
Automatic Detection and Repair of Errors in Data
Structures

Brian Demsky
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT
We present a system that accepts a specification of key data
structure constraints, then dynamically detects and repairs
violations of these constraints. Our experience using our sys-
tem indicates that the specifications are relatively easy to
develop once one understands the data structures. Further-
more, for our set of benchmark applications, our system can
effectively repair errors to deliver consistent data structures
that allow the program to continue to operate successfully
within its designed operating envelope.

1. INTRODUCTION
To correctly represent the information that a program ma-

nipulates, its data structures must satisfy key consistency
constraints. If a software error or some other anomaly
causes the data structures to become inconsistent, the ba-
sic assumptions under which the software was developed no
longer hold. In this case, the software typically behaves in
an unpredictable manner and may even fail catastrophically.

This paper presents a new approach for attacking the
data structure inconsistency problem. Instead of attempt-
ing to increase the reliability of the code that manipulates
the data structures, our system accepts a specification of
key data structure consistency constraints. It then dynam-
ically detects and repairs data structures that violate these
constraints. Our goal is not necessarily to restore the data
structures to the state in which a hypothetical correct pro-
gram would have left them (although in some cases our sys-
tem may do this). Our goal is instead to deliver repaired
data structures that satisfy the basic consistency assump-
tions of the program, enabling the program to continue to
operate successfully within its designed operating envelope.
We have identified two kinds of data structures that are es-
pecially appropriate for this approach: 1) long-lived, persis-
tent data structures (such as file systems, application data
files, or serialized data structures), and 2) data structures
for critical systems in which continued operation even in the
face of errors is a paramount concern.

1.1 Basic Technical Approach
Our approach involves two data structure views: a con-

crete view at the level of the bits in memory and an abstract
view at the level of relations between abstract objects. The
abstract view facilitates both the specification of higher level
data structure constraints (especially constraints of linked
data structures) and the reasoning required to repair any
inconsistencies.

Each specification contains a set of model definition rules

and a set of consistency constraints. Given these rules and
constraints, our tool automatically generates algorithms that
build the model, inspect the model and the data structures
to find violations of the constraints, and repair any such
violations. The repair algorithm operates as follows:

• Inconsistency Detection: It evaluates the constraints
in the context of the current data structures to find
consistency violations.

• Disjunctive Normal Form: It converts each vio-
lated constraint into disjunctive normal form; i.e., a
disjunction of conjunctions of basic propositions. Each
basic proposition has a repair action that will make the
proposition true. For the constraint to hold, all of the
basic propositions in at least one of the conjunctions
must hold.

• Repair: The algorithm repeatedly selects a violated
constraint, chooses one of the conjunctions in that con-
straint’s normal form, then applies repair actions to
all of the basic propositions in that conjunction that
are false. A repair cost heuristic biases the system
toward choosing the repairs that perturb the existing
data structures the least.

Note that the repair actions for one constraint may cause an-
other constraint to become violated. To ensure that the re-
pair process terminates, we preanalyze the set of constraints
to ensure the absence of cyclic repair chains that might re-
sult in infinite repair loops. If a specification contains cyclic
repair chains, the tool attempts to prune conjunctions to
eliminate the cycles.

1.2 Experience
We have used our tool to repair inconsistencies in three

applications: a simplified Linux file system, an interactive
game, and Microsoft Word files. In this context, we have
used our tool to repair bitmaps identifying free and allocated
disk blocks, correct reference counts, eliminate inappropri-
ate sharing in linked data structures, correct illegal values
stored in arrays, resolve inconsistencies in correlated values
stored in different data structures, and ensure that recorded
data structure sizes match the size of the corresponding ac-
tual data structure. In addition to these repairs, our tool
is also able to correct out of bounds pointers in linked data
structures, repair incomplete data structures by allocating
and linking in new structures, repair back links (such as par-
ent pointers in trees) in linked data structures, and enforce
inequality constraints between multiple values.

We found that the specifications for our applications were
relatively straightforward to develop once we understood the
underlying data structures and that the automatically gen-
erated repair algorithms were able to produce data struc-
tures that enabled the corresponding programs to continue
to operate successfully. In the absence of this repair, the
programs usually failed. Our results therefore indicate that
our technique may significantly enhance the ability of appli-
cations to recover from data structure errors.

1.3 Contributions
This paper makes the following contributions:

• Specification-Based Approach: It introduces the
concept of using specifications for the automatic de-
tection and repair of inconsistent data structures. It
also introduces the concept of using an abstract model
of the data structures to facilitate specification devel-
opment and reasoning in the repair algorithm.

• Inconsistency Detection and Repair System: It
presents an implemented system and algorithms that,
given a specification, automatically detect and repair
violations of the specification.

• Experience: It presents our experience using our tool
for several applications. This experience indicates that
it is relatively straightforward to develop the consis-
tency conditions and that the use of our tool enhanced
the ability of the applications to continue to operate
in the face of errors.

2. EXAMPLE
We next present a simple file system example that illus-

trates how our tool works. The file system consists of three
parts: the directory, a file allocation table (FAT), and an
array of file blocks. Each file consists of a linked chain of
file blocks. The FAT is a fixed-size array of file block in-
dices that implements the linking structure; specifically, if a
block j is in the chain of blocks for a given file, then FAT[j]
is the index of the next block in the chain. The FAT may
also contain two special values: if FAT[j] = −1, then block
j is the last file block in its chain; if FAT[j] = −2, then
block j is not in any chain and is free for allocation. The
directory consists of a fixed number of entries. Each entry
contains a file name, a flag indicating whether the entry is
in use or not, a field indicating the length of the file, and the
index of the first block in the file’s chain of blocks. Figure 1
graphically presents an (inconsistent) file system with two
directory entries and four file blocks. The file system has
two files named abst and intro; abst has length 7 and starts
at file block 0; intro has length 9 and starts at file block 2.

Even a file system this simple has many consistency con-
straints. Our implemented system supports a full range of
constraints that involve all of the parts of the file system.
In this section, we focus on the following FAT constraints:

1. Chain Disjointness: Each block should be in at most
one chain.

2. Free Block Consistency: No chain should contain
a block marked as free in the FAT.

Note that these constraints are stated in terms of concep-
tual entities such as chains of file blocks rather than directly

in terms of the concrete bits on the disk. To support the
expression of these kinds of constraints at an appropriate
level of abstraction, our approach allows the developer to
specify a translation from the concrete data structure repre-
sentation into an abstract model based on relations between
abstract objects. The developer can then use this model to
state some of the desired consistency constraints.

