REX: Secure, modular remote execution through
file descriptor passing

Michael Kaminsky, Eric Peterson, Kevin Fu, David Maziéres, M. Frans Kaashoek
MIT Laboratory for Computer Science
NYU Department of Computer Science
{ kaminsky ,ericp ,fubob }@lcs.mit.edu
dm@cs.nyu.edu , kaashoek@Ilcs.mit.edu

Abstract features as TCP port and X Window System forwarding,
facilities for copying files back and forth, cryptographic

The ubiquitous SSH package has demonstrated the imp®er authentication, transfer of user credentials across ma-
tance of secure remote login and execution. This paphines, integration with network file systems, server public
presents a new system, REX, designed to provide remké§ management, pseudo-terminals and more. Many of
login and execution in the context of the SFS secure dikese features have special requirements, resulting in com-
tributed file system. REX departs from traditional remotglicated, extensible remote login protocols to which people
login design and is built around two main mechanismsaed new message types for new functionality.

file descriptor passing and a user agent process. This paper argues that the wide variety of features peo-
File descriptor passing allows REX to be split into seyje need from remote login can actually be implemented
eral smaller pieces; privileged code can run as its own pgarough two simple abstractionsfite descriptor passing
cess to provide enhanced security guarantees. REX &a@ an extensible, general-purpasser agent We have
emulates secure file descriptor passing over network c@gilt a new remote login system called REX, part of the

nections, allowing users to build extensions to REX outsigg=s [16] computing environment, based upon these two
of the core REX software. ideas.

REX uses and extends SFS's agent mechanism 10 progjrst REX harnesses and extends Unix’s ability to pass
vide a transparent distributed computing environment s jescriptors between processes over Unix-domain sock-
users. The agent stores private keys, server nicknamgs, File descriptor passing facilitates privilege separa-
and other per-user configuration state; REX makes the §fgj by allowing, for example, decomposition of the REX
agent available to programs that it executes on remote arer into two components: a small trusted prognaxd
chines. _) (the core remote login server), and a slightly larger pro-

We have an implementation of REX and demonstraieam, proxy (a per-user daemon process), which only au-
that its flexibility does not come at the cost of performanc@enticated users can spawn and communicate with. The
Initial REX connections are comparable to those of SSktest versions of OpenSSH] have begun to move in this

in speed, while subsequent connections are much fagfggéction and have introduced local file descriptor passing
because REX exploits the SFS agent to cache connectig;d in pseudo-terminal support.

state to avoid costly public-key operations. REX also emulates secure file descriptor passing be-

tween processes running on different machines. Inter-
machine file descriptor passing allows functions that are
typically built into other remote execution tools, such as
ort forwarding, to be cleanly implemented outside of
X by a pair of entirely separate programs. One module,
ning on the server, listens for connections to a particu-
Mhr port (or even a Unix domain socket) and “passes” the

! i gﬁgepted file descriptor through REX to another module,
to the local terminal. In practice, however, modern remo

. : 1) ning on the client, which connects it to a local port (or
login tools have become quite complex. Users expect SLﬂfﬁix domain socket)

The second mechanism that REX uses to achieve its
This research was supported by the DARPA Composable High Assura

Trusted Systems program (BAA #01-24), under contract #N66001-01-al%-f‘als is an extensible, general-purpose user agent. REX

8927. Michael Kaminsky was supported by a National Science Founds€S the SFS agent, which, like the SSH agent, is a process
tion Graduate Research Fellowship. that runs on behalf of the user. The SFS agent, however,

1 Introduction

Remote login and execution are network utilities that ma
people need for their day-to-day computing. The concept,
of remote login is simple—local input is fed to a progral

mailto:kaminsky@lcs.mit.edu
mailto:ericp@lcs.mit.edu
mailto:fubob@lcs.mit.edu
mailto:dm@cs.nyu.edu
mailto:kaashoek@lcs.mit.edu

holds all of a user’s personal state (i.e., his “computing eiect them from network eavesdropping and tampering at-
vironment”) and not just his private keys. The SFS agetaicks. (See Maziéres et al.q] for details.)

can also store public keys of servers, nicknames of comUnfortunately, self-certifying hostnames are not human-
monly used servers, and various trust policies. The agesdable; most users will never want to see or type them.
maintains all of a user’s state behind a simple Remote PKereover, someone who accesses the wrong name may be
cedure Call (RPC) interface, and thus can be “forwardeglicked into accessing a malicious server with an attacker’s
to other hosts, providing users an identical environmesuiblic key. Thus, the problem of ensuring users reach the
wherever they log in. REX also allows selective signingght server boils down to making sure they access the right
for situations in which the user does not trust all of the reelf-certifying hostname.

mote machines he logs into with access to his agent. SFS provides several techniques for users to obtain self-

We have implemented the REX remote execution facgertifying hostnames. The simplest is through a password.
ity, and the source code is freely available. REX only ad¢fs for example, a user typegx myserveand REX does
800 lines of trusted code (not counting general-purposet knowmyservess public key, REX will prompt the user
crypto and RPC libraries) and provides an architecture for a password, use this password to authenticate the server
implementing extensions as separate programs. REX awrthe client, and then securely download the server’s self-
rently offers modules that handle pseudo-terminal supp@gértifying hostname. SFS employs SRP][for such pass-
TCP port forwarding, X11 forwarding with cookie authenword authentication.
tication, and Unix domain socket forwarding. REX in- One of the roles of the SFS agent is to manage these self-
teroperates with SFS and the SFS agent to provide a &&rtifying hostnames and minimize the number of times
cure, global computing environment. The remote exeqysers have to type passwords. Each user typically runs a
tion tool is fast because REX caches connection statestAgle agent on his local machine, responsible for all local
avoid repeatedly executing the public-key cryptographiéid remote REX invocations and file system accesses. In
operations involved in authentication. REX has been bufie above example, after obtaining a self-certifying host-
dled with the SFS distribution since release 0.6. The RE‘Péme formyserver REX informs the agent of the map-
server is enabled by default in the current release of SF%mg from the human-readable namserver{o the cor-

This paper describes REX. Secti@mprovides a brief responding self-certifying hostname. Subsequent invoca-
introduction to SFS. Sectio8 details REX’s design andtions of REX can simply retrieve this mapping from the
implementation, and Sectiohgives an evaluation of theagent, so the user does not need to enter a password.
implementation in terms of code size and performance. Fi-|n addition to static mappingsl the SFS agent allows
nally, we conclude the paper with some related work, pérbitrary externakertification programsto map human-
marily regarding remote execution (Sectign readable names to self-certifying hostnames automatically.

