs) provide a simple yet
powerful programming model that allows applications to
store objects reliably so that they can be used again later
and shared with other applications. The database acts as an
extension of an object-oriented programming language such
as Java, allowing programs access to long-lived objects in a
manner analogous to how they manipulate ordinary objects
whose lifetime is determined by that of the program [37, 24,
13, 43, 12, 5].

The objects stored in an OODB may live a long time and as
a result there may be a need to upgrade them, that is, change
their code and storage representation. An upgrade can im-
prove an object’s implementation, to make it run faster or
to correct an error; extend the object’s interface, e.g., by
providing it with additional methods; or even change the in-
terface in an incompatible way, so that the object no longer
behaves as it used to, e.g., by removing one of its methods
or redefining what a method does. Incompatible upgrades
are probably not common but they can be important in the

face of changing application requirements. But providing a
satisfactory way of upgrading objects in an OODB has been
a long-standing challenge.

1.1 Upgrades in an OODB
This paper describes a mechanism for upgrading objects in
an OODB. The approach is object-oriented: an upgrade def-
inition describes what to do with each class that is changing,
by providing a replacement class and a transform function
that is used to initialize the new form of the object using the
object’s current state.

An upgrade is executed by transforming all objects belong-
ing to classes that are being changed. Some systems [4, 43]
stop application access to the OODB while the upgrade is
performed. But such a stop-the-world approach can make
the system unavailable to users for potentially long periods
of time. The unavailability may not be a serious issue if the
OODB is small, but if it is large (e.g., trillions of objects
residing at thousands of servers), the time during which the
system is unavailable to applications can be very long.

Our system avoids delaying applications by running the up-
grade lazily. An object is transformed just before an appli-
cation accesses it, and therefore applications that run after
the upgrade starts never see non-upgraded objects. In spite
of being lazy, our system provides good semantics by ensur-
ing that when a transform function executes, it encounters
object interfaces that existed when its upgrade started and
states that satisfy its object’s invariants. These guarantees
make it easy for programmers to write transform functions
and to reason about their correctness.

A lazy system might violate the semantics we wish to pro-
vide, because the work of doing an upgrade is interleaved
with application accesses to stored objects. For example,
a delayed transform function of upgrade U might access an
object that has been modified by an application transaction
that ran after upgrade U started, thus violating our seman-
tics. Also, if the transform function of an object x accesses
an object y that has already been transformed either within
the same upgrade or a later one, y’s interface may be differ-
ent than expected (if the upgrade was incompatible).

Previous systems do not provide a satisfactory solution to
these problems. Stop-the-world systems guarantee that ap-
plications and later upgrades cannot interfere with trans-
form functions of an upgrade U , but they have difficulty or-
dering transform functions within the same upgrade. Some

1

systems [45, 6, 36] avoid problems by severely limiting the
expressive power of transform functions, not allowing them
to make any method calls. Others (e.g., [4]) make the ex-
ecution of transform functions order-independent by main-
taining two copies of the database during the upgrade. The
transform functions initialize the new copy of the database
using the old copy; when the upgrade is complete, the new
copy replaces the old one. Neither of these approaches is
desirable. The loss of expressive power means that many
upgrades cannot be expressed using the mechanism, and the
two-copy approach consumes huge amounts of space.

This paper describes a lazy upgrade mechanism that sup-
ports expressive transform functions and avoids database
copies. Our approach is efficient, yet it provides good se-
mantics. For many upgrades, our system ensures statically
that transform functions run before any objects they ac-
cess are modified—either by applications or other transform
functions. We also outline solutions for the remaining cases.
Our approach is based on the observation that in most cases,
a transform function of object x only accesses x and subob-
jects encapsulated within x. Ownership types provide a way
of statically enforcing object encapsulation. We use a vari-
ant of ownership types to enforce our mechanism.

Our approach to providing good semantics for upgrades is
novel, and is a significant contribution of this paper. Our
correctness conditions, which apply to both lazy and eager
upgrades, are new, and so is our provision of an efficient lazy
system that nevertheless satisfies the conditions.

1.2 Ownership Types for Encapsulation
Ownership types [17, 16, 15] were introduced with the goal
of statically enforcing object encapsulation. The idea is that
an object may own other subobjects that are part of its rep-
resentation and these subobjects should not be accessible
outside the object that owns them. Encapsulation is im-
portant because it gives programmers the ability to reason
locally about program correctness. However, previous own-
ership type systems are either not expressive enough (they do
not support subtyping and paradigms like iterators), or they
do not enforce object encapsulation (they enforce weaker re-
strictions instead). Enforcing object encapsulation, while
supporting subtyping and paradigms like iterators, has been
an open problem.

This paper describes a new ownership type system that pro-
vides a satisfactory solution to this open problem. The novel
idea is that we handle inner classes specially—our type sys-
tem allows objects of inner classes to have privileged access
to the representations of the corresponding objects of the
outer classes. This principled violation of encapsulation al-
lows programmers to express paradigms like iterators and
yet allows them to reason locally about the correctness of
their programs. Our type system also improves upon pre-
vious ownership type systems by allowing programmers to
specify constraints on formal owner parameters and letting
them write parameterized methods. We also combine own-
ership with effects clauses [39].

Our ownership type system for enforcing encapsulation is

useful in upgrade systems as well as in regular programs,
and is another significant contribution of this paper.

1.3 Outline
The rest of the paper is organized as follows. Section 2 de-
scribes how we perform lazy upgrades in an OODB; it also
presents the semantics we wish to provide, that help pro-
grammers reason about the correctness of upgrades. Sec-
tion 3 presents our ownership type system that statically
enforces object encapsulation. Section 4 shows how owner-
ship types can be used to enforce our upgrade semantics;
it also discusses the limitations of the ownership approach
and describes mechanisms that can be used in the remain-
ing cases. Section 5 presents related work, and Section 6
concludes.

2 Upgrades in an OODB
This section defines our approach to providing upgrades for
an object-oriented database and explains how we execute
upgrades lazily. Then it defines the conditions that an up-
grade system ought to support, and it explains why these
conditions make it easy for programmers to reason about
upgrades. The conditions apply to all upgrade systems, both
eager and lazy.

We assume the object-oriented database contains conven-
tional objects similar to what one might find in an object-
oriented programming language such as Java. Objects can
refer to one another and can interact by calling one another’s
methods. The objects in the database belong to classes that
define their representation and methods. Each class imple-
ments a type. Types can be arranged in a hierarchy, so that
a type can be a subtype of one or more types. A class that
implements a type implements all supertypes of that type.

2.1 Defining Upgrades
Our approach to defining upgrades is object-oriented: an
upgrade is defined by describing what should happen to the
classes that need to be changed. The information for a class
that is changing is captured in a class-upgrade. Each class-
upgrade is a tuple: 〈old-class, new-class, TF〉. The meaning
of a class-upgrade is that all objects belonging to old-class
will be transformed, through use of the transform function,
TF, into objects of new-class. TF takes an old-class object
and a newly allocated new-class object and initializes the
new-class object from the old-class object. At some point
after TF returns (e.g., immediately) the upgrade infrastruc-
ture causes the new-class object to take over the identity of
the old-class object, so that all objects that used to refer to
the old-class object now refer to the new-class object.

The mechanism preserves object state and identity across
an upgrade. This preservation is crucial, because the whole
point of the database is to preserve object state. When
objects are upgraded, their state must survive, albeit in a
modified form as needed in the new class. Furthermore, a
great deal of object state is captured in the web of object
relationships. This information is expressed by having ob-
jects refer to other objects. When an object is upgraded it
must retain its identity so that all the objects that referred
to it prior to the upgrade still refer to it.

2

An upgrade is a set of one or more class-upgrades. When
a class C is upgraded incompatibly, this may affect other
classes, including subclasses of C and classes that use C.
All affected classes have to be upgraded as well, so that the
new system as a whole remains type correct. A complete
upgrade contains class-upgrades for all classes that need to
change due to some class-upgrade already in the upgrade [53,
21, 4, 25]. Completeness is checked using rules analogous to
type checking. Our system accepts an upgrade only if it
is complete. At this point we say the upgrade is installed.
Once an upgrade has been installed, it is ready to run. An
upgrade is executed by running transform functions on all
affected objects, i.e., all objects belonging to the old classes.

2.2 Running Upgrades
We assume applications access objects in the database within
atomic transactions, since this is necessary to ensure consis-
tency for the stored objects; transactions allow for concur-
rent access and they mask failures. An application trans-
action consists of calls on methods of persistent objects as
well as local computation. A transaction terminates by com-
mitting or aborting. If the commit succeeds, all changes to
database objects become persistent. If instead the transac-
tion aborts, none of its changes affect the database.

