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Abstract

This paper presents Rosebud, a new Byzantine fault-
tolerant storage architecture designed to be highly scal-
able and deployable in the wide-area. To support massive
amounts of data, we need to partition the data among the
nodes. To support long-lived operation, we need to allow
the set of nodes in the system to change. To our knowl-
edge, we are the first to present a complete design and a
running implementation of Byzantine-fault-tolerant storage
algorithms for a large scale, dynamic membership.

We deployed Rosebud in a wide area testbed and ran ex-
periments to evaluate its performance, and our experiments
show that it performs well. We show that our storage al-
gorithms perform equivalently to highly optimized replica-
tion algorithms in the wide-area. We also show that perfor-
mance degradation is minor when the system reconfigures.

1 Introduction

There is a growing demand for highly-available systems
that provide correct service without interruption. In this
context, Byzantine-fault-tolerant systems are becoming
more and more important because malicious attacks and
software errors are increasingly common and can cause
faulty nodes to exhibit arbitrary behavior.

This paper presents a novel Byzantine-fault-tolerant stor-
age system called Rosebud. Rosebud is designed to store
massive amounts of data. It stores this data at a large num-
ber of nodes connected through an unreliable wide-area net-
work, and allows users to read and modify the data simulta-
neously from diverse geographical locations. It provides a
storage utility that can be shared by applications, allowing
them to inherit the good properties of Rosebud: security,
robustness, extensibility, scaling, and load balancing.

A Rosebud deployment is likely to contain a very large
number of storage nodes (e.g., tens of thousands). The
nodes can be dedicated servers or a set of reliable nodes,
e.g., commodity workstations in a corporation or large uni-
versity, or federations of these. Rosebud stores each data
item at a subset of the storage nodes, chosen so as to spread
the load. Each data item is replicated at enough nodes to
provide reliability and availability despite Byzantine fail-
ures (e.g., when a subset of a corporation’s machines are
compromised) and replicas are chosen so that they are
likely to fail independently (e.g., they are geographically
distributed).

A large deployment requires reconfiguration. Machines

that break or are decommissioned must be removed from
the system and their responsibilities assigned to non-failed
nodes, to maintain reliability and availability of the data
those nodes used to store. Also new machines must be
added to the system as the need for increased storage
or throughput dictates. Rosebud reconfigures itself when
nodes join and leave the system, while continuing to pro-
vide service in the presence of such configuration events.
Reconfiguration requires minimal human intervention; thus
we avoid the human errors that have been shown to be a ma-
jor cause of disruption in computer systems [16, 31].

The design of Rosebud posed two hard challenges and
our approaches to solving these problems are the main con-
tributions of our research.

First, we introduce a novel membership protocol that al-
lows participating nodes to agree on the system member-
ship despite arbitrary faults. Unlike group communication
systems [18, 32], our approach scales to systems containing
thousands of nodes, because we run a Byzantine agreement
protocol only at a subset of the nodes. Periodically, these
nodes output a description of the system membership, au-
thenticated using a proactive threshold signature protocol.
This configuration is disseminated to all nodes, which al-
lows them to agree on the set of replicas for each data item.

Second, we developed new Byzantine-fault-tolerant stor-
age algorithms that work in a dynamic setting where the
set of replicas for a particular data item changes as the sys-
tem is running. Getting storage algorithms to work in a
dynamic setting is still an active field of research, even for
the simpler fail-stop failure model [24, 25]. Our algorithms
provide strong storage semantics–they ensure atomic reads
and writes [21] in spite of configuration changes, i.e., when
the nodes responsible for storing a data item change, and
Byzantine-faulty replicas. Yet, these algorithms were de-
signed to be highly efficient, especially in a wide-area net-
work deployment. This is achieved by minimizing the num-
ber of round-trips to complete an operation, and by not
putting any single replica in the critical path of an oper-
ation, since this would cause the performance to degrade
when that replica is behind a slow or distant link.

We have implemented our system and deployed a pro-
totype on a wide-area testbed. This paper presents results
of experiments showing that our protocols are efficient: the
fastest clients read a 1 megabyte file stored on geographi-
cally diverse Rosebud servers in under a second. We also
compare Rosebud’s storage algorithms with a highly op-
timized Byzantine fault tolerance algorithm [11] and con-
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clude that Rosebud performs equivalently to BFT in the
wide-area, and its performance degrades more gracefully
when some of the nodes are behind distant or slow links.

To our knowledge, Rosebud is the first system to provide
a complete solution and implementation for large-scale,
Byzantine-fault-tolerant storage that supports membership
changes. Most previous work on Byzantine-fault-tolerant
systems assumes that each replica holds an entire copy of
the service state (e.g., [11, 27]). These systems provide no
automatic way to replace a failed node or to react to over-
load: they are unable to automatically add more compo-
nents and offload some of the work to them. Group com-
munication systems (e.g., [32, 18]) automatically adjust to
nodes joining and leaving the system, but they do so by ex-
ecuting agreement between all nodes in the system, which
is too expensive to be used with a large number of nodes,
and they do not provide storage solutions.

Farsite [1] and Oceanstore [19] share our goal of pro-
viding shared storage and automatic reconfiguration. In
fact, both systems recognize the importance of providing
Byzantine-fault-tolerant storage in a dynamic environment.
However, neither system presents a complete design for
how the Byzantine fault tolerance algorithms need to be
modified to work in a dynamic setting. This paper is the
first to present a complete solution and a working imple-
mentation that solve all these problems.

The remainder of the paper is organized as follows. Sec-
tion 2 presents our assumptions. Section 3 provides an
overview of our design and explains the key decisions that
underlie it; Sections 4 and 5 provide the details. Section 6
discusses correctness, and Section 7 presents our perfor-
mance results. Section 8 discusses related work. We con-
clude with a discussion of future directions.

2 System Model and Assumptions

This section presents the assumptions that underlie Rose-
bud’s design.

We assume an asynchronous distributed system where
nodes may operate at different speeds and there are no
bounds on message delays. We assume the network may
fail to deliver messages, corrupt them, delay them, dupli-
cate them, or deliver them out of order. More specifically,
our algorithms do not rely on synchrony to provide correct-
ness. To ensure liveness, we must rely on some weak partial
synchrony assumption like eventual time bounds [23].

Rosebud uses a Byzantine failure model — faulty nodes
may behave arbitrarily. We assume a powerful adversar-
ial model where an attacker can coordinate faulty nodes in
arbitrary ways; yet there are bounds on the number of si-
multaneous faulty processes, described in Section 6.

To authenticate communication in the presence of
Byzantine faults, we rely on cryptographic techniques that
are hard to subvert. We assume each node in the system has

a public key that speaks for its principal. A non-faulty node
can use digital signatures to prevent an adversary (or the
network) from undetectably modifying network communi-
cation from that node. We also assume the existence of a
collision-resistant hash function, and a proactive threshold
signature protocol that adversaries cannot subvert.

We assume a very low rate of malicious subversion, and
a low to moderate rate of failstop failures. This assumption
is justified by real-world observations [1]. The failstop rate
will vary depending on the deployment: it will be smaller
for dedicated servers than for workstations.

Nodes in Rosebud are geographically distributed, there-
fore are separated by high latency links. This is not only
a likely characteristic of expected deployments, but is also
needed for high availability, since geographical diversity is
the only way to survive catastrophes.

3 System Architecture Overview

This section describes and motivates our design. A key
aspect of our architecture is the separation of configura-
tion management from the storage service. The two mod-
ules have different requirements, thus we used different ap-
proaches to their design.

