
New Algorithms for Load Balancing in Peer-to-Peer Systems

David R. Karger Matthias Ruhl

MIT Laboratory for Computer Science
Cambridge, MA 02139, USA

{karger , ruhl }@theory.lcs.mit.edu

Abstract

Load balancing is a critical issue for the efficient operation of peer-to-peer networks. We give new pro-
tocols for several scenarios, whose provable performance guarantees are within a constant factor of optimal.

First, we give an improved version of consistent hashing, a scheme used for item to node assignments
in the Chord system. In its original form, it required every network node to operateO(logn) virtual nodes
to achieve a balanced load, causing a corresponding increase in space and bandwidth usage. Our protocol
eliminates the necessity of virtual nodes while maintaining a balanced load. Improving on related protocols,
our scheme allows for the deletion of nodes and admits a simpler analysis, since the assignments do not
depend on the history of the network.

We then analyze a simple protocol for load sharing by movements of data from higher loaded to lower
loaded nodes. This protocol can be extended to preserve the ordering of data items. As an application, we
use the last protocol to give an efficient implementation of a distributed data structure for range searches on
ordered data.

1 Introduction

A core problem in peer to peer systems is the distribution of items to be stored or computations to be carried out
to the nodes that make up the system. A particular paradigm for such allocation, known as thedistributed hash
table (DHT), has become the standard approach to this problem in peer to peer systems [1, 2, 3, 4, 5, 6, 7].

In general, distributed hash tables do not offer load balance quite as good as standard hash tables. A typical
standard hash table evenly partitions the space of possible hash-function values; thus, assuming the hash function
is “random enough” and sufficiently many keys are inserted, those keys will be evenly distributed among the
buckets. Current distributed hash tables donot evenly partition the hash-function range; some machines get a
larger portion of it. Thus, even if keys are numerous and random, some machines receive more than their fair
share, by as much as a factor ofO(logn) times the average.

To cope with this problem, most DHTs usevirtual nodes: each real machine pretends to be several distinct
machines, each participating independently in the DHT protocol. The machine’s load is thus determined by
summing over several virtual nodes, creating a tight concentration of (total) load near the average. As an
example, the Chord DHT is based upon consistent hashing [8], which requiresO(logn) virtual copies to be
operated for every node.

Virtual nodes have drawbacks. Most obviously, the real machine must allocate space for the data structures
of each virtual node; more virtual nodes means more data structure space. However, P2P data structures are typi-
cally not that space-expensive (requiring only logarithmic space per node) so multiplying that space requirement
by a logarithmic factor is not particularly problematic. A much more significant problem arises from network
bandwidth. In general, to maintain connectivity of the network, every (virtual) node must frequently ping its
neighbors, make sure they are still alive, and replace them with new neighbors if not. Running multiple virtual
nodes creates a multiplicative increase in the (very valuable) network bandwidth consumed by each node for
maintenance.



Below, we will discuss solutions to this problem that “reassign” (without any centralized computation)
certain nodes to portions of the hash function range that are not adequately covered. In doing so, we run into an
additional unusual constraint on our solution. Since a P2P system does not assume centralized control over the
system, malicious behavior by certain nodes cannot be ruled out. As a form of protection against such attack,
many P2P systems do not allow nodes to choose the portion of the key space for which they are responsible—if
such a choice were possible, then a malicious node aiming to erase a certain item could take responsibility for
that item’s key and then refuse to serve the item. Instead, responsibility is assigned in some “random” fashion
that makes it less likely for a particular node to have control over specific data items. For example, Chord
assigns each node to a portion of the key-space associated with a hash of the node’s IP address.

Our goal of reassignment would seem to conflict with the goal of random assignment—it would seem that
a malicious node could claim a need to be reassigned to some area it wants to control. To protect against this
attack, we use limited reassignment: we show that key-space load balancing can be achieved by giving each
node a set ofO(logn) specific possible assignments (based, for example, onO(logn) distinct hashes of its IP
address) and limiting its choice to which of those (few) assignments it accepts.

