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Abstract

Memory integrity verification is a useful primitive
when implementing secure processors that are re-
sistant to attacks on hardware components. This
paper proposes new hardware schemes to verify
the integrity of untrusted external memory using a
very small amount of trusted on-chip storage. Our
schemes maintain incremental multiset hashes of all
memory reads and writes at run-time, and can ver-
ify a sequence of memory operations at a later time.
We study the advantages and disadvantages of the
two new schemes and two existing integrity checking
schemes, MACs and hash trees, when implemented
in hardware in a microprocessor. Simulations show
that the new schemes outperform existing schemes of
equivalent functionality when integrity verification is
infrequent.

1 Introduction

Secure processors (e.g., [19] [18], [9]) try to provide
applications running on them with a private and
tamper-proof execution environment. In desktop ma-
chines they are typically present as coprocessors, and
are used for a small number of security critical op-
erations. The ability to provide the same protection
for the primary processor would multiply the amount
of secure computing power, making possible appli-
cations such as copy-proof software and certification
that a computation was carried out correctly.

In this paper we focus on providing a tamper-proof
environment for programs to run in (we do not deal
with privacy of data), in particular in the case of at-
tacks on the components located around the proces-
sor. For that, the main primitive that has to be de-
veloped is memory verification, to prevent a attacker
from tampering with the off-chip memory to change
a running program’s state. The processor must de-
tect any form of memory corruption. Typically, upon
detecting memory corruption the processor should
abort the tasks that were tampered with to avoid
producing incorrect results. For it to be worthwhile,

the verification scheme must not impose too great a
performance penalty on the computation, or the ben-
efits of using the primary processor are lost.

In this paper, we describe new hardware schemes
to efficiently verify all or a part of untrusted external
memory using a limited amount of trusted on-chip
storage. Our schemes maintain incremental multiset
hashes of all memory reads and writes at run-time,
and verify a sequence of memory operations at a cho-
sen later point of time. We study the advantages
and disadvantages of our two new schemes and two
existing integrity checking schemes, MACs and hash
trees, when viewed as hardware mechanisms in a mi-
croprocessor. We also describe how memory integrity
checking schemes can be integrated into a multitask-
ing environment with mutually mistrusting processes.

Simulations show that our new schemes outperform
two existing schemes when integrity verification is in-
frequent. In these cases, the performance overhead of
our schemes is less than 5% in most cases and 15%
in the worst case. On the other hand, the hash tree
scheme is the best choice for data integrity check-
ing when each memory operation needs to be veri-
fied before continuing the execution. The hash tree
scheme has less than 25% overhead for many cases,
but may cause more than 50% degradation when on-
chip caches are small. MAC’ing data blocks has very
low overhead even for frequent checks, comparable to
our new schemes with infreqeuent checks. However,
it is only secure for static instruction verification.

The assumed model is presented in Section 2, and
motivating applications are the subject of Section 3.
Existing mechanisms for memory verification and our
new schemes are described in Section 4. Memory
checking in multi-process environments is discussed
in Section 5. We compare the various schemes in in
Section 6. In section 7 we evaluate the schemes on a
superscalar processor simulator. We discuss related
work and conclude the paper in Section 8.
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2 Model

In this paper, we consider a system that is built
around a microprocessor with external memory. Fig-
ure 1 illustrates the general model. The processor’s
core is trusted, and we assume that the processor is
invulnerable to physical attack, meaning that its in-
ternal state cannot be tampered with or observed.
External memory is untrusted. The objective of an
adversary is to alter the contents of external memory
in such a way that the system produces an incorrect
result that looks correct to the system user.

There are two possibilities. In the first case, the
processor, including its on-chip caches, and some
core functionality of the operating system is trusted.
In this case, trusted core software manages virtual
memory and therefore we need to check the opera-
tions on the physical address space. In the second
case, just the processing core is trusted. Everything
else, including the operating system and the exter-
nal memory, is untrusted. In this case, we protect
virtual memory with the integrity checking mecha-
nisms. Section 5 studies the two cases.

In both cases, the adversary can attack off-chip
memory, and the processor needs to check that it be-
haves like valid memory. Memory behaves like valid
memory if the value the processor loads from a par-
ticular address is the most recent value that it stored
to that address. If the contents of the off-chip mem-
ory have been altered by an adversary, the memory
may not behave correctly (like valid memory). Each
scheme in this paper allows the processor to detect,
with high probability, if such tampering has occurred.
The probability is high, irrespective of whichever pro-
grams the processor executes. If tampering is de-
tected, the processor raises an integrity exception.

The processor can contain a secret that allows it
to produce keys to perform cryptographic operations,
such as signing, that no other processor could do for
it. This secret can be a private key from a public
key pair, as in XOM [9]. If the processor has as-
certained that the program it has run was executed

in an authentic manner, it can use the key to gen-
erate a certificate. The certificate is used to prove
to some entity that the program’s execution was not
tampered with while it ran on the processor, and that
the program produced a particular set of results when
run on the processor.

3 Applications

3.1 Certifying a Program Execution

Alice has a problem to solve, expressed as a program
that requires a lot of computing power. Bob has a
computer that is idle, and that he is willing to rent
to Alice. If Alice gives Bob her program to execute,
and Bob gives her a result, how can she be sure that
Bob actually carried out the computation? How can
she tell that Bob didn’t just invent the result?

Our way of solving the problem is to have a proces-
sor that has a private key. The corresponding public
key is published by the processor’s manufacturer. Al-
ice sends the processor her program. The processor
then executes Alice’s program without allowing any
interference from external sources. The processor ex-
ecutes the program in a deterministic way to produce
the result. It then uses its key to create a certificate
with a hash of the program and the program’s re-
sult, and sends the certificate to Alice. When Alice
verifies the certificate, Alice has certain assurances
that the program was executed by the processor in
an authentic manner.

As long as Alice’s computation can all be done on
the processor there is no major difficulty. However,
for most algorithms, Alice will need to use external
memory. How can she be sure that Bob isn’t tamper-
ing with the memory bus to make her program termi-
nate early while still producing a valid certificate for
an incorrect result? Our answer, of course, is to use
memory integrity verification.

When Alice receives the signed result, she is able to
check it. At that point she knows that her program
was executed on a trusted processor, and that the
external memory performed correctly.

It is the combination of memory verification and
cryptographic signature using a secret key that make
this example possible. Without the key, it would be
impossible to distinguish if results were produced on
a real processor or in a simulator (on which any kind
of internal tampering is easy). In our model, with-
out the ability to perform some kind of cryptography,
memory verification would be useless except to detect
faults in the memory, which could be detected much
more cheaply with simple error detecting codes.

Of course, in real systems Bob will want to con-
tinue using his computer while Alice is calculating. In
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the next sections, we describe Palladium and XOM
which could provide the framework for certified ex-
ecution in multitasking systems. Both could benefit
from memory verification to resist physical attacks.