2.1 Model Construction
Figure 3 presents the object and relation declarations in

the model for our example. There are three sets of objects:
blocks, used, and free. Together, used and free partition
the set of block indices blocks, which is in turn a subset of
the set of integer objects. The next relation models chains
of used file blocks.

set blocks of integer : partition used | free;
relation next: used -> used;

Figure 3: Object and Relation Declarations

Figure 4 presents the structure declarations and rules that
define the model. The Disk struct declaration identifies the
disk as consisting of an array of directory entries followed
by the FAT array, and then the file blocks. In our example,
NumEntries, NumBlocks, Length and BlockSize are all con-
stants, but we support more advanced declarations in which
such quantities could be stored in data structure fields.

struct Entry {
byte name[Length];
byte inUse;
int size;
int firstBlock;

}
struct Block { data byte[BlockSize]; }
struct Disk {

Entry table[NumEntries];
int FAT[NumBlocks]; Block
block[NumBlocks];

}
Disk disk;

for i in 0..NumEntries, disk.table[i].inUse &&
disk.table[i].block < NumBlocks =>
disk.table[i].block in used;

for b in used, 0 <= disk.FAT[b] &&
disk.FAT[b] < NumBlocks => disk.FAT[b] in used;

for b in used, 0 <= disk.FAT[b] &&
disk.FAT[b] < NumBlocks =>
<b,disk.FAT[b]> in next;

for b in 0..NumBlocks, !(b in used) => b in free;

Figure 4: Model Definition Declarations and Rules

The second part of Figure 4 presents the model definition
rules. Each rule consists of a quantifier that identifies the
scope of the rule, a guard whose predicate must be true for
the rule to apply, and an inclusion constraint that specifies
either an object that must be in a given set or a tuple that
must be in a given relation. Our tool processes these rules
to produce an algorithm that, starting from the directory
entries, uses the FAT table to trace out the next relation
and compute the sets of used and free blocks.

Note that the rules in Figure 4 use the variable disk to
refer to the disk image. For long-lived data structures con-
tained in disk images or files, such variables are offsets within

introabst 1 7 1 11 9

 -1
290

Directory Entries FAT Table File Blocks

Figure 1: Inconsistent File System

introabst 1 7 1 -11 -1

 -2
290

Directory Entries FAT Table File Blocks

Figure 2: Repaired File System

the disk image or file. These offsets are defined in a config-
uration file that we omit here for brevity. For in-memory
data structures, the rules use the program variables to refer
to the concrete data structures.

2.2 Consistency Constraints
Internal constraints are stated using the model exclusively

and not the concrete data structures. Figure 5 presents the
internal constraint in our example. This constraint states
that each used block participates in at most one incoming
next relation. Note that we use the notation next.b to
indicate b under the inverse of the next relation; i.e., the set
of all i such that 〈i, b〉 in next.

for b in used, size(next.b) <= 1;

Figure 5: Internal Consistency Constraint

The model for the example file system in Figure 1 has the
following sets and relations: used = {0, 1, 2}, free = {3},
and next = {〈0, 1〉, 〈2, 1〉}. File block 1 is in two chains; this
inconsistency shows up as a violation of the constraint that
size(next.1)<=1. To repair this inconsistency, our tool will
remove one of the tuples in the next relation.

External constraints may reference both the model and
the concrete data structures. Figure 6 presents the exter-
nal constraints in our example. These constraints capture
the requirements that the sets and relations in the model
place on the values in the concrete data structures. Our
tool uses these constraints to implement the model repairs
in the concrete data structures. The constraints may also
deal with basic representation constraints such as, in our ex-
ample, the requirement that FAT entries either be -1, -2, or
contain a valid file block index. Repairs that enforce these
constraints may therefore clean up corrupted values in the
data structures.

for b in free, disk.FAT[b] = -2
for <i,j> in next, disk.FAT[i] = j;
for b in used, size(b.next) = 0 => disk.FAT[b] = -1

Figure 6: External Consistency Constraints

2.3 Repaired File System
Figure 2 presents the repaired file system from Figure 1.

In this example, the repair algorithm has chosen to remove
〈2, 1〉 from the next relation. This repair has eliminated
the sharing of file block 1 and truncated the intro file at
disk block 2. 1 The repair shows up in the file system as
1This truncation may leave the length of the file longer than

a change in the FAT entry for block 2 from 1 to -1. The
repair algorithm has also cleaned up some corrupted values
in the FAT table; specifically, it has changed the FAT entry
for block 1 from 5 to -1 (indicating that block 1 is the last
block in its file block chain) and changed the FAT entry for
block 3 from -1 to -2 (indicating that block 3 is free).

3. SPECIFICATION LANGUAGE
Our specification language consists of several sublanguages:

a structure definition language, a model definition language,
and the languages for internal and external constraints. As
described earlier, the structure definition language is similar
to that of C. However, it supports a wider range of primi-
tive data types, provides a form of structure inheritance, and
allows the developer to define inline, variable-length arrays.

3.1 Model Definition Language
The model definition language allows the developer to

declare the sets and relations in the model and to specify
the rules that define the model. A set declaration of the
form set S of T partition S1, ..., Sn declares a set S

that contains objects of type T, where T is either a primi-
tive type (with the range optionally constrained to be be-
tween two given values) or a struct type declared in the
structure definition part of the specification. The set S has
n subsets S1, ..., Sn which together partition S. Changing
the partition keyword to subsets removes the requirement
that the subsets S1, ..., Sn partition S but otherwise leaves
the meaning of the declaration unchanged. A relation decla-
ration of the form relation R: S1− >S2 specifies a relation
between the objects in the sets S1 to S2.

The model definition rules define a translation from the
concrete data structures into an abstract model. Each rule
has a quantifier that identifies the scope of the rule, a guard
whose predicate must be true for the rule to apply, and an
inclusion constraint that specifies either an object that must
be in a given set or a tuple that must be in a given relation.
Figure 7 presents the grammar for the model definition rules.

Figure 8 gives the denotational semantics R[C] h l m of a
single rule C. A model m is a mapping from set names and
relation names to the corresponding sets of objects or rela-
tions between objects. Given a set of concrete data struc-
tures h, a naming environment l that maps variables to data
structures or values, and a current model m, R[C] h l m is
the new model after applying the rule to m in the context of

one block. Some (but not all) file systems assume that the
length must reflect the number of blocks in the file. If re-
quired, it is possible to augment our specification to appro-
priately constrain the length of the file.