3.1 Configuration Management
The configuration management module is responsible for
monitoring the arrival and departure of nodes, and propa-
gating information about the current configuration (i.e., a
description of the system membership) to the other nodes
such that all nodes have a correct view of the current con-
figuration. The hard problem is to do this in a way that
scales to thousands of nodes and is secure.

Configuration management is done by a logically-
centralized entity called the configuration service (CS). The
centralized solution offers two main advantages over a fully
decentralized one [10]: it is efficient, and it makes it easier
to offer strong consistency and prove properties than a de-
centralized solution, where different participants may have
different views of the current configuration at the same in-
stant, possibly leading to incoherent views of the same data.

Of course, the CS must be fault-tolerant, even to mali-
cious attacks: We cannot trust an individual node to be cor-
rect and make the right decision about adding or removing
nodes from the current configuration. Therefore the CS is
implemented as a group of replicas that carry out the BFT
agreement protocol [11]. To increase the degree of fault-
tolerance of the CS we set the parameter that defines the
maximum number of faulty replicas in the group,

�����
, to a

high value, e.g., 4 or 5. Running this protocol on a small
subset of the nodes provides the required scalability, un-
like membership protocols in which all nodes try to agree
among themselves [32, 18].
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Figure 1: System Architecture. At each moment, a small subset of
the nodes in the system are also CS replicas. These nodes execute
an agreement protocol to determine the system membership.

The CS runs on a subset of the nodes as illustrated in Fig-
ure 1. It runs on different subsets at different times, making
it difficult for an adversary to disrupt the system by target-
ing its replicas. (The system could be trivially modified to
run the CS on a separate set of nodes, e.g., nodes with hard-
ened security.)

The CS has to keep track of the current configuration,
and propagate it to the other nodes in the system. It must
handle requests to add and remove nodes; in addition it
monitors node reachability and automatically removes un-
reachable nodes.

Nodes can only be added by a trusted entity (e.g., a prin-
cipal) that vouches for the new node. This is necessary to
avoid a Sybil attack [13] where an adversary floods the sys-
tem with malicious nodes. The CS knows the public key of
this principal; the associated private key, which we assume
is hard to compromise, is used to authenticate a request to
add a node to the system. The system can easily be ex-
tended so that this principal can delegate trust to others.

The CS monitors nodes and expels those that do not re-
spond to probes. This removes unreachable nodes, but is in-
sufficient for Byzantine-faulty nodes for a simple reason: it
is impossible to recognize such nodes. A Byzantine-faulty
node can appear to behave properly, e.g., answer all client
requests correctly, even if it has been compromised. There-
fore obtaining a proper reply from a node does not imply it
is correct. This means an adversary can launch a lying-in-
wait attack: it compromises more and more nodes, making
them behave properly until enough have been compromised
so that the correctness conditions of the system are broken.
Then the nodes launch an attack simultaneously, causing
the system to malfunction.

Therefore, we rely on an external mechanism to detect
Byzantine-faulty nodes and we require revocation. Byzan-
tine fault detection is still an open research problem, and
for the sake of brevity we will not address this issue.

The system moves in a succession of time intervals called
epochs, and we batch all configuration changes at the end of
the epoch. This provides several advantages: it simplifies
the task of propagating configuration changes, and it avoids

the problem of different nodes having different views of the
system configuration. The only potential problem is that the
system takes longer to react to failures. However, a delayed
response to failures is advantageous: it avoids spurious data
transfers (e.g., removing nodes that are just temporarily dis-
connected); avoids avenues for attacks (e.g., a denial of ser-
vice attack that slows down a large number of good nodes
and removes them from the system); and avoids thrashing,
where in trying to recover from a host failure the system
overstresses the network, which itself may be mistaken for
other host failures, causing a positive feedback cycle.

Setting the duration of an epoch, ���������
	 is a complex
choice since we want to obtain the advantages of delayed
response to failures without causing data unavailability.
This choice depends on the desired availability, amount and
type of data redundancy, and distribution of node lifetimes;
these issues are discussed in [6]. We expect � �������
	 to be on
the order of a few hours.

At the end of each epoch, the CS outputs a description
of the system membership, authenticated using a proactive
threshold signature protocol [15]. This allows nodes to val-
idate the current configuration using a fixed, well-known
public key. This configuration is disseminated to all nodes,
which allows them to agree on the set of replicas for each
data item.

3.2 Storage Service
The storage service module provides applications with read
and write operations on objects in a flat namespace. Object
IDs are chosen in a way that allows the data to be self-
verifying. Rosebud provides access to two types of objects:

Content-hash objects are immutable: once created, a
content-hash object cannot change. A content-hash object
is identified by a hash of its contents.

Public-key objects are mutable and contain a version
number that is used to determine data freshness. The ID is
a hash of the public key used to sign the object. A public-
key object includes a header with a signature that is used
to verify the integrity of the data, and that covers the ver-
sion number. Public-key objects provide access control (for
writing); the scheme could be extended to allow principals
with different public keys to write the same object, by iden-
tifying the object by a hash of the public keys of all possible
writers, and indicating in the object which key was used in
the signature.

Public key objects are atomic [21]. This means that
all operations on an object appear to execute in some se-
quential order that is consistent with the real-time order
in which operations actually execute. Content-hash ob-
jects have weaker semantics: they provide sequential con-
sistency [20], ensuring that once the operation that created
the object completes, that object is returned by subsequent
reads. Having weaker semantics for these objects is a con-
scious decision, given how we expect them to be used: typ-
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ically a user publishes their IDs (e.g., using a public key
object) only after their write completes. Some applications
may require only sequential consistency for mutable ob-
jects; we could provide such a category with a simple mod-
ification to the algorithms described in Section 5.

Public-key objects can be deleted (we perform this by
overwriting objects with a special null value of negli-
gible size), but content-hash objects cannot (since they
are immutable). Content-hash objects should be garbage-
collected after they are no longer useful. We are working
on such a scheme, but for the sake of brevity we do not
discuss it here. (A preliminary design appears in [5].)

3.3 Object Placement
A key issue is how to partition the objects among the stor-
age nodes. To solve this problem we use consistent hash-
ing [17]. Each node is assigned a node ID of size � , and
these identifiers are ordered in an identifier circle modulo���

. Rosebud stores objects with ID � at the first � nodes
whose identifiers are equal to or follow � in the identifier
space (called the successors of ID � ); this is how nodes are
selected in Chord [36] but any other deterministic selection
technique would also be acceptable.

Using consistent hashing has several advantages. It has
good load-balancing properties (all nodes are responsible
for approximately the same number of objects); it is easy
for a node to verify whether it is responsible for a data
item; and, most importantly, the work needed to accom-
modate membership changes is small: only a small number
of nodes is involved in redistributing the data.

4 Configuration Management
The CS is implemented as a BFT [11] replica group. Its two
main tasks are described in Section 4.1 (computing configu-
rations) and Section 4.2 (propagating this information to the
others nodes). Section 4.3 explains how we pick nodes to
be CS replicas, and Section 4.4 explains how storage nodes
and clients join the system.

4.1 Computing Configurations
The CS is the sole entity responsible for computing con-
figurations. This section describes how this is done despite
faulty CS replicas. Recall that our system allows nodes to
be explicitly added and removed. In addition, the CS mon-
itors nodes and evicts ones that are unresponsive.

The CS must prevent an adversary from flooding the sys-
tem with malicious nodes. It does this by requiring a trusted
party to use its private key to vouch for new nodes [13]. It
also allows membership to be revoked, again by a trusted
party. The format of these operations is as follows:�

ADD, IP address, port number, public key ��
REVOKE, IP address, port number �

where IP address, port number is the network address of
the new node, and public key is the public key of the node,

assigned by the trusted party. In our current implementation
we support only explicit revocation, but it would be easy to
add implicit revocation (where node memberships time out)
if desired.