Whenever a user executes or makes a file system access

to an unknown human-readable server name, the user's
2 Backg round agent proceeds to execute its certification programs to de-

termine the appropriate self-certifying name. The SFS
The goal of the SFS project is to secure the network coagent contains a number of features for advanced users,
munications comprising people’s day to day computinoncluding perl-style regular expression filters on programs.
SFS consists of a network file system, the REX remote eXxepractice, however, simple shell scripts make useful cer-
cution facility, a per-useagentprocess, and an authenticatification programs. For example, a 12-line shell script can
tion daemon. These components are illustrated in Figjurémplement th&known_hosts = mechanism built into SSH.

Building any secure distributed system raises a numbernother important function of SFS agents is to perform
of questions: How do clients and servers communicate seer authentication, convincing servers of the local user’s
curely? How does a client know it is talking to the intendedentity. In this respect, SFS agents are similar to SSHi [
server and not an impostor? How are users authenticaagents. The default user authentication mechanism uses
to servers? What happens when cryptographic keys public-key cryptography. The agent stores a copy of the
compromised? In fact, no single set of answers is best tmer’s private key, which it uses to sign authentication re-
every situation. Thus, SFS attempts to tease the questigussts; the authentication server verifies the signature with
apart in such a way that people can select and recombéngtored copy of the user’s public key. The agent and au-
the solutions most suitable to their needs. thentication server are extensible and can support other

At the lowest level, SFS provides secure client-serveuthentication mechanisms such as shared key cryptog-
communication through the abstraction s#lf-certifying raphy. User authentication is opaque to the file system
hostnames A self-certifying hostname contains the hasand REX; changing the authentication mechanism only re-
of a server’s public key (like a PGP3J] fingerprint). quires modification of the agent and authentication server.
Given such a hash, an SFS client uses well-known cryp-One particularly important authentication mechanism is
tographic techniques to establish a secure channel to password authentication with SRP. As mentioned above,
server, encrypting and authenticating all messages to pB&®P authenticates servers to users, but it also simultane-

FS Client | »1 FS Server
Y . 4
B W Client | | Server | R ™
sfsagent < ™ Software [* ™ Software |& > sfsaut
 \
Y 7
rex < > rexd

Figure 1: The major components of the SFS system.

ously authenticates users to servers. Thus, in the typiaadimple and convenient way for a privileged program to
case that a user types a password, the password is ysatorm a task on behalf of an unprivileged one and return
for mutual authentication and the user can immediatehe result to it in the form of a file descriptor. For exam-
log into the server. Often the password additionally lepde, once a user has been authenticated, the privileged (i.e.,
the user automatically decrypt his own private key, so tHadot”) REX server daemorrexd hands off the connection
subsequent user authentication to any server in the sdama separate daemaproxy, running as the user. The priv-
administrative realm can proceed without a password. ilegedptyddaemon allocates pseudo-terminals and passes

Finally, SFS agents hand&zrver revocationfor cases them tottyd which runs with the privileges of a normal
when a server’s private key has been compromised. Tuger. These privileged programs are small and only per-
mechanisms exist: the agent can maintain a list of revofarm a single task to allow easy auditing.
tion certificates which are self-signed by the compromisedREX also introduces the emulation of file descriptor
server key and the agent can maintain a list of fine-grggassing between machines. This mechanism allows many
rules describing servers (self-certifying hostnames) thatdsgensions such as port forwarding and pseudo-terminal
does not want to access. A more detailed descriptionatfocation to be implemented outside of the core system,
revocation is available in previous papers on SE§ [6]. thereby increasing extensibility. For example, otiyel

receives a pseudo-terminal frgotyd, it passes one end of
)) it to the REX client over the network (see Sectidd).

3 Design and Implementation

The SFS and REX components communicate using Stre S€SSIONS
RPC [24], and the SFS libraries provide a secure transp

. : ,(Il—ritgurez shows how REX establishes a new connection be-
for RPCs that travel over the network. Combined with fi een a client machine (left) and a server (right): this con-

descriptor passing, RPC allows REX to be split into seve ction is known as a REXession Boxes with a gray

small programs that can communicate in a Clearly'deﬁnﬁgckground are SFS components that REX uses. Boxes
way. with a white background are part of REX, and boxes with

An RPC compiler generates the stubs that the prografigyeq ypper-right corner are components which run with
use from a high-level specification. One can study the C@Liperuser privileges.

cise RPC specification file to understand the protocol. Fur'Therex client! is responsible for establishing the initial

thermore, the RPC compiler's automatic stub generat'ggnnection taexd (Step 1)° First, the two processes set

avoids exploitable programmer errors, such as buffer OVEE a secure connection between their respective hosts using

runs, that are common ih message parsing code. Mazi ﬁlic—key cryptography (the details of setting up a secure
[15] describes the RPC library that REX uses in more d§FS RPC connection are given by Maziéres et =i])|

tail. Then, therex client authenticates its user texd using the
sfsagent The agent signs an authentication request which

3.1 File descriptor passing it passes to the server through the secure connedtiexd
passes the authentication requessfsauthd which veri-

File descriptors are numerical handles which nhame an

opened file, socket, device, or other file-like resource. 1This paper will use REX (capital letters) to refer to the remote exe-

Most I/0 in Unix is performed by reading from and writcution facility as a whole antex (emphasized lowercase) to refer to the
client program that the user invokes to start a REX session.