A second load-balancing problem arises from certain database applications. A hash table randomizes the
order of keys. This is problematic in domains for which order matters—for example, if one wishes to perform
range searches over the data. This is one of the reasons binary trees are useful despite the faster lookup perfor-
mance of hash tables. An order-preserving dictionary structure cannot apply a randomized (and therefore load
balancing) hash function to its keys; it must take them as they are. Thus, even if the hypothetical key space is
evenly distributed among the nodes (say, each given an even portion of the 0-1 interval), an uneven distribution
of the keys (e.g., all keys near 0) may lead to all load being placed on one machine.

In our work, we develop a load balancing solution for this problem. Unfortunately, the “limited assignments”
approach discussed for key-space load balancing does not work in this case—it is elementary to prove that if
nodes can only choose from a few assignments, then certain load balancing tasks are beyond them. Our solution
to this problem therefor allows nodes to take on arbitrary assignments; with this freedom we show that we can
load-balance an arbitrary distribution of items, without expending much cost in maintaining the load balance.

We design our solutions in the context of the Chord DHT [2] but our ideas seem applicable to a broader range
of DHT solutions. Chord uses Consistent Hashing to assign items to nodes, achieving key-space load balance
using O(logn) virtual nodes per real node. On top of Consistent Hashing, Chord layers a routing protocol
in which each node maintains a set ofO(logn) carefully chosen “neighbors” that it used to route lookups in
O(logn) hops. Our modifications of Chord are essentially modifications of the Consistent Hashing protocol
assigning items to nodes; we can inherit unchanged Chord’s neighbor structure and routing protocol. Thus, for
the remainder of this paper, we ignore issues of routing and focus on the assignment problem.

Notation. In this paper, we will use the following notation.

n = number of nodes in system

N = number of items stored in system (usually we haveN � n)

ai = number of items stored at nodei

ci = cost of storing an item at nodei

`i = ci ·ai = weighted load on nodei

L = N/∑ 1
ci

= average (desired) load in the system

Whenever we talk about the address space of a P2P routing protocol (such as Chord), we assume that this space
is normalized to the interval[0,1). We further assume that the addresses 0 and 1 are identified, i.e. that the
address space forms a ring.



2 Consistent Hashing

We will now give a protocol that improves consistent hashing in that every node is responsible for aO(1/n)
fraction of the address space with high probability (whp), without use of virtual nodes. This improves space and
bandwidth usage by a logarithmic factor over traditional consistent hashing. The protocol is dynamic, with an
insertion or deletion causingO(logn) other nodes to change their positions. Each node has a fixed set ofO(logn)
possible positions (called “slots”) that it chooses from. This set only depends on the node itself (computed e.g.
as hashesh(i,1),h(i,2), . . . ,h(i,clogn) of the node-idi), making malicious attacks on the network difficult. The
load-balanced state attained by our protocol is Markovian, i.e. it does not depend on the construction history.

We denote the address(2b+1)2−a by 〈a,b〉, wherea andb are integers satisfying 0≤ a and 0≤ b < 2a−1.
This yields an unambiguous notation for all addresses with finite binary representation. We impose an ordering
≺ on these addresses according to thelengthof their binary representation (breaking ties by magnitude of the
address). More formally, we set〈a,b〉 ≺ 〈a′,b′〉 iff a < a′ or (a = a′ andb < b′). This yields the following
ordering:

0 = 1≺ 1
2
≺ 1

4
≺ 3

4
≺ 1

8
≺ 3

8
≺ 5

8
≺ 7

8
≺ 1

16
≺ 3

16
≺ . . .

We are now going to describe our protocol in terms of the “ideal” state it wants to achieve.

Ideal state: For each nodei the following is true. Forj = 1,2, . . . ,clogn let 〈a j ,b j〉 be the minimal address
(in terms of the just defined ordering≺) in the interval between the sloth(i, j) and the node following it
in the address space. Then nodei’s address ish(i,J) where〈aJ,bJ〉 = max{〈a j ,b j〉 | 1≤ j ≤ clogn}. In
case of a tie, sloth(i,J) is chosen to be the slotclosestto 〈aJ,bJ〉.