3.2 Palladium

Microsoft’s proposed security model, Palladium [3],
may be enhanced by memory verification. Indeed,
Palladium works by providing a way for applications
to be executed in a secure context. However, cur-
rently, Palladium only concerns itself with enforcing
protection from other software. So hardware attacks
remain possible. With memory verification, applica-
tions could get guarantees that their data has not
been modified, even by a physical attacker. (While
we do not address the problem of ensuring privacy of
data from a physical attacker in this paper, encrypt-
ing the data that goes off-chip can keep the data in
memory secret.)

3.3 XOM architecture

The eXecute Only Memory (XOM) architecture [9] is
designed to run security requiring applications in se-
cure compartments from which data can escape only
on explicit request from the application. Even the
operating system cannot violate the security model.

This protection is achieved on-chip by tagging data
with the compartment to which it belongs. In this
way, if a program executing in a different compart-
ment attempts to read the data, the processor detects
it and raises an exception.

For data that goes off-chip, XOM uses encryp-
tion to keep the data secret. Each compartment has
a different encryption key. Before encryption, the
data is appended with a hash of itself. In this way,
when data is recovered from memory, XOM can ver-
ify that the data was indeed stored by a program in
the same compartment. XOM prevents an adversary
from copying encrypted blocks from one address to
another by combining the address into the hash of
the data that it calculates.

However, XOM’s integrity mechanism is vulnerable
to replay attacks, which was also pointed out in [17].
Indeed, in XOM there is no way to detect whether
data in external memory is fresh or not.1 An ad-
versary can do replay attacks by having the memory
return stale data that was previously stored at the
same address during the same execution. In particu-
lar, XOM will not notice if only the first write to an
address is ever actually performed.

XOM can be fixed in a simple way by combining it
with memory verification. XOM provides protection

1Limited freshness guarantees are provided by using a dif-
ferent key for each execution, but the method cannot be ex-
tended to checking the freshness of the memory.

from an untrusted OS, and memory verification will
provide protection from untrusted off-chip memory.

4 Integrity Checking Methods

Section 4.1 summarizes two conventional techniques
that can be used to check the memory integrity of
microprocessors. Section 4.2 introduces new schemes
which have a performance advantage over conven-
tional methods as we shall see in Section 7.

In our description of algorithms, we use a term
chunk as the minimum memory block that is read
from and written to memory for integrity checking.
If a word within a chunk is accessed by a processor,
the entire chunk is brought into the processor. In
the simplest instantiation, a chunk can be a L2 cache
block.

4.1 Conventional Techniques
4.1.1 Message Authentication Code: MAC

A hash of a message is a fixed length cryptographic2

fingerprint of the message. A message authentica-
tion code (MAC) is a hash computed over the mes-
sage using a secret key and attached to the message,
which often used to authenticate a message. Later,
a receiver recomputes the MAC of the received mes-
sage and compares it with the attached MAC. If it is
equal to the attached MAC the receiver knows that
the message it received is authentic, that is, is the
original message sent by the sender.

The idea can be simply extended to memory in-
tegrity checking for static data, like most instruc-
tions, in processors. We divide the memory space
into multiple chunks. A processor contains a secret
key on-chip, and associates a MAC for each chunk.
When the processor reads a block from the memory,
it reads the entire chunk that the block belongs to
and recomputes the MAC of the loaded chunk and
compares this with the MAC stored in the memory.
To prevent an adversary from copying content at one
chunk to another chunk, the MAC is computed over
the chunk in combination with its address. For this
reason we call this scheme the addressed MAC (MAC)
scheme.

4.1.2 Cached Hash Tree: CHTree

Unfortunately, MAC cannot be used to check the in-
tegrity of dynamically changing data because it is
vulnerable to replay attacks. The valid MACs guar-
antee that a chunk is stored by the processor, but do
not guarantee that it is the most recent copy. For
this reason, MAC can only be applied to instructions,

2It is hard to find two distinct messages with the same hash.
This property is called collision-resistance.
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which are static for a program, not to data, which
dynamically changes.3

Hash trees (or Merkle trees) are often used to ver-
ify the integrity of dynamic data in untrusted storage
[12]. Figure 2 illustrates a hash tree. Similar to MAC,
the memory space is divided into multiple chunks,
denoted by V1, V2, etc. The chunks are the leaves of
the hash tree. A parent is the hash of the concate-
nation of its children. The root of the tree is stored
on-chip where it cannot be tampered with.

PSfrag replacements

V1 V2 V3 V4

root = h(h1.h2)

h1 = h(V1.V2) h2 = h(V3.V4)

Figure 2: A binary hash (m = 2) hash tree. Each
internal node is a hash of the concatenation of the
data in the node’s children.

To check the integrity of a node in the tree, the
processor (i) reads the node and its siblings from the
memory, (ii) concatenates their data together, (iii)
computes the hash of the concatenated data, and (iv)
checks that the resultant hash matches the hash in
the parent. The steps are repeated all the way to the
root of the tree.

To update a node, the processor checks its integrity
as described in the previous paragraph while it (i)
modifies the node, and (ii) recomputes and updates
the parent to be the hash of the concatenation of the
node and its siblings. These steps are repeated to
update the whole path from the node to the root,
including the root.

Hash trees allow dynamically changing data in an
arbitrarily large storage to be verified and updated
with one small root hash on-chip (128 bits for MD5
[15], 160 bits for SHA-1 [14]). With a balanced m-ary
tree, the number of nodes to check on each memory
access is logm(N), where N is the number of chunks
to be verified. The logarithmic overhead of using the
hash tree can be significant. For example, [7] showed
that applying the hash tree to a processor can slow
down the system by as much as factor of ten. The
experiments used 4-GB memory and 128 bit hashes.

3Even if the instructions do not change for a program, we
need to make sure that the MACs are computed in a different
way for each program to prevent copying instructions from one
program to another. To achieve this, we make the secret key
a function of the processor’s key and a hash of the program.

The performance overhead of using a hash tree can
be dramatically reduced by caching the internal hash
nodes on-chip with regular data. The processor trusts
data stored in the cache, and can perform memory ac-
cesses directly on them without any hashing. There-
fore, instead of checking the entire path from the
chunk to the root of the tree, the processor checks
the path from the chunk to the first hash it finds in
the cache. This hash is trusted and the processor
can stop checking. When a chunk or hash is ejected
from the cache, the processor brings its parent into
the cache (if it is not already there), and updates the
parent in the cache.

Previous work [7] showed that CHTree clearly out-
performs the hash tree in all cases. The performance
overhead of CHTree is often less then 25%. Therefore,
in this paper, we only use CHTree for comparison.
Also, for simplicity, we make the chunks the same as
the L2 cache blocks. (For more details and variants
of CHTree, see [7].)

4.2 Log Hash Integrity Checking

CHTree checks the integrity of memory after every
processor memory access. However, checking the
integrity of every access implies unnecessary over-
head when we are only interested in the integrity of
a sequence of memory operations. For example, in
the certified execution application, knowing exactly
which operation has failed is not useful.

We introduce a new approach of verifying memory
integrity with low run-time overhead. The approach
is based on the work presented by Blum et. al [1] on
memory correctness checking; we have extended it
to be implemented with collision-resistant multiset4

hash functions (which we will describe shortly), and
to incorporate caches.