Nodes cannot choose their own IDs, since otherwise an
attacker could compromise the system by controlling a few
nodes [10]. Therefore, the CS generates node IDs, using a
deterministic computation based on the node’s address and
public key, and the current configuration.

The CS monitors the nodes to identify failed or unreach-
able nodes. Each CS replica does its own monitoring so that
it can form its own view of which nodes are faulty; then it
will be able to decide whether a configuration change pro-
posed by another replica is reasonable.

The CS monitors nodes by sending them pings. At
present it sends pings at a constant rate; we plan to increase
the frequency of pings to unresponsive nodes. Infrequently,
pings contain nonces that must be signed in the reply, to
avoid an attack that spoofs ping replies to maintain unavail-
able nodes in the system. Signed pings are used sparingly
since they require additional processing on the CS nodes to
verify signatures. However, once a node fails to reply to a
signed ping, all subsequent pings to that node must request
signatures (until a correctly signed response arrives).

The results of the pings are inserted in a liveness
database local to the CS replica. After pings time out, a
CS node queries its liveness databases to decide if the node
should be evicted from the system. To evict the node, it
must get the other CS nodes to agree, and this is not triv-
ial, since different nodes will have different values for how
long each node has been unreachable.

CS nodes initiate the node eviction process if � �	��
 �
� con-
secutive pings for that node fail. In this case, that CS replica
proposes the eviction to other CS replicas. Then, it must
collect signed statements from at least

� � �������
CS repli-

cas (including itself) that agree to evict that node. Other CS
replicas accept the eviction (and sign a statement saying so)
if the last ��� �
�
����� pings for that node have failed (according
to their local database), where ��� �
�
������� � ����
 ��� . This ap-
proach ensures that most eviction operations will succeed.

The eviction threshold � � �
�
����� is chosen to avoid spu-
rious evictions: the time it takes to send � � �
�
����� pings
should be longer than an appropriate membership timeout
to avoid evicting nodes that are temporarily unreachable,
as discussed before. However, making this limit too large
may result in decreased availability of the data. A possible
choice is to cycle through each node in the system every

���
minutes, and to choose � ����
 ����� �

, and ��� �
�
��������� .
After collecting the statements, the CS replica that initi-

ated the process invokes the following operation on the CS:�
EVICT, node ID,

�! #"%$'&(&)&($* ,+.-�/10�23" ���
where the vector

�! " $4&)&(&)$5 +*- /!0 23" � contains at least
� � ���6�7�

signatures from current CS replicas agreeing to evict the
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node. The operation will fail if there are not enough signa-
tures or they do not verify.

4.2 Propagating New Configurations
The CS needs to convey membership changes to other
nodes. It does this periodically, at the end of each epoch.
The first problem we need to address is how to make CS
replicas agree on when to end the current epoch. Later in
this section, we address what information is propagated and
how it is propagated.

Each configuration lasts for the duration of an epoch,
� �������
	 . Each CS replica keeps track of how long it believes
the current configuration is valid, and after ���������
	 seconds
it invokes the

�
STOP � operation on the CS. This operation

halts monitoring and produces the configuration for the next
epoch based on the lists of nodes that have been accepted
or evicted so far.

To avoid a faulty CS replica stopping the service too
early, we use the non-deterministic choices validation
mechanism proposed in [34]. This allows the primary BFT
replica to propose a non-deterministic value for each oper-
ation. In this case, the primary proposes the value for how
long the current epoch has been running. Other replicas ver-
ify the choice, in this case by checking whether it is within
a small delta of their own values (e.g., a few seconds). The
operation will fail if it is invoked earlier than ����� ���
	 minus
that fixed delta.

Note that we do not assume synchronized clocks, nor
synchronized clock rates. However, if there are more than� ���

CS replicas with a slow clock rate, this will cause the
STOP operation to be executed later, causing an increase in
a time window where certain correctness conditions must
be met (we present correctness conditions in Section 6).

After the STOP operation is executed, all CS replicas
agree on the next configuration: nodes for which EVICT

and REVOKE operations have been executed are removed
and those for which ADD operations have been executed
are added.

This information must then be propagated to the other
nodes. We could do this by partitioning the information
and sending each node only what it needs to carry out its
base algorithm. This approach is frequently used in peer-
to-peer overlays; e.g., in a system based on Chord [36],
nodes would be given their successors and fingers. But in-
complete information is a problem since it leads to mul-
tiple hops for routing. Instead we disseminate the entire
configuration to all the nodes so that routing decisions can
be made locally, avoiding multi-hop latency, and additional
complexities (e.g., secure routing [10]).

There are two costs of concern here. The first is the mem-
ory usage, but this is small even at large scale. If we assume
that the configuration consists, for each node in the sys-
tem, of a 160-bit node identifier (based on a SHA-1 cryp-
tographic hash function), plus its IPv4 address, port num-

ber, and 1024 bit RSA public key, then the entire configura-
tion for a system of

����� $ �����
nodes will fit in approximately��� &��

megabytes. This information fits in main memory of
today’s commodity workstations.

The second cost is the communication cost, but this is
also small if we use deltas. Thus, the new configuration
description is encoded as follows.�
epoch number, add list, drop list,

 
�	� � , where

add list = list of
�
node ID,IP address,public key � ,

drop list = list of
�
node ID � ,

and
 
�	� is a signature certifying that the CS produced the

configuration. The signature is over the epoch number and
the entire configuration (not just the delta): nodes produce
the new configuration from their old one and the delta and
then check the signature.

To produce the signature we use a proactive threshold
signature scheme [15]. When epochs change, the set of CS
replicas also changes (as described in Section 4.3), and the
new replicas obtain new shares from the old replicas. These
shares allow the next CS to sign the next configuration, and
that signature to be verified by any node in the system with
the same, well-known public key. Nonfaulty replicas dis-
card old shares after the epoch transition completes.

To propagate the new configuration efficiently without
overloading CS replicas, we use a three-level multicast tree.
To build the tree, CS nodes send a level 0 message to the
nodes in the next configuration that succeed it by ��

�� ���
nodes, where

�
is the number of nodes in that configu-

ration, and � � � $4&)&)&($ �� ��� �
. Nodes receiving level 0

messages send level 1 messages to the nodes that succeed
it by ��
 �� � , again with � � � $4&)&(&)$ �� ��� �

. Finally, nodes
receiving level 1 messages send level 2 messages to their
��
�

immediate successors.
This scheme could work if only one CS replica initiated

it, but we force all replicas to perform this for fault toler-
ance. The scheme could be generalized to more than three
levels, but having three levels renders a nice bound on the
number of messages each process sends. Note that if some
node misses the message, it can obtain the delta from any
node that claims to have upgraded to a new epoch.

Clients also maintain a complete configuration descrip-
tion, to determine which nodes to contact to store or re-
trieve data items. Clients learn the configuration when they
join (see Section 4.4); after that they usually obtain con-
figuration deltas from storage nodes they interact with (see
Section 5).

4.3 Configuration Service Replicas
Another issue we need to solve is how we decide on what
nodes act as the replicas of the configuration service. Recall
that the configuration service is superimposed on the sys-
tem nodes. As discussed earlier, superimposing can provide
good security: it allows us to move the CS in each epoch
as a way of avoiding an attack directed at a particular set of
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replicas. We opted not to have any bias when choosing CS
replicas (e.g., towards faster or better connected machines)
since this might represent an avenue of attack: the attacker
might make an effort for his or her machines to be good
candidates as a way to gain control of the CS.