Ing tO.flle descrl.ptors. Um).(also 'prowdes. a facility f(:)r file 2Since the SFS file server, authentication server,rerdall listen on
descriptor passing—sending a file descriptor to a differamé same TCP port, connection setup by default also goes througjssan
process—through theendmsgand recvmsgsystem calls “meta-server."sfssddemultiplexes incoming connections and hands them
on Unix domain sockets [] off to the appropriate daemon using file descriptor passing. It can also be
. ' . . configured to proxy connections for other hosts, based on the server name
REX uses local file descriptor passing between dagguested by the client. This feature is useful for allowing remote login

mons, particularly on the server. This mechanism providesnultiple machines behind a NAT gateway with a single IP address.

[user authentication]

rex rexd @
@ spawns

®

Figure 2: Setting up a REX session

fies the signature and identifies the user (maps the user®ne of the simplest channels in REX—derived frax:
public key to a local account). channel—is called arexecchannel. Figure3 shows thex-
Once the initial connection has been establishiexii, ecchannel setup. Hereproxylaunches a program specified
which runs with the privileges of the superuser, spawndg the user (Step 4), and the REX channel connects that
new process calledroxy, which runs with the privileges program’s three standard file descriptors tordeclient’s
of the local user identified above (Step Bexduses file standard file descriptors (Step 5). In this caseréhelient
descriptor passing to hand the secure connectiqmary, itself (specifically, theexecchannel C++ class) acts as the
which then assumes responsibility for the REX sessiolient module. Theexecchannel is analogous to SSH’s
(Step 3). ability to run a remote command without TTY support.

3.3 Channels 3.4 Using channels to support TTYs

Within a REX session, the REX client can create one BEX provides pseudo-terminal support to interactive login
morechannels Each channel provides a bidirectional datsessions withtychannel (see Figurel). This channel uses
stream abstraction between two processes calledules file descriptor passing to offer TTY support to programs.
The REX channel allows these two modules to commtihe rex client tells proxy to launch a module calletiyd,
nicate as if they were running on the same machine withich takes as an argument the name of the actual program
their standard file descriptors connected. If the client madthat the user wants to run. Typically, for remote login, the
ule sees data on a file descriptor, REX encapsulates tafument tdtyd is the user’s shell.
data as an RPC and sends itpt@xy. Proxy unpacks the Ttyd runs as the regular, unprivileged user who wants
RPC and passes the data to the appropriate server modul€TY. The program has two tasks. First, it obtains a
The server module then sees the data on its correspondiity from a separate daemon running on the server called
file descriptor. ptyd Ptyd runs with superuser privileges and is respon-
REX channels also support file descriptor passing for siole only for allocating new TTYs and recording TTY
arbitrary number of file descriptors. The server module, fasage in the systemtmp file. The two processedtyd
example, can listen for network connections on a particulmdptyd communicate via RPC. Whentydreceives a re-
port. Upon accepting a new connection, the server modglgest for a TTY, it uses file descriptor passing to return
can pass that connection (i.e., the file descriptor which héa@th the master and slave sides of the TTYtyd con-
is a socket) over the REX channel to the client module. Thects toptyd with suidconnect —SFS’s authenticated
REX channel will proxy reads and writes to and from eadRC mechanism (described further in Secti®®). This
end of this “remote socket pair.” mechanism letptyd securely track and record which users
The client creates channels with a special RPC whiotwn which TTYs? After receiving the TTY file descrip-
contains the name of the server module to rimoxy re- tors, ttyd keeps its connection open payd Thus, when
ceives the RPC and spawns the specified program. Tityel exits, ptyd detects the event with an end-of-filBtyd
client can then spawn a local module for the REX chanrtben revokes (with theevokesystem call) any TTYs be-
to connect up to the server module. longing to the terminatettyd, cleans up device ownership
REX channels are implemented as C++ classes insid@wflutmp entries, and recycles the TTYs.
therexclient. Therexchannel base class provides the basic Oncettyd receives a newly allocated TTY, its second
channel functions, but the programmer can extend thdask is to spawn the program given as its argument (e.g.,
functions to address more specific needs. A derived cléss user’s shell). It connects the slave side of the TTY to
represents the client side of a module pair. For convenietileat program’s standard file descriptors. Thiyd sends
and efficiency, some of these derived REX channel clas . — _ o
handle the client end of the channel directly (inside of the Uniike traditional remote login daemongtyd with its single
system-wide daemon architecture, could easily defend against TTY-

. i S
rexclient program itself); others spawn a separate proqr%ﬁﬂaustion attacks by malicious users. Currently, however, this feature
to serve as the client module. is not implemented.

®

[execchannel]

O]

spawns

tdin

tderr

®

Figure 3: Setting up aexecchannel

|xterm| rex II: @ »{ proxy @

[ttychannel] spawns
oo sesize mssages fon 1tyd ptyd1
@ spawns

RZZE €

Figure 4: Setting up #ychannel

the file descriptor of the TTY’s master side back to tke want to forward connections to port 8888 on a remote ma-
client via thettychannel. On the client machinegx con- chine over a secure REX channel to his local Web server
nects the TTY’s master file descriptor to the local termiistening on port 80. REX provides these functions through
nal’'s file descriptor (e.g., thetermthat therex client is binmodulechannel and three short, new programissten,
running in). moduledand connect The rex client invocation is sim-

The ttychannel, rex, andttyd also implement terminal ply rex -m 'moduled connect localhost:80’
device behavior that cannot be expressed through the Utiisten 8888’ host
domain socket abstraction. For example, typically whenThelistenmodule runs on the server and waits for con-
a user resizes axterm the application on the slave sidaections to port 8888; upon receiving a connectils,
of the pseudo-terminal receivessdaGWINCHSsignal and ten passes the accepted file descriptor over dimenod-
reads the new window size with tlectl system call. ulechannel. Themoduledmodule on the client is a wrap-

In REX, when a user resizes atermon the client ma- per program that reads a file descriptor from its standard
chine, the program running on the remote machine neéujput and spawnsonnectwith the received file descriptor
to be notified. Theaex client catches th&IGWINCHSsig- asconnecs standard input and outpu€onnectconnects
nal, reads the new terminal dimensions throughcetl, to port 80 on the local machine and copies data between
and sends the new window size over ttyehannel using its standard input/output and the port. A client connecting
file descriptor 0. Upon receiving the window resize met» port 8888 on the server machine will effectively be con-
sage ttyd updates the server side pseudo-terminal througécted to the Web server listening on port 80 of the client
anioctl. machine.