So in other words, each node picks the slot whose covered interval contains the minimal address. Our protocol
consists of the simple update rule that any node for which the ideal state condition is not satisfied moves to its
slot for which the condition is satisfied.

Theorem 1 The following statements are true for the above protocol.

(i) For any set of nodes there is a unique ideal state.

(ii) In the ideal state of a network of n nodes, whp all neighboring pairs of nodes will be at most5/n apart.

(iii) Upon inserting or deleting a node into an ideal state, whp at most O(logn) nodes have to change their
addresses for the system to again reach the ideal state.

Proof Sketch: The ideal state can be constructed as follows. The node whose slot is closest below address 1
will be assigned to that slot. Then among the remaining nodes the one whose slot is closest below address 1/2
will be assigned to that slot, and so on for increasingly longer addresses. For the firstn/2 addresses we will
whp assign a node to a slot at most 1/n below the address, since these intervals of size 1/n whp initially contain
Ω(logn) slots, of which a constant fraction belongs to nodes not yet assigned. Thus, neighboring nodes are
at most 5/n apart. For (iii), by symmetry it suffices to consider a deletion. Whenever a node “assigned” to an
address is deleted, the vacated spot will be filled by a random node among the ones assigned to higher addresses,
which in turn vacates that higher address. By a simple analysis, this shows that whp onlyO(logn) movements
occur.�

We note that the above scheme is highly efficient to implement in the Chord P2P protocol, since one has
direct access to the address of a successor. Moreover, the protocol can also function when nodes disappear
without invoking a proper deletion protocol. By having every node occasionally check whether they should
move, the system will eventually converge towards the ideal state. This can be done with insignificant overhead
as part of the general maintenance protocols that have to run anyway to update the routing information of the
Chord protocol.



Related Work. Two protocols that achieve near-optimal load-balancing without the use of virtual nodes have
recently been given in [9, 10]. Our scheme improves upon them in two respects. First, in those protocols the
address assigned to a node depends on the rest of the network, i.e. the address isnot selected from a list of
possible addresses that only depend on the node itself. This makes the protocols more vulnerable to malicious
attacks. Second, in those protocols the address assignments depend on the construction history, making them
harder to analyze, and in fact load-balancing guarantees are only shown for the “insertions only” case.

3 Load Balancing by Moving Items

In this section, we consider a dynamic protocol that moves items from overloaded nodes to underloaded nodes.
Unfortunately, this means that we cannot use Chord’s lookup functionality to find items. This problem can be
mitigated by using pointers to items, however the protocol is more suitable for contexts where “finding an item”
is not a necessary operation, e.g. when items correspond to computational tasks.

Our protocol is randomized, and relies on the underlying P2P routing framework only insofar as it has to
be able to contact “random” nodes in the system. The protocol is the following (whereε, 0 < ε < 1, is some
constant).

Load balancing: Each nodei occasionally contacts another nodej at random. If̀ i ≤ ε` j or ` j ≤ ε`i then the
node with higher load transfers items to the other node until their loads are equal.

To state the performance of the protocol, we need the concept of ahalf-life, which is the time it takes half the
nodes, or half the items in the system to change.

Theorem 2 If the costs ci differ by at most a constant factor, then the above protocol has the following proper-
ties.

(i) The load of all nodes is limited to at most(4
ε − 2)L whp, if each node contactsΩ(logn) other random

nodes per half-life or whenever its own load doubles.

(ii) Assuming these update rates, the amortized number of items moved due to load balancing is O(1) per item
insertion or deletion, and O(N/n) per node insertion or deletion.�

The traffic caused by the update queries necessary for the protocol is sufficiently small such that it can
be carried out within the maintenance traffic necessary to keep the P2P network alive. (Note that contacting
a random node only uses a tiny message, and does not result in any data transfers by itself.) Of a greater
importance for practical use is the number of items to be transferred, which isO(N/n) whp for any particular
transaction, and optimal to within constants in an amortized sense.