We need a way of picking CS replicas that periodi-
cally changes these replicas. We achieve this by choosing
CS replicas to be the nodes whose IDs follow (or equal)��� � $�� $ �����	�
� , where ����
 � $'&(&)&)$ � � ��� � ���

is the replica num-
ber,

�
is the epoch number, and

�������
is a hash of the con-

figuration for epoch
�
. Adding the configuration for that

epoch causes the CS to move in an unpredictable way, thus
preventing an attacker from targeting replicas in advance.

There is a further issue concerning moving the CS: how
do new replicas learn the state of the old CS? Our solution
is to avoid having state transfer from the old CS to the new
one. Instead, the new CS starts with a fresh state: it only
knows the new configuration, just like every other node in
the system. This means that all the ping information gets
reset, which is fine given our goal of delayed response to
failures; note that unresponsive nodes will be evicted in the
new epoch.

4.4 Joining the System
The request to add a storage node to the configuration for
the next epoch must be initiated by the trusted authority
that executes the respective CS operation. We assume that
the node operator contacts this authority via an out-of-band
mechanism to request this.

When a client or storage node joins the system, it must
obtain a complete and up-to-date configuration description.
We assume the existence of an out-of-band mechanism that
allows joining nodes to learn the public key of the system
and the location of one (or a few) current nodes. The join-
ing node then reads the entire configuration from one (or
preferably more) nodes.

There are two techniques to reduce the latency of down-
loading large configurations. Newly added storage nodes
can download the entire configuration when they join; then
in the next epoch, when they first become active, they only
need to receive the delta. For new clients, we can use
Merkle trees [29] to allow the client to control the order in
which it receives information, e.g., a client can learn about
nodes that store a particular object first. Merkle trees can
also be used by a reconnecting client to identify the mini-
mum information that needs to be transmitted.

Each configuration description contains a certificate that
vouches for its correctness. But it is still possible that the
configuration is old, and if it were old enough, it might con-
tain enough failed nodes that using it would not produce
correct results. Therefore the joining node needs to deter-
mine whether the configuration is up to date. It does this
by contacting the CS replicas, issuing a random nonce as a
challenge. The CS replicas respond by signing the random

nonce with the threshold signature scheme. But such a re-
sponse is possible only if the CS is current; a stale CS could
not produce such a signature, since nonfaulty replicas dis-
card their shares after the epoch ends. The signature can be
verified using the well-known public key that was obtained
in advance. If Merkle trees are employed to download less
information, then we must extend the configuration certifi-
cate to contain the identity of CS replicas, to allow new
clients to issue this challenge.

We also require clients to periodically (but infrequently)
issue this challenge to the current CS, in order to verify
that the configuration they hold is up-to-date. Clients per-
form this check every � ��������� ��� units of time (e.g., 1 day).
If the CS does not sign the nonce and reply for longer than� ���
����� ���

the client halts execution and waits until it hears
from the CS. This avoids a situation where a slow client
would not receive the most up-to-date configuration and
would perform operations on a stale replica group where
the fault threshold had been exceeded.

5 Storage Algorithms

This section describes the algorithms used to store and
retrieve data. Recall that Rosebud uses consistent hash-
ing [17] to determine which nodes are responsible for stor-
ing a data item, and that every node in the system maintains
a complete configuration description. Therefore clients can
contact the nodes that are storing the data directly.

The algorithms described in the remainder of this sec-
tion were guided by two design principles: minimizing the
number of network round trips; and not putting any sin-
gle replica in the critical path of an operation. This makes
our algorithms efficient in a wide-area deployment where
possibly some, but not all, of the replicas are behind slow,
congested, or distant links.

We begin this section by describing how the algorithms
work assuming a static system. Section 5.2 explains what
happens when the configuration changes. Section 5.3 dis-
cusses garbage collection of data items that nodes are no
longer responsible for, and we conclude in Section 5.4 with
a discussion of when to discard old configurations.

Recall that when the system is correct it provides atom-
icity for public key objects, and sequential consistency for
content-hash objects. The conditions required for the sys-
tem to be correct are detailed in Section 6.

5.1 Static Case
Different algorithms are used to read and write the two
types of objects.

Content-hash Objects

Read and write operations for content-hash objects com-
plete in a single network round-trip: clients contact the
replicas for the object, and the operation succeeds when
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they receive a reply from a sufficiently large subset of these
replicas, usually called a quorum.

Content-hash objects are replicated at � � � � � �
nodes,

where
�

is the maximum number of (arbitrary) faults we
tolerate in each replica group. The write algorithm must
ensure that

� � � �
replicas claim to have stored the data.

The reason why we do not wait for the remaining
�

repli-
cas is that they may be faulty and so may never respond.
Therefore, we need to make progress after hearing from
only � � � � � � ���

replicas.
Thus, the write request must be sent to at least

� � � �
replicas (but for efficiency and increased availability it is
sent to all � � � �

replicas). When replicas receive the re-
quest, they check its integrity by verifying that the ID is a
hash of the content, and then send an ack to the client. The
ack contains a signature of the ID to avoid spoofing. The
client waits for acks from

� � ���
replicas with valid signa-

tures; clients know the public keys of all nodes since this
is part of the configuration information. If after a timeout
the client has not received enough replies, it retransmits the
request and sets another timer.

Content-hash data can be read from just one replica,
as long as the client verifies that the hash of the contents
matches the ID. To select a fast node for downloading the
object, we send an initial small request to all nodes, and
then request all remaining fragments of the object from the
first replier. This approach also provides load balancing for
popular content: overloaded servers will be slower to re-
ply and thus less likely to send the entire object. If after
a timeout the complete object has not been received, the
client repeats the request in the non-optimized mode (i.e.,
fetching the object from all the replicas).

It may seem that
� � � �

replicas would suffice for
content-hash objects. We explain why we need � � � �

repli-
cas when we address state transfer.

Public key objects

The protocols for public key objects are similar to exist-
ing Byzantine quorum protocols [27] (with the exception of
several optimizations we propose). The main contribution
of our storage algorithms is that we extended these to work
in a dynamic setting (Section 5.2).

Public key objects have a header that includes a version
number assigned by the writer (in such a way that distinct
writers always pick distinct version numbers, e.g., by ap-
pending node IDs) and the writer’s signature for the object
and version number. We use sets of � � � � � �

replicas
and quorums of

� � ���
.

The write protocol has two phases. In the read phase, a
quorum is contacted to obtain a set of version numbers for
the object. Then the client picks a version number greater
than the highest number it read and performs a write phase
where it sends the new signed object to all replicas and
waits until it hears a reply from a quorum. The client sends

a random nonce with both requests, and this nonce is signed
together with the current version number in the reply, to
prevent replay attacks.

Replicas receiving a write verify that the content of the
object, along with the version number, match the signa-
ture in the object’s header. If this verification succeeds, the
replica replies to the client, but only overwrites the object
if the new version number is greater than the one currently
stored.

The read phase can be omitted in two situations. First, if
there is a single writer (as in some existing applications,
e.g., Ivy [30]), the writer can increment the last version
number it wrote and use it in the write phase. Second, if
clients use a clock synchronization protocol where clock
skews are smaller than the time to complete an operation
(e.g., if the machines have GPS), they can use timestamps
for version numbers.