C := Q,C | G ⇒ I;

Q := for V in S | for 〈V, V〉 in R |
for V = E .. E;

G := G and G | G or G |!G | E = E | E < E | true |
(G) | E in S | 〈E,E〉 in R;

I := E in S | 〈E,E〉 in R;

E := V | number | string | E.field |
E.field[E] | E − E | E + E | E/E | E ∗ E;

Figure 7: Model Definition Language

h and l. Note that l provides the values of both the program
variables that the rules use to reference the concrete data
structures and the variables bound in the quantifiers.

Each model definition contains a set of model definition
rules C1, ..., Cn. Given a model containing these rules, a set
of concrete data structures h, and a naming environment l
for the program variables , the model is the least fixed point
of the functional λm.(R[C1] h l) . . . (R[Cn] h l m). The
presence of negation in the model definition language com-
plicates the computation of this fixed point. For example,
negation makes it possible for a rule to specify that an object
is in a given set only if another object is not in another set.
We address this complication by requiring the set of model
definition rules to have no cycles that go through rules with
negated inclusion constraints in their guards.

We formalize this constraint using the concept of a rule
dependence graph. There is one node in this graph for each
rule in the set of model definition rules. There is a directed
edge between two rules if the inclusion constraint from the
first rule has a set or relation used in the quantifiers or guard
of the second rule. If the graph contains a cycle involving
a rule with a negated inclusion constraint, the set of model
definition rules is not well founded and we reject it. Given
a well-founded set of constraints, our model construction
algorithm performs one fixed point computation for each
strongly connected component in the rule dependence graph,
with the computations executed in an order compatible with
the dependences between the corresponding groups of rules.

3.2 Pointers
Depending on the declared type in the corresponding struc-

ture declaration, an expression of the form E.f in a model
definition rule may be a primitive value (in which case E.f
denotes the value), a nested struct contained within E (in
which case E.f denotes the nested struct), or a pointer
(in which case E.f denotes the struct to which the pointer
refers). It is of course possible for the data structures to con-
tain invalid pointers. We next describe how we extend the
model construction algorithm to deal with invalid pointers.

First, we instrument the memory management system
to produce a trace of operations that allocate and deallo-
cate memory (examples include malloc, free, mmap, and
munmap). We augment this trace with information about
the call stack and segments containing statically allocated
data, then construct a map that identifies valid and invalid
regions of the address space.

We next extend the model construction software to check
that each struct accessed via a pointer is valid before it
inserts the struct into a set or a relation. All valid structs
reside completely in allocated memory. In addition, if two

hv ∈ HeapV alue = Bit ∪Byte ∪ Short ∪ Integer ∪ Struct
h ∈ Heap = P(Object× Field×HeapV alue ∪

Object× Field× N×HeapV alue)
v ∈ V alue = Z ∪Boolean ∪ Token ∪ Struct
l ∈ Local = V ar ⇀ V alue

s ∈ Store = V alue× V alue ∪ V alue
m ∈ Model = P(V ar × Store)
R : C → heap→ local→ model→ model

E : E → heap→ local→ model→ value

G : G → heap→ local→ model→ Boolean

I : I → heap→ local→ model→ model

S : S → local→ model→ P(value)

R[V in S,C] h l m =
⋃
v∈S[S] l e R[C] h l[V 7→ v] m

R[〈V1, V2〉 in R,C] h l m =
⋃
〈v1,v2〉∈S[S] l e

R[C] h l[V1 7→ v1][V2 7→ v2] m

R[V = E1 .. E2, C] h l m =
⋃E[E2] h l m
i=E[E1] h l m

R[C] h l[V 7→ i] m

R[G ⇒ I] h l m = if (G[G] h l m) then (I[I] h l m) else m
G[G1 and G2] h l m = (G[G1] h l m) ∧ (G[G2] h l m)
G[G1 or G2] h l m = (G[G1] h l m) ∨ (G[G2] h l m)
G[!G] h l m =!(G[G] h l m)
G[E1 = E2] h l m = (E[E1] h l m) == (E[E2] h l m)
G[E1 < E2] h l m = (E[E1] h l m) < (E[E2] h l m)
G[true] h l m = true
G[E in S] h l m = 〈S, E[E] h l m〉 ∈ m
G[〈E1, E2〉 in R] h l m = 〈R, 〈E[E1] h l m, E[E2] h l m〉〉 ∈ m
I[E in S] h l m = m ∪ 〈S, E[E] h l m〉
I[〈E1, E2〉 in R] h l m = m ∪ 〈R, 〈E[E1] h l m, E[E2] h l m〉〉
E[V] h l m = l(V)
E[number] h l m = number
E[E.field] h l m = b.〈(E[E] h l m), field, b〉 ∈ h
E[E1.field[E2]] h l m =

c.〈(E[E1] h l m), field, (E[E2] h l m), c〉 ∈ h
E[E1 ⊕ E2] h l m = primop(⊕, (E[E1] h l m), (E[E2] h l m))
E[string] h l m = string
S[S] l m = {s | s ∈ m(S)}

Figure 8: Denotational Semantics for the Model
Definition Language

structs overlap, one must be completely contained within
the other and the declarations of both structs must agree
on the format of the overlapping memory. This approach
ensures that only valid structs appear in the model.

A final complication is that expressions of the form E.f.g
may appear in guards. If E.f is not valid, E.f.g is considered
to be undefined. Expressions involving undefined values also
have undefined values. Comparison (E1 < E2, E1 = E2)
and set inclusion (E in S, 〈E1, S2〉 in R) predicates involv-
ing undefined values have the special value maybe. We use
three-valued logic to evaluate guards involving maybe.

3.3 Internal Constraints
Figure 9 presents the grammar for the internal constraint

language. Each constraint consists of a sequence of quanti-
fiers Q1, ..., Qn followed by body B. The body uses logical
connectives (and, or, not) to combine basic propositions P.

