On the max-flow min-cut ratio for directed multicommodity flows

MohammadTaghi Hgjiaghayi * F. Thomson L eighton*

Abstract

We give a pure combinatorial problem whose solution determines max-flow min-cut ratio for di-
rected multicommodity flows. In addition, this combinatorial problem has applications in improving the
approximation factor of Greedy algorithm for maximum edge disjoint path problem. More precisely, our
upper bound improves the approximation factor for this problem to O(n3/4). Finally, we demonstrate
how even for very simple graphs the aforementioned ratio might be very large.

Leighton and Rao [5] first introduced a relation between maximum multicommodity flow and minimum
cut in undirected graphs. This relation has been used to develop novel tools for designing divide-and-
conquer approximation algorithms for NP-complete problems on undirected graphs (See Shmoys [7] for
a survey). The directed variant of the problem appears much harder (e.g., it is NP-hard for & = 2, the
case which can be solved efficiently for undirected graphs). Despite persistent research efforts, the current
bounds for directed graphs are weak. To state the bound, we need to define the problem more precisely.
In a given directed graph G, with capacities on edges together with a list of & source-sink pairs of vertices
called commodities, we want to find a minimum cut whose removal disconnects all source-sink pairs. In a
recent work, Saks et al. [6] construct a family of k-commaodity networks, for all £ and € > 0, where the
minimum multicut-to-maximum k-commodity flow ratio is no less than & — ¢, in contrast with the Q(log k)
upper bound in the undirected case (an upper bound % is trivial.) However, in this instance, the number of
vertices is exponential in k. Also Cheriyan et al. [2] obtain the upper bound O(+/n In(k)) which is further
improved to O(+/n) by Gupta [3]. However, still there is a big gap between the lower bound O(log(n)) and
the upper bound min{O(y/n), k}.

So far, many researchers have considered the directed multicut problem described above. Another vari-
ant called the sparsest cut problem considered by Leighton and Rao [5] is as follows: given a graph G with
k commodities each has its own demand, we search for a cut whose ratio of the capacity of the cut to the
separated demands is minimized. One can observe that the sparsest cut problem for directed graphs can be
approximated within factor . log D, where D is the sum of the demands and « is the best approximation
ratio for directed multicut (the same reduction from sparsest cut to multicut in undirected graphs works for
directed graphs, e.g., see Section 5.3.2 of [7].) Thus using the result of Gupta [3], we have O(log k+/n)-
approximation for directed sparsest cut problem in which all demands are unit. We note that in fact Leighton
and Rao [5] consider this problem which has many algorithmic applications. Therefore any progress in im-
proving the max-flow min-cut ratio and hence the approximation factor of multicut has direct consequences
in efficient decompositions of directed graphs and obtaining approximation algorithms for many NP-hard
problems on these graphs.

In this paper, we mainly focus on distinguishing between polylog(n) and O(n¢) for the max-flow min-
cut ratio in directed graphs which is in fact the integrality gap of an LP. To this end, we introduce a pure
combinatorial problem whose solution determines this ratio. In addition, as pointed out by Chekuri and

*Department of Mathematics and Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA,
US.A {hajiagha,ftl}@math.nmt.edu

Khanna [1] this combinatorial problem has applications in improving the approximation factor of the greedy
algorithm for the edge disjoint path problem (EDP) on directed graphs in which given a graph G and &
source-sink pairs, our objective is to connect a maximum number of these pairs via edge-disjoint paths. Our
upper bound improves the approximation factor for this problem from O (n*/?) [1] to O(n®/*). Finally, we
demonstrate how, even for very simple graphs, the integrality gap might be very large.

1 Cutting far pairs

In this paper we consider the more convenient formulation of the multicut problem as follows. Given a set
of pairs T = {(s1,%1),... , (sk,tx)}. We want to pick a set C of vertices such that in the remaining graph
there is no path from a s; to ¢;, 1 < 7 < k. We note that here s1,%1,... , sk, tx can belong to C. The LP
relaxation for this problem is as follows:

F = Miny_ zy;such that: disty (s, ;) > 1,Vi € {1,-++ ,k}izy 20,V €V (1)
veV

The reason that we denote the optimal solution by F' is that in fact this LP is a dual of max-sum multi-
commodity flow problem in which we want to maximize the sum of flows from sources to sinks such that
the total flow passing through each vertex is at most one. We now introduce our combinatorial problem.