One could imagine running an upgrade as a single trans-
action that ran all the transform functions in some order
but, as mentioned in the introduction, this approach is un-
desirable since it can make the system unavailable to users
for a long time. We avoid delaying application transactions
by running the upgrade incrementally and lazily. We run
each transform function as an individual transaction. These
transactions are interleaved with application transactions.

Our system runs as follows. When an application transac-
tion A is about to use an object that is due to be upgraded,
we interrupt A and run the transform function at that point.
(If transform functions from several upgrades are pending for
that object, we run them one after another in upgrade or-
der.) The transform function runs in its own transaction T .
This transaction must be serialized before A since A uses the
transformed object initialized by T . If T requires access to
an old version of some object modified by A, we provide this
access, taking advantage of the fact that A has not yet com-
mitted (and therefore the old version still exists). As soon
as T finishes executing we commit it. Then we continue run-
ning A unless T modified some object that A read, in which
case we abort A and rerun it. (Section 4.1 describes how
we avoid aborting A in most cases.) While running T we
might encounter an object that has pending transforms. If
the pending transform function is for T ’s upgrade or a later
upgrade, we do not do anything. Otherwise, we interrupt
T (just as we interrupted A) to run the pending transform
function.

We implemented this approach in the Thor OODB [37, 7];
the implementation is described in [38].

2.3 Upgrade Semantics
As we mentioned in the introduction, an upgrade system
should guarantee that when a transform function runs, it en-

counters only interfaces that existed at the time its upgrade
was installed and states that satisfy its object’s invariants.
This guarantee means the transform function writer need not
be concerned, when reasoning about correctness of upgrades,
with object interfaces and object invariants that existed in
the past or will exist in the future. Instead, the transform
function can be thought of as an extra method of its class:
the writer can assume the same invariants and interfaces as
are assumed for the other methods.

An upgrade system provides the guarantee if the following
conditions hold (the notation [A1; A2] means that A1 ran
before A2):

L1. If we have [A; TF(x)], where A is either an application
transaction that ran after TF’s upgrade was installed,
or A is a transform function from a later upgrade, this
has the same effect as running TF(x) before A.

L2. If TF(x) and TF(y) are from the same upgrade and
TF(x) (transitively) uses y and we have [TF(y);TF(x)],
this is equivalent to running the transform functions in
the opposite order.

L3. If TF(x) and TF(y) are from the same upgrade and
TF(x) does not (transitively) use y and TF(y) does not
(transitively) use x, then [TF(x); TF(y)] is equivalent
to [TF(y); TF(x)].

L1 states that the behavior of the system is equivalent to
running upgrades eagerly, before later application transac-
tions or later upgrades. L2 and L3 define the expected be-
havior for transforms within a single upgrade. L2 defines an
ordering on transform functions within the same upgrade
and thus ensures that transform functions encounter ex-
pected interfaces; L2 and L3 together ensure that transform
functions encounter expected invariants. The three condi-
tions ensure that transform functions encounter the expected
interfaces and object invariants because they ensure that up-
grades run in upgrade order, application transactions do not
interfere with transform functions, transform functions of
unrelated objects do not interfere with each other, and trans-
form functions of related objects run in a pre-determined or-
der (namely an object is transformed before its subobjects).

The implementation described above transforms objects be-
fore they are used by applications or transform functions
from later upgrades, but does not prevent transform func-
tions from observing unexpected interfaces or broken invari-
ants. Thus it does not automatically provide conditions L1-
L3. Our approach to providing these conditions is based on
the observation that a transform function of object x usu-
ally accesses only x and subobjects encapsulated within x.
Ownership types provide a way of specifying and statically
enforcing object encapsulation; they are the subject of the
next section. We show how ownership types can be used to
obtain the desired conditions in Section 4.

3 Ownership Types for Encapsulation
The possibility of aliasing between objects constitutes one
of the primary challenges in understanding and reasoning

3

about the correctness of object-oriented programs [30]. Un-
expected aliasing can lead to broken invariants, mistaken
assumptions, security holes, and surprising side effects, all
of which may lead to defective software.

Ownership types provide a statically enforceable way of spec-
ifying object encapsulation that restricts object aliasing. En-
capsulation is important because it gives programmers the
ability to reason locally about program correctness. Reason-
ing about a class in an object-oriented program involves rea-
soning about the behavior of objects belonging to the class.
Typically objects point to other subobjects, which are used to
represent the containing object. Local reasoning about class
correctness is easy to do if the subobjects are fully encapsu-
lated, that is, if all subobjects are accessible only within the
containing object. This condition supports local reasoning
because it ensures that outside objects cannot interact with
the subobjects without calling methods of the containing ob-
ject. And therefore the containing object is in control of its
subobjects.

However, full encapsulation is often more than is needed.
Encapsulation is only required for subobjects that the con-
taining object depends on [34]:

D1. An object a depends on subobject b if a calls meth-
ods of b and furthermore these calls expose mutable
behavior of b in a way that affects the invariants of a.

Thus, if a stack of items is implemented using a linked list,
the stack only depends on the linked list but not on the items
contained in the linked list. This is because, if code outside
could manipulate the list, it could invalidate the correctness
of the stack implementation. But code outside can safely
access the items contained in the stack because the stack
doesn’t call their methods; it only depends on the identities
of the items and the identities never change. Similarly, a set
of immutable elements does not depend on the elements even
if it invokes a.equals(b) to ensure that no two elements a and
b in the set are equal, because the elements are immutable.

Ownership types [17, 16, 15] were introduced with the goal of
statically enforcing object encapsulation.1 However, previ-
ous ownership type systems are either not expressive enough
(they do not support subtyping and paradigms like iter-
ators), or they do not enforce object encapsulation (they
enforce weaker restrictions instead). Enforcing object en-
capsulation, while supporting subtyping and paradigms like
iterators, has been an open problem.

This section describes a new ownership type system that
provides a satisfactory solution to this open problem. Sec-
tion 3.1 introduces ownership types by presenting our basic
type system. Section 3.2 extends the basic system to allow
us to express paradigms like iterators. Section 3.3 describes
how we combine effects clauses with ownership.

A formal description of our type system is given in the ap-
pendix. The appendix also discusses how we can use type
1Ownership types have also been used for statically enforcing
the absence of data races and deadlocks in multithreaded
programs [10, 9], and to aid program understanding [2].

O1. The owner of an object does not change over time.

O2. The ownership relation forms a tree rooted at world.

Figure 1: Ownership Properties

o5 o6

o7
o2 o4

o1

o3

world

Figure 2: An Ownership Relation

inference to make the ownership declarations less onerous to
write, and discusses the impact of ownership types on run-
time behavior (ownership information is not needed at run-
time and thus has no impact on performance except when
downcasts are used).

3.1 Basic Type System
This section describes our basic ownership type system. This
system is similar to the one described in [15]—the difference
is that the type system in [15] allows stack aliases to violate
encapsulation, so that it can be expressive enough to support
paradigms like iterators. We disallow this kind of violation
of encapsulation. We support iterators using the approach
described in Section 3.2.

Object Ownership: The key to the type system is the
concept of object ownership. Every object in our system
has an owner. An object can be owned by another object, or
by a special owner called world. Our type system statically
verifies that a program respects the ownership properties
shown in Figure 1. Figure 2 presents an example ownership
relation. We draw an arrow from object x to object y in the
figure if object x owns object y. In the figure, the special
owner world owns objects o1, o5, and o6; o1 owns o2 and o4;
o2 owns o3; and o6 owns o7.

The key to local reasoning about program correctness is to
have the ownership relation capture the depends relation. If
a class is defined so that each object of that class owns every
object it depends on, it will be possible to reason locally
about correctness of the class.

Parameterizing with Owners: We describe our basic
type system using the TStack example shown in Figure 3.
A TStack is a stack of T objects. It is implemented using a
linked list. This example (and other examples in the paper)
use a Java-like language augmented with ownership types.

Every class definition in our system is parameterized with
one or more owners.2 The first owner parameter is special:
it owns the this object. The other owner parameters are

2Our way of parameterizing is similar to the proposals for
parametric types for Java [42, 11, 1, 50]. The difference is
that our parameters are values and not other types.

4

1 class TStack<stackOwner, TOwner> {
2
3 TNode<this, TOwner> head = null;
4
5 void push(T<TOwner> value) {
6 TNode<this, TOwner> newNode = new TNode<this, TOwner>;
7 newNode.init(value, head);
8 head = newNode;
9 }

10 T<TOwner> pop() {
11 if (head == null) return null;
12 T<TOwner> value = head.value();
13 head = head.next();
14 return value;
15 }
16 }
17
18 class TNode<nodeOwner, TOwner> {
19
20 T<TOwner> value;
21 TNode<nodeOwner, TOwner> next;
22
23 void init(T<TOwner> v, TNode<nodeOwner, TOwner> n) {
24 this.value = v; this.next = n;
25 }
26 T<TOwner> value() { return value; }
27 TNode<nodeOwner, TOwner> next() { return next; }
28 }
29
30 class T<TOwner> { }
31
32 class TStackClient<clientOwner> {
33 void test() {
34 TStack<this, this> s1 = new TStack<this, this>;
35 TStack<this, world> s2 = new TStack<this, world>;
36 TStack<world, world> s3 = new TStack<world, world>;
37 /* TStack<world, this> s4 = new TStack<world, this>; */
38 }
39 }

Figure 3: Stack of T Objects

used to propagate ownership information. In Figure 3, the
TStack class is parameterized with stackOwner and TOwner.
stackOwner owns the TStack object and TOwner owns the
T objects contained in the TStack. Parameterization allows
programmers to write generic code, so that different objects
of the class can have different owners.