Figure 10 provides the denotational semantics for this lan-
guage. Given a constraint C and a model m, EV[C] ∅ m is
true if the constraint is satisfied in m and false otherwise.
The primary complication in the semantics has to do with
arithmetic and logical expressions involving relations. Con-
sider, for example, an expression of the form V1.R1 +V2.R2.
Strictly speaking, V1.R1 is the set of objects in the image of

C := Q,C | B;

Q := for V in S | for V = E .. E;

B := B and B | B or B |!B | (B) | P;

P := V E = E | V E < E | V E <= E | V E > E |
V E >= E | V in SE | size(SE) = 1 |
size(SE) >= 1 | size(SE) <= 1;

V E := V.R;

E := V | E − E | number | string | E + E | E/E |
E ∗ E | E.R | size(SE) | (E);

SE := S | V.R | R.V;

Figure 9: Internal Constraint Language

v ∈ V alue = Number ∪Boolean ∪ Token ∪Object
l ∈ Local = P(V ar × V alue)
m ∈ Model = P(V ar × Store)
s ∈ Store = V alue× V alue ∪ V alue
EV : C → Local→Model→ Boolean

E : E → Local→Model→ V alue

C : B → Local→Model→ Boolean

S : S → Local→Model→ P (V alue)

V : V E → Local→Model→ V alue

PR : P → Local→Model→ Boolean

SE : SE → Local→Model→ P(V alue)

EV[for V in SET,C] l m =
∧{EV[C] l[V 7→ v] m | v ∈ S[S] l m}

EV[B] l m = C[B] l m
C[!B] l m =!C[B] l m
C[B1 and B2] l m = C[B1] l m ∧ C[B2] l m
C[B1 or B2] l m = C[B1] l m ∨ C[B2] l m
C[P] l m = PR[P] l m
PR[V in SE] l m = l(a) ∈ SE[SE] l m
PR[V E = E] l m = (V[V E] l m == E[E] l m)
PR[V E < E] l m = (V[V E] l m < E[E] l m)
PR[V E ≤ E] l m = (V[V E] l m ≤ E[E] l m)
PR[V E > E] l m = (V[V E] l m > E[E] l m)
PR[V E ≥ E] l m = (V[V E] l m ≥ E[E] l m)
PR[size(SE) = 1] l m = E[size(SE)] l m == 1
PR[size(SE) >= 1] l m = E[size(SE)] l m ≥ 1
PR[size(SE) <= 1] l m = E[size(SE)] l m ≤ 1
V[V.R] l m = y.〈l(V), y〉 ∈ m(R)
S[S] l m = {s | s ∈ m(S)}
E[size(SE)] l m =| SE[SE] l m |
E[V] l m = l(V)
E[E.R] l m = y.∃z, z ∈ E[E] l m ∧ 〈z, y〉 ∈ m(R)
E[E1 ⊕ E2] l m = primop(⊕, E[E1] l m, E[E2] l m)
SE[S] l m = {s | s ∈ m(S)}
SE[V.R] l m = {y | 〈l(V), y〉 ∈ R}
SE[R.V] l m = {y | 〈y, l(V)〉 ∈ R}

Figure 10: Denotational Semantics for Internal Con-
straints

V1 under R1, not a single value. Our intention is that devel-
opers use these expressions only when the relational image
contains a single value. Our primitive arithmetic and log-
ical operations are designed to take as input two singleton
sets and produce the appropriate singleton set. If given a
non-singleton set as input, the primitives produce the un-
defined value. We treat undefined values in this semantics
the same way as we do in Section 3.2: we appropriately ex-
tend arithmetic operations to work with undefined values
and logical operations to work with maybe according to the
laws of three-valued logic.

3.4 External Constraint Language
Figure 11 presents the grammar for the external constraint

language. Each constraint has a quantifier that identifies the
scope of the rule, a guard G that must be true for the con-
straint to apply, and a condition C that specifies either a
program variable, a field in a structure, or an array element
that must have a given value. Figure 12 provides the deno-
tational semantics for this language. Given a constraint R, a
heap h, a naming environment l, and a model m, R[R] h l m
is true if the constraint is satisfied for h, l, and m.

4. ERROR DETECTION AND REPAIR
The repair algorithm updates the model and the concrete

data structures so that all of the internal and external con-
straints are satisfied. The repair is organized around a set of
repair actions that update the model and/or the data struc-
tures to coerce propositions to be true. The algorithm has
two phases: during the internal phase, it updates the model
so that it satisfies all of the internal constraints. During the
external phase, it updates the data structures to satisfy all
of the external constraints.

4.1 Error Detection in Internal Phase
The algorithm detects violations of the internal constraints

by evaluating the constraints in the context of the model.
This evaluation iterates over all values of the quantified vari-
ables, evaluating the body of the constraint for each possible
combination of the values. If the body evaluates to false, the
algorithm has detected a violation and has computed a set
of bindings for the quantified variables that make the con-
straint false.

4.2 Error Repair in Internal Phase
The repair algorithm is given a body and variable bind-

ings that falsify the body. The goal is to change the model
to make the body true. The algorithm first converts the
body to disjunctive normal form, so that it consists of a dis-
junction of conjunctions of basic propositions. Each basic
proposition has a repair action that the algorithm can use
to modify the model so that the proposition becomes true.
The repair algorithm chooses one of the conjunctions and
applies repair actions to its basic propositions until the con-
junction becomes true and the constraint is satisfied for that
set of variable bindings.

There are three kinds of basic propositions in the internal
constraint language: size propositions, inequality proposi-
tions, and inclusion propositions. Each proposition can oc-
cur with or without negation; the actions repair the propo-
sitions as follows:

4.2.1 Size Propositions
Size propositions are of the form size(S) = 1, !size(S) =

1, size(S) >= 1, or size(S) <= 1 where S can be one of
the sets in the model or a relation expression of the form R.v
or v.R. It is straightforward to generalize size propositions
to involve arbitrary constant sizes.

If S is a set in the model, the repair action simply adds
or removes items to satisfy the constraint. The action en-
sures that these changes respect any partition constraints
between sets in the model. Note that this basic approach
also works for negated size propositions. If S is a relation
expression, the repair action adds or removes tuples from
the relation to satisfy the constraint.