Balancing ordered data. We can adapt the previous protocol to store ordered data, with the same performance
guarantees within constant factors. In this setting, the items have an underlying ordering, and every node stores
the items falling into a continuous segment of that ordering. This recovers the ability to support lookups of data
items by key inO(logn) time. Furthermore, this protocol then allows for the implementation of a range search
data structure, where given itemsa andb, the data structure is to return all itemsx stored in the system that
satisfya≤ x≤ b. We give the first such protocol that achieves anO(logn+Kn/N) query time (whereK is the
size of the output).

Related Work. Work on load balancing by moving items can be found in [11]. Their algorithm is very similar
to ours, however it only works for the static case, and they give no provable performance guarantees, only
experimental evaluations.

Complex queries such as range searches are also an emerging research topic for P2P systems [12]. An
efficient range search data structure was recently given in [13]. However, they do not address load balancing
as an issue, making the simplifying assumption that each node stores only one item. In this setting, the lookup



times areO(logN) in terms of the number of itemsN, and not in terms of the number of nodesn. Also,
O(logN) storage is used per data item, meaning a total storage ofO(N logN), which is typically much worse
thanO(N+nlogn).

4 Conclusion

We have given several provably efficient load balancing protocols for distributed data storage in P2P systems.
(More details and analysis are in the full version of this paper [14].) Our algorithms are simple, and easy to
implement, so an obvious next research step should be a practical evaluation of these schemes.

Further research on complex queries in P2P systems is likely to lead to challenging new load balancing
questions, since the two problems seem to be closely correlated. This is because complex query data structures
are likely to impose some structure on how items are assigned to nodes, and this structure has to be maintained
by the load balancing algorithm.

References

[1] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A Scalable Content-Addressable
Network. InProceedings ACM SIGCOMM, pages 161–172, August 2001.

[2] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. InProceedings ACM SIGCOMM, pages 149–160, August 2001.

[3] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao. OceanStore: An Architecture
for Global-Scale Persistent Storage. InProceedings of the Ninth international Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2000), pages 190–201, November 2000.

[4] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location and routing for large-s cale
peer-to-peer systems. InProceedings IFIP/ACM International Conference on Distributed Systems Platforms (Mid-
dleware), pages 329–350, November 2001.

[5] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-peer Information System Based on the XOR Metric.
In Proceedings 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’02), pages 53–65, March 2002.

[6] Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-optimal Hash Table. InProceedings 2nd Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS ’03), February 2003.

[7] Dalia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable and Dynamic Emulation of the Butterfly. In
Proceedings PODC, pages 183–192, July 2002.

[8] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and Rina Panigrahy. Consistent Hashing
and Random Trees: Tools for Relieving Hot Spots on the World Wide Web. InProceedings STOC, pages 654–663,
May 1997.

[9] Micah Adler, Eran Halperin, Richard M. Karp, and Vijay V. Vazirani. A Stochastic Process on the Hypercube with
Applications to Peer-to-Peer Networks. InProceedings STOC, pages 575–584, June 2003.

[10] Moni Naor and Udi Wieder. Novel Architectures for P2P Applications: the Continuous-Discrete Approach. In
Proceedings SPAA, pages 50–59, June 2003.

[11] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and Ion Stoica. Load Balancing in Structured
P2P Systems. InProceedings 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), February 2003.

[12] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon T. Loo, Scott Shenker, and Ion Stoica. Complex
Queries in DHT-based Peer-to-Peer Networks. InProceedings 2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’02), pages 242–250, March 2002.

[13] James Aspnes and Gauri Shah. Skip Graphs. InProceedings SODA, pages 384–393, January 2003.

[14] David R. Karger and Matthias Ruhl. New Algorithms for Load Balancing in Peer-to-Peer Systems. Technical Report
LCS-TR-911, MIT, July 2003.