In the read protocol the client requests the object from
all replicas. Normally there will be

� � � �
replies that pro-

vide the same version number, and in this case the result
is the correct response and the read operation completes.
However, if the read is occurring concurrently with a write,
the version numbers may not agree. In this case, there is a
second phase in which the client picks the object with the
highest version number, writes it to all replicas, and waits
for a reply from a quorum. (Again, nonces are employed to
avoid replays, and the reply in the first phase must sign the
nonce and the current version number.)

We use the same optimization as in the content-hash
reads, where a small request for the signed version number
is sent to all replicas, and the entire object is downloaded
from the first replier with the highest version number. (Af-
ter a timeout expires, the client reverts to fetching from all
replicas, and waits until it gets

� �
+1 complete objects.)

Faulty Clients

The semantics provided by the system in the presence
of faulty clients depend on whether the clients fail silently
(crash failures) or arbitrarily (Byzantine failures).

For crash failures, the problematic situation is when the
client crashes after writing to a subset of the replicas. This
situation is corrected as soon as a non-faulty client reads
from one of the replicas in that subset during the read phase
of any operation.1

Byzantine-faulty clients can do arbitrarily bad things, ex-
cept that, of course, they must have the right to modify
the object, i.e., they have to know the private key. They
can write garbage to the object, select a very large version
number and thus exhaust the version number space, or they
can send different objects with the same version number

1We can claim that the system still provides atomic semantics in this
case, provided we change the definition of an operation by a faulty client
to conclude only when the first operation that reads the value written by
the faulty client concludes.
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to different replicas. Our system does not prevent these
problems, although in the latter case the problem will go
away the next time a non-faulty client overwrites that ob-
ject. This is a conscious decision, since maintaining atom-
icity in the presence of Byzantine-faulty clients is expen-
sive, and a faulty client could still write garbage or con-
stantly modify the data to produce confusing results.

5.2 State Transfer
At epoch boundaries, storage nodes receive an authenti-
cated description of the next configuration from the CS or
via gossip. At this point the node enters the new epoch: it
starts to act as determined by the new configuration.

In the new epoch, the set of nodes storing certain objects
may change. Each storage node must identify objects that it
is no longer responsible for and refuse subsequent requests
for them. Each node also identifies objects that it is now re-
sponsible for and fetches them from their previous replicas
(in the earlier epoch). All nodes have access to both old and
new configurations when they change epochs and therefore
know which nodes to contact.

The node sends state transfer requests to all the old repli-
cas requesting all objects in a particular interval in the ID
space (these replicas enter the new epoch at that point if
they have not done so already). In practice, this is done
in two steps, with a first message requesting the IDs of all
objects in the interval, and a second step to fetch the ob-
jects using the read protocols described above, except that,
unlike normal reads, state transfer does not need to write
back the highest value it read. This is so because the only
way that the new set of replicas will read different values
from state transfer is if some of them read an incomplete
write. However, the client read protocol ensures that the
first client to read an incomplete write propagates its value
to a large enough quorum to ensure atomicity, so that the
property will still hold after state transfer.

State transfer is the reason we require � � � �
replicas for

content hash objects. For client use,
� � � �

replicas are suf-
ficient because clients request these objects only when they
know they exist. Therefore if a client received

� � �
replies

denying knowledge of the object (these replies would come
from a combination of faulty replicas and replicas that
didn’t hear about the creation of that object), it would know
to wait for more replies. However, when state transfer is
occurring the new responsible node doesn’t know what ob-
jects exist; therefore if it received

� � �
replies that indicated

the object did not exist, it would not know what to do. An-
other point is that if content hashed objects can be garbage
collected, the same problem will arise for clients.

Nodes cannot act on client requests that are for the wrong
epoch since this could lead to an atomicity violation. Client
requests contain an epoch number; the replica rejects the
request (and sends the current configuration information) if
the epoch is stale. The client will then retry the request in

Write (id,o)
Send � READ ���������
	

� ��� /
�
� ��� �

��
 message to all replicas
repeat Collect replies in a quorum � until ValidateReplies()
Choose a version ���������
� greater than the highest version it read
Send � WRITE, �����
�������������

�
�
� �
� �

��

� / to all replicas
repeat Collect replies in a quorum ��� until ValidateReplies()
return

Read ()
Send � READ ���������
	

� ��� /
�
� ��� �

��
 message to all replicas
repeat Collect replies in a quorum � until ValidateReplies()
Choose the reply with maximum version, ����� , and the corresponding object

�
if (all replies agree on ����� )

return
�

Send � WRITE, �����
�������
�
�
� �
� �

��
 � / to all replicas
repeat Collect replies in a quorum ��� until ValidateReplies()
return

�
ValidateReplies ()

if (some reply is not signed correctly)
Remove reply from set
return false

if (some reply is in the form � ERR NEED CONFIG �
� �
� �

��
�� �
Send replica � the current configuration
Remove reply from set
return false

if (some reply is in the form � ERR UPGRADE CONFIG,
�
��!
� ����� -

�#"�
 )
verify the authenticity of

�
��!
� ���
� -

�$" , upgrade configuration and
restart current phase
return false

return true

Figure 2: Client algorithm pseudocode (for PK objects)

the new epoch if necessary. Each individual phase of an
operation can complete at the client only when all

� � � �
replies come from replicas in the same epoch (even though
the read and write phases can complete in distinct epochs).
This a key aspect of our algorithm. If an individual phase
used results from different epochs, we could not ensure the
intersection properties that make the operations atomic.

The epoch number sent by the client might be larger than
that at the replica. In this case, the replica replies that it has
not upgraded yet, and the client can push the configuration
to that replica before retrying (if necessary).

The pseudocode for the complete read and write proto-
cols is presented in Figures 2 and 3.

5.3 Garbage Collection of Old Data
Replicas must delete objects they are no longer responsible
for to avoid old information accumulating forever. In this
section we discuss when it is safe to delete old data.

A new replica sends an ack when it receives a valid re-
sponse to a state transfer request. An old replica counts
these acks and deletes the object once it has

� � � �
of them.

It explicitly requests acks after a timeout to deal with losses
of the original acks.

After it deletes an object, the old replica might receive
a state transfer request from a new replica (one it had not
heard from previously). In this case it sends a special null
reply indicating that it no longer has the object in question.
If some responses contain the object, it is set as discussed
above, just considering the non-null replies. If all (valid) re-
sponses are null replies, the replica forgets about a content-
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Recv ( � READ ���������
	
� ���

�
� �
� �

��
 )
if (ValidateRequest())

reply � READ-REPLY � �
�����

������������� � � ����� ������� � �
� � ��
 � � to client

Recv ( � WRITE, �����
�������
�
�
� ��� �

��
 )
if (ValidateRequest())

reply � WRITE-REPLY �
� �
� �

��

� � to client
if ������� �����

�
�
�
���

����� and
�	�
������
 ����� and

��� �
�#"
� � ��


� �
�
�������

-�� � ������
�
�
�
���

������
 ������
�	��


�
�
������
 �

ValidateRequest ()
if ( �
	

� ����� ��

� � �

���
�
	
� ���

)
reply � ERR UPGRADE CONFIG,

�
��!
� ���
� -

�$"�
 to client
return false

if ( �
	
� ��� � ��


� � �
���

�
	
� ���

)
reply � ERR NEED CONFIG �

� ��� �
��
 � � to client

return false
return true

Figure 3: Server algorithm pseudocode (for PK objects)

hash object, but stores a null value with a special lowest
version number for a public-key object. In the latter case, it
will obtain the proper value of the object at some later time
(which a client using the object writes to it).