R := Q,R | G ⇒ C

Q := for V in S | for 〈V, V〉 in R | for V = E .. E

G := G and G | G or G |!G | E = E | E < E | true
C := HE.field = E | HE.field[E] = E | V = E

HE := V | HE.field | HE.field[E]

E := V | number | string | E.R | E − E | E + E |
E ∗ E | E/E | size(SE) | element E of SE

SE := S | V.R | R.V

Figure 11: External Constraint Language

hv ∈ HeapV alue = Bit ∪Byte ∪ Short ∪ Integer ∪ Struct
h ∈ Heap = P(Object× Field×HeapV alue ∪

Object× Field× N×HeapV alue)
v ∈ V alue = Z ∪Boolean ∪ Token ∪ Struct
l ∈ Local = V ar ⇀ V alue

s ∈ Store = V alue× V alue ∪ V alue
m ∈ Model = V ar × Store
R : R → Heap→ Local→Model→ Boolean

E : E → Heap→ Local→Model→ V alue

HE : HE → Heap→ Local→Model→ Object

G : G → Heap→ Local→Model→ Boolean

C : C → Heap→ Local→Model→ Boolean

SE : SE → Local→Model→ V alue

S : S → Local→Model→ V alue

R[for V in S,R]h0 l m = hn.hj = R[R]hj−1

l[V 7→ vj]m, {v1, ..., vn} = S[S] l m
R[for〈V1, V2〉 in S,R] h0 l m = hn,
hj = R[R] hj−1 l[V1 7→ v1j][V2 7→ v2j] m,
{〈v11, v21〉, ..., 〈v1n, v2n〉} = S[S] l m

R[forV = E1 .. E2, R] h0 l m = hn.hj+1 = R[R] hj
l[V 7→ j + (E[E1] h l m)] m, n = (E[E2] h l m)− (E[E1] h l m)

R[G ⇒ C] h l m = ¬G[G] h l m | C[C] h l m)
G[G1 and G2] h l m = (G[G1] h l m) ∧ (G[G2] h l m)
G[G1 or G2] h l m = (G[G1] h l m) ∨ (G[G2] h l m)
G[!G1] h l m =!(G[G1] h l m)
G[E1 = E2] h l m = (E[E1] h l m) == (E[E2] h l m)
G[E1 < E2] h l m = (E[E1] h l m) < (E[E2] h l m)
G[true] h l m = true
C[HE.field = E] h l m = 〈HE[HE] h l m, field, E[E] h l m〉 ∈ h
C[HE.field[E1] = E2] h l m =
〈HE[HE] h l m, field, E[E1] h l m, E[E2] h l m〉 ∈ h

C[V = E] h l m = (l(V) == E[E] hl m)
HE[V] h l m = l(V)
HE[HE.field] h l m = b.〈HE[HE] h l m, field, b〉 ∈ h
HE[HE.field[E]] h l m =
b.〈HE[HE] h l m, field, E[E] h l m, b〉 ∈ h

E[V] h l m = l(V)
E[number] h l m = number
E[V.R] h l m = b.〈V, b〉 ∈ m(R)
E[E1 ⊕ E2] h l m = primop(⊕, (E[E1] h l m), (E[E2] h l m))
E[string] h l m = string
E[size(SE)] h l m =| SE[SE] l m |
E[element E of SE] h l m =given some ordering of SE[SE] l m,

pick element number E[E] h l m
SE[S] l m = {s | s ∈ m(S)}
SE[V.R] l m = {y | 〈l(V), y〉 ∈ R}
SE[R.V] l m = {y | 〈y, l(V)〉 ∈ R}
S[S] l m = {s | s ∈ m(S)}

Figure 12: Denotational Semantics for External
Constraints

In general, the repair action may need a source of new
items to add to sets to bring them up to the specified size.

Any supersets of the set (as specified using the model defi-
nition language from Section 3.1) are one potential source.
For structs, memory allocation primitives are another po-
tential source. For primitive types, the action can simply
synthesize new values. We allow the developer to specify
which source to use and, in the absence of such guidance,
use heuristics to choose a default source.

Note that the repair may fail if the system is unable to
allocate a new struct (typically because it is out of memory)
or find a new value within the specified range. Note also
that the model definition language allows the developer to
specify partition and subset inclusion constraints between
the different sets in the model. When our implementation
changes items in one set, it appropriately updates other sets
to ensure that the model continues to satisfy these partition
and subset inclusion constraints.

If S is a relation expression of the form R.v or v.R, the
repair action simply adds or removes tuples to satisfy the
constraint. Note that because the items in the tuples must
be part of the corresponding domain and range of the re-
lation, a repair action that adds tuples to the relation may
also need to add items to the domain or range sets of the
relation. Repair actions that add tuples to relations there-
fore face the same issues associated with finding new items
as the repair actions that add items to sets.

4.2.2 Inequality Propositions
Inequality propositions are of the form V.R = E, !V.R =

E, V.R < E, V.R <= E, V.R > E, or V.R >= E. The
repair actions calculate the value of E, then updates V.R to
be the closest value that satisfies the proposition.

4.2.3 Inclusion Propositions
Inclusion propositions are of the forms: V in SE where

SE is a set in the model or a relation expression. The repair
actions simply add or remove the value referenced by the
label V to the set or the appropriate pair to the relation.
This is done in a manner to satisfy the partition and subset
requirements of the model definition.

4.2.4 Choosing The Conjunction to Repair
When faced with a choice of false conjunctions, the algo-

rithm uses a cost function to choose which to repair. This
cost function assigns a cost to each repair action; the cost
of repairing a conjunction is simply the sum of the repair
costs for all of its unsatisfied basic propositions. This ap-
proach is designed to minimize the number of changes made
to repair the model. We have also tuned the repair costs to
discourage the removal of objects from sets and tuples from
relations. The idea is to preserve as much information from
the original data structures as possible.

4.2.5 Termination
The repair action for one basic proposition may falsify

another basic proposition. This raises the possibility that
the repair algorithm may not terminate because of a cyclic
repair chain. Conceptually, we eliminate this possibility by
preanalyzing the specification to check that it can never gen-
erate any such cyclic chain.

The acyclicity checking algorithm first converts the body
of each constraint into disjunctive normal form. It then con-
structs a constraint dependence graph. There is one node in
the graph for each constraint and one node for each con-

junction in the disjunctive normal form of each constraint.
The graph contains the following edges:

• Constraint to Conjunctions: There is a directed
edge from each constraint to each of its conjunctions.

• Interference: There is an edge from a conjunction to
a constraint if applying an action to satisfy one of the
basic propositions in the conjunction may falsify one
of the basic propositions in one of the conjunctions of
the constraint.

The foundation of this construction is a procedure
that determines if one basic proposition may inter-
fere with another, i.e., if repairing the first proposi-
tion may falsify the second. The interference checking
algorithm first checks if the two propositions involve
disjoint parts of the model; if so, they do not interfere.
If the two propositions may involve the same state, it
reasons about the specific repair action and the sec-
ond proposition. If the repair action is guaranteed to
leave the model in a state that satisfies the second
proposition, there is no interference. This is true if
the first proposition implies the second. It may also
be true even in some cases when the second proposi-
tion implies the first. For example, the two constraints
size(S) >= 1 and size(S) = 1 do not interfere — the
repair action for size(S) >= 1 makes size(S) = 1.

Given this definition of interference, there is an edge
from a conjunction to a constraint if one of the basic
propositions from the conjunction interferes with one
of the basic propositions from the constraint.