Instantiating Owners: An owner can be instantiated with
this, with world, or with another owner parameter. Objects
owned by this are encapsulated objects that may not be ac-
cessed from outside. Objects owned by world may be ac-
cessed from anywhere.

Figure 3 contains several illustrations of ownership. The
TStack objects own the linked list objects used to store
the stack elements. This enables local reasoning about the
TStack class. The type of TStack s1 is instantiated using this
for both the owner parameters. This means that the TStack
s1 is owned by the TStackClient object that created it and so
are the T objects in the TStack. TStack s2 is owned by the
TStackClient object, but the T objects in s2 are owned by
world. TStack s3 is owned by world and so are the T objects
in s3. The ownership relation for s1, s2, and s3 is depicted in
Figure 4 (assuming the stacks contain two elements each).
(The dotted line is included to indicate that every object is
directly or indirectly owned by world.)

For every type T 〈x1, ..., xn〉 with multiple owners, our type

s1.head
(TNode)

s1 (TStack)

(TNode)
s1.head.next

s2 (TStack)

s2.head
(TNode) (TNode)

s2.head.next

s3 (TStack)

s3.head
(TNode) (TNode)

s3.head.next

(TStackClient)

s1.head.value
(T)

s2.head.value
(T)

(T)
s1.head.next.value

(T)
s2.head.next.value

(T)
s3.head.next.value

s3.head.value
(T)

world

Figure 4: Ownership Relation for TStacks s1, s2, s3

system statically enforces the constraint that (x1 ¹ xi) for
all i ∈ {1..n}. Recall from Figure 1 that the ownership
relation forms a tree rooted at world. The notation (y ≺ z)
means that y is a descendant of z in the ownership tree.
The notation (y ¹ z) means that y is either the same as
z, or y is a descendant of z in the ownership tree. This
constraint prevents encapsulated objects from being passed
on to unencapsulated objects; we prove this property below.
Thus, the type of TStack s4 in Figure 3 is illegal because
(world 6¹ this).

Subtyping: The rule for subtyping is that the parameters
of the supertype must be instantiated with owners in context
and the first owners have to match. The reason the first own-
ers have to match is that the first owners in our system are
special, in that they own the corresponding objects. Thus,
TStack〈stackOwner, TOwner〉 is a subtype of Object〈stack-
Owner〉. But T〈TOwner〉 is not a subtype of Object〈world〉
because the first owners do not match.

Object Encapsulation: The property we want to enforce
is as follows:

E1. If object z owns object y, but z does not own object x
directly or transitively, then x cannot access y.

The underlying reasoning is that y is inside the encapsula-
tion boundary of z and x is outside the encapsulation bound-
ary, so x must not be able to access y. An object x accesses
an object y if x contains a pointer to y, or if the methods of x
obtain a pointer to y. Consider Figure 2 for an illustration.
o1 owns o2. But o1 does not own o5 directly or transitively.
So o5 cannot access o2. The only objects that can access o2
are o1 and objects that o1 owns directly or transitively. (In
the figure, the only objects that can access o2 are o1, o2, o3,
and o4.) Property E1 can thus be restated as follows:

E2. Object x can access object y only if the owner of y is
the same as or an ancestor of x.

Note that statements E1 and E2 are equivalent. Property E2
states which object accesses are legal and it rules out pre-
cisely the bad accesses that Property E1 rejects. The type
system presented in this section guarantees the encapsula-
tion property stated above. Below, we provide an informal
proof that our type system provides E2 (and therefore E1):

Proof: Consider the code: class C〈f1, ...〉{... T 〈o1, ...〉 y ...}.
Variable y of type T 〈o1, ...〉 is declared within the static scope

5

of class C. Owner o1 can therefore be either 1) this, or 2)
world, or 3) a formal parameter of the class, in which case
(f1 ¹ o1). Note that (this ≺ f1). Therefore, we always have
(this ¹ o1). The above constraint implies that an object x
of a class C can only access an object y if the owner of y is
the same as or an ancestor of x. The type system therefore
provides Property E2.

The above proof shows that owned objects cannot be ac-
cessed from outside their owner. Therefore if ownership
captures the depends relation, it will be possible to reason
locally about program correctness.

3.2 Extensions to the Basic Type System
The basic type system ensures encapsulation and allows sub-
typing, but it is not expressive enough to support paradigms
like iterators. This is because such paradigms require a vio-
lation of ownership: an outside object needs to access sub-
objects encapsulated in some other object. This section ex-
tends our basic type system to make it expressive enough,
while preventing arbitrary violations of object encapsula-
tion. We allow the objects of inner classes to have privileged
access to the representations of objects of outer classes. This
principled violation of encapsulation lets programmers ex-
press paradigms like iterators, yet allows them to reason
locally about program correctness because the code for in-
ner classes is contained within the code for outer classes. In
other words, the entire definition, consisting of the outer-
most class and its inner classes, is reasoned about as a unit;
it is a program module that can be reasoned about locally.

To make the type system more expressive, our extended sys-
tem also allows programmers to specify constraints on for-
mal owner parameters and lets them write parameterized
methods. The typing rules presented in this section are
generalizations of the rules in Section 3.1. We summarize
the rules in Figure 5. We explain our type system using
Figure 6, which contains part of a TStack implementation.
The TStack has an iterator, but is otherwise similar to the
TStack in Figure 3. The TStack and the iterator are not in
an ownership relation. If the TStack owned the iterator, it
would not be possible for the iterator to be used outside the
TStack object. If the iterator owned the TStack it would
not be possible to have more than one iterator for a given
TStack object.

Inner Classes: Our inner classes are similar to the member
inner classes in Java. Inner class definitions are nested inside
other classes. An inner class object can only be created by
code of an object of the outer class. The resulting object
is considered to be inside the object that created it. The
outer object might itself be an inner object, nested inside
some other outer object. An inner object can access all its
outer objects. It can use the syntax C.this to refer to the
outer object of class C. (An implementation provides an
inner object access to the outer objects via hidden fields.
The hidden fields are initialized by the system from hidden
arguments to constructors.)

An inner class is parameterized with owners just like a reg-
ular class. However, the parameters of an inner class must

T1. An owner can be instantiated with: an owner param-
eter, world, this, and C.this, where C is an outer class.

T2. If o is of type T 〈x1, ..., xn〉 then x1 owns o.

T3. In type T 〈x1, ..., xn〉, (x1 ¹ xi) ∀i ∈ {1..n}.
T4. For method m〈y1, ..., yk〉 of an object of type T 〈x1, ...〉,

(x1 ¹ yi) ∀i ∈ {1..k}
T5. Class and method instantiations must satisfy the con-

straints on owner parameters specified in the class and
method declarations.

T6. For subtyping, first owners must match.

Figure 5: Rules for Type Checking in our System

include all the parameters of all its outer classes. (We could
have made the outer class parameters implicitly available
to inner classes, but we feel making them explicit enhances
program clarity.) As usual, the first owner owns the corre-
sponding object, and (first owner ¹ other owners).

Recall from Section 3.1 that an owner can be instantiated
with this, with world, or with another owner parameter.
Within an inner class, an owner can also be instantiated
with C.this, where C is an outer class. This feature gives an
inner object special privileges to access the objects encapsu-
lated within its outer objects.

For example, the TStackEnum class in Figure 6 is an in-
ner class. An object of this class is created by the elements
method of TStack. The TStackEnum object has three owner
parameters: the one defining its owner, and the two it in-
herits from its outer object. The TStackEnum constructor
accesses a field of the outer TStack object using the syntax
TStack.this. Note also that the object referred to by current
is owned by TStack.this.

Parameterized Methods: Our type system allows meth-
ods to be parameterized to enable the writing of owner-
polymorphic code. Recall that for every type with mul-
tiple owners, T 〈x1, ..., xn〉, our type system statically en-
forces the constraint that (x1 ¹ xi) for all i ∈ {1..n}. For a
parameterized method m〈y1, ..., yk〉(...){...} of an object of
type T 〈x1, ..., xn〉, the restriction is that (x1 ¹ yi) for all
i ∈ {1..k}. This restriction prevents encapsulated objects
from being passed on to unencapsulated objects.