SSH agent forwarding. REX’s file descriptor pass-
. . ing applies to Unix domain sockets as well as TCP sock-
3.5 Using channels to support arbitrary pro- ets. One useful example is forwarding an SSH agent dur-

grams ing a remote login session. A user does not need built-

. . in support for such an extension but can add it ugii
REX has a generic channel interface that allows users_to PP 9

: ~~ “modulechannel. Therex client command syntax is simi-
connect two modules from thex client command-line lar to the port forwarding examoleex -m "moduled
without adding any additional code. Th&amodulechan- cannect $pSSH AUTH gOCK" F')'Iisten -u ftmo/
nel connects the standard file descriptors of the server m%@h-agent—soclz' host 4 Here. the “u” fla?g to the
ule_program o a user—speC|f|_ed client modulg Prografilien module tells it to wait for connections on a Unix do-
Unlike the two channels described above, fiveclient it- main socket calledsh-agent-sock Upon receiving a
self does not act as the client module. Bivenodulechan- : '

. . . nnection from one of th H program
nel allows REX users to easily build extensions such gg ection from one of the SSH programs (&sgh , scp ,

. ; Or ssh-add) listen passes the connection’s file descrip-
TCP port forwarding gnd even SSH agent forwarding. tor to the client. Thenoduled/conneatombination con-
TCP port forwarding.

. Eort forwarding esser!ually nects the file descriptor to the Unix domain socket named
copies a port on one machine to another (see Figure

Con_neCtionS to th_iS_ copy are no different from direct CON- 4 practice, one would normally hide this socket in a protected direc-
nections to the original port. For example, a person mighty.

®

[binmodulechannel]
moduled, }4 fd

@

spawns

spawns
@ connect @ Web
Browser
Web
Server

Figure 5: Setting up Binmodulechannel to forward a TCP port for Web proxying

by the environment variabl8SH_AUTH_SOCkKhich is the public-key phase and immediately begin encrypting the

where the real SSH agent is listening. In the remote logionnection using symmetric cryptography.

session on the server, the user &8 AUTH_SOCK For an interactive remote terminal session, the extra time

be /tmp/ssh-agent-sock . When an SSH programrequired for the public-key cryptography might go unno-

makes a request of the SSH agent, the request is forwartieed, but for batched remote execution that might involve

through the REX channel to the real agent running on ttens or even hundreds of logins, the computation is observ-

client machine. We have written a shell-script wrapper thalble. Connection caching offers an added benefit; if the

hides these details of setting up SSH agent forwarding. user’'s agent was forwarded, that forwarding can remain in
place even after the user logs out, allowing him to leave

. programs running that require use of the &isagent A
3.6 Using channels to forward the SFS agentyiility sfskeylets the user list and manage open connec-

) . tions.
When first starting up, thefsagentprogram connects to REX eliminates the public-key operations on subsequent

the local file system daemon to register itself using. a%— ins by caching the connection. Thfsagentandrexd

thenticated IPC. SFS’s mechanism for authenticated, in o : :
. : . eep track of the connection on the client and server ma-
machine IPC makes use of a 120-line setgid program

suidconnect Suidconnectonnects to a protected, nameahmes’ respectivelyRex sfsagentrexd andproxy partic-

Unix-domain socket, sends the user’s credentials to t'ﬁgte in the protocol described below to negotiate a new

. . : R ssion key for each new REX connection to that server.
listening process, and then passes the connection back 0. 6 sh how REX set hed
the invoking program. Thougsuidconnecpredates REX, Igure © shows how SEIS Up a hew cached con-

REX’s file descriptor passing was sufficient to impleme .ctlon. Instead of connecting dlrgctly texq, the rex
SFS agent forwarding with no extra code on the serve _ent asks thesfsagento connect on its behalf. The agent

Simply runningsuidconnecthrough REX causes the nect>€s public-key cryptography to establish a secure, authen-

essary file descriptor to be passed back over the networlg(fgted connection teexd Rexdspawnsproxy as before

the agent on a different machine. ar)d passes oﬁ the connection to it. T$|‘eagen_¢nam
) . . tains a connection tproxyto preveniproxyfrom exiting—
Once thesfsagents available on the remote machine : . : .
. , . normally proxy will exit once all of the client connections
the user can access it using RPC. All of the user’s configu- . : . . .
e : g aye terminated. With connection cachipgoxy remains
ration is stored in one place; requests are always forwarded d
. ranning until the user explicitly terminates his REX ses-
back to the agent, so the user does not see different behayv- . . .
: : . sion (using thesfskeycommand) or kills hisfsagent
ior on different machines. Because REX uses the sam I . :
nce an initial connection has been established to a

agent as SFS, users see the same file systems durin%er%er theex client can make subsequent secure connec-
mote login. SSH differs from this architecture in that an ’ q

SSH user’s environment might depend on the contents ofs o that server as follows (see Figufe F|rsf[, rex
his.ssh _directory on the remote machine. contacts thesfsagentand requests thMaste_rSessmnKey
and a newSequenceNumbdor the connection (Step 1).
The MasterSessionKewas established using public-key
3.7 Connection caching cryptography during the initial connection made by #fie
sagent TheSequenceNumbés unique for each REX ses-
REX provides fast remote execution through connectision (connection).
caching. The initial REX connection to a remote machine The rex client uses theMasterSessionKegind theSe-
is set up using public-key cryptography. Once this conneguienceNumbeto compute the values listed in Figuge
tion is established, REX uses symmetric cryptography $@ssionKejs the symmetric key that thex client uses to
secure communication over the untrusted network. Swmcrypt its connection tproxy; it is computed as a SHA-1
sequent REX connections to the same machine can bygassh /] of the MasterSessionKegnd theSequenceNum-

[user authentication]

sfsagent I: :I rexd @

® ‘ spawns

@

Figure 6: Setting up a cached REX session (initial connection)

[existing connection]

Y

sfsagent | proxy

@ ® ®

P unencrypted

rex < > rexd
SequenceNumber, MasterSessionlID, SessionID
encrypted @
rex < > rox;
— 1 proxy @
i [execchannel] spawns
[sinss