Intuitively, the processor maintains a read log and
a write log of all of its operations to off-chip memory.
At runtime, the processor updates logs with minimal
overhead so that it can verify the integrity of a se-
quence of operations at a later time. To maintain
the logs in a small fixed amount of trusted on-chip
storage, the processor uses multiset hash functions.
When the processor needs to check its operations, it
performs a separate integrity-check operation using
the trusted state.

A multiset hash maps multisets into a small fixed-
sized bit string. It is incremental in that it is efficient
to update it when a new element is added to the mul-
tiset. We use MSet-XOR MAC [4] based on the hash
function MD5. MSet-XOR MAC requires one MD5 op-
eration using a secret key in the processor, and one

4A multiset is an unordered group of elements where an
element can occur as a member more than once [16].
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XOR operation to update the multiset hash incre-
mentally. MSet-XOR MAC is set-collision resistant in
that it is hard to find a set and a multiset which
produces the same hash. For our purpose, since the
multiset hashes are used to maintain logs, we refer
to them as log-hashes, and refer to our schemes as
log-hash schemes.

4.2.1 Baseline Algorithm: LHash

Figure 3 shows the steps of the baseline Log Hash
(LHash) integrity checking scheme. We describe the
operations assuming that the chunk is the same as
a L2 cache block and the cache is write-allocate. To
verify a sequence of memory operations, the proces-
sor keeps two log hashes (ReadHash and Write-

Hash) and a counter (Timer) in trusted on-chip
storage. ReadHash maintains information of data
read from memory, and WriteHash maintains in-
formation of data written to memory. Because our
log hashes maintains set information, Timer is used
to mark the order of memory operations. We denote
the (ReadHash, WriteHash, Timer) tuple as the
object T .

Whenever there is a new set of chunks of memory
that need to have their integrity verified, the pro-
cessor performs an add-chunks operation to add it to
WriteHash. This operation effectively remembers
the initial value of the chunks in WriteHash. For
example, if the scheme is verifying a virtual memory
space, whenever a new page is allocated, all of the
chunks in the page are initialized using add-chunks.
If the scheme verifies the entire physical memory, the
chunks in the entire memory are initialized at boot
time.

At runtime, the processor calls read-chunk and
write-chunk to properly update the logs as it reads
and writes chunks. When a chunk gets evicted from
the cache, the processor logs the evicted chunk’s value
by calling write-chunk. The chunk is associated with
a new time stamp by incrementing Timer and us-
ing the new value. WriteHash is updated with the
hash of the corresponding address-chunk-time stamp
triple. If the chunk is dirty, the chunk and the time
stamp are written back to memory; if the chunk is
clean, only the time stamp is written back to mem-
ory.

The processor calls read-chunk to bring a chunk
from the cache. The time stamp associated with
the chunk is checked to be less than or equal to the
current value of Timer. Because the processor only
maintains hashes, the time stamps are used to ensure
that the chunk the processor reads from memory is
the most recent chunk it stored to memory and that
its memory accesses are not being reordered by an
adversary (we refer to [4] for a detailed argument).

Initialization Operation
add-chunks(T , set of Address-Chunk pairs):

1. Increment T .Timer. TimeStamp = T .Timer.

2. For each pair:

(a) Store (Chunk, TimeStamp) at address,
Address, in memory.

(b) Update T .WriteHash with the hash of
(Address·Chunk·TimeStamp).

Run-Time Operations

• For a cache eviction
write-chunk(T , Address, Chunk):

1. Increment T .Timer. TimeStamp =
T .Timer.

2. Update T .WriteHash with the hash of
(Address · Chunk · T .TimeStamp).

3. If a block is dirty, write (Chunk, Timer)

back to memory. If the block is clean, only
write Timer back to memory (we do not
need to write Chunk back to memory).

• For a cache miss, do read-chunk(T , Address):

1. Read the (Chunk, TimeStamp) pair from
Address in memory and bring Chunk into
the cache.

2. If TimeStamp > T .Timer, raise an integrity
exception.

3. Update T .ReadHash with the hash of
(Address · Chunk · TimeStamp).

and store Chunk in cache.

Integrity Check Operation
integrity-check(T ):

1. NewT = (0, 0, 0).

2. For each chunk address covered by T , check if the
chunk is in the cache. If it is not in the cache,

(a) read-chunk(T , address).

(b) add-chunks(NewT , address, chunk), where
chunk is the chunk read from memory in
Step 2a.

3. Compare ReadHash and WriteHash. If differ-
ent, raise an integrity exception.

4. If the check passes, T = NewT .

Figure 3: LHash Integrity Checking Algorithm.
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ReadHash is updated with the hash of the address-
chunk-timer triple.

The WriteHash maintains information on the
chunks that, according to the processor, should be
in memory at any given point in time. The Read-

Hash maintains information on the chunks the pro-
cessor reads from memory. During runtime, com-
pared to ReadHash, WriteHash is updated once
more per address. Therefore, to check the integrity of
operations, all addresses covered by T are read and
ReadHash gets updated accordingly. If ReadHash

is equal to WriteHash, and assuming that all of the
time checks passed, then the memory was behaving
correctly during the processor’s sequence of opera-
tions. This checking is done in the integrity-check

operation.

The processor performs an integrity-check opera-
tion when a program needs to check a sequence of op-
erations, or when Timer is near its maximum value.
Unless the check is at the end of a program execution,
the processor will need to continue memory verifica-
tion after an integrity-check operation. To do this,
the processor initializes a new WriteHash while it
reads memory during an integrity-check. If the in-
tegrity check passes, WriteHash is set to the new
WriteHash, and ReadHash and Timer are reset.
The program can then continue execution as before.

To avoid reading the entire virtual or physical
memory space on a integrity-check operation, the
processor can incrementally add chunks on demand
and use a table to maintain the list of chunks ever
touched. For example, the processor can use the pro-
gram’s page table to keep track of which pages it used
during the program’s execution. When there is a new
page allocated, the processor calls add-chunks for all
chunks in the page. When the processor performs an
integrity-check operation, it walks through the page
table in an incremental way and reads all chunks in
a valid page.

In this scheme, the page table does not need to
be trusted. If an adversary changes the page table so
that the processor initializes the same chunk multiple
times or skip some chunks during the check operation,
the integrity check will fail in that ReadHash would
not be equal to WriteHash.

In our description and implementation, we have
used two log hashes, WriteHash and ReadHash.
It is possible to implement the scheme using one log
hash, RWHash. When a chunk is evicted from the
cache, the hash of its corresponding triple is ‘added’
to RWHash; when a chunk is brought into the cache,
the hash of its corresponding triple is ‘subtracted’
from RWHash. In essence, RWHash is the differ-
ence of WriteHash and ReadHash. If at the end
of the integrity-check operation, LHash is equal to 0,

the integrity check is successful.

4.2.2 Making Checks Fast: H-LHash

In LHash, the T stored in the processor covers all of
the memory space to be verified. As a result, every
integrity-check operation involves reading all of the
chunks in this memory space. Although the run-time
overhead of the scheme is minimal, the overhead of
this integrity check can be significant. We propose
a hierarchical scheme (H-LHash) where the processor
only needs to read the subset of the memory space
touched since the last integrity-check operation when
performing an integrity check.