Constraints on Owners: Our type system allows classes
and methods to specify constraints on owner parameters us-
ing where clauses. This is somewhat analogous to the use
of where clauses in [20, 42]. To see an illustration, con-
sider the parameterized method elements in Figure 6. The
method specifies that (enumOwner ¹ stackOwner) using a
where clause. It is therefore legal for the method to in-
stantiate the type TStackEnum〈enumOwner, stackOwner, T-
Owner〉. Without the where clause, the above instantiation
would have violated our typing rule that (firstowner ¹ other
owners).

Note that in this example we also have (stackOwner ¹ enum-

6

1 class TStack<stackOwner, TOwner> {
2 TNode<this, TOwner> head = null;
3 ...
4 TEnumeration<enumOwner, TOwner> elements<enumOwner>()
5 where (enumOwner <= stackOwner) {
6 return new TStackEnum<enumOwner, stackOwner, TOwner>;
7 }
8 class TStackEnum<enumOwner, stackOwner, TOwner>
9 implements TEnumeration<enumOwner, TOwner> {

10
11 TNode<TStack.this, TOwner> current;
12
13 TStackEnum() {
14 current = TStack.this.head;
15 }
16 T<TOwner> getNext() {
17 if (current == null) return null;
18 T<TOwner> t = current.value();
19 current = current.next();
20 return t;
21 }
22 boolean hasMoreElements() {
23 return (current != null);
24 }
25 }
26 }
27
28 class TStackClient<clientOwner> {
29 void test() {
30 TStack<this, this> s = new TStack<this, this>;
31 TEnumeration<this, this> e = s.elements();
32 }
33 }
34
35 interface TEnumeration<enumOwner, TOwner> {
36 T<TOwner> getNext();
37 boolean hasMoreElements();
38 }

Figure 6: TStack With Iterator

Owner) since elements is a method of TStack〈stackOwner,
TOwner〉 and (first owner of an object ¹ its method’s pa-
rameters). Therefore enumOwner and stackOwner must be
the same. In general, whenever an inner object is accessi-
ble to objects not transitively owned by its outer object, the
inner object and the outer object will have the same owner.

Object Encapsulation: Property E1 in Section 3.1 stated
that if object z owns object y, but z does not own object
x directly or transitively, then x cannot access y. Our sys-
tem enforces the above property except for the case where
x is an inner object of y. This is a principled violation of
encapsulation—it is useful to implement paradigms like iter-
ators, but it still allows programmers to reason locally about
the correctness of their programs. We relax Properties E1
and E2 from Section 3.1 to E1′ and E2′ as follows, to allow
this principled violation:

E1′. If object z owns object y, but z does not own object x
directly or transitively, then x cannot access y, unless
x is an inner object of y.

E2′. Object x can access object y only if the owner of y is
either 1) the same as or an ancestor of x, or 2) an outer
object of x.

Note that statements E1′ and E2′ are equivalent. Below, we
provide an informal proof that our type system provides E2′

(and therefore E1′):

1 class TStack<stackOwner, TOwner> {
2 TNode<this, TOwner> head = null;
3 ...
4 class TStackEnum<enumOwner, stackOwner, TOwner>
5 implements TEnumeration<enumOwner, TOwner> {
6
7 TNode<TStack.this, TOwner> current;
8 ...
9 T<TOwner> getNext() writes(this) reads(TStack.this){...}
10 boolean hasMoreElements() reads(this){...}
11 }
12 }
13 interface TEnumeration<enumOwner, TOwner> {
14 T<TOwner> getNext() writes(this) reads(world);
15 boolean hasMoreElements() reads(this);
16 }

Figure 7: TStack Iterator With Effects

Proof: Consider the code: class C〈f1, ...〉{... T 〈o1, ...〉 y ...}.
Variable y of type T 〈o1, ...〉 is declared within the static scope
of class C. Owner o1 can therefore be either 1) this, or 2)
world, or 3) a formal class parameter, in which case (f1 ¹
o1), or 4) a formal method parameter, in which case also
(f1 ¹ o1), or 5) C′.this, where C′ is an outer class. In the
first four cases, (this ¹ o1). In the fifth case, (C′.this ¹ o1).
This implies that an object x of class C can only access an
object y if y is owned by either: 1) x or an ancestor of x, or
2) an outer object of x. The type system therefore provides
Property E2′.

3.3 Extensions to Support Effects
Effects [39, 10, 9] are orthogonal to ownership and encapsu-
lation, but effects clauses are useful for specifying assump-
tions that must hold at method boundaries, thus enabling
modular reasoning and checking of programs. In this pa-
per, we use effects with ownership types to provide safe lazy
upgrades; we describe this in Section 4.

Our system allows programmers to specify reads and writes
clauses. Consider a method that specifies that it writes
(w1, ..., wn) and reads (r1, ..., rm). Then the method can
write an object x (or call methods that write x) only if
(x ¹ wi) for some i ∈ {1..n}. The method can read an
object y (or call methods that read y) only if (y ¹ wi) or
(y ¹ rj), for some i ∈ {1..n}, j ∈ {1..m}. We thus allow a
method to both read and write objects named in its writes
clause.

Figure 7 shows an example that uses effects. The figure con-
tains a TStack iterator that uses effects, but is otherwise
similar to the TStack iterator in Figure 6. In the example,
the hasMoreElements method reads the this object. The get-
Next method reads objects owned by TStack.this and writes
(and reads) the this object. (A complete TStack example
with effects clauses is in the appendix.)

When effects clauses are used in conjunction with subtyp-
ing, the effects of an overridden method must subsume the
effects of the overriding method. This sometimes makes it
difficult to specify all the effects of a method. For example,
it is difficult to specify all the read effects in the getNext
method of the TEnumeration class because TEnumeration is
a supertype of TStackEnum and we cannot name TStack.this
in the getNext method of TEnumeration. To accommodate

7

such cases, we allow an escape mechanism, where a method
can include world in its effects clauses.

4 Safe Lazy Upgrades
In this section we show how ownership types and effects
allow us to enforce L1-L3, the upgrade correctness condi-
tions defined in Section 2. We also discuss the limitations
of the ownership approach and outline our solutions for the
remaining cases.

4.1 Enforcing Upgrade Semantics
This section shows how we can ensure conditions L1-L3 using
ownership types and effects. The conditions were stated in
terms of objects that transform functions use. In this section
we limit transform functions to using only owned objects:

S1. TF(x) can only use objects that x owns (directly or
transitively).

Our type system statically checks and enforces S1 using the
ownership and effects declarations. Transform functions will
often satisfy S1 because ownership frequently captures the
depends relation discussed in Section 3, and typically the
transform functions will only need to access the depended-on
objects. Section 4.2 analyzes the situations where a trans-
form function violates S1 and explains how we deal with such
upgrades.

Our ownership type system guarantees that the owner of
an object is accessed before the object is accessed (since
the owned object is encapsulated within the owner). Our
runtime system uses this property to ensure the following
conditions:

S2. TF(x) runs before A accesses x or any object x owns
either directly or transitively, where A is either an ap-
plication transaction that ran after TF’s upgrade was
installed, or A is a transform function from a later up-
grade.

S3. If TF(x) and TF(y) are in the same upgrade and x
owns y directly or transitively, then TF(x) runs before
TF(y).

Now we give informal proofs that when S1 holds, S1-S3 pro-
vide the semantics stated in L1-L3. Our proofs consider
only adjacent transactions, but this is sufficient because the
three conditions together can be used to reorder sequences
containing intervening transactions to achieve adjacency.

L1: If we have [A; TF(x)], where A is either an application
transaction that ran after TF’s upgrade was installed, or A
is a transform function from a later upgrade, this has the
same effect as running TF(x) before A.

Proof: Since A ran before TF(x), we know from S2 that A
does not access x or any object x (transitively) owns. We
also know from S1 that TF(x) only accesses x and objects x
(transitively) owns. Therefore the read/write sets of A and
TF(x) have no object in common and thus the effect is the
same as if TF(x) ran before A.

L2: If TF(x) and TF(y) are from the same upgrade and
TF(x) (transitively) uses y and we have [TF(y);TF(x)], this
is equivalent to running the transform functions in the op-
posite order.

Proof: Since x (transitively) uses y, we know from S1 that
x (transitively) owns y. Therefore, we know from S3 that
TF(x) runs before TF(y). Thus the property holds trivially
because the order [TF(y); TF(x)] will not occur.

L3: If TF(x) and TF(y) are from the same upgrade and
TF(x) does not (transitively) use y and TF(y) does not
(transitively) use x, then [TF(x); TF(y)] is equivalent to
[TF(y); TF(x)].