The Cutting Far Pairs problem (CFP) can be defined as follows. Let G(V, E) be a simple unit capacity
directed graph and let 7 be the set of all source-sink pairs such that the shortest distance in G between
source and sink is at least /. What is the size of the smallest cut in terms of n and [that separates all pairs in
T?

The next theorem shows how the CFP problem captures the hardness of the integrality gap of the LP in
Equation (1).

Theorem 1.1. If there exists a graph for which there are solutions to CFP of size at least Q((%)!*) for
some I = O(n' €) where a, e > 0 then the integrality gap of LP (1) is at least n®. In the other hand, if the
solution of CFP for every graph G and for all 7 is in O(7polylog(n)) then the integrality gap of the LP (1)
is in O(polylog(n)).
Proof. The first part is easy. Consider the instance mentioned in the Theorem. Suppose we set z,, = 1/1 for
each v € V(G). Since this is a feasible solution of LP (1), we have F' < 7. Since the integer solution is in
Q((%)H), by setting I = O(n'~¢), the integrality gap is at least n°*, as desired.

Now we consider the other case. Consider a solution z of LP (1). Suppose that for each v € V(G),
we round up z, to the nearest multiple of n—!. After this rounding process, we have a feasible solution

z' such that is at most 1 + n— = 2 (since F' > 1). Now, in order, for each vertex v with
zl, = 0 first we delete v from the graph and then for each pair of edges (u,v), (v,w) € E(G), we add
an edge (u,w) to the new graph and call the new graph G’. Also, if v was a source in a pair (v,t) (a
sink in a pair (s,v)), we omit this pair and instead we consider all pairs (w,t) ((s,w)) for which (v, w) €
E(G)((w,v) € E(G)) and there is a path from w to ¢ (s to w) in G. Also, for each vertex v for which
z!, > 0, we replace v by a path of length ! /n=" (recall that =, is a multiple of n=1). Call the new graph
G". In the new graph we consider all pairs for which their distance with respect to z is at least 1 and
thus their distances in G” is at least n. We can correspond every cut of our new instance to a cut in the
original graph G. Also, ZUEV zl = |V(G”)|n—1 By our assumption, we can cut all the pairs by at most

o(M S polylog (v (G")])) = O('V() polylog(n)) vertices (V' (G") is at most n2). Since this cut is
L polylogn)) _
o -

) = O(polylog(n)) as desired. O

Yvev(a) Ty

corresponded to a cut in the original graph G, the integrality gap of LP (1) is at most O(
\V(G) "
polylog(v(c”))
O(EUEV(G) z,

One can easily observe that if we have an instance for the CFP problem with solution in Q((%)'*<) for any
length I’ = O(n!~¢), then by subdividing nodes as we did in the proof of Theorem 1.1, we can obtain an
instance for I = ©(n'~¢) with solution in Q((%)***). Thus this observation and Theorem 1.1 implicitly
say that the hardest case of CFP is the case in which | = ©(n!~¢).

The next theorem shows how we can obtain an upper bound 0(7—22) for the CFP problem. Notice that
using the same ideas mentioned in Theorem 1.2, we improve the approximation factor for the EDP problem
in Theorem 1.3.

Theorem 1.2. For any length [, the CFP problem has a solution of size in O('l‘—j).

Proof. Here, we show that there exists a cut C' of the desired size. First we initiate C' with an empty set.
Then we add vertices to C during a number of iterations. In the beginning of the jth iteration, if there exists
no s; —t; path in the residual graph G (G will be updated after each iteration) where s; and ¢; consist far pair
in the original graph, we are done. Otherwise choose a far pair (s, t) for which there exists a path from s to ¢
in G. Remove all vertices v of G for which there exists no (simple) s — ¢-path for far pairs (s, ¢) which goes
through ». We call the remaining graph G’. We now do a breadth-first search from s in graph G’ and call
the vertices at distance ¢ from s layer L;. Alsowelet X = Ly ULy U--- ULg' Y = L%H ULoU--- UL%
and Z = V(G') — X — Z. Assume |Y'| = ¢;. Since the layers are disjoint, there exists a layer of size at
most 3—? in Y. We add vertices of such a layer to C' and remove them from G. Clearly after the termination
of the algorithm, set C is a directed multicut. We show that |C| is in O(n?/I2). Let k' be the total number
of iterations of our algorithm. We double-count the number of (a, b)-pairs in G for which there exists a path
from a to b in G. This number is at most n2. On the other hand, consider the iteration jandavertexv € Y.
After cutting the edges within Y, either there is no path from v to ¢, or there exists no path from s to v. We
consider the former case and the latter case has a very similar situation. We know that before cutting, there
is a (simple) path P from s; to ¢; which goes through v. Thus there are at least [/3 vertices of path P in Z to
which there were paths from v, but now there is no path. Similarly, in the latter case, if there exists no path
from s to v, there are [/3 vertices in X from which there exists no path to v now, but it was before. Thus for
each c; vertices in Y, we separate at least %l pairs of vertices that were connected before the jth iteration.