In the hierarchical scheme, the memory space is di-
vided into multiple subspaces. A subspace is a block
of memory that is verified by one T , (ReadHash,
WriteHash, Timer) tuple. For example, the sub-
space for the LHash scheme is the entire memory
space to be verified. The H-LHash scheme can be con-
sidered as a hash tree where each node is a T that
verifies its children using the LHash scheme. Simi-
lar to the hash tree scheme (Figure 2), chunks at the
leaves form a data subspace. The children of each
internal node form a subspace of chunks containing
T s. For example, in Figure 2, V1 and V2 form a data
subspace that is verified by h1. h1 and h2 form a T
subspace that is verified by root. In this way, each
parent is a log hash of its children.

Our hierarchical scheme reduces the overhead of
traversing the entire path from the leaf to the root
using the cache in a manner similar to that in CHTree.
When a chunk is read from or written to the memory,
the processor needs to properly update ReadHash

or WriteHash. If its parent T is in the cache, it is
trusted and can be updated using read-chunk or write-

chunk. On the other hand, if the parent is not in the
cache, it is brought into the cache and the grandpar-
ent T is updated. Unlike the CHTree scheme, this
scheme does not require reading all the siblings to
update the parent. Therefore, it is possible to have a
wide tree structure without incurring significant over-
head 5. Refer to Figure 4 for detailed algorithms.

During the integrity check operation, the tree is
traversed in a depth first manner. However, the
search only traverses children for which the corre-
sponding ReadHash is not equal to 0; in other words
it only traverses children which have been updated
since the last integrity check. This means that only
data chunks in the subspaces which have been used
since the last integrity check will be read during the
current check. Compared to LHash, using the tree in-
creases the cost at run time only slightly provided the

5In the H-LHash scheme, T verifies a subspace that can con-
tain many chunks, whereas each hash verifies one chunk in the
CHTree scheme.
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Get Parent operation
get-parent(Address):

1. addr = Parent(Address).

2. If Tparent stored at addr is not in cache, and is
not the root, then

(a) Tgrandparent = get-parent(addr).

(b) Get Tparent from the chunk read in read-
chunk(Tgrandparent, addr).

3. If Tparent is not the root, store Tparent in the
cache.

4. Return Tparent.

Initialization Operation
hier-add-chunks(set of Address-Chunk pairs):

1. Tparent = get-parent(Address).

2. add-chunks(Tparent, set of Address-Chunk pairs).

Run-Time Operations

• For a cache eviction
hier-write-chunk(Address, Chunk):

1. Tparent = get-parent(Address).

2. write-chunk(Tparent, Address, Chunk)

• For a cache miss, do
hier-read-chunk(Address):

1. Tparent = get-parent(Address).

2. read-chunk(Tparent, Address).

and store Chunk read in step 2 in the cache.

Integrity Check Operation
hier-integrity-check(T ):
Just like integrity-check(T ), with the extra step:

2(c) For each Tchild in chunk read in step
2(a), if Tchild.ReadHash6=0, then hier-integrity-
check(Tchild).

Figure 4: H-LHash Integrity Checking Algorithm

tree is not deep, but the cost of regular intermediate
integrity checks can decrease significantly.

4.3 Implementation
4.3.1 Memory Layout

To implement the memory checking schemes, the lay-
out of data, hashes, and time stamps should be de-
termined. The layout should be simple enough for
hardware to easily compute the address of the cor-
responding hash or time stamp from the address of
a data chunk. We give an example layout for the

H-LHash scheme where we use the top of the memory
space for tree nodes and the bottom of the space for
time stamps.

Nodes (T for H-LHash) in a tree are linearly laid
out at the top of the memory space in a breadth-first
manner. The root is at address 0. The second level
nodes follow, and so on. The address of a parent node
can be easily found from the child address by

Parent(Addr) =
Addr − BNode

BSubSpace

× BNode.

BNode is the size of a node (T ) in bytes, and
BSubSpace is the size of the memory space covered
by each node. For simplicity, we choose BNode and
BSubSpace to be a power of two.

Time stamps are laid out linearly at the bottom of
the memory space starting at TSBase. Therefore, the
address of a time stamp can be computed by

T imeStampAddr = TSBase +
Addr − BNode

BChunk

×BTS .

BChunk is the chunk size, which is a multiple of
BNode, and BTS is the size of a time stamp.

The MAC scheme can use the same layout with time
stamps for MACs, and the CHTree scheme can use
the same layout with tree nodes for hash trees.

4.3.2 Hardware Modules

We describe the implementation of the integrity
checking mechanisms based on the H-LHash scheme.
The LHash scheme is a simplified version of the hier-
archical scheme. MACs and hash trees also require
very similar datapaths [7].

L2

MEMORY BUS

      hash
computation
       unit

      hash
     buffer

 Time
Stamp
Cache

>

Exception

Addr, Data

Data
Block

time
stamp

+1

hashes

timer

Parent
   T

Updated T

Update T

Time Stamps

timer

  root T
timer,hashes

Figure 5: Hardware implementation of the H-LHash

scheme.

The integrity checking module is added next to the
on-chip Level 2 (L2) cache as shown in Figure 5.
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Whenever there is a cache miss, the time stamp is
checked and the (Address, Data, T ime) triple from
the memory is added to a hash buffer. The unit
computes the hash of the triple, and updates the
parent’s ReadHash by accessing the L2 cache (or
the root register). If a cache block gets evicted,
the new time stamp is read from a counter, the
(Address, Data, T imenew) from the cache is added
to a hash buffer, and the time stamp is written back
to memory. The unit compute the hash of the triple,
and updates the parent’s ReadHash by accessing
the L2 cache (or the root register).

As an optimization, a small time-stamp cache can
be added. Modern processors often have a 8-B or
wider memory bus, while we can use 4-B time stamps.
In this case, directly accessing time stamps one by
one will waste one half of bandwidth used for time
stamps. To avoid this inefficiency, we add a small
non-write-allocate cache with the cache block size the
same as the memory bus width. All accesses to time
stamps go through this cache.

5 Multiprocess Environments

Up to now, we have been working as if the program
for which we want to do memory checking has full
control of the processor. This is far from reality on
most computing platforms, so to really make them
useful, we have to show how our primitives could be
integrated into a multitasking environment with mu-
tually mistrusting processes. In this section we sum-
marize two methods to achieve this goal.

5.1 Checking Physical Memory

So far, we have implicitly been checking physical
memory. It is possible to continue doing so in mul-
tiprocessor systems on which some core functionality
of the operating system is trusted. We shall call the
trusted part of the operating system the nexus as in
Palladium [3]. The goal is for many mutually mis-
trusting applications to be able to run concurrently
without being vulnerable to tampering from any soft-
ware other than the nexus, or to a physical attacker.6

In this model, the nexus configures the processor to
perform memory checking on some contiguous block
of memory. The data and the checker’s meta-data are
laid out in that block exactly as in the single process
case. The memory checking directly makes the block
of memory immune to physical tampering.