®

Figure 7: Setting up a cached REX session (subsequent connections)

SessionKey = SHA— 1(MasterSessionKegequenceNumbgr
SessionID = SHA-—1(SessionKey
MasterSessionID = SessionlDSequenceNumber 0)

Figure 8: Therex client computes a neBessionKejrom theMasterSessionKegndSequenceNumber

ber. TheSequenceNumb@revents an adversary from remachineA to log into remote maching, and then login
playing old REX sessions. The hash also makes it infeafsém that session oB back toA. Many utilities support
ble to derive differenSessionKeyalues from each other.credential forwarding to allow password-free login fr@m
The SessionlDis a hash of th&sessionKeyand theMas- back toA—but what if the user doesn’t trust machiBeas
terSessionlDs a hash of th&essionlDvhere theSequen- much as machin@d? For this reason, other systems often
ceNumbeis 0. disable credential forwarding by default, but the result of
Once therex client computes these values, it makes dhat is even worse. Users logging frarback intoA will
insecure connection t@xd (Step 2). It sendsexdthe Se- simply type their passwords. This is both less convenient
guenceNumbeithe MasterSessionlPand theSessionID and less secure, as an untrusted macBivell now not
Session IDs can safely be sent over an unencrypted conmedy be able to log intd\, it will learn the user’s password!
tion because adversaries cannot derive session keys froffo address this dilemma, REX and tsfisagensupport
them. Rexdlooks up the appropriate cached connectiaelective signing. During remote login, REX remembers
based on théMasterSessionID Then,rexd computes the the machines to which it has forwarded the agent. In the
SessionKeynd theSessionIDfor the new REX sessionremote login session, when the user accesses an SFS file
based on th&equenceNumbdhat it just received and thesystem, for example, hifsagentvill print out the name of
MasterSessionKehat it knows from the initial connectionthe machine originating the authentication request and the
by thesfsagentRexdverifies that the newly compute®ks- machine to which the user is trying to authenticate. The
sionIDmatches the one received from te&client. If they user’s agent knows about all active REX sessions and for-
match,rexd passes the connection pooxy along with the warded agent connections, so the remote machine cannot
newSessionKefStep 3). Finallyrexandproxyboth begin lie about its own identity. Moreover, signed authentica-
securing (encryption and message authentication code)tthe requests contain the name and public key of the server
connection (Step 4). being accessed, as well as the particular service being ac-
After rex and proxy establish a secure REX sessiorgessed (e.g., REX or file system). Thus, the agent always
therex client can create a new REX channel as describlsiows exactly what it is authorizing.
above (Steps 5 and 6Rroxy (and possibly alsoex) will With this information, the user can choose whether or
spawn the appropriate modules which can now communit to sign the request. Thus, users can decide case-by-case
cate securely over the network. Subsequent connectigrether to let their agents sign requests from a particular
proceed in the same way, allowing REX to rapidly execumeachine, depending on the degree to which they trust that
processes on the server. machine. The modularity of the agent architecture even
allows users to plug-in arbitrary programs to ask their per-
. . mission. Some users might want a GUI dialog box to po
3.8 Ager_1t forwarding and connection up while others might simply prefer to respo%d to a tF()axE[)
caching prompt. More advanced users can even register programs

REX caches connections in thisagenbased solely on the that automatically respond yes or no for certain groups of

identity of the remote machine. When REX forwards tH¥StS:
sfsagentthese cached connections become available even

in the remote login session. The user can issueréie 4 Evaluation
command from any machine that has access to his agent

and benefit from the centrally located cache. First, this section quantifies REX’s modular implementa-
For example, if a user logs in from machiAgrunning tion in terms of code size. Second, we compare the perfor-

the agent) td, and then fromB to C, REX forwards his mance of REX with the OpenSSH] implementation of

agent toB and toC. This sequence of logins produces tWesH protocol version 23[1]. The measurements demon-

cached connections: “#” and “to C,” both of which are strate that the modularity gained from file descriptor pass-
stored in thesfsagenton A. Then, even though the Usefng comes at little or no computational cost.

has never previously logged in frofnto C directly, he can
do so securelyithoutusing public-key cryptography be- .
cause the his local agent c?n?nachkwazd tzgrefdorr)w %a— 4.1 Code size

chineC already share BlasterSessionKey his technique REX has a simple and modular design. Its wire protocol
provides a more efficient implementation, particularly f@pecification is only 200 lines of Sun XDR code. REX
users that frequently move between a set of machines. has two component programs that run with enhanced priv-
ileges.Rexdreceives incoming REX connections and adds
only 400 lines of trusted code to a system (not counting
the general-purpose RPC and crypto libraries from the SFS
One particularly difficult issue with remote login is theoolkit [15]). Ptydallocates pseudo-terminals to users that
problem of accurately reflecting users’ trust in the variolsve successfully authenticated and is also 400 lines of
machines they log into. For example, a user may use locade.

3.9 Selective signing

Proxy, which runs with the privileges of the authenti- The SSH measurements varied between 0.24 sec and
cated users is just over 700 lines of code andéixelient 0.27 sec. The REX measurements varied between 0.19 sec
is 1,900 lines. Extensions to tlesagentfor connection and 0.26 sec. The REX measurements with caching varied
caching constitute 600 lines of code. between 0.04 sec and 0.05 sec.