The above protocol can be improved in the common case
of new and old replica groups having members in common.
Such a replica, R, sends replicas in the old group a list of
IDs of objects it already stores, plus the version numbers
of the public-key objects. The receiver returns the IDs of
missing objects, and also of public-key objects whose ver-
sion numbers are too small; it also counts that replica as
knowing all objects that matched. Then R only needs to
fetch the objects listed in the reply.

5.4 Removing Old Configurations
The algorithm described above maintains two configura-
tions at each replica: the current one, and the previous
configuration, which is used to execute state transfer. This
raises the question of how to deal with a slow node that is
lagging behind by several epochs, i.e., is it is safe for repli-
cas to discard the configuration for epoch

� � �
when they

receive the configuration for epoch
� ���

?
Our solution is to remove a node from the system if it

skips an epoch: if the node has not entered epoch
�
, it will

be removed by the CS at the end of epoch
�

and therefore
will not be a member of epoch

� ���
. This is implemented

by having a node reply to a ping only if its came from a CS
replica of the most recent configuration it knows, and that
node has completed state transfer from the previous epoch.
We expect it to be unlikely that in a real deployment nodes
will skip entire epochs, given that epochs are reasonably
long, and network outages eventually get repaired.

The alternative solution of garbage collecting configura-
tions only when they are not needed [25] is not attractive
with malicious nodes. A Byzantine-faulty replica could
exploit this by pretending to have not heard about a large
number of epochs, which would lead to unbounded storage
requirements at nonfaulty replicas.

6 Correctness

This section describes the semantics provided by the sys-
tem, and states correctness conditions under which the sys-
tem provides those semantics. Due to space constrains, we
defer the safety proof to a separate technical report [4].

6.1 System Semantics
As mentioned, when the system is correct it provides
atomic semantics [21] for public key objects and sequen-
tial consistency [20] for content-hash objects.

We could also provide atomic semantics for content-hash
objects; the key is the writing back done by read opera-
tions. But we decided not to do this because it may slow
down reads and seems unnecessary in light of how content-
hash objects are used: typically the client publishes their
IDs only after their write completes. Our approach is suffi-
cient to provide atomicity if content-hash objects are used
this way.

Our system provides clients with access to data provided
they can communicate with a quorum of replicas in the cur-
rent configuration. This means that clients cannot access
data if they are unable to communicate with a sufficient
number of replicas. This could happen in the case of a
network partition. It is not possible to tolerate partitions
and offer strongly consistent and available data at the same
time [14]. Since our system is aimed at providing consis-
tency, we cannot also tolerate partitions.

6.2 Correctness Conditions
This section defines conditions for the system to be safe.
Liveness conditions are outside the scope of this paper. Re-
call that the algorithm intentionally only provides the de-
sired semantics for non-Byzantine-faulty clients, as men-
tioned in Section 5. Thus, these conditions only refer to
bounds on the number of Byzantine-faulty replicas.

Correctness is based on the assumption that no more than�
failures occur in the replica group for as long as that group

is “needed”. Obviously a group is needed while all its mem-
bers are in the current epoch. But groups from older epochs
are also needed until their objects have been copied to the
new responsible replicas. Thus we define the following cor-
rectness condition.
Correctness condition C1: For any replica group � � for
epoch

�
, � � contains no more that

�
faulty replicas between

the moment when the first non-faulty replica in � � enters
epoch

�
, until the last non-faulty replica in epoch

� � �
finishes state transfer for any data that was held by � � .

We also need to define similar conditions for the CS.
Correctness condition C2: The CS replica set must con-
tain no more than

� ���
faulty replicas between the moment

when the first correct CS replica enters the epoch that cor-
responds to that particular CS, until the moment when last
non-faulty CS replica for the next configuration holds that
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configuration description and the new shares for the CS
threshold signature.

This definition is not complete due to the slow client
problem that was mentioned in Section 4: A correct, but
slow client can have a stale configuration and contact an
old replica group, � , long after the group has finished trans-
ferring state to the subsequent epoch. In the meanwhile, the
number of faults in the group may have exceeded

�
, which

suffices for the group to forge a stale reply to the client.
Recall that we solve this using a periodic check (every

� ���
����� ��� units of time, plus an additional
� ���
����� ���

to wait
for a reply) that the CS is still active. After adding this be-
havior to the algorithm, we obtain the following additional
correctness condition.
Correctness condition C3: Any replica group � � for
epoch

�
contains at most

�
faults between the moment when

epoch
�

starts and � ��������� ��� � � ���
����� ���
after epoch

�
ends

(i.e., after CS replicas for epoch
�

stop being able to pro-
duce a shared signature).

7 Experiments

We implemented a prototype for Rosebud based on the code
for the DHash peer-to-peer DHT built on top of Chord [36].
Inter-node communication is done over UDP with a C++
RPC package provided by the SFS toolkit [28]. Our im-
plementation uses the

�����
-bit SHA-1 cryptographic hash

function and the
� � � �

-bit Rabin-Williams public key cryp-
tosystem implemented in the SFS toolkit. Objects are
stored in a Berkeley DB3 database. The CS is implemented
as a BFT service using the publicly available BFT/BASE
code [34]. The implementation is complete with the ex-
ception of the proactive threshold signature protocol (tem-
porarily replaced by a vector of signatures from CS repli-
cas). We are studying efficient share refreshment protocols
that work in asynchronous systems.

To demonstrate the practicality of the design, we present
three sets of experiments. The first is a controlled experi-
ment that uses a small number of machines on a local area
network, and focuses on determining the overhead of pub-
lic key cryptography and quorum replication. The second is
a wide-area experiment using 88 nodes in 22 locations dis-
tributed over the Internet, and focuses on real-world, client
perceived performance. The final set of tests try to assess if
the CS is an obstacle to scaling our system.

In all experiments, we set the maximum number of faults
per replica group to one (i.e., each data object is replicated
in � � � � � �

nodes, and quorums of
� � � � � � replicas

were required for writes and public-key reads to succeed).

7.1 Controlled Experiments
Our first setup consisted of four identical machines con-
nected to a fast local area network. These were Dell Pre-
cision 410 workstations with Linux 2.4.7-10. These work-

stations have a 600 MHz Pentium III processor, 512 MB of
memory, and a Quantum Atlas 10K 18WLS disk. All ma-
chines were connected by a 100 Mbps switched Ethernet
and had 3Com 3C905B Ethernet cards. The switch is an
Extreme Networks Summit48 V4.1. The experiments ran
on an isolated network.

The goal of this experiment is to determine the perfor-
mance of the operations in Rosebud, compare it with simi-
lar systems, and identify the main sources of overhead. This
was done in a local network to avoid the variability of In-
ternet message delays.

We used simple micro-benchmarks to compare Rosebud
against our initial code base of Chord running without repli-
cation, and with a simple BFT service that efficiently stores
and fetches objects from an in-memory hash table. With
only four nodes, Chord keeps complete routing tables.

In the first set of tests we consecutively stored and
fetched 256 4kB objects in each of these systems. We re-
peated the experiment for both kinds of objects, except in
the BFT service where we produced opaque data. The re-
sults are summarized in Table 1. The results show the av-
erage of three separate attempts. The standard deviations
were always below 1.1% of the reported value.

System/Object Type Store Time (ms) Fetch time (ms)
DHash content-hash 2.3 3.2

Rosebud content-hash 23.9 3.3
DHash public key 23.5 2.9

Rosebud public-key (1P) 46.2 24.8
Rosebud public-key (2P) 68.4 49.0

BFT 3.2 2.4

Table 1: Local area network experiments. Average per object
store and fetch time for different systems.