Proof: TF(x) and TF(y) can commute unless there is some
object z that is read by one TF and modified by the other. If
such an object exists, we know from S1 that it must be owned
(transitively) by both x and y. Moreover we know that the
ownership relation forms a tree (see Figure 1). Therefore the
existence of z implies that either x owns y and y owns z, or y
owns x and x owns z. But the ownership system guarantees
that an owning object is accessed before any object it owns.
Therefore whichever object owns the other, the TF for that
object must use the other before using z, which violates the
assumption that neither TF uses the other object.

When S1 holds we also get another benefit. Recall from Sec-
tion 2 that our system will abort an interrupted transaction
if it previously read an object modified by the transform
function. However, when S1 holds, such an abort will never
happen. This is because the interrupted transaction can-
not use any object that a pending transform function will
use without first causing that pending transform function to
run.

4.2 Triggers and Versions
There are two situations where a transform function may
violate condition S1. The first occurs when the depends re-
lation is not captured by ownership, perhaps because the
depends relation does not form a tree. For example, in Fig-
ure 6 both TStack and TStackEnum depend on the linked
list, but only one of them can own the list (the TStack in
our code). The second case occurs when TF(x) reads objects
that x does not depend on. Depends (and thus ownership)
is intentionally limited to not include immutable properties
of subobjects, since correctness of a class does not require
encapsulation of the subobjects in this case. However, a
transform function may read such subobjects, perhaps be-
cause they are no longer immutable after an upgrade.

When S1 is violated there are two possible approaches. The
first is to explicitly order the transform functions so that
the transform function that violates S1 runs before any ac-
cess to the objects it uses (but does not own) takes place.
The second solution is to use versions. Since the decision
about which approach to use requires an understanding of
program behavior, we bring violations of S1 to the attention
of programmers so that they can decide what to do.

Explicit ordering of transform functions is possible when the

8

object whose transform function violates S1 is owned by a
containing object that also owns all objects used by the
transform function. For example, in Figure 6 the TStack-
Client object owns both the TStack object and the TStack-
Enum object. In this case, we can force the TStackEnum
to be transformed before the TStack is used by attaching
a trigger to the TStackClient class. As mentioned earlier,
when an inner object (like an iterator) is used outside its
outer object, both inner and outer object will have the same
owner. Therefore triggers can be used to order upgrades for
iterators (and other inner class objects) unless the owner is
world.

A trigger is a function that takes an object as an argument
and returns a list of objects needing to be upgraded. Triggers
are defined as part of an upgrade in addition to the class-
upgrades; such a definition identifies the class being triggered
and provides the code for the trigger. The system runs the
trigger when an object of the class is first used (after the
upgrade is installed); then it processes the list (in list order)
and runs any pending transform functions on the objects in
the list. A trigger is constrained to only read owned objects;
thus it cannot affect the system state. Triggers provide L1-
L3. E.g., triggers provide L1 and L2 because [A; TF(x)] and
[TF(y); TF(x)] cannot occur.

When there is no containing object, we have to fall back on
versions. In this case, we keep old versions for any unowned
object used by the offending transform function TF(x); for
each such object z, we also keep versions for all objects it
owns. We restrict the transform function to only read the
old versions but not modify them. Versions provide L1-L3
because the immutable versions preserve the old interfaces
and object states.

We use effects clauses to enforce constraints on triggers, and
also constraints on transform functions with respect to old
versions: in both cases we allow reads but not writes. Thus
in both these cases, we take advantages of having separate
reads and writes clauses.

As mentioned earlier, the problem with versions is that they
are expensive. And sometimes they are not needed. For ex-
ample, the correctness of a transform function for a TStack-
Enum in Figure 6 will not be affected by a mutation of the
corresponding TStack (to push or pop an element), provided
the TStack or the underlying list are not transformed incom-
patibly. We allow users to avoid versions in such cases; more
details can be found in [38].

5 Related Work
Section 5.1 discusses related work in the area of upgrade
systems. Section 5.2 discusses related type systems.

5.1 Upgrades in an OODB
The two main approaches to upgrading the classes in an
OODB are class (or schema) evolution and class version-
ing. In the evolution approach the database has one logical
schema to which modifications of class definitions are ap-
plied. Object instances are converted (eagerly or lazily, but
once and forever) to conform to the latest schema. In the

schema or class versioning approach (e.g. [19, 47, 14]) mul-
tiple versions of a schema or class can co-exist. Instances
can be represented as if they belong to a specific version of
their class, but how this is done (e.g., by creating a sep-
arate instance or by keeping one version-specific copy and
dynamically converting it as needed) depends on the con-
crete system.

Our discussion focuses on the schema evolution approach be-
cause it is most relevant to our work; the efficiency and cor-
rectness issues in the schema versioning approach deal with
supporting application access to the same object via multi-
ple potentially incompatible interfaces and are very different
from the efficiency and correctness issues in the evolution-
based upgrade systems. The schema evolution approach is
used in Orion [6], OTGEN [36], O2 [24, 53], GemStone [12,
45], Objectivity/DB [44], Versant [49], and PJama [5, 4] sys-
tems, and is the only approach available in any commercial
RDBMS.

None of the existing schema evolution systems provides both
expressive and efficient upgrades. Furthermore, none bases
the correctness of the upgrade system on the property of
encapsulation or ownership types. Work in O2 uses static
techniques to reason about upgrade completeness [21] but
does not consider static techniques for correctness of lazy
upgrades or version avoidance.

To insure good semantics, existing schema evolution systems
either restrict the expressive power of transforms, or sacri-
fice efficiency by adopting a stop-the-world (eager) approach
that is costly in time and space (because of the use of ver-
sions). Very few systems support general transforms and
lazy conversion. E.g., GemStone and Orion do not support
user-defined transform functions that read subobjects (these
are called complex transforms), ObjectStore supports a lim-
ited form of eager conversion and no lazy conversion, Versant
supports lazy conversion for default transforms but complex
transforms require eager conversion, PJama supports eager
conversion for user-defined transforms but has no support
for lazy conversion. Dmitriev [25] provides an extensive sur-
vey of the existing schema evolution systems and analyzes
their limitations.

The work on O2 explores lazy conversion and complex trans-
forms. This work introduces an upgrade system correctness
condition [53] based on the equivalence of lazy and eager
conversion, and is the first to identify problem posed by de-
ferred complex transforms and incompatible upgrades. The
O2 system ensures type safety for deferred complex trans-
forms using a “screening” approach similar to versioning.
Unlike our approach, however, analysis in O2 does not take
encapsulation into account. Whenever an incompatible up-
grade occurs after a complex transform is installed, it either
activates an eager conversion, or avoids transform interfer-
ence by keeping versions for all objects. This approach is
unnecessarily conservative (it switches to eager execution
even when S1 holds). Also, O2 does not solve the prob-
lem of applications modifying objects that are then used by
transforms from earlier upgrades; this is unsafe because it
violates condition L1.

9

1 class Main<o> {
2 void some_method() {
3 final Foo<world> x = ...;

4 Object<x> i_should_not_have_got_this_pointer = x.get();
/* owner is instantiated with a local variable !!! */

5 }
6 }
7 class Foo<p> {
8 Object<this> this_should_not_escape;
9

10 Object<this> get() {
11 return this_should_not_escape; // Violates Encapsulation
12 }
13 }

Figure 8: Violation of Encapsulation in [15]

5.2 Related Type Systems
Euclid [33] was one of the first languages that considered the
problem of aliasing. [30] stressed the need for better treat-
ment of aliasing in object-oriented programs. Early work on
Islands [29] and Balloons [3] focused on fully encapsulated
objects where all subobjects an object could access were not
accessible outside the object. However, full encapsulation
significantly limits expressiveness, and is often more than is
needed. The work on ESC/Java pointed out that encap-
sulation is required only for subobjects that the containing
object depends on [34], but ESC/Java was unable to always
enforce encapsulation.

Ownership types provide a statically enforceable way of spec-
ifying object encapsulation. [17] is one of the first systems
that introduces ownership types. [16] presents a formaliza-
tion of the type system. In these systems, a subtype must
have the same owners as a super type. A subtype cannot
have more owners. So TStack〈stackOwner,TOwner〉 cannot
be a subtype of Object〈stackOwner〉. Moreover, one cannot
express paradigms like iterators in these systems.

[15] builds on previous work in [17, 16]. It is the first type
system to introduce the rule that in every type with multiple
owners, (first owner ¹ other owners). This rule enables the
type system to provide a satisfactory solution for subtyping.
To support paradigms like iterators, this type system allows
an application to have stack aliases that violate encapsula-
tion. As a result, this type system only enforces a weaker
property, that all the paths in the heap to an object x must
pass through the owner of x. The type system does not en-
force encapsulation. Figure 8 presents example code in their
system that violates encapsulation.

[10] uses a variant of ownership types to statically prevent
data races in multithreaded programs. [9] extends this type
system to also prevent deadlocks. These systems allow stack
aliases that violate encapsulation. They support subtyping
and paradigms like iterators. They do not have the rule
that (first owner ¹ other owners). But they have effects
clauses [39] that ensure that every thread holds the lock on
the owner of an object before the thread accesses the object.
This ultimately enables them to enforce a weak encapsula-
tion property, that an application must be able to name the
owner of x to be able to access x.