Modules that extend REX'’s functions are also small. The results demonstrate that an initial REX login per-
The listen moduled andconnectmodules which handle, forms slightly faster than an SSH login. In both cases,
among other things, TCP port forwarding and X11 fomost of the cost is attributable to the computational cost
warding are approximately 275, 50, and 400 lines of cod#, modular exponentiations. The initial connection in
respectivelyTtydis under 200 lines. REX requires two concurrent 1,024-bit Rabin-Williams

If REX were to gain a sizeable user base, we could eecryptions—one on the client and one on the server—
pect the code size to grow because of demands for featdodiewed by a 1,024-bit Rabin-Williams signature on the
and interoperability. The code growth, however, wouldlient. (All three operations are Chinese remaindered.) An
take place in untrusted pieces suchpasxy or new exter- SSH login performs one 768-bit Diffie-Hellman key ex-
nal modules. Because of the modularity, well-defined inhange and two 1,024-bit RSA decryptions. REX’s op-
terfaces, and the use of file descriptor passing, the trustedtions are less computationally expensive than SSH’s,

components will remain small and manageable. and thus, as expected, initial REX connections are slightly
faster. Cached REX connections require no public key
4.2 Performance cryptography, and therefore take only 0.04 sec. If SSH

were to implement connection caching, presumably it

We measured the performance of REX and OpenS8iduld also be able to achieve low subsequent connect la-
3.0.2p1 [L7] on two 1.3 Ghz Athlon machines running Detencies.
bian Linux 3.0. A 100 Mbit, switched Ethernet with a
63 usec round-trip time connected the client and servgrp o port forwarding throughput
Each machine had a 100 Mbit Tulip Ethernet card. The
server had 512 Mbytes of memory. The client h@oth SSH and REX can forward ports and X11 connec-
896 Mbytes of memory. tions. To demonstrate that REX performs just as well as

We configured both REX and SSH to use equivalentlSH, we measure the throughput of a forwarded TCP port
sized cryptographic keys. For authentication and forwadth NetPipe P2]. NetPipe streams data using a variety of
secrecy, SFS uses the Rabin-Williams cryptosystegp [block sizes to find peak throughput.
with 1,024-bit keys. SSH uses RSA1] with 1,024-bit

keys for authentication and Diffie-Hellmaf][with 768- Protocol| Throughput| Latency
bit ephemeral keys for forward secrecy. TCP 89.7 Mbit/sec| 63 usec
We configured SSH and SFS to use the ARS4&[pher SSH 54.0 Mbit/sec| 154 usec
for confidentiality. For integrity, SFS uses a SHA-1-based REX 58.5 Mbit/sec| 262 usec
gﬁzs_ig[e atithenUcatlon code while SSH uses HMA?éble 2: Throughput and round-trip latency of TCP port
T forwarding
4.2.1 Remote login We first measure the throughput of an ordinary, inse-

We compare the performance of establishing a remote f'® TCP connection. Table shows that the maximum
gin using REX and SSH. We expect both SSH and REX t&P throughput is 89.7 Mbit/sec. Next, we measure the
perform similarly, except that REX should have a lower [d0roughput of a forwarded port over an established SSH

tency for subsequent logins because of connection cach@gd REX connection. Tablé shows that REX has a
slightly better throughput than SSH.

Protocol Latency We attribute the additional latency of ports forwarded
SSH 0.25 sec with REX to three RPCs necessary to pass a file descriptor
REX (initial connection) 0.20 sec before port forwarding can begin. While latency of ports
REX (subsequent Connection)o_04 sec forwarded with REX is greater than with SSH, the sub-
millisecond latency of REX is still very small in absolute
Table 1: Latency of SSH and REX logins terms. Round-trip latency to a well-placed machine on the

Internet is an order of magnitude greater than the latency
Tablel reports the average latency of 100 remote loging a port forwarded with REX. Thus, the extra security
in wall clock time. In each connection, we remotely log iand flexibility gained from modularization of file descrip-
and are then immediately logged out. We set the shelltof passing do not come at significant cost.

the user tobin/true . The user’s home directory is on [In the final version of this paper, we intend to show why
a local file system. For both REX and SSH we disable #ile latency does not have a noticeable effect on end-to-end
port forwarding. measurements such as rsync over SSH versus rsync over

REX. We expect applications such as rsync, which latd REX will increasingly resemble each other. For ex-
much longer than the network round-trip times involve@mple, as part of the privilege separation code in the latest
to overshadow this latency. For interactive applicationggrsion of OpenSSH, the OpenSSH server internally uses
users would not notice sub-millisecond delays.] file descriptor passing to handle pseudo-terminals. Even
though file descriptor passing is part of the source code, it
is not part of the protocol. Generalizing the idea cleanly,
5 Related Work though, so that file descriptor passing could be used in

. . . . ther places, would require modification to the SSH pro-
Several tools exist for secure remote login. This section Q%

N) col, which we hope people will consider for future revi-
cuses primarily on the remote login protocol SSH. We al

fons.
describe other remote execution implementations. ThlsThe main difference between REX and SSHis the use of

sectl_on conclludes with a discussion of user agents and cl%'descriptor passing to provide privilege separation and
hection caching. to extend the program’s functions. REX also provides con-
nection caching to improve performance, selective signing
5.1 SSH to help users who use machines is several administrative
SSH [37] is the de-facto standard for secure remote ex(ggmains, and SRP to alloyv USers o both retrieve their.pri-
ﬁte key from the authentication server and to authenticate

cution and login. SSH is decentralized—one only nee . . i
local superuser privileges to run the SSH server daem T host to which they are connecting. SRP sidesteps the
ggd to deal to potential man-in-the-middle attacks.

One does not need to obtain server certificates or otherwi

register with any sort of realm administrator before a per-

son can connect to the SSH server. SSH also offers severd Kerberos

modes of user authentication. For example, it has optional -) o)

support for KerberosZ[], allowing users password-freeKerberOS_’m]is a centra!lzed authentlgat|on _sy_stem which

login to servers plus ticket and AF$]token forwarding. COmes with remote login and execution utilities. It pro-
SSH was the main inspiration for REX, as we needé(_&j_es a ynlfled way of naming, authenticating, and autho-

an SSH-like tool that could work with SFS. Although wé'Zing prl_nmpals. In Kerbfer_os, howe_/er_, users must be or-

could have extended SSH for this purpose, we built RE;_}@mzed into realms._ Joining _an_eX|st|ng realm (|.e_., s_et-

from scratch for two reasons. First, as typically configind Up & server) requires permission from and coordination

ured, SSH servers read files in users’ home directories dyith that realm’s administrator. In part because Kerberos is

ing user authentication (e.qithorized_keys). This Pased on shared-secret cryptography, creating a new realm

policy is incompatible with our goal of integrating remoté Not @ simple task and still requires administrative per-

login with a secure file system, as the server would geRISSion to inter-operate with existing realms.

erally not have permission to read users’ files before thosd<erberized remote login is based on this centralized ar-

users are authenticated. chitecture and must use a trusted third party (the KDC) for
The second benefit of building REX from scratch is thgtutual client and server authentication. While REX and

by designing a new protocol we could exploit file descrigeFS support third-party authentication, it is not required.

tor passing to simplify the implementation. The REX Sygzlients and servers can authenticate each other in whatever

tem is split into separate programs that communicate usfgnner is desired.