• Quantifier Scope: There is an edge from a conjunc-
tion to a constraint if repairing one of the basic propo-
sitions in the conjunction may add an object to a set
or a tuple to a relation, and this addition may increase
the scope of the quantifier in the constraint.

If the constraint dependence graph is acyclic, it is clear that
the repair algorithm will terminate — once the first (in the
topological sort order) violated constraint is repaired, it will
never be falsified by the repair of any other constraint. Once
the first has been repaired, the next constraint(s) (in the
topological sort order), once repaired, will never be falsified,
and so forth.

The termination checking algorithm first checks to see
if the constraint dependence graph is acyclic. If it is not
acyclic, it removes conjunctions from this graph in an at-
tempt to make the graph acyclic. Note that it must leave at
least one conjunction in the graph for each constraint. Once
a conjunction is removed from the graph, it is marked as
forbidden to ensure that the repair algorithm never chooses
to repair an inconsistency by satisfying that conjunction.

In general, it may not be possible to produce an acyclic
constraint dependence graph, in which case the termination
checking algorithm rejects the specification. In practice, this
does not seem to be a concern — the constraint dependence
graphs for our benchmark applications are acyclic even with-
out conjunction removal.

4.2.6 Relations in Expressions
It is possible for the specification to use a relation R in

a context that requires the image of any item under the
relation to be a singleton set. Examples of such contexts

include arithmetic expressions of the form E1.R1 + E1.R2

and multiple relation dereferences of the form E.R1.R2. If
the specification includes such singleton contexts, we require
that the specification constrain the image of the relation to
always have size 1.2 Before evaluating any constraint that
uses the relation in a singleton context, the repair algorithm
first processes the constraints that force the image of all
items in the domain of the relation to be a singleton.

4.2.7 Error Detection and Repair in External Phase
The algorithm detects violations of the external constraints

by simply evaluating the constraints in the context of the
model and the data structures. If a constraint is not sat-
isfied, the algorithm has computed a set of quantifier vari-
able bindings that falsify the constraint. i.e., that identify
a value in the data structure that should be the same as
a value computed using the model. In this case the repair
algorithm simply assigns the data structure value to be the
same as the model value.

The only potential complication is that different constraints
may impose two different values on the same data structure
value. We currently rely on the developer to provide specifi-
cations with at most one constraint for each data structure
value. It is possible to develop algorithms that automati-
cally check that specifications have this property.

4.3 Limitations
The goal of the repair algorithm is to deliver a model

that satisfies the internal constraints and a combination of
model and data structures that together satisfy the external
constraints. We next summarize the situations in which the
algorithm may fail to realize this goal.

The internal constraint repair algorithm will fail only be-
cause of resource limitations — i.e., if it is unable to find
an item or tuple to add to a set or relation, either because
it is unable to allocate a new struct or because there are
no more distinct items in the set that it is using as a source
of new items. The external constraint repair algorithm will
fail only if the external constraints specify different values
for the same data structure value — in this case, the al-
gorithm will produce a data structure with only one of the
values.3

The static cyclicity checks described in Sections 4.2.5 and
3.1 rule out many potential failure modes, in particular, they
eliminate the possibility of unsatisfiable specifications.

5. EXPERIENCE
We next discuss our experience using our repair tool to

detect and repair inconsistencies in data structures from sev-
eral applications: a Linux file system, an interactive game,
and Microsoft Office files.

2It is also possible to automatically augment the specifica-
tion with these constraints.
3This discussion does not address failures caused by incor-
rect behavior on the part of the underlying computing infras-
tructure, for example corruption of the repair algorithm’s
data structures (this can be partially addressed by placing
these data structures in a separate address space) or fail-
ure to notify the algorithm of changes in the accessibility of
regions in the program’s address space.

5.1 Methodology
For each application, we identified important consistency

constraints and developed a specification that captured these
constraints. We also developed a fault insertion strategy
designed to simulate the effect of potential inconsistencies.4

We applied the fault insertion strategy to the data structures
in the applications, then compared the results of running a
chosen workload with and without inconsistency detection
and repair. We ran the applications on an IBM ThinkPad
X23 with a 866 Mhz Pentium III processor and 384 MB of
RAM. For the Linux file system and the interactive game
application, we used RedHat Linux 7.2. For the Microsoft
Office file application, we used Microsoft Office XP running
on the Microsoft Windows XP operating system.

5.2 A Linux File System
Our Linux file system application implements a simplified

version of the Linux ext2 file system [13]. The file system,
like other Unix file systems, contains bitmaps that identify
free and used disk blocks [6]. The file system uses these
disk blocks to support fast disk block and inode allocation
operations.

Our consistency constraints are that the inode bitmap
block, the block bitmap block, the directory block, and the
inode table block exist; that the inode bitmap is consistent
with the use of inodes; that the block bitmap is consistent
with the use of blocks; that blocks are not shared between
files or other disk structures; that the file’s size is consistent
with the number of blocks in a file; that files contain only
valid blocks; that inode reference counts are correct; and
that directory entries refer to valid inodes. The specifica-
tion contains 122 lines, of which 53 lines contain structure
definitions. Because the structure of such file systems is
widely documented in the literature, it was relatively easy
for us to develop the specification. In general, we have found
that developing specifications is a straightforward task once
one understands the relevant data structures.

Our fault insertion mechanism for this application sim-
ulates the effect of a system crash: it shuts down the file
system (potentially in the middle of an operation that re-
quires several disk writes), then discards the cached state.
Our workload opens and writes several files, closes the files,
then reopens the files to verify that the data was written
correctly. To apply our fault insertion strategy to this work-
load, we crash the system part of the way through writing
the files, then rerun the workload. The second run of the
workload overwrites the partially written files and checks
that the final versions are correct.

Possible sources of errors include incorrect bitmap blocks
(caused by discarding correct cached versions) and incom-
plete file system operations that leave the disk image in
an inconsistent state. Specifically, incomplete remove and
hardlink creation operations may leave inodes with incor-
rect reference counts; incomplete open operations that cre-

4Fault insertion was originally developed in the context of
software testing to help evaluate the coverage of testing pro-
cesses [14]. It has also been used by other researchers for the
purposes of evaluating standard failure recovery techniques
such as duplication, checkpointing, and fast reboot [1]. The
rationale behind fault insertion is that faults, while serious
when they do occur, occur infrequently enough to seriously
complicate the experimental investigation of failure recovery
techniques. Fault insertion makes it practical to evaluate
proposed recovery techniques on a range of faults.

ate new files may leave directory and inode entries in incor-
rectly initialized states.