Linear types [51] and unique pointers [40] can also be used
to control object aliasing. Linear types have been used to
support safe explicit memory deallocation in low level lan-
guages [18, 48, 28]. Vault [22, 23] uses an extension of lin-
ear types to enforce low level protocols. Linear types and
unique pointers are orthogonal to ownership types, but the
two can be used in conjunction to provide more expressive
type systems. PRFJ [10] is the first system to combine own-
ership types with unique pointers. This lets programmers
express programming idioms that neither ownership types
nor unique pointers alone can express. SCJ [9] and Alias-
Java [2] also combine ownership types with unique pointers.
The type system we presented in this paper can be combined
with unique pointers in an analogous way.

Our ownership type system is somewhat similar to the type
systems in Capability Calculus [18], Alias Types [48], and
Cyclone [28] for doing region-based memory management.
For example, in Cyclone, classes and methods are parame-
terized with regions. In our system, classes and methods are
parameterized with owners. In Cyclone, methods specify the
regions that must be alive at method entry. In our system,
methods specify the owners of objects that will be read or
written. But these other systems including Cyclone do not
deal with objects or subtyping.

Effects [39] are orthogonal to ownership and encapsulation,
but having effects in a type system can be useful. In this
paper, we use effects with ownership types to provide safe
lazy upgrades. PRFJ [10] is the first system to combine ef-
fects with ownership types to statically prevent data races
in multithreaded programs. SCJ [9] uses effects with own-
ership types to statically prevent data races and deadlocks.
[15] also combines effects with ownership types for program
understanding. Recent work on data groups [35] describes
a way of grouping objects and naming a group of objects in
an effects clause. Ownership types provide another way of
grouping objects—the name of an owner can be used to name
all the objects owned by the owner. Ownership types thus
provide an alternative to data groups for specifying groups
of objects in an effects clause.

Systems such as TVLA [46], PALE [41], and Roles [32] spec-
ify the shape of a local object graph in more detail than
ours. TVLA can verify properties such as when the input
to the program is a list (or tree), the output is also a list
(or tree). PALE can verify all the data structures that can
be expressed as graph types [31]. Roles support composi-
tional interprocedural analysis and verify similar properties.
In contrast to these systems that take exponential time for
verification, ownership types provide a lightweight and prac-
tical way to constrain aliasing.

Our type system is similar to proposals for parametric types
for Java [42, 11, 1, 50]. The difference is that our parameters
are values and not other types. Moreover, our type system
fits naturally in a language with parameterized types.

6 Conclusions
Object-oriented databases provide a simple yet powerful pro-
gramming model that allows applications to store objects

10

reliably so that they can be used again later and shared
with other applications. But providing a satisfactory way
of upgrading objects in an OODB has been a long-standing
challenge. Our first contribution addresses this challenge:

• We present a novel mechanism for upgrading objects
in an OODB; unlike earlier mechanisms, ours is both
expressive and efficient.

The mechanism is expressive because it allows transform
functions to make method calls. It is efficient because it
avoids making copies of the database, and does not stop
application access to the database to run an upgrade.

An important issue with any upgrade system is what seman-
tics it should provide. Defining this semantics is our next
contribution:

• We define conditions (conditions L1-L3) that an up-
grade system should satisfy in order to make it easy
for programmers to reason about the correctness of up-
grades. These conditions apply to both lazy and eager
systems.

Conditions L1-L3 ensure that each transform function en-
counters invariants and interfaces that existed when its up-
grade was installed. This enables programmers to reason
about the correctness of their transform functions because
they do not have to be concerned with the invariants and
interfaces that existed in the past or will exist in the future.

Our system supports L1-L3 when objects are encapsulated.
Ownership types were introduced with the goal of statically
enforcing object encapsulation. Encapsulation is important
because it enables programmers to reason locally about the
correctness of their programs. However, previous ownership
type systems only provided a weak encapsulation property;
enforcing object encapsulation, while providing a satisfac-
tory solution for subtyping and for paradigms like iterators,
has been an open problem. Our next contribution is to pro-
vide a solution to this problem:

• We define a new ownership type system that statically
enforces object encapsulation while supporting subtyp-
ing and paradigms like iterators.

Our ownership type system is useful in upgrade systems as
well as in regular programs. Our approach makes use of inner
classes. Objects of inner classes have privileged access to
the representations of the corresponding objects of the outer
classes. This principled violation of encapsulation allows
programmers to express paradigms like iterators, yet reason
locally about program correctness. In addition, we extend
previous work on ownership to increase expressiveness:

• Our ownership type system supports generic meth-
ods (through the use of method parameters) and con-
straints on owners.

We also combine ownership with effects.

Ownership types and effects allow us to define a constraint
on transform functions that ensures upgrades satisfy L1-L3:
this is our next contribution:

• Our system guarantees that when transform functions
are constrained to use only owned objects, L1-L3 hold.

However, not all transform functions will satisfy the con-
straint. We are able to recognize such transform functions
statically and bring the problem to the attention of the user.
The user can always use versions to solve the problem but
versions are expensive. Therefore we provide an alternative,
a novel approach for ordering transform function execution:

• We define a new technique (triggers) that allows the
order of transform function execution to be controlled.
Also, we show that triggers together with versions en-
sure conditions L1-L3.

References
[1] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding

type parameterization to the Java language. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), October 1997.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias
annotations for program understanding. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), November 2002.

[3] P. S. Almeida. Balloon types: Controlling sharing of
state in data types. In European Conference for
Object-Oriented Programming (ECOOP), June 1997.

[4] M. P. Atkinson, M. Dmitriev, C. Hamilton, and
T. Printezis. Scalable and Recoverable Implementation
of Object Evolution for the PJama 1 Platform. In
Persistent Object Systems (POS), September 2000.

[5] M. P. Atkinson, M. J. Jordan, L. Daynes, and
S. Spence. Design issues for persistent Java: A
type-safe, object-oriented, orthogonally persistent
system. In Persistent Object Systems (POS), May
1996.

[6] J. Banerjee, W. Kim, H. Kim, and H. F. Korth.
Semantics and implementation of schema evolution in
object-oriented databases. In ACM SIGMOD
International Conference on Management of Data,
May 1987.

[7] C. Boyapati. JPS: A distributed persistent Java
system. SM thesis, Massachusetts Institute of
Technology, September 1998.

[8] C. Boyapati, R. Lee, and M. Rinard. Safe runtime
downcasts with ownership types. Technical Report
TR-853, MIT Laboratory for Computer Science, June
2002.

[9] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: Preventing data races and
deadlocks. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), November
2002.

11

[10] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 2001.

[11] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding genericity
to the Java programming language. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1998.

[12] R. Bretl et al. The GemStone data management
system. In W. Kim and F. H. Lochovsky, editors,
Object-Oriented Concepts, Databases, and
Applications. 1989.

[13] M. Carey et al. Shoring up persistent applications. In
ACM SIGMOD International Conference on
Management of Data, May 1994.

[14] S. M. Clamen. Type evolution and instance
adaptation. Technical Report CMU-CS-92-133,
Carnegie Mellon University, June 1992.

[15] D. G. Clarke and S. Drossopoulou. Ownership,
encapsulation and disjointness of type and effect. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), November 2002.

[16] D. G. Clarke, J. Noble, and J. M. Potter. Simple
ownership types for object containment. In European
Conference for Object-Oriented Programming
(ECOOP), June 2001.

[17] D. G. Clarke, J. M. Potter, and J. Noble. Ownership
types for flexible alias protection. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1998.

[18] K. Crary, D. Walker, and G. Morrisett. Typed memory
management in a calculus of capabilities. In Principles
of Programming Languages (POPL), January 1999.

[19] V. M. Crestana-Jensen, A. J. Lee, and E. A.
Rundensteiner. Consistent schema version removal:
An optimization technique for object-oriented views.
In IEEE Transactions on Knowledge and Data
Engineering (TKDE) 12(2), March 2000.

[20] M. Day, R. Gruber, B. Liskov, and A. C. Myers.
Subtypes vs. where clauses: Constraining parametric
polymorphism. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
October 1995.

[21] C. Delcourt and R. Zicari. The design of an integrity
consistency checker (ICC) for an object-oriented
database system. In European Conference for
Object-Oriented Programming (ECOOP), July 1991.

[22] R. DeLine and M. Fahndrich. Enforcing high-level
protocols in low-level software. In Programming
Language Design and Implementation (PLDI), June
2001.

[23] R. DeLine and M. Fahndrich. Adoption and focus:
Practical linear types for imperative programming. In
Programming Language Design and Implementation
(PLDI), June 2002.