RPC and file descriptor passing. Most of the programs thatrhe AFS [1] file system uses Kerberos to authenticate

make up REX have fewer than 1,000 lines of code (ng¢ers. The Kerberos remote login tools forward AFS to-

Counting the genera|_purpose Crypto and RPC libraries {ﬂ@s and authenticate users to the file System before |Og'

use). Many of the functions built into SSH are instead préing in the user. REX and the SFS agent provide similar

vided by small external utilities with REX. We could nofupport for the SFS file system.

have taken this approach had we needed to maintain ComThe GSS-APlis a generiC interface for client-server au-

patibility with SSH. thentication [3]. Because REX was directly designed for
OpenSSH 7], a popular implementation of the SSHnteroperability with SFS, the GSS-API was not necessary.

protocol, has recently embraced privilege separation to REX's design does not preclude the use of GSS-API in the

duce the number of places where programming errors defyre, however.

cause catastrophic security vulnerabilities][By reduc-

ing th_e amount of trusted code_, a programming errorésg gecyre rlogin

less likely to yield escalated privileges (e.g., root) to an

attacker. Privilege separation builds upon the principle Béfore SSH, researchers explored other options for secure

least privilege, which states that a program should enjmote login [0, 27]. Kim et al. [L(] implemented a

the least privilege necessary to complete its task [securerlogin environment using a security layer beneath
We believe that many of the ideas in REX are applicablé&CP. The system defended against vulnerabilities cre-

to SSH and other remote login tools, and hope that S&kd by host name-based authentication and source address

10

spoofing. Securdogin used a modular approach to pro5.6 Connection caching

vide a flexible security policy. Like REX, securtogin The id ¢ . L ilable in oth

used small, well-defined module interfaces. REX uses Qe ! eaho SZSSS‘L'O” 'zef]umptmn IS availa e(;nSoStHerhsys—

secure TCP-based RPC layer implemented by SFS; sedfjfas such as I sh[6], a wrapper aroun that
empts to reuse its encrypted channel to execute subse-

rlogin used a secure network layer between TCP and 1P, . :
similar to IPSec] guent commands, demonstrates the interest in such a fea-
= ture.

5.4 Agents 6 Conclusions

REX provides secure remote login and execution in the

While REX is not t_he first remote executlon_tool 0 ®Mradition of rsh and SSH. REX departs from the design
ploy user agents, it makes far more extensive use of |tfs

agent than other systems. SSH, for example, has aggnt'gs pre.decesso'rs by apply ing and extending two existing
o ideas—file descriptor passing and a user agent.

capable of authenticating users to servers. For other tas) . - o
ocal file descriptor passing enables privileged code

such as server authentication, however, it relies on con- .) .)
. . . . , .~ separation. The current REX implementation requires
figuration files (e.g.known_hosts) in users’ home di-

rectories. When users have different home directories roughly 800 lines of code run with superuser privileges.

different machines, they see inconsistent behavior for tﬁEXs ability to emulate file descriptor passing over the

) . nt-%twork allows users to build new features outside of the
same command, depending on where itis run. By contras

encapsulating all state behind an RPC agent interfacecqte software. Many of the extra functions that are part

; . ; of SSH are written as separate modules in REX. File de-
lows a user’s configuration to be propagated from machine

to machine by simply forwarding an RPC connection scriptor passing simplifies REX’s design and is a powerful
* primitive for building a remote execution facility.

Another significant difference between the REX and the SES yser agent allows REX to provide a consistent
SSH agents is that the SSH agent returns authenticatiorb@ﬁputing environment across machines. REX makes this
quests that are not cryptographically bound to the identiyecyre computing environment” available on other ma-
of the server to which they are authorizing access. As a fgiines by forwarding the agent to remote login sessions.
sult, a remote SSH client could lie to the local agent abgigmote and local programs then have access to the same
what server it is trying to log into. This design makes Brivate keys, server nicknames, etc.
impossible to implement selective signing in SSH agents. the REX architecture provides a convenient, extensible

Recently, the security architecture for the Plan 9 systémerface to the user and developer without compromising
has been redesigned]] The new Plan 9 architecture hasecurity or efficiency. Rather, REX provides enhanced se-
an agentfactotum which is similar to an SSH and SF&urity by reducing the amount of privileged code. The in-
agent, but is implemented as a file server. creased extensibility comes at no extra cost. REX is as ef-

The Taos operating systemZ 29 and the Echo file ficient as existing tools and can even do better by caching
system [] also have a notion of an authentication agerfionnection state.

Unlike SFS, their agents refer to a component of the oper-The current REX implementation demonstrates that

ating system rather than a user-controlled process. ~ REX is viable. We hope that the new ideas upon which
REX is built will find wider applicability in other appli-

cations. REX is available as part of the SFS distribution
_ _ _ (http:/lwww.fs.net/).
5.5 File descriptor passing

We note that an alternative to file descriptor passing WOLﬁéeferenceS

b,e file namespace passing, asis done in P'a“]_g Plan él] Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy
9's CPU command can replicate parts of the file names-" \iann and Garret Swart. The Echo distributed file sys-
pace of one machine on another. When combined with tem_ Technical Report 111, Digital Systems Research Cen-
device file systems likédev/fd , this mechanism effec- ter, Palo Alto, CA, September 1993.

tively subsumes file descriptor passing. Moreover, because

so much of plan 9s functionality (including the windowing [2] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean
system) is implemented as a file system, CPU allows most Quinlan. Security in Plan 9. IRroceedings of the 11th
types of remote resource to be accessed transparently. Un- ;JOSOEZN'X Security Symposiuian Francisco, CA, August
fortunately, Unix device and file system semantics are not '

amenable to such an approach, which is one of the reasgy) w. Diffie and M. E. Hellman. New directions in cryptogra-
tools like SSH have developed so many different ad hoc phy. IEEE Trans. Inform. TheoryT-22:644—654, Novem-
mechanisms for handling different types of resource. ber 1976.