Next, mutually mistrusting pieces of software must
be protected from each other. The processor’s tra-
ditional protection mechanisms such as page tables,

6Palladium only protects software from software attacks.
We additionally protect integrity from a physical attacker.

and privilege levels are adequate to protect applica-
tions from each other. To protect applications from
potentially malicious parts of the operating system
(device drivers, for example), we arrange, as in Pal-
ladium, to have the nexus run at a higher privilege
level than the rest of the operating system.

The final problem is to give applications a way of
checking that they are running under the control of
a valid nexus. A collision resistant hash of the nexus
is stored in a special register in the processor that
applications can read to determine the nexus that
they are running under.

Overall, this strategy is very close to what is done
in Palladium, and we believe that memory checking
would be easy to add to Palladium.7

5.2 Checking Virtual Memory

The strategy that was described in the previous sec-
tion has a few drawbacks. First, the operating system
needs to be aware of the memory checking mecha-
nisms. Updating the operating system could involve
a considerable development effort that would have
to be done before any protected application could
run. Moreover, it would be satisfying to provide, as
in XOM [9], a security mechanism that is free of any
trust in the operating system.

To get rid of the nexus, it is necessary to add more
functionality to the hardware (in practice this func-
tionality could be provided in part by firmware on the
processor). The result will be quite similar to XOM,
with encryption replaced by memory checking.

First, the processor must have a notion of protected
process. Indeed, if many protected processes are co-
existing, and the operating system is untrusted, then
the processor must be able to distinguish processes
from each other without help from the operating sys-
tem. Therefore, when a secure process starts, the
processor has to make note of the fact, and allocate
some state for the process.

The state the processor has to keep for each pro-
cess is the root of its secure storage and the value of
the process’s registers. While the protected process
is running, memory checking is activated. Whenever
the process loses control the processor records its reg-
isters. When the process is resumed, the processor
checks that the registers match the recorded values.

The state that the processor has to maintain can
be fixed, as in XOM, or it can be stored in main
memory and protected by memory checking. In the
latter case, some mechanism has to be provided for
the processor to allocate some memory for its state

7One interesting difference with Palladium is that we no
longer need support from the bus controller to guarantee exe-
cution integrity. Indeed, protection from DMA attacks is pro-
vided by the memory checking functionality.

8



(a user level daemon could do the job as any failure
to do its job correctly would be promptly detected
by the memory checking algorithm, and there is no
need to involve the operating system).

In this scheme, memory authentication is carried
out on each process’s virtual memory. The process
invokes an instruction that activate memory check-
ing on some contiguous block of virtual memory. The
data and checker meta-data is laid out in this block
in the usual way. Since the checker algorithms need
to operate at the level of the L2 cache, this layout
strategy implies that the checker algorithm can deter-
mine the virtual address of a block to be written back
to compute the virtual address of the corresponding
meta-data, and then convert the virtual address into
a physical address. To make these conversions pos-
sible the L2 cache should contain virtual addresses,
and the checker needs a table similar to the TLBs for
virtual to physical translation.

In many programs virtual memory is sparsely filled,
with the stack at high addresses, and code and heap
at low addresses. This model can accommodated by
checking a large sparse contiguous block of memory.
Pages of checker data that are not needed because
the corresponding address is unused can be left unal-
located.

5.2.1 Context Switching and the Cache

A major problem arises during context switch from
a protected task. Indeed, at the time of the context
switch, the on-chip cache can contain dirty blocks
to be written back to checked memory. However,
during the context switch, the virtual memory map-
ping changes. Consequently, at write-back time, the
processor no longer has the old process’s page table
it would need to find the checker meta-data for the
block.

The simple solution to the problem is to write back
all of a protected task’s data before a context switch.
The drawbacks of this method are of course a perfor-
mance penalty, because the processor will be idle dur-
ing the write back, and also a significant increase in
interrupt latency. Both problems can be mitigated by
adding tag bits to the cache to allow the processor to
keep track of which process’s data space cached data
corresponds to. Just a single tag bit to distinguish
between the previous task and the current task could
drastically reduce the performance penalty. Along
with the tags, extra state has to be added to the
processor so that it can remember the page table lo-
cations for each tag value.

A final precaution must be taken for data in the
cache when a context switch occurs to a protected
process. Indeed, data that is in the cache at the time
of the context switch has not necessarily been checked

by the new process, but being in the cache, it is as-
sumed to be correct. The simple solution is to flush
the cache on a context switch. Once again, the sim-
ple solution can be improved by adding tag bits that
identify which protected process trusts the data, so
that a protected process can keep data in the cache
when it is not running.

It should be noted that for global address space
architectures, the caching problems are greatly sim-
plified as there are, by definition, enough tag bits in
the cache to identify each process’s data.

5.3 Summary

In this section we have considered two ways of im-
plementing memory checking in multiprocessing sys-
tems. These are just two extreme cases, one where
everything but the actual memory checking is done
in a trusted nexus8 that is part of the operating sys-
tem, and one where it is done without any operating
system intervention. Real implementations will prob-
ably choose intermediate solutions depending on the
other constraints that drive their architectures. In
particular, the need to allow sharing of data between
protected processes in a flexible way favors the soft-
ware approach.

6 Comparisons

This section compares four integrity checking mech-
anisms described in this paper: MAC, CHTree, LHash
and H-LHash. All four schemes can be implemented
in either software or hardware, but we focus on the
case when we use them as a hardware mechanism in
microprocessors.

6.1 Restrictions

The MAC scheme can only be applied to static data
such as program instructions because it cannot pre-
vent replay attacks. The other three schemes can be
used for data integrity protection.

6.2 Performance Overhead

The major component to determine the run-time per-
formance overhead of the integrity checking scheme
is the additional bandwidth usage. The MAC scheme
uses BMAC

BChunk
times more bandwidth compared to a

processor without integrity checking, where BMAC

8It would be possible to be a little more extreme and have
software actually perform the memory checking. In that case,
though, the processor would require some dedicated on-chip
storage for the memory checking code to avoid the circular
problem of having to check the memory checking code. We
believe, however, that this solution would be too slow to be
worthwhile.
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is the size of a MAC in bytes and BChunk is the
size of a chunk. The bandwidth usage of CHTree de-
pends on the average number of hash accesses that
each memory access incurs (zhash). The overhead
is zhash · BHash

BChunk
, where BHash is the size of a hash.

LHash reads and writes time stamps and thus has the
bandwidth overhead of 2 · BT ime

BChunk

9 , where BTime is
the size of a time stamp. For H-LHash, let zlhash

be the average number of log hash accesses for each
memory access. Each log hash is BTime + 2BHash

bits large, and on a cache miss or eviction, its par-
ent must be updated, with the overhead being the
time stamp that is read or written to memory. The
leaf’s parent must also be updated, with a cost that
is the same as LHash. Thus, the bandwidth overhead

of H-LHash is zlhash(2BT ime+2BHash) + 2BT ime

BChunk
.