For store operations, Rosebud showed significantly
worse performance than DHash or BFT. The reason is that
Rosebud performs digital signatures in the critical path to
ensure that the data has been stored at the correct nodes.
DHash does not require this because the client trusts the
nodes it talks to, and BFT uses MACs instead of signatures.
Therefore, the additional overhead for each store operation
is due mainly to signing responses: a digital signature takes
on average 21 ms to execute on these machines. The re-
maining overhead is due to the fact that we replicate data
in all four nodes, and therefore transmission costs go up by
approximately that factor. Public key object operations are
slower than content-hash because the client needs to sign
the data before storing it, which accounts for the additional
latency.

For two phase writes (i.e., when the client is required to
read the version number before writing back the object) the
signature overhead appears twice because both phases re-
quire signatures from the servers. A possible optimization
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is to optimistically execute the first phase without requir-
ing signatures, and in the second phase replicas sign both
the old version number and a receipt that they stored the
current version number.

The second column in Table 1 shows times for fetching
the same number of objects. Again, we see the cost of us-
ing public key cryptography to ensure freshness for public
key fetches in the presence of Byzantine faults: all repliers
must send a signed response containing the current version
number and a nonce proposed by the client, since otherwise
the client could be tricked into accepting stale data. This is
not the case when Rosebud is fetching content-hash objects
because these are immutable; thus replies do not need to be
signed, and the only additional overhead is from fetching
from more replicas.

For two phase reads, we artificially forced the client to
write back the value it read (even though it read identical
values from all replicas). These are relatively slow opera-
tions since they require two signatures in the critical path,
but we expect them to be rare, since they occur only if the
first phase found an incomplete write.

The comparison of Rosebud with other systems is highly
conservative. DHash does not use cryptography due to a
benign failure model. BFT uses MACs instead of public-
keys, which only works because BFT clients had previ-
ously established shared keys for MAC authentication with
the replicas. If a client interacts with a server group infre-
quently, BFT has to be changed to use public keys. For fre-
quently accessed objects, Rosebud can easily be optimized
to use MACs instead of public key cryptography.

Furthermore, even though the per-store overhead of
Rosebud seems significant, it is acceptable when compared
to the round-trip latency of Internet communication. For
instance, a network round-trip across North America takes
more than 70 ms on an uncongested link. This means our
is system practical for a wide-area deployment, as we will
show next.

7.2 Real World
These experiments use Rosebud servers running on a
testbed of 22 machines scattered over the Internet. The ma-
chines are part of the RON testbed [3]; most have 733 MHz
Celeron processors and 256 MB of memory (or similar),
and all machines run FreeBSD 4.7. The experiments were
run late at night, when network traffic was low (at least in
North America, where most sites are located) and machines
were expected to be unloaded.

Two experiments are described in this section. First, we
look at a deployment of 88 Rosebud nodes. This is es-
sentially a proof-of-concept experiment where had a real
deployment with a significant number of nodes spanning
three continents, and measured how fast clients can down-
load data from the system. The second experiment focuses
on algorithms to ensure atomic updates and compares our
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Figure 4: Average download speed for a 1 MB file divided into 4
kB objects for different pre-fetch window sizes. The nodes were
part of the RON wide area testbed. We compare Rosebud with and
without replication.

update algorithm BFT, which also provides atomic seman-
tics, and is used by other large-scale storage systems [19, 1].

In the first experiment the servers held one megabyte of
data that was split into 4kB content-hash objects. This pro-
duced a similar load across all servers. To test download
speed, the client fetched all the data. The client used pre-
fetch to overlap lookup with fetching: It initially issued a
window of some number of parallel object fetches; as each
fetch completed, the client started a new one.

We compare Rosebud with the same code without repli-
cation, i.e., setting

� � �
. This will demonstrate the advan-

tage of using quorums.
Figure 4 shows download speeds for the entire data, for

a range of pre-fetch window sizes. The results represent
download speeds from all nodes in the testbed, with three
runs at each node. For each system, we show download
speed for the fastest and slowest client, and for the average
across all clients.

This experiment shows that Rosebud clients can perceive
fast download speeds from the system, despite the fact that
the data is replicated in a slow wide-area network. This is
especially true if applications take advantage of prefetch-
ing, easily obtaining an average download speed above
2 Mbps. Note that the fastest client obtained download
speeds over 10 Mbps.

The experiment also shows the advantage of using quo-
rums. The fact that no-rep always downloads the block
from the successor of the data makes it vulnerable to slow
repliers. Rosebud uses quorums to avoid this: slow replicas
can be excluded from read and write quorums.

Our second experiment in the RON testbed tries to assess
the cost of providing atomic objects in Rosebud. We sim-
ulated a write-intensive application by performing a series
of consecutive updates (with sequential version numbers)
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Figure 5: Reconfiguration timeline.

to a public key object. Our benchmark performs a total of
256 updates to a 4 kB object. Since all the writes are to
a single object, only one replica group will be contacted.
Therefore this experiment only used four nodes located at
Cornell, CMU, University of Utah and UCSD.

In this experiment, we compare Rosebud with BFT,
which will provide the same consistency guarantees. We
implemented a very simple and efficient BFT service that
stores objects in an in-memory data structure.

The BFT service was running on the same replicas where
Rosebud stored the data, and the client was located in Cor-
nell for both systems. For BFT, we measured the perfor-
mance for all four different choices of primary replicas.
BFT was running with all possible optimizations.

System/Primary Total Time [Estimated using PKs] (s)
Rosebud (1PW) 31.3
Rosebud (2PW) 53.3
BFT / Cornell 32.7 [49.1]

BFT / Utah 36.4 [52.8]
BFT / CMU 36.3 [52.7]
BFT / UCSD 42.6 [59.0]

Table 2: Update-intensive benchmark. Running time in seconds
to perform 256 consecutive updates to a 4k object for Rosebud
and BFT with different primary replicas.

Table 2 shows the running time for this benchmark. We
report the average of the three runs. The standard deviations
were always below 2.7% of the reported value. This verifies
that our main design choices of minimizing network round-
trips and not placing a single replica’s work on the critical
path were correct. We can see that Rosebud can outperform
BFT when it writes in a single round-trip (this can be per-
formed if the clients uses clock values as version numbers,
or if there is just one writer, as in [30]), even though Rose-
bud uses digital signatures, which are more than two or-
ders of magnitude slower than the MAC-based authentica-
tion of BFT. If BFT had to use digital signatures for client-
server communication (and MACs for inter-server commu-
nication) each operation on BFT would take an additional
64 ms (digital signatures take an average of 32 ms on these
machines, and both client requests and server replies would

Figure 6: Reconfiguration and state transfer timeline.

be signed), so the figures for BFT would go up by at least
16.4 seconds (we show the total estimated time in brackets).

Note also that the performance of BFT is dependent on
a good choice of primary replica. Its performance degrades
as the primary moves away from the client, since the first
phase of the protocol is a direct communication between the
client and the primary. Therefore our choice of only using
nodes that were connected by Internet 2 links was benefi-
cial to BFT, since a congested link between the client and
the primary would seriously affect BFT’s performance. But
Rosebud would not be affected provided the other connec-
tions were fast. This property makes Rosebud more ade-
quate for deployments in heterogeneous networks (e.g., an
Internet environment).

We also expect Rosebud to scale better than BFT with the
number of replicas, as BFT’s protocols generate a number
of messages that is quadratic in the number of replicas, and
Rosebud generates a linear number of messages.

7.3 Cost of the Configuration Service
Rosebud’s fully decentralized storage is scalable: since the
behavior of the nodes in read and write operations does not
depend on the number of nodes in the system, we expect
these operations to continue to perform well when we scale
to thousands of nodes.