11

http://www.fs.net/

[4] FIPS 180-1. Secure Hash StandardU.S. Department of [19] Dave Presotto and Dennis Ritchie. Interprocess communi-

(5]

(6]

(7]

(8]

E]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

Commerce/N.I.S.T., National Technical Information Ser-
vice, Springfield, VA, April 1995.

Alan O. Freier, Philip Karlton, and Paul C. Kocher. Th§20]
SSL protocol version 3.0. Internet draft (draft-freier-
ssl-version3-02.txt), Network Working Group, November
1996. Work in progress.

fsh — Fast remote command executionttp://www. [21]

lysator.liu.se/fsh/

John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and performance[?r?—]
a distributed file systemACM Transactions on Computer
Systemg6(1):51-81, February 1988.

Kalle Kaukonen and Rodney Thayer. A stream ciph@s]
encryption algorithm “arcfour”. Internet draft (draft-
kaukonen-cipher-arcfour-03.txt), Network Working Group,
July 1999. Work in progress.

S. Kent and R. Atkinson. Security architecture for the inte 54
net protocol. RFC 2401, Network Working Group, Nove]
ber 1998.

Gene Kim, Hilarie Orman, and Sean O’Malley. Implemeni-]
ing a secure rlogin environment: A case study of using
secure network layer protocol. Rroceedings of the 5th
USENIX Security Symposiupages 65—-74, Salt Lake City,
UT, June 1995.

a

2
Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC:[6l

Keyed-hashing for message authentication. RFC 2104, Net-
work Working Group, February 1997. [27]

Butler Lampson, Martin Abadi, Michael Burrows, and Ed-
ward P. Wobber. Authentication in distributed systems:
Theory and practiceACM Transactions on Computer Sys-
tems 10(4):265-310, 1992. [28]

J. Linn. Generic security service application program in-
terface version 2, update 1. RFC 2743, Network Working
Group, January 2000. [29]

David Maziéres. Self-certifying File SystemPhD thesis,
Massachusetts Institute of Technology, May 2000.

David Maziéres. A toolkit for user-level file systems[30]
In Proceedings of the 2001 USENIXages 261-274.
USENIX, June 2001.

David Maziéres, Michael Kaminsky, M. Frans Kaashoek,
and Emmett Witchel. Separating key management from f[t&1]
system security. IfProceedings of the 17th ACM Sympo-
sium on Operating Systems Principlesges 124-139, Ki-
awa Island, SC, 1999. ACM.

OpenSSH http://www.openssh.com/ [32]

Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey,
and Phil Winterbottom. The use of name spaces in plan 9.
ACM SIGOPS Operating System Revig#(2):72-76, Apr [33]
1993.

12

cation in the eighth edition UNIX system. Rroceedings of
the 1985 Summer USENIX Confererfeertland, OR, 1985.

Niels Provos. Preventing privilege escalation. Techni-
cal Report TR-02-2, University of Michigan, CITI, August
2002. http://www.citi.umich.edu/u/provos/
ssh/privsep.html

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.
A method for obtaining digital signatures and public-key
cryptosystems.Communications of the ACM1(2):120—
126, 1978.

Jerome Saltzer. Protection and control of information in
multics. Communications of the ACM7(7):388-402, July
1974.

Q. Snell, A. Mikler, and J. Gustafson. Netpipe: A net-
work protocol independent performace evaluator.Pho-
ceedings of the IASTED International Conference on In-
telligent Information Management and Systethse 1996.
http://lwww.scl.ameslab.gov/netpipe

R. Srinivasan. RPC: Remote procedure call protocol spec-
ification version 2. RFC 1831, Network Working Group,
August 1995.

5] J. G. Steiner, B. C. Neuman, and J. |. Schiller. Kerberos:

An authentication service for open network systems. In
Proceedings of the Winter 1988 USENRages 191-202,

Dallas, TX, February 1988. USENIX.

W. Richard StevensAdvanced Programming in the UNIX
Environment Addison Wesley Longman, Inc., 1993.

David Vincenzetti, Stefano Taino, and Fabio Bolognesi.
Stel: Secure telnet. IRroceedings of the 5th USENIX Se-
curity Symposiumpages 75-84, Salt Lake City, UT, June
1995.

Hugh C. Williams. A modification of the RSA public-key
encryption procedurelEEE Transactions on Information
Theory IT-26(6):726—729, November 1980.

Edward P. Wobber, Martin Abadi, Michael Burrows, and
Butler Lampson. Authentication in the Taos operating sys-
tem. ACM Transactions on Computer Systefi®(1):3-32,
1994.

Thomas Wu. The secure remote password protocol. In
Proceedings of the 1998 Internet Society Network and Dis-
tributed System Security Symposjupages 97-111, San
Diego, CA, March 1998.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehti-
nen. SSH transport layer protocol. Internet draft (draft-ietf-
secsh-transport-14.txt), Network Working Group, March
2002. Work in progress.

Tatu Ylénen. SSH — secure login connections over the Inter-
net. InProceedings of the 6th USENIX Security Symposium
pages 37-42, San Jose, CA, July 1996.

Philip Zimmermann. PGP: Source Code and Internals
MIT Press, 1995.

http://www.lysator.liu.se/fsh/
http://www.lysator.liu.se/fsh/
http://www.openssh.com/
http://www.citi.umich.edu/u/provos/ssh/privsep.html
http://www.citi.umich.edu/u/provos/ssh/privsep.html
http://www.scl.ameslab.gov/netpipe

	Introduction
	Background
	Design and Implementation
	File descriptor passing
	Sessions
	Channels
	Using channels to support TTYs
	Using channels to support arbitrary programs
	Using channels to forward the SFS agent
	Connection caching
	Agent forwarding and connection caching
	Selective signing

	Evaluation
	Code size
	Performance
	Remote login
	Port forwarding throughput

	Related Work
	SSH
	Kerberos
	Secure rlogin
	Agents
	File descriptor passing
	Connection caching

	Conclusions