[24] O. Deux et al. The story of O2. In IEEE Transactions
on Knowledge and Data Engineering (TKDE) 2(1),
March 1990.

[25] M. Dmitriev. Safe class and data evolution in large
and long-lived Java applications. Technical Report
TR-2001-98, Sun Microsystems, August 2001.

[26] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes
and mixins. In Principles of Programming Languages
(POPL), January 1998.

[27] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[28] D. Grossman, G. Morrisett, T. Jim, M. Hicks,
Y. Wang, and J. Cheney. Region-based memory
management in Cyclone. In Programming Language
Design and Implementation (PLDI), June 2001.

[29] J. Hogg. Islands: Aliasing protection in
object-oriented languages. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1991.

[30] J. Hogg, D. Lea, A. Wills, and D. de Champeaux. The
Geneva convention on the treatment of object aliasing.
In OOPS Messenger 3(2), April 1992.

[31] N. Klarlund and M. I. Schwartzbach. Graph types. In
Principles of Programming Languages (POPL),
January 1993.

[32] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Principles of Programming Languages (POPL),
January 2002.

[33] B. W. Lampson, J. J. Horning, R. L. London, J. G.
Mitchell, and G. J. Popek. Report on the
programming language euclid. In Sigplan Notices,
12(2), February 1977.

[34] K. R. M. Leino and G. Nelson. Data abstraction and
information hiding. Research Report 160, Compaq
Systems Research Center, November 2000.

[35] K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou.
Using data groups to specify and check side effects. In
Programming Language Design and Implementation
(PLDI), June 2002.

[36] B. S. Lerner and A. N. Habermann. Beyond schema
evolution to database reorganization. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), October 1990.

[37] B. Liskov, M. Castro, L. Shrira, and A. Adya.
Providing persistent objects in distributed systems. In
European Conference for Object-Oriented
Programming (ECOOP), June 1999.

12

[38] B. Liskov, C. Moh, S. Richman, L. Shrira, Y. Cheung,
and C. Boyapati. Safe lazy software upgrades in
object-oriented databases. Technical Report TR-851,
MIT Laboratory for Computer Science, June 2002.

[39] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. In Principles of Programming Languages
(POPL), January 1988.

[40] N. Minsky. Towards alias-free pointers. In European
Conference for Object-Oriented Programming
(ECOOP), July 1996.

[41] A. Moeller and M. I. Schwartzbach. The pointer
assertion logic engine. In Programming Language
Design and Implementation (PLDI), June 2001.

[42] A. C. Myers, J. A. Bank, and B. Liskov.
Parameterized types for Java. In Principles of
Programming Languages (POPL), January 1997.

[43] Object Design Inc. ObjectStore Advanced C++ API
User Guide Release 5.1, 1997.

[44] Objectivity Inc. Objectivity Technical Overview,
Version 6.0, 2001.

[45] D. J. Penney and J. Stein. Class modification in the
GemStone object-oriented DBMS. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1987.

[46] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In Principles of
Programming Languages (POPL), January 1999.

[47] A. H. Skarra and S. B. Zdonik. The management of
changing types in an object-oriented database. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), November 1986.

[48] F. Smith, D. Walker, and G. Morrisett. Alias types. In
European Symposium on Programming (ESOP),
March 2000.

[49] Versant Object Technology. Versant User Manual,
1992.

[50] M. Viroli and A. Natali. Parametric polymorphism in
Java: An approach to translation based on reflective
features. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), October
2000.

[51] P. Wadler. Linear types can change the world. In
M. Broy and C. Jones, editors, Programming Concepts
and Methods. April 1990.

[52] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. In Information and Computation
115(1), November 1994.

[53] R. Zicari. A framework for schema updates in an
object-oriented database systems. In International
Conference on Data Engineering (ICDE), April 1991.

Appendix
A TStack Example
1 // stackOwner owns the TStack object
2 // TOwner owns the T objects in the stack.
3
4 class TStack<stackOwner, TOwner> {
5 TNode<this, TOwner> head = null;
6
7 void push(T<TOwner> value) writes(this) {
8 TNode<this, TOwner> newNode = new TNode<this, TOwner>;
9 newNode.init(value, head);
10 head = newNode;
11 }
12 T<TOwner> pop() writes(this) {
13 if (head == null) return null;
14 T<TOwner> value = head.value();
15 head = head.next();
16 return value;
17 }
18 TEnumeration<enumOwner, TOwner> elements<enumOwner>()
19 writes(enumOwner) where (enumOwner <= stackOwner) {
20 return new TStackEnum<enumOwner, stackOwner, TOwner>;
21 }
22 class TStackEnum<enumOwner, stackOwner, TOwner>
23 implements TEnumeration<enumOwner, TOwner> {
24
25 TNode<TStack.this, TOwner> current;
26
27 TStackEnum() writes(enumOwner){
28 current = TStack.this.head;
29 }
30 T<TOwner> getNext() writes(this) reads(TStack.this) {
31 if (current == null) return null;
32 T<TOwner> t = current.value();
33 current = current.next();
34 return t;
35 }
36 boolean hasMoreElements() reads(this) {
37 return (current != null);
38 }
39 }
40 }
41
42 class TNode<nodeOwner, TOwner> {
43 T<TOwner> value;
44 TNode<nodeOwner, TOwner> next;
45
46 void init(T<TOwner> v, TNode<nodeOwner, TOwner> n)
47 writes(this) {
48 this.value = v; this.next = n;
49 }
50 T<TOwner> value() reads(this) {
51 return value;
52 }
53 TNode<nodeOwner, TOwner> next() reads(this) {
54 return next;
55 }
56 }
57
58 class T<TOwner> { }
59
60 class TStackClient<clientOwner> {
61 void test() writes(this) reads(world) {
62 T<this> t = new T<this>;
63 TStack<this, this> s = new TStack<this, this>;
64 s.push(t);
65 TEnumerator<this,this> e = s.elements();
66 t = e.getNext();
67 }
68 }
69
70 interface TEnumeration<enumOwner, TOwner> {
71 T<TOwner> getNext() writes(this) reads(world);
72 boolean hasMoreElements() reads(this);
73 }

13

B Ownership Type System
This section presents a formal description of our type system.
To simplify the presentation of key ideas, we describe our
type system in the context of a core subset of Java [27] known
as Classic Java [26]. We add inner classes to Classic Java
and augment its type system with ownership types. Our
approach, however, extends to the whole of Java and other
similar languages.

B.1 Type Checking
Figure 9 presents our grammar. We present a number of
predicates below that we use in the type system. These
predicates are based on similar predicates from [26].

Predicate Meaning

WFClasses(P) There are no cycles in the class hierarchy
ClassOnce(P) No class is declared twice in P
IClassesOnce(P) No class contains two inner classes with

the same name
FieldsOnce(P) No class contains two fields with the same

name, either declared or inherited
MethodsOnce(P) No class contains two methods with the

same name
OverridesOK(P) Overriding methods have the same return

type and parameter types as the methods
being overridden. The read and write
effects of an overriding method must be
superseded by those of the overridden
methods

The core of our type system is a set of rules for reasoning
about the typing judgment: P ; E; R; W ` e : t. P , the pro-
gram being checked, is included here to provide information
about class definitions. E is an environment providing types
for the free variables of e. R and W must subsume the read
and write effects of e. t is the type of e.
We define a typing environment as E ::= ∅ | E, t x | E, owner f

| E, (o1 ¹ o2) . We define effects as R, W ::= o1..n . We define
the type system using the following judgments. We present
the typing rules for these judgments in Appendix C.

Judgment Meaning

` P : t program P yields type t
P ; E ` defn defn is a well-formed class definition
P ; E ` wf typing environment E is well-formed
P ; E ` t t is a well-formed type
P ; E ` t1 <: t2 t1 is a subtype of t2
P ; E ` field ∈ c class c declares/inherits field
P ; E ` meth ∈ c class c declares/inherits meth
P ; E ` meth meth is a well-formed method
P ; E `owner o o is an owner
P ; E ` o1 ¹ o2 o1 is the same as or descendant of o2

P ; E ` X ¹ Y effect X is subsumed by effect Y
P ; E ` e : t expression e has type t
P ; E; R; W ` e : t expression e has type t and read/write

effects of e are subsumed by R/W

B.2 Soundness of the Type System
Our type checking rules ensure that for a program to be
well-typed, the program respects the properties described in
Figure 1. A complete syntactic proof [52] of type soundness
can be constructed by defining an operational semantics (by
extending the operational semantics of Classic Java [26]) and
then proving that well-typed programs do not reach an er-
ror state and that the generalized subject reduction theorem

P ::= defn* e
defn ::= class cn〈formal+〉 extends c constr body
body ::= {iclass* field* meth*}

c ::= cn〈owner+〉 | Object〈owner+〉
owner ::= formal | world | cn.this
constr ::= where (owner <= owner)*
iclass ::= defn
meth ::= t mn〈formal* 〉(arg*) effects constr (owner*) {e}

effects ::= reads (owner*) writes (owner*)
field ::= t fd
arg ::= t x

t ::= c | int
formal ::= f

e ::= new c | let (arg=e) in {e} | x | x = e | e;e |
x.fd | x.fd = y | x.mn〈owner* 〉(y*)

cn ∈ class names
fd ∈ field names

mn ∈ method names
x,y ∈ variable names

f ∈ owner names

Figure 9: Grammar

holds for well-typed programs. The subject reduction theo-
rem states that the semantic interpretation of a term’s type
is invariant under reduction. The proof is straightforward
but tedious, so it is omitted here.