However, the CS is the single point that is not fully de-
centralized. In this section we assess the cost of running a
CS replica, and how that cost scales with the system size.

The CS may cause performance problems to the nodes
that run it for three possible reasons: (1) the cost of mon-
itoring other nodes in the system (ping protocol), which
grows with the number of nodes in the system; (2) the cost
of configuration changes; and (3) the cost of running node
addition and eviction operations.

To test (1), we placed a node that was chosen as a CS
replica under an intensive write load and measured how
the write throughput changed as we increased the ping fre-
quency. We ran this with 5% of signed ping requests. The
result was that there was no change to the write through-
put when we varied the ping frequency up to a maximum
frequency of

�����
pings per second. Running pings at this

frequency allows us to cycle every node in a
� � $ �����

node
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system every 2 minutes. This suffices given our goals of
delayed response to failure. Thus the ping protocol is ade-
quate for large systems and does not slow down CS replicas.

To see the effect of (2) and (3), we measured the write
throughput for a CS replica under a heavy write load, while
it executes node eviction operations and epoch changes
(Figure 5). The node in question goes through a series of
CS operations: It participates in evicting a node from the
system, it finishes the current epoch, signs the new config-
uration and starts propagating it. The node in question will
also become a CS replica for the new epoch, so it has to
spawn and initialize a BFT process after the epoch change.

This trace shows that throughput drops when running CS
operations, but this decrease is small. Furthermore, these
occurrences are rare, given that membership changes are
rare, and epoch changes only happen every few hours. We
conclude that the centralization imposed by the CS is not a
significant burden to the nodes that implement it.

Even though this experiment ran in a small system
(around 20 nodes), the cost of having more nodes is negli-
gible, because the cost of most individual operations shown
in the timeline does not increase with the system size. This
is true for member evictions, epoch changes, and BFT ini-
tialization. Furthermore, we designed the operations that
have increased costs to scale well: We only transmit deltas
during epoch changes, and we expect these messages to
be small, given our moderate membership dynamics as-
sumption. Also, our multicast tree propagation scheme im-
plies that the maximum number of per-node transmissions
to propagate a configuration is � � �� � �

, which is small.
We also measured the effect of state transfer in a system

under a heavy write load, by measuring the update rate at a
node under constant write requests while that node changes
epochs. We injected one fault and one node addition near
the neighborhood of the node we analyze, which forced the
node to transfer 40 MB from other nodes.

This trace is shown in Figure 6. We can see in this
trace one large throughput drop immediately after the epoch
change. This is cause by an inefficiency in our state transfer
protocol (soon to be fixed) where we request neighboring
nodes to send all object IDs in the new interval in a single
message. After this, we see a decrease of throughput while
the node is performing state transfer. Note that in this ex-
ecution we allowed the node to transfer three objects at a
time. Changing this parameter will allow us to trade impact
on troughput for time to complete state transfer.

8 Related Work

Byzantine fault tolerance has been widely studied both in
theoretical and practical settings. Different building blocks
to build Byzantine-fault-tolerant systems have been stud-
ied, e.g., Byzantine agreement [22, 7, 9, 8], state ma-
chine replication [35, 32, 18, 11], or quorum systems for

read/write variables [26, 27].
Our storage algorithms are most closely related to

Byzantine quorum systems [26, 27] (in the static case they
resemble Phalanx [27]). However, we differ from all of the
above in two important aspects. First, previous work as-
sumes that each replica maintains a copy of the entire ser-
vice state. Therefore they do not need to address issues
like partitioning the service state and dealing with a large
scale membership that needs to be agreed upon. Second,
these algorithms assume a static membership of the sys-
tem, whereas we address the complicated issue of providing
strong semantics despite changes in replica sets.

Some state machine replication protocols (notably Ram-
part [32] and SecureRing [18]) are built upon group com-
munication protocols, which allow membership changes.
Adding and removing processes in these systems is a
heavyweight operation, where all nodes in the system exe-
cute a three-phase Byzantine agreement protocol [33]. Our
configuration module can be seen as a group membership
algorithm, but it is designed to work with thousands of
nodes. Group communication systems do not address some
of the issues that Rosebud solves such as storage algorithms
and state transfer.

Alvisi et. al. [2] looked at dynamic Byzantine quorum
systems. However, the dynamics of their system are lim-
ited, since they assume a fixed replica set, and only allow
the failure threshold to change throughout the execution.
We focus on the more difficult problem of allowing a dy-
namic replica set.

In fact, providing an atomic memory in the presence of
a dynamic membership is still an active field of research
for the simpler fail-stop or crash failure model (e.g., [24,
25]). Our work advances on this by focusing on the harder
Byzantine failure model.

Recently, some reconfigurable large-scale systems, no-
tably Oceanstore [19] and Farsite [1], were designed to
provide strong semantics despite Byzantine failures. The
main difference from our work is that these systems do not
provide neither a complete design nor an implementation
of dynamic membership for their Byzantine-fault-tolerant
components (the primary tier and the directory groups, re-
spectively). We detail more differences to these systems
below.

Oceanstore [19] stores data with various consistency
guarantees. Their solution for the problem we focus on
(strong consistency for mutable data) is based on a primary
tier of replicas that run BFT [11] and thus serialize updates.
We differ in that all our replicas are responsible for serializ-
ing updates and we do not rely on state machine replication
but quorum operations that, due to their symmetric design,
work better in heterogeneous environments like the Inter-
net. Oceanstore does not address the issue of discovering
and changing the set of primary tier replicas, and how to
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modify the storage algorithm (in this case, BFT) to work
with a dynamic replica set. We could combine Rosebud
with Oceanstore, using our system for mutable data with
strong consistency (i.e., as a primary tier) and relying on
Oceanstore’s techniques for disseminating static content to
billions of nodes.

Farsite [1] is a Byzantine fault-tolerant file system de-
signed that uses spare resources from desktop PCs to logi-
cally function as a centralized file system. This system uses
BFT [11] serialize updates. We differ from Farsite in two
main ways. Farsite is a file system and most of its data
structures and techniques are specific and optimized to a
file system service. Second, like Oceanstore, they fail to
explain how to change BFT to support dynamic replica sets.

Castro et al. have proposed extensions to the Pastry peer-
to-peer lookup protocol to make it robust against malicious
attacks [10]. This work is mainly focused on the fault tol-
erance of the lookup protocol. The improved protocol pro-
vides probabilistic guarantees that it finds the correct nodes,
and the better the probabilities the worse the lookup per-
forms. We assume moderate membership dynamics, which
allows us to employ more efficient and deterministically se-
cure protocols in determining the location of the data.

9 Conclusions
This paper has described a novel Byzantine fault-tolerant
storage architecture named Rosebud. Rosebud is the first
Byzantine-fault-tolerant system that is highly scalable and
provides a complete solution for maintaining strong consis-
tency when replica sets change.

We deployed Rosebud in a wide area testbed and our
experiments confirmed the efficiency of our algorithms:
clients download data from our system at fast speeds de-
spite the data being located at distant nodes. Our algo-
rithms are fully symmetric, and thus there is no perfor-
mance penalty if some replicas are behind slow links. We
also show that performance degradation is minor when the
system reconfigures.

We are investigating interesting applications that use
Rosebud, but we are also leveraging existing applications
that are built for systems with a similar, well-specified in-
terface [12] that we are compliant with. We are also looking
at the possibility of extending the operation set to provide
richer semantics, and of implementing state machine repli-
cation with a partitioned state.
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