In all of our tested cases, the algorithm is able to repair
the file system and the workload correctly runs to comple-
tion. Without repair, files end up sharing inodes and disk
blocks and the file contents are incorrect. For a file system
with 1024 8KB blocks, our repair tool takes 1.5 seconds to
construct the file system model, check the consistency of the
model, and repair the file system.

In addition to repairing the errors introduced by our fail-
ure insertion strategy, our tool is also able to allocate and
rebuild the blocks containing the inode and block allocation
bitmaps, allocate a new inode table block, and allocate a
new inode for the root directory. The repair algorithm is
limited in that if the entries describing aspects of basic file
system format (such as the size of the blocks) become cor-
rupted, the tool may fail to correctly repair the file system.

5.3 Freeciv
Freeciv is an interactive, multi-player game available at

www.freeciv.org. The Freeciv server maintains a map of the
game world. Each tile in this map has a terrain value chosen
from a set of legal terrain values. Additionally, cities may
be placed on the tiles. Our consistency constraints are that
tiles have valid terrain values, a given city has exactly one
location, cities are not in the ocean, and that the location
of a city on the map is consistent with the location the city
has recorded internally.

Our fault insertion strategy changes the terrain values in
20 randomly selected tiles in the map before the game starts.
There are two possible errors: illegal terrain values or city
located on an ocean tile instead of a land tile. Our repair
algorithm repairs these kinds of errors by assigning a legal
terrain value to any tile with an illegal value and by moving
cities from tiles with illegal terrain types or oceans to tiles
with a land type terrain. The specification consists of 218
lines, of which 173 lines contain structure definitions. The
primary obstacle to developing this specification was reverse
engineering the Freeciv source (which consists of 73,000 lines
of C code) to develop an understanding of the data struc-
tures. Once we understood the data structures, developing
the specification was straightforward.

Freeciv comes with a built-in test mode in which several
automated players play against each other. Our workload
simply runs the program in this built-in test mode.

We used the built-in test mode to play 25 games. In each
game we set a different seed for the random number gen-
erator, resulting in different but repeatable games. In all
of these games, our repair tool was able to repair the in-
troduced inconsistencies and the game was able to execute
without failing (although the game played out differently be-
cause of changed terrain values). Without repair, the game
always crashed with a segmentation fault caused by indexing
an array with an illegal terrain value. In this application,
our repair tool takes 6.7 seconds to construct the model,
check its consistency, and repairing the game map.

In addition to incorrect terrain values, the algorithm is
able to repair inconsistencies in the location of cities in the
game. If necessary, it removes extra city references to ensure
that each city is referenced by only one tile and changes the
internally recorded location of each city to ensure that it is
consistent with the city’s location on the map. The repair
algorithm is limited in that if the entries describing several

basic aspects of the data layout (such as the size of the map)
become corrupted, the system is not able to repair the map.
Additionally, there are consistency conditions involving pre-
calculated values, unit locations, and the map that are not
well documented and not covered by the specification. As a
result, there is some chance that the game may crash even
after repair.

5.4 Microsoft Office File Format
Microsoft Office files consist of several virtual streams,

each of which contains data for some part of the document.
Each file also contains a FAT, which identifies the location of
each stream within the file. Each virtual stream consists of
a chain of blocks in the file. The file allocation table consist
of an array of integers, with one integer per block in the
file. For each block in the file, these integers indicate which
block is next in the chain or whether the block is unused,
terminates the chain, or stores part of the FAT.

Based on information available at
http://snake.cs.tu-berlin.de:8081/ schwartz/pmh/, we devel-
oped a specification that captures the following consistency
constraints: that blocks are not shared between chains, that
the file has the correct number of FAT blocks for the its
size, that FAT blocks are marked as such in the FAT, that
the FAT contains valid block numbers, and that chains are
appropriately terminated. The specification consists of 94
lines, of which 71 lines contain structure definitions. The
availability of documentation made it straightforward to de-
velop the specification.

Our fault insertion strategy injects one of four kinds of
errors into the FAT: it can crosslink the ends of FAT chains
(this causes blocks to be shared between streams), terminate
FAT chains using an illegal block number, mark FAT blocks
as unused, and mark the terminating block of a FAT chain as
unused. The repair algorithm repairs crosslinked chains by
terminating the chains immediately prior to the crosslinking.
It repairs FAT chains that contain illegal block numbers by
terminating the chain at the illegal block number. It also
overwrites FAT values to ensure that FAT blocks are marked
as used for the FAT, and removes unused FAT blocks from
FAT chains.

Our workload consisted of several consistent Microsoft
Word files. For each file, we used our fault insertion strategy
to create four damaged files, one for each kind of error. We
then attempted to load the files into Microsoft Word.

Word was able to successfully load all of the repaired files,
although in some cases the combination of fault insertion
followed by repair removed blocks from streams and changed
the document. Word was also able to successfully load files
in which FAT blocks are incorrectly marked as unused, but
failed to load files with the three other kinds of damage. It
instead responded with the error message “The document
name or path is not valid.” For a 150KB file, our repair
tool takes 8.4 seconds to construct the model, check the
consistency of the model, and repair the file.

In addition to the repairs described above, the repair algo-
rithm is able to allocate new FAT sectors as needed. Because
our specification only covers FAT consistency constraints,
there is no guarantee that the file satisfies any other con-
sistency constraint. In particular, we suspect that the in-
dividual streams may have internal consistency constraints,
although we did not observe any violation of these (hypo-
thetical) constraints in our experiments.

5.5 Discussion
We found it relatively straightforward to develop the spec-

ifications for all of our applications once we had an under-
standing of the data structures. In particular, we developed
all three of our specifications in the course of single week.
During this week, we spent significant amounts of time un-
derstanding the Freeciv source code and debugging our im-
plementation. We believe that the benefits of automatic
inconsistency detection and repair are well worth the effort
required to develop the specification.

In this paper, we have treated the inconsistency detection
as just a necessary prerequisite for repair. But we believe
that the inconsistency detector could be very useful on its
own as a debugging aid. We know of many projects that
manually develop data structure consistency detectors and
use these detectors as a crucial part of the debugging infras-
tructure. Our specification-based approach should make it
substantially easier to obtain these inconsistency detectors.

6. RELATED WORK
Software reliability has been an important area for many

years. Most research has focused on preventing or elimi-
nating software errors, with the approaches ranging from
enhanced software testing and validation to full program
verification. Software error detection has become an espe-
cially active area in recent years [3, 4, 9, 2].