For a typical configuration (BMAC = BHash = 16,
BChunk = 64, BTime = 4, zhash = 1.5, zlhash =
0.04), the overhead is MAC=25%, CHTree=37.5%,
LHash=12.5%, H-LHash=15%. Therefore, the LHash

scheme is likely to perform the best when checking is
infrequent.

However, the LHash scheme incurs significant
overhead of reading memory space for each
integrity-check operation. Therefore, the perfor-
mance of the scheme will degrade as we perform more
frequent check operations.

On the other hand, the CHTree scheme pollutes the
L2 cache with hashes and degrades the cache perfor-
mance of an executing program. This effect also de-
grades the performance especially for systems with
small caches.

H-LHash moves some of the cost of the
integrity-check operation over to run time. Its
run time cost can, thus, be expected to be slightly
more than that of LHash, but its integrity checking
cost should be significantly less than that of LHash.

The performance of the four schemes are studied in
detail using a processor simulator in the next section.

6.3 Memory Space Overhead

All the integrity checking schemes need memory
space in addition to the data they verify. MAC

stores a MAC of the data chunk, CHTree stores
hashes, and LHash stores time stamps. H-LHash

stores time stamp-ReadHash-WriteHash triples.
We evaluate the overhead of addtional memory space
compared to the data chunks. The overhead is ap-
proximately BMAC

BChunk
for MAC, 1

mCHT ree−1 for CHTree

with a mCHTree-ary hash tree, BT ime

BChunk
for LHash, and

((1 + 1
mHLHash−1 ).(1 + BT ime

BChunk
) − 1) for H-LHash.

9This is an upper bound, since a write-allocate cache will
consume 2 · BChunk bandwidth not just BChunk .

For typical values (mCHTree = 4, mHLHash = 64),
the overheads are 25%, 33%, 6.25%, and 7.9% for MAC,
CHTree, LHash, and H-LHash respectively. Therefore,
LHash has significantly less space overhead compared
to the other schemes.

6.4 Logic Overhead

The major logic component to implement the
schemes is a hash (MAC) computation unit. The
mechanisms only need a few buffers and a small
amount of on-chip storage other than the hash unit.

To evaluate the cost of computing hashes, we con-
sidered the MD5 [15] (and SHA-1 [6]) hashing algo-
rithms. The core of each algorithm is an operation
that takes a 512-bit block, and produces a 128-bit (or
160-bit, respectively) digest. 10

In each case, simple 32-bit operations are per-
formed over 80 rounds. The total number of 32-bit
logic blocks that is required for the 80 rounds is 260
adders, 32 multiplexers, 16 inverters, 16 or gates and
48 xor gates (for SHA-1, 325 adders, 60 and gates,
40 or gates, 20 multiplexers and 272 xor gates). If
these were all laid out, we would therefore need on
the order of 50,000 1-bit gates altogether. In fact,
the rounds are very similar to each other so it should
be possible to have a lot of sharing between them.
Therefore, the circuit size is inversely proportional to
the throughput of hash computation.

For MAC and CHTree, the hash of BChunk (typi-
cally 64 Bytes) needs to be computed for each mem-
ory read/write. For LHash and H-LHash, two hashes
of BAddress + BChunk + BTime (typically 72 Bytes)
for each memory read. Therefore, these schemes
would have about 2-3 times more logic overhead com-
pared to others. For typical memory throughput of
1.6GB/s, the circuit size will be around 10,000 to
20,000 1-bit gates.

Table 1 summarizes the discussion in this section.
The typical values are shown in the parentheses.

7 Experiments

This section evaluates the LHash and H-LHash

schemes compared to the two other schemes through
detailed simulations. For all integrity checking
scheme, we used the chunks that are the same as the
cache blocks.

10In fact, for variable length messages, the output from the
previous 512-bit block is used as an input to the function that
digests the next 512-bit block. Since we are dealing with fixed-
length messages of less than 512 bits, we do not need this.

10



MAC CHTree LHash H-LHash

Characteristics

Applications Static
Static
Dynamic

Static
Dynamic

Static
Dynamic

Check Period Fixed Fixed Flexible Flexible

Performance Overhead

Run-Time B/W
Med
(25%)

High
(37.5%)

Low
(12.5%)

Low
(15%)

Cache Pollution No Yes No Yes

Check Overhead No No Yes Yes

Others

Space Overhead
Med
(25%)

High
(33%)

Low
(6.25%)

Low
(7.9%)

Hash Logic 1x 1x 2-3x 2-3x

Table 1: Comparison of four integrity checking
scheme. The hash logic size is relative to the size
required for the MAC scheme.

Architectural parameters Specifications

Clock frequency 1 GHz
L1 I-caches 64KB, 2-way, 32B line
L1 D-caches 64KB, 2-way, 32B line
L2 caches Unified, 1MB, 4-way, 64B line
L1 latency 2 cycles
L2 latency 10 cycles

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

TLB latency 160
Memory bus 200 MHz, 8-B wide (1.6 GB/s)

Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

Hash latency 160 cycles
Hash throughput 3.2 GB/s (MAC, CHTree

6.4 GB/s (LHash, H-LHash
Hash buffer 32
Hash length 128 bits
Time stamps 32 bits

Time stamp cache 32

Table 2: Architectural parameters used in simula-
tions.

7.1 Simulation Framework

Our simulation framework is based on the Sim-
pleScalar tool set [2]. The simulator models specula-
tive out-of-order processors. To model the memory
bandwidth usage more accurately, separate address
and data buses were implemented. All structures
that access the main memory including a L2 cache
and the integrity checking units share the same bus.

The architectural parameters used in the simula-
tions are shown in Table 2. SimpleScalar is config-
ured to execute Alpha binaries, and all benchmarks
are compiled on EV6 (21264) for peak performance.

To capture the characteristics of benchmarks in the
middle of computation, each benchmark is simulated
for 100 million instructions after skipping the first
1.5 billion instructions. In the simulations, we ignore
the initialization overhead of the integrity checking
schemes. Given the fact that benchmarks run for

a long time, the overhead should be negligible com-
pared to the steady-state performance.

7.2 Baseline Characteristics

gcc   gzip  mcf   twolf vortex vpr   applu art   swim  
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IP
C

256KB
512KB
1MB
2MB
4MB

Figure 6: Baseline performance of simluated bench-
marks. Results for five different L2 caches with 64-B
blocks are shown.

For all the experiments in this section, nine
SPEC2000 CPU benchmarks [8] are used as represen-
tative applications: gcc, gzip, mcf, twolf, vortex,
vpr, applu, art, and swim. Figure 6 illustrates
the baseline characteristics of the benchmarks used
in the experiments. For each benchmark, the IPCs
are shown for five different L2 cache sizes with 64-
B blocks. The benchmarks show varied characteris-
tics such as the level of ILP (instruction level par-
allelism), cache miss-rates, etc. For example, mcf,
applu, and swim show poor L2 cache performance
for all sizes simulated, and heavily utilize the off-
chip memory bandwidth (bandwidth-sensitive).
On the other hand, other benchmarks are sensi-
tive to cache sizes, and do not require high off-chip
bandwidth (cache-sensitive). By simulating these
benchmarks, we can study the impact of memory ver-
ification on various types of applications.