We now observe that the total number of vertices in C'is at most Ef’zl 3% subject to Ef’zl %l < n? In

this case the maximum size of |C| is in O(n?/I2) as desired. O

We note that in the proof of Theorem 1.2, the ratio of the number of pairs which are disconnected (l%) to
the deleted vertices (3¢; /1), which can be considered as a concept of efficiency, is in O(I?) which is tight
for some graphs (e.g. consider a source and a sink among which there are n /I disjoint paths of length / and
there are no more edges in the graph).

By the same method of Theorem 1.2, we can improve the approximation factor of the EDP problem
(see the definition in the introduction) from O(n*/®) [1] to O(n3/%). This result has also been claimed
independently by K. Varadarajan (via private communications).

Theorem 1.3. There exists an O(n?/4)-approximation for the edge disjoint path problem (EDP) in directed
graphs.

Proof. To obtain the result, we state an improvement of Theorem 3.2 of [1], a variant of CFP for which
we want to delete edges instead of vertices to separate far pairs. The current bound for this problem is
O(n*/1*) which we improve to O(n3/13). In fact, our proof uses a different variant of BFS and a more
careful counting than the ones in Theorem 3.2 of [1]. The rest of the proof is exactly the same as the proof
of Chekuri and Khanna, in which they show that the simple greedy algorithm which considers the shortest
path length for each unrouted (s;,¢;) pair and connects a pair with minimum shortest path length via its

shortest path has the desired approximation factor. Here the algorithm terminates as soon as the minimum
shortest path length among unrouted pairs exceeds a certain length [(I = ®(n3/ *) for our case.)

The proof of the above claim about the edge variant of CFP is essentially the same as the proof of
Theorem 1.2. The only difference is that we consider blocks B; which consist of vertices of layers Lo; 11
and Lo; 1o instead of layers and we add all edges among a block of minimum size in Y to cut C (the

. 36¢2 . /' 36c2 .
number of edges among a block is at most l—ch). We want to minimize E?:l l—ff subject to ¢; < n and
Z;?':l %l < n?. We see that |C| is maximized when min{3n/l, k'} of ¢;’s are n and the rest are zero. In

this case |C| is in O(n3/13) as desired. O

2 Further observations

In this section, we present some other approaches which are simple, however we think they give good insight
to the problem. The proof of the following theorem follows from Kamal Jain’s method of LP rounding ([4],
Theorem 3.2).

Theorem 2.1. Consider an optimal solution to LP (1) for a given instance. Suppose we remove all vertices
whose z,, is at least é from the graph and all source-sink pairs which are cut. Now, if the integrality gap for
the new instance is at most /3, the integrality gap for the original instance is at most max{«, 3}.

Proof. The proof follows very similarly to Kamal Jain’s method of LP rounding ([4], Theorem 3.2). Let
Vija = {v € V(G)|zy, 2 1}, Gres = G- Vija @nd F* be the optimal solution to the LP of the new
instance. One can easily observe that the restriction of F' to G, is a feasible solution for the new LP. Thus
F* < Fbelieve — EveVl/a z,. By the definition of V; ,,, we have az, > 1 for each v € V. Therefore,
we have F' > F* + |V1/a|/a. Since the integrality gap of the new instance is at most 8, we conclude
that there is an integer solution |V,.s| < BF*. Therefore, Vi/a U Vres Is @ solution to LP (1) whose size

V o TES
[Vi/al + Vaes| < max{a, B}(74! 4 Mosl) < max{a, B} F. 0

We note that if we continue the iterative rounding process, i.e., iteratively remove vertices whose z,, is at
least V;,, until we solve the problem, we obtain a final solution of size at most aF'. In fact, we conjecture
that LP (1) has a basic optimal solution (see the exact definition in [4]) in which in each step we have at least

one vertex v of z,, > O(ﬁ), and thus this iterative rounding process also gives an O(/n)-approximation.