B.3 Type Inference
Although our type system is explicitly typed in principle, it
would be onerous to fully annotate every method with the
extra type information. Instead, we can use a combination of
inference and well-chosen defaults to significantly reduce the
number of annotations needed in practice. [10, 9] describes
an intraprocedural type inference algorithm and some de-
fault types; we can use a similar approach. We emphasize
that this approach to inference is purely intraprocedural and
does not infer method signatures or types of instance vari-
ables. Rather, it uses a default completion of partial type
specifications in those cases to minimize the required anno-
tations. This approach permits separate compilation.

B.4 Runtime Overhead
The system we described is a purely static type system.
The ownership relations are used only for compile-time type
checking and are not preserved at runtime. Consequently,
our programs have no runtime overhead compared to regular
(Java) programs. In fact, one way to compile and run a pro-
gram in our system is to convert it into a regular program
after type checking, by removing the type parameters and
effects clauses.

A language like Java, however, is not purely statically-typed.
Java allows downcasts that are checked at runtime. Sup-
pose an object with declared type Object〈o〉 is downcast to
Vector〈o,e〉. Since the result of this operation depends on in-
formation that is only available at runtime, our type checker
cannot verify at compile-time that e is the right owner pa-
rameter even if we assume that the object is indeed a Vec-
tor. To safely support downcasts, a system has to keep some
ownership information at runtime. This is similar to keeping
runtime information with parameterized types [42, 50]. [8]
describes how to do this efficiently for ownership by keeping
runtime information only for objects that can be potentially
involved in downcasts into types with multiple parameters.

14

C Rules for Type Checking

` P : t

[PROG]

WFClasses(P) ClassOnce(P) IClassOnce(P)

FieldsOnce(P) MethodsOnce(P) OverridesOK(P)

P = defn1..n e P ; ∅ ` defni P ; ∅; world; world ` e : t

` P : t

P ; E ` defn

[CLASS]

E = E1, owner g, E2 =⇒ ∃i g = fi

E′ = E, owner f1..n, (o ¹ o′)∗, cn〈f1..n〉 cn.this P ; E′ ` wf

P ; E′ ` c P ; E′ ` iclassi P ; E′ ` fieldi P ; E′ ` methi

P ; E ` class cn〈f1..n〉 extends c where (o ¹ o′)∗ {iclass∗ field∗ meth∗}

P ; E ` wf

[ENV ∅]

P ; ∅ ` wf

[ENV X]

x /∈ Dom(E)

P ; E ` t

P ; E, t x ` wf

[ENV OWNER]

f /∈ Dom(E)

P ; E ` wf

P ; E, owner f ` wf

[ENV ¹]

P ; E `owner o

P ; E `owner o′

P ; E, o ¹ o′ ` wf

[TYPE C]

P ; E ` class cn〈f1..n〉... where (g ¹ g′)∗...
P ; E `owner fi =⇒ oi = fi

P ; E `owner oi P ; E ` o1 ¹ oi

P ; E ` (gi[o1/f1]..[on/fn] ¹ g′i[o1/f1]..[on/fn])

P ; E ` cn〈o1..n〉

P ; E ` t

[TYPE INT]

P ; E ` int

[TYPE OBJECT]

P ; E `owner o

P ; E ` Object〈o〉

P ; E ` t1 <: t2

[SUBTYPE REFL]

P ; E ` t

P ; E ` t <: t

[SUBTYPE TRANS]

P ; E ` t1 <: t2 P ; E ` t2 <: t3

P ; E ` t1 <: t3

[SUBTYPE CLASS]

P ; E ` cn1〈o1..n〉
P ; E ` class cn1〈f1..n〉 extends cn2〈f1 o∗〉 ...

P ; E ` cn1〈o1..n〉 <: cn2〈f1 o∗〉 [o1/f1]..[on/fn]

P ; E ` meth ∈ c

[METHOD DECLARED]

P ; E ` class cn〈f1..n〉... {... meth ...}
P ; E ` meth ∈ cn〈f1..n〉

[METHOD INHERITED]

P ; E ` class cn〈f1..n〉... {... meth ...}
P ; E ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ; E ` meth[o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ; E ` method

[METHOD]

E′ = E, owner f1..n, (o ¹ o′)∗, arg1..a

P ; E′ ` wf P ; E′; r1..r, w1..w; w1..w ` e : t

P ; E ` t mn〈f1..n〉(arg1..a) reads(r1..r)

writes(w1..w) where(o ¹ o′)∗ {e}

P ; E ` field ∈ c

[FIELD DECLARED]

P ; E ` class cn〈f1..n〉... {... field ...}
P ; E ` field ∈ cn〈f1..n〉

[FIELD INHERITED]

P ; E ` class cn〈f1..n〉... {... field ...}
P ; E ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ; E ` field[o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ; E ` X ¹ Y

[X ¹ Y]

X = x1..n Y = y1..m

∀i∈{1..n} ∃j∈{1..m} (xi ¹ yj)

P ; E ` (X ¹ Y)

P ; E ` o ¹ o′

[¹ WORLD]

P ; E `owner o

P ; E ` (o ¹ world)

[¹ ENV]

E = E1, (o ¹ o′), E2

P ; E ` (o ¹ o′)

[¹ OWNER]

P ; E ` e : cn〈o1..n〉
P ; E ` (e ¹ o1)

[¹ REFL]

P ; E `owner o

P ; E ` (o ¹ o)

[¹ TRANS]

P ; E ` (o1 ¹ o2) P ; E ` (o2 ¹ o3)

P ; E ` (o1 ¹ o3)

P ; E `owner o

[OWNER WORLD]

P ; E `owner world

[OWNER FORMAL]

E = E1, owner f , E2

P ; E `owner f

[OWNER THIS]

E = E1, cn〈...〉 cn.this, E2

P ; E `owner cn.this

P ; E ` e : t

[EXP TYPE]

∃R,W P ; E; R; W ` e : t

P ; E ` e : t

P ; E; R; W ` e : t

[EXP SUB]

P ; E; R; W ` e : t′

P ; E; R; W ` t′ <: t

P ; E; R; W ` e : t

[EXP VAR]

E = E1, t x, E2

P ; E; R; W ` x : t

[EXP VAR ASSIGN]

E = E1, t x, E2 P ; E; R; W ` e : t

P ; E; R; W ` x = e : t

[EXP NEW]

P ; E ` c

P ; E; R; W ` new c : c

[EXP LET]

arg = t x P ; E; R; W ` e : t

P ; E, arg; R; W ` e′ : t′

P ; E; R; W ` let (arg = e) in {e′} : t′

[EXP REF]

P ; E; R; W ` x : cn〈o1..n〉 P ; E ` (t fd) ∈ cn〈f1..n〉
R = R1, r, R2 x ¹ r

P ; E; R; W ` x.fd : t[o1/f1]..[on/fn]

[EXP REF ASSIGN]

P ; E; R; W ` x : cn〈o1..n〉 P ; E ` (t fd) ∈ cn〈f1..n〉
W = W1, w, W2 x ¹ w P ; E; R; W ` y : t[o1/f1]..[on/fn]

P ; E; R; W ` x.fd = y : t[o1/f1]..[on/fn]

[EXP SEQ]

P ; E; R; W ` e1 : t1
P ; E; R; W ` e2 : t2

P ; E; R; W ` e1; e2 : t2

[EXP INVOKE]

P ; E ` (t mn〈f(n+1)..m〉(tj yj
j∈1..k) reads(r1..r) writes(w1..w) where(g ¹ g′)∗ {e}) ∈ cn〈f1..n〉

P ; E; R; W ` x : cn〈o1..n〉 P ; E; R; W ` xj : tj [o1/f1]..[om/fm]

P ; E `owner oi P ; E ` o1 ¹ oi P ; E ` r1..r[o1/f1]..[om/fm] ¹ R

P ; E ` (gi[o1/f1]..[om/fm] ¹ g′i[o1/f1]..[om/fm]) P ; E ` w1..w[o1/f1]..[om/fm] ¹ W

P ; E; R; W ` x.mn〈o(n+1)..m〉(x1..k) : t[o1/f1]..[om/fm]

15