7.3 Run-Time Performance

We first investigate the impact of the integrity check-
ing schemes on processor performance ignoring the
overhead of integrity-check operations for LHash and
H-LHash schemes. If applications export secrets or
sign results at the end of execution, or relatively infre-
quently, the overhead is negligible and the results in
this section represents the overall performance. For
example, if a typical program executes for a minute,
this corresponds to roughly 100 billion instructions,
on a state-of-the-art 2- or 4-way superscalar 1 GHz
processor. The memory-read and check operation
typically takes less than a billion cycles, and if this
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is performed once, at the end of the execution, the
overhead is very small.

Even for applications requiring rather frequent in-
tegrity checking, the overhead of an integrity-check

operation is independent of cache configurations.
Therefore, we study the impact of various cache con-
figurations without considering LHash checking over-
head. The effects of frequent integrity checking is
studied in the following subsection.

Figure 7 illustrates the impact of integrity check-
ing on the run-time program performance. For
four different L2 cache configurations, the normal-
ized IPCs (instructions per clock cycle) of four
schemes are shown: MACs (MAC), cached hash trees
(CHTree), log-hashes (LHash), and hierarchical log-
hashes (H-LHash). The IPCs are normalized to the
baseline performance with the same configuration.

The experimental results clearly demonstrate the
advantage of the log-hash schemes (LHash and
H-LHash) over the conventional integrity checking
schemes when we can ignore the integrity-check over-
head. For all cases we simulated, LHash outperforms
both MAC and CHTree. The performance overhead
of the LHash scheme is often less than 5% and less
than 15% even for the worst case. The MAC scheme
also performs very well for many cases (less than 5%
overhead) and show only 20% performance degrada-
tion in the worst case. However, the MAC scheme is
only secure for the static instruction verification. On
the other hand, the cache hash tree CHTree has as
much as 50% overhead in the worst case and 20-30%
in general.

The run-time performance of the hierarchical log-
hash scheme (H-LHash) is somewhat worse than the
simple scheme (LHash) because it has to update a
tree of hashes rather than just one. The hierarchical
scheme has 5-10% overhead in general, and 20% in
the worst case. However, the H-LHash scheme is still
significantly better than the hash tree because it has
considerably less levels (4) in the tree compared to
the CHTree (13). It is possible to have many children
in the hierarchical log-hash scheme (64-ary tree in the
simulation) because we only need to read one node
to update the parent. On the other hand, a 64-ary
tree is not viable for the hash tree scheme because
it needs to read all the children nodes to check or
update the parent.

The figure also demonstrates the general effects of
cache configuration on the memory integrity checking
performance. The overhead of integrity checking de-
creases as we increase either cache size or cache block
size. Larger caches results in less memory accesses to
verify and less cache contention between data and
hashes. Larger cache blocks reduce the space and
bandwidth overhead of integrity checking by increas-

ing the chunk size.
Memory integrity checking impacts the run-time

performance in two ways: cache pollution and
bandwidth consumption. The CHTree and H-LHash

schemes store its hash nodes in the L2 cache with
program data. As a result, the cache miss-rate of the
program data can be increased by the schemes. On
the other hand, all integrity checking schemes use ad-
ditional off-chip bandwidth compared to the baseline
case, to access MAC/hash or time stamps. Comsum-
ing more bandwidth may delay the program memory
accesses and increase the latency.

7.3.1 Cache Pollution

Figure 8 illustrates the effects of integrity checking on
cache miss-rates. Since MAC and LHash do not store
hashes in the cache, those schemes do not affect the
L2 miss-rate. However, H-LHash slightly increases
the miss-rate and CHTree can significantly increase
miss-rates for small caches. In fact, the performance
degradation of the CHTree scheme for cache-sensitive
benchmarks such as gcc, twolf, vortex, and vpr in
the 256-KB case (Figure 7) is mainly due to cache
pollution. As you increase the cache size, cache pol-
lution becomes negligible as you can cache both data
and hashes without contention (Figure 8 (b)).

7.3.2 Bandwidth Consumption
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Figure 9: Off-chip bandwidth consumption of mem-
ory verification schemes (MAC, CHTree, LHash, and
H-LHash). The L2 cache is 1 MB with 64-B cache
blocks. The bandwidth consumption is normalized
to the baseline case.

The bandwidth consumptions of the integrity
checking schemes are shown in Figure 9. The MAC

scheme has the constant overhead of 25% in this case
since it always accesses one MAC for each cache block
access. The LHash scheme theoretically consumes
6.25% to 12.5% of additional bandwidth compared
to the baseline. In our processor implementation,
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Figure 7: Run-time performance overhead of memory integrity checking: MACs (MAC), cached hash trees
(CHTree), log-hashes (LHash), and hierarchical log-hashes (H-LHash). Results are shown for three different
cache sizes (256KB, 1MB, 4MB) with cache block size of 64B and 128B. 32-bit time stamps and 128-bit
MAC/hashes are used. In the H-LHash scheme, each T covers 4-KB memory space.
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Figure 8: L2 cache miss-rates of program data for a standard processor (Base) and the ones with memory
verification schemes (MAC, CHTree, LHash, and H-LHash). The results are shown for 256-KB and 4-MB caches
with 64-B cache blocks.

however, it consumed more (8.5% to 20%) because
our bus width is 8B while the time stamps are only
4B. The CHTree and H-LHash schemes consume addi-
tional bandwidth depending on the L2 cache perfor-
mance on hashes. Because CHTree needs a deep tree,
it consumes much more bandwidth than others. For
bandwidth sensitive benchmarks, the bandwidth over-
head directly translates into the performance over-
head. This makes log-hash schemes much more at-
tractive even for processors with large caches where
cache pollution is not an issue.

7.4 Overall Performance

The last subsection clearly demonstrated that the
LHash scheme outperforms the others when integrity-

check operations are infrequent. However, applica-
tions may need to check memory integrity more often
for various reasons such as exporting a secret to other
programs, signing the results, etc. In these cases, we
cannot ignore the overhead of the checking operation.
In this subsection, we compare the integrity checking
schemes including the overhead of periodic integrity-

check operations.
We assume that the log-hash schemes check mem-

ory integrity every T memory accesses. A processor
executes a program until it makes T main memory ac-
cesses, then checks the integrity of the T accesses by
performing an integrity-check operation. Obviously,
the overhead of the checking heavily depends on the
characteristics of the program as well as the check pe-
riod T . We use two representative benchmarks swim
and twolf – the first consumes the largest amount
of memory and the second consumes the smallest.
swim uses 192MB of main memory and twolf uses

only 2MB of memory. A processor only verifies the
memory space used by a program.

Figure 10 compares the performance of the four
memory integrity checking schemes for varying check
periods. The performance of the conventional
schemes (MAC and CHTree) are indifferent to the
checking period since they have no choice but to
check the integrity after each access. Effectively,
these schemes always have a checking period of one
memory access.