Corollary 2.2. If the total number of (simple) paths of length greater than r among the source-sink pairs is
M, we have a multicut of size at most max{r, In(M)}F.

Proof. The proof follows from Theorem 2.1 (by removing a set of vertices whose deletion removes all path
of length at most), and then considering the multicut problem for the new instance as a set cover instance
in which our objective is to remove a set of vertices which cover all s — ¢-paths of length at least r. It is
known that the integrality gap of LP (1) which is now the relaxation of set cover is In M (M is the number
of elements or paths in our case.) O

We note that Corollary 2.2 says to obtain an integrality gap of Q(n¢), the instance must has an exponential
number of s — ¢ paths of length w(polylog(n)).

3 Theproblem might be hard even for special graphs

A directed graph G is called a layered graph if we can partition its vertices into at most ! < n sets Py,... , P,
such that for each edge e = (v, u) of G where v € P; and u € P;, we have j =i + 1.

4

Theorem 3.1. For each layered graph G in which each source is in the first layer and each sink is in the
last layer, we can obtain a multicut of size O(n'/?)F.

Proof. By Gupta [3], we know that the size of a multicut is at most F'2 (his result is in terms of edge multicut
to which we can easily reduce the vertex multicut). Now, if F < n'/3, we have the desired multicut. In
the other hand, if F > n!/3, by Theorem 2.1, the number of layers must be at least n1/3; otherwise we can
obtain the result using the iterative rounding method. Now, by cutting a layer of minimum size, we have a
cut of size at most n2/3 < n'/3F, as desired. 0

At the first glance, it seems that layered graphs are very special cases, however the following theorem says
that they capture the hardness of the problem for directed acyclic graphs (DAGS).

Theorem 3.2. If the integrality gap for DAGs is in ©(n¢), then the integrality gap for layered graphs in
which each source is in the first layer and each sink is in the last layer is in Q(n/3).

Proof. The proof is simple. Consider the example of a DAG for which the integrality gap is in Q(n¢). We
construct a layered graph with the aforementioned properties as follows. First, we consider a topological
ordering for the DAG and consider each vertex as a layer. Then we stretch each edge by adding additional
vertices on it such that all new edges goes only between layers. Also, for each source which is not in the
first layer, we introduce a node in the first layer with a stretched edge to the previous source (we do similarly
for sinks). One can easily observe that a DAG instance of n vertices and m edges will be mapped to a
layered graph instance of O(nm) vertices and O(nm) edges with desired properties. Since each cut in the
latter graph corresponds to a cut in the former graph, the integrality gap of this new instance can not be in
o(n¢/3). O

In the special case, any approximation factor of polylog(n) for layered graphs gives a polylog(n) approxi-
mation for DAGs that we believe they are as hard as general directed graphs.
The proof of the following Theorem is very similar to the proof of Theorem 4 of Rabani et al. [2].

Theorem 3.3. For every directed graph G with an underlying H-minor-free graph (H is fixed), we can
obtain a directed multicut of size at most O(n'/4)F.

Acknowledgment: We thank Anupam Gupta and Baruch Scheiber for several discussions.

References

[1] C. CHEKURI AND S. KHANNA, Edge disjoint paths revisited, in ACM-SIAM Symposium on Discrete Algorithms (SODA’03),
2003, pp. 628-637.

[2] J. CHERIYAN, H. J. KARLOFF, AND Y. RABANI, Approximating directed multicuts, in The 42th Annual Symposium on
Foundations of Computer Science, 2001, pp. 348-356.

[31 A. GuPTA, Improved results for directed multicut, in ACM-SIAM Symposium on Discrete Algorithms (SODA’03), 2003.
454-455,

[4] K. JAIN, A factor 2 approximation algorithm for the generalized Steiner network problem, Combinatorica, 21 (2001), pp. 39—
60.

[5] T.LEIGHTONAND S. RAO, Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms,
J. ACM, 46 (1999), pp. 787-832.

[6] M. SAKS, A. SAMORODNITSKY, AND L. ZosIN, A lower bound on the integrality gap for minimum multicut in directed
networks. Manuscript, July 2000.

[7] D. B. SHMOYS, Cut problems and their application to divide-and-conquer, in Approximation Algorithms for NP-hard Prob-
lem, PWS Publishing Company, 1997, pp. 192-235.