In contrast, our research goal is to enable software to sur-
vive errors by restoring data structure consistency. The re-
mainder of this section focuses on other error recovery tech-
niques.

6.1 Manual Detection and Repair Systems
Researchers have manually developed several systems that

find and repair data structure inconsistencies. File systems
have many characteristics that motivate the development of
such programs (they are persistent, store important data,
and acquire disabling inconsistencies in practice). Develop-
ers have responded with utilities such as Unix fsck and the
Norton Utilities that attempt to fix inconsistent file systems.

The Lucent 5ESS telephone switch and IBM MVS oper-
ating systems are two examples of critical systems that use
inconsistency detection and repair to recover from software
failures [10, 11]. The software in both of these systems con-
tains a set of manually coded procedures that periodically
inspect their data structures to find and repair inconsisten-
cies. The reported results indicate an order of magnitude
increase in the reliability of the system [7]. Researchers
have also developed a domain-specific language for speci-
fying these procedures for the 5ESS system [8]. The goal is
to enhance the reliability and reduce the development time
of the inconsistency detection and repair software.

These successful, widely used systems illustrate the util-
ity of performing inconsistency detection and repair. We see
our use of declarative specifications coupled with automati-
cally generated detection and repair code as representing a
significant advance over current practice, which relies on the
manual development of the detection and repair code. Our
approach enables the developer to focus on the important
data structure constraints rather than on the operational
details of developing algorithms that detect and correct vi-
olations of these constraints. We believe our specification-
oriented approach will make it much easier to develop reli-
able inconsistency detection and repair software.

6.2 Self-Stabilizing Algorithms
Researchers in the area of self-stabilizing algorithms have

developed specific distributed algorithms that eventually con-
verge to a stable state in spite of perturbations [5]. Our
research goal differs in that 1) we aim to provide a general-
purpose, specification-based inconsistency detection and re-
pair technology for arbitrary data structures (as opposed to
designing individual algorithms with desirable constraints),
and 2) we are willing to accept potentially degraded behav-
ior as the price of obtaining this generality.

6.3 Traditional Error Recovery
Error recovery has been an important topic ever since the

inception of computer science as a field. One standard ap-
proach avoids transient errors by simply rebooting the sys-
tem; this is perhaps the most widely practiced form of error
recovery. Checkpointing enables a system to roll back to a
previous consistent state when it fails. Transactions support
consistent atomic operations by discarding partial updates
if the transaction fails before committing [7]. Database sys-
tems use a combination of logging and replay to avoid the
state loss normally associated with rolling back to a pre-
vious checkpoint. In effect, the log serves as a redundant,
very simple data structure that can be used to rebuild the
more sophisticated internal database data structures when-
ever they become inconsistent. There has recently been
renewed interest in applying many of these classical tech-
niques in new computational environments such as Internet
services [12].

Our approach differs from these classical approaches in
that it is designed to repair inconsistent data structures
in place and continue executing rather than roll back to a
known consistent state. Our approach can enable systems
to recover even from persistent errors such as file system
corruption. Unlike approaches based on checkpointing and
replay, it may preserve much of the volatile state and avoids
the need for logging and replay. It can also keep a system
going without the need to take it out of service while it is
rebooting. Finally, our approach differs in that we do not
attempt to recover to a state that a (hypothetical) correct
program would produce. Instead, our goal is to recover to
a state consistent enough to permit the continued operation
of the program within its design envelope.

7. CONCLUSION
Data structure inconsistencies are an important source of

software errors. Our implemented system attacks this prob-
lem by accepting a data structure consistency specification,
then automatically detecting and repairing data structures
that violate this specification. Our experience indicates that
our system is able to deliver repaired data structures that
enable the corresponding programs to continue to execute
successfully within their designed operating envelope. With-
out repair, the programs usually fail.

As the field of computer science continues to mature, there
is an increasing need to deliver systems that can contin-
uously operate for very long, even unbounded, periods of
time. Repair is a central aspect of almost all long-lived sys-
tems in other fields, and we believe that the development
of effective repair technology is a necessary prerequisite for
the construction of robust, long-lived computer systems. We
therefore see our research as taking an important step to-
ward the effective construction of robust, self-healing sys-

tems that can successfully recover from the damage that
they will inevitably experience during their long lifetimes.

8. REFERENCES
[1] P. Broadwell, N. Sastry, and J. Traupman. FIG: A

prototype tool for online verification of recovery
mechanisms. In Workshop on Self-Healing, Adaptive
and self-MANaged Systems, June 2002.

[2] J.-D. Choi and et al. Efficient and precise datarace
detection for multithreaded object-oriented programs.
In Proceedings of the SIGPLAN ’02 Conference on
Program Language Design and Implementation, 2002.

[3] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera :
Extracting finite-state models from java source code.
In Proceedings of the 22nd International Conference
on Software Engineering, 2000.

[4] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive
program verification in polynomial time. In
Proceedings of the SIGPLAN ’02 Conference on
Program Language Design and Implementation, 2002.

[5] E. W. Dijkstra. Self-stabilization in spite of
distributed control. In Communications of the ACM
17(11):643–644, 1974.

[6] B. Goodheart and J. Cox. The Magic Gargen
Explained:The Internals of Unix System V Release 4:
An Open Systems Design. Prentice Hall, 1994.

[7] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[8] N. Gupta, L. Jagadeesan, E. Koutsofios, and D. Weiss.
Auditdraw: Generating audits the FAST way. In
Proceedings of the 3rd IEEE International Symposium
on Requirements Engineering, 1997.

[9] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static
analyses. In Proceedings of the SIGPLAN ’02
Conference on Program Language Design and
Implementation, 2002.

[10] G. Haugk, F. Lax, R. Royer, and J. Williams. The
5ESS(TM) switching system: Maintenance
capabilities. AT&T Technical Journal, 64(6 part
2):1385–1416, July-August 1985.

[11] S. Mourad and D. Andrews. On the reliability of the
IBM MVS/XA operating system. IEEE Transactions
on Software Engineering, September 1987.

[12] D. A. Patterson and et al. Recovery-oriented
computing (ROC): Motivation, definition, techniques,
and case studies. Technical Report
UCB//CSD-02-1175, UC Berkeley Computer Science,
March 15, 2002.

[13] D. Poirier. Second extended file system.
http://www.nongnu.org/ext2-doc/ , Aug 2002.

[14] J. M. Voas and G. McGraw. Software Fault Injection.
Wiley, 1998.