On the other hand, the performance of the log-
hash schemes (LHash and H-LHash heavily depends
on the checking period. The LHash scheme is infeasi-
ble when the application needs to assure the memory
integrity after a small number of memory accesses.
In this case, either MACs or hash trees should be
used since the IPC of the LHash scheme is effectively
zero. As the checking period increases, the perfor-
mance of LHash improves, and there is a break-even
point between a conventional scheme and the LHash

scheme. For a long period such as hundreds of mil-
lions to billions of accesses, both LHash and H-LHash

converges to the run-time performance. In the ex-
periments, the break-even point with the hash tree
scheme is around 105 to 106 memory accesses. twolf
has a smaller break-even point because it needs to
read less amount of data per check.

The hierarchical log-hash scheme (H-LHash) dra-
matically improves the LHash scheme for short check-
ing periods, with a slight performance degradation for
long checking periods. With the hierarchical scheme,
the performance is acceptable even for short peri-
ods and it reduces the break-even point as well. In
general, the hierarchical scheme offers a trade-off be-
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Figure 10: Performance comparision between the offline scheme and the online scheme for various checking
periods. Results are shown for 256-KB and 4-MB L2 caches with 64-B blocks. 32-bit time stamps and
128-bit hashes are used.
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tween the check overhead and the run-time perfor-
mance. We can increase the subspace that each T
covers to reduce the number of chunks to be read for
each check. Therefore, a smaller subspace will reduce
the check overhead. However, smaller subspaces re-
sult in a deeper tree structure, which degrades the
run-time performance.
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Figure 11: The effect of various subspace sizes for
the H-LHash scheme. The results are shown for swim
with a 256-KB L2 cache with 64-B blocks.

Figure 11 demonstrates the trade-off. The perfor-
mance of the H-LHash scheme is shown for different
subspace sizes: 512B, 4KB, 16KB, and 4GB 11. As
expected, H-LHash with a larger subspace performs
better for short checking periods, but worse for long
checking periods. Potentially, the hierarchical scheme
can be dynamically configured for each program to re-
sult in the best performance for program’s checking
period. This would be possible because the hard-
ware implementations of different subspace sizes are
the same except for the configuration parameter that
can be easily stored in registers.

Another advantage of the hierarchical scheme
(H-LHash) over the basic log-hash scheme (LHash) is
smaller time stamps (not shown in figures). The hier-
archical scheme has a timer for each node that incre-
ments much slower than the global timer of the LHash
scheme. Therefore, the hierarchical scheme requires
a much smaller timer to execute a given number of
memory accesses without a checking operation.

7.5 Design Parameters

This subsection studies the effects of design parame-
ters of the integrity checking schemes on the perfor-
mance. We focus on the parameters of the log-hash
schemes. However, the MAC and hash tree schemes
have similar trade-offs and contraints.

11We can think LHash as a special case of H-LHash where
there is only one level in the tree.

7.5.1 Hash Computation Throughput
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Figure 12: The effect of MAC/hash computation
throughput on performance. The results are shown
for swim with a 1-MB L2 cache with 64-B blocks.

Figure 12 illustrates how the hash computation
throughput limits the system performance. To fully
utilize the available off-chip memory bandwidth, the
hash throughput should be properly balanced with
the memory bandwidth. As discussed in Section 6,
the MAC and CHTree schemes require one hash com-
putation of 64B per 64B memory access. Therefore,
the hash throughput should match the memory band-
width (1.6GB/s). The LHash and H-LHash schemes
require more hash computation, and show significant
performance degradation for less than 3.2GB/s in the
experiment. Therefore, these log-hash scheme would
require two to three times more logic overhead to im-
plement a hash computation unit than MACs and
hash trees.

7.5.2 Hash Buffer
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Figure 13: The effect of MAC/hash buffer size on
performance. The results are shown for swim with a
1-MB L2 cache with 64-B blocks.
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The hash buffer stores an address, a chunk, and a
time stamp while the hash computation unit works
on it. The buffer should be large enough to hold
all chunks that is being processed in order to fully
utilize the throughput of the hash computation unit.
For example, Figure 13 illustrates the effect of hash
buffer size on the performance. Given the latency of
160 cycles and throughput of one hash per 20 cycles,
the figure shows that the buffer should be at least 8
entries large.

7.5.3 Time Stamp Cache
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Figure 14: The effect of time stamp cache size (the
number of cache blocks) on performance. The results
are shown for swim with a 1-MB L2 cache with 64-B
blocks.

As discribed in Section 4.3.2, we use a small cache
for time stamps. Figure 14 shows the performance
of the LHash scheme for various sizes of the time
stamp cache. The size of the cache does not mat-
ter for applications where bandwidth consumption is
not a major issue. However, the cache improves the
performance by a few percent by reducing the band-
width overhead for bandwidth-sensitive benchmarks
such as mcf, applu, and swim. About 32-block caches
are large enough because the cache only exploits the
spatial locality of time stamp accesses.

8 Related Work

In [12], hash trees were proposed as a means to up-
date and validate data hashes efficiently by maintain-
ing a tree of hash values over the objects.

Blum et al. addressed the problem of securing
various data structures in untrusted memory. One
scheme is to use a hash tree rooted in trusted mem-
ory [1]. This scheme has a O(log(N)) cost for each
memory access. They also proposed offline schemes
to check the correctness of RAM after a sequence
of operations have been performed on RAM. These

schemes compute a running hash of memory reads
and writes. Their implementation of offline checkers
uses ε-biased hash functions [13]; these hash functions
can be used to detect random errors, but are not cryp-
tographically secure. We have used incremental mul-
tiset hashes and their offline scheme as the basis to
build log-hash-based RAM integrity checkers secure
against active adversaries. We have described how an
on-chip trusted cache can be used to significantly im-
prove the efficiency of the log-hash scheme, and also
described how the scheme can be generalized to a hi-
erarchical scheme for further efficiency improvement.

Recent papers, [7], [5], [11], [10], describe systems
in which a trusted program, running in a trusted com-
puting base (TCB), uses hash trees to maintain the
integrity of data stored on an untrusted storage. The
untrusted storage is typically some arbitrarily large,
easily accessible, bulk store in which the program reg-
ularly stores and loads data which does not fit in
a cache in the TCB. In [7], the program runs on a
trusted processor; the untrusted storage is the ex-
ternal random access memory (RAM). [11] and [10]
describe a file system and database respectively, in
which the program runs on a protected client and
the data is maintained on an untrusted server. We
have compared our log-hash and hierarchical log-hash
schemes with the hash-tree-based schemes of [7] and
a MAC scheme and shown that the log-hash schemes
can be more efficient, in the case where integrity
checking is infrequent. For the same performance
overhead, the hierarchical log-hash scheme allows for
more frequent integrity checking than the log-hash
scheme.

9 Conclusion

We have described and compared various memory in-
tegrity verification schemes that can be used to build
high performance secure computing platforms out of
slightly modified general-purpose processors. Our
conclusion is that log-hash schemes provide the best
tradeoff considering logic complexity, memory space
overhead and performance.

Ongoing work includes the investigation of adap-
tive log-hash schemes and the development of hybrid
hash-tree and log-hash schemes.
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