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Abstract

MultiChord is a new variant of the Chord namespace management algorithm [7] that includes lightweight mech-
anisms for accommodating a limited rate of change, specifically, process joins and failures. This paper describes the
algorithm formally and evaluates its performance, using both simulation and analysis. Our main result isthat lookups
are provably correct—that is, each lookup returns results that are consistent with a hypothetical ideal system that dif-
fersfrom the actual system only in entries corresponding to recent joins and failures—in the presence of alimited rate
of change. In particular, if the number of joins and failures that occur during a given time interval in a given region
of system are bounded, then all lookups are correct. A second result is a guaranteed upper bound for the latency of a
lookup operation in the absence of any other lookups in the system. Finally, we establish a relationship between the
deterministic assumptions of bounded joins and failures and the probabilistic assumptions (which are often used to
model large scale networks). In particular, we derive alower bound for the mean time between two violations of the
deterministic assumptions in a steady state system where joins and failures are modeled by Poisson processes.



1 Introduction

This paper describes MultiChord, a new, more resilient variant of the Chord namespace management algorithm [7].
Themain innovationisthat MultiChord includes|ightweight mechanismsfor accommodating alimited rate of change,
specifically, process joins and failures.

The contributions of this paper include (a) techniquesfor improving the performanceand resiliency of peer-to-peer
namespace management algorithms, and (b) methods of analyzing performance for such algorithmsin the presence of
a bounded rate of change.

Building inresiliency: We improvethe performance and resiliency of Chord by adding additional entriesto processes
routing (finger) tables, and by delaying a process from joining until itsfinger tableis properly populated. This demon-
strates an approach to building peer-to-peer namespace management services in which resiliency to a bounded rate
of change is built in from the beginning. The method we use is to design the ideal communication infrastructure
with enough redundancy to accommodate a bounded rate of change without reducing latency, and to maintain this
redundant structure using gossiping. Newly-joining processes should not participate fully in the system until they
have been fully incorporated into the communication infrastructure. This general approach should extend to other
communication infrastructures such as those proposedin[1, 4, 5, 6, 7].

Formal modeling and analysis: We present the algorithm precisely, using high-level, nondeterministic timed 1/0
automata pseudocode. We analyzeits performance conditionally, assuming alimited rate of change. Thisdemonstrates
how peer-to-peer namespace management algorithms can be modeled using state machines and subjected to proofs
and analysis. In particular, it demonstrates that interesting performance results can be obtained for such algorithms
using conditional analysis, conditioned on the “normal case” assumption that changes happen at a bounded rate. This
kind of analysis should be useful in comparing different namespace management algorithms.

Our method of analysisis quite different from the probabilistic style used by Liben-Nowell et al [2]. Our claims
are not probabilistic, but rather, worst-case bounds under restricted circumstances. Our assumptions about the rate of
change are rather strong. However, aswe discussin Section 3, we can relax these assumptions by adding probabilistic
assumptions, while still obtaining our stronger latency bounds.

1.1 Overview

The original Chord protocol [7] assumes a circular identifier space (called the Chord ring) of size N = 2™. With each
process i is associated a unique logical identifier in this space. Each process i maintains a routing table (known as a
finger table). The k-th entry in this table, called the k-th finger of process i, contains a reference to the first process
whose logical identifier follows process i’s logical identifier by at least 2* in the clockwise direction on the Chord
ring, where0 < k£ < n. Inthe remainder of this paper we refer to these fingers as the power-of-two fingers of i.
The successor of alogical identifier id representsthe first process whose logical identifier followsid in the clockwise
direction on the Chord ring, or the process with logical identifier id if such a process exists. We redefine the notion of
successor in the context of MultiChord in Section 1.2.

In MultiChord, process « maintains, in addition to the finger table like that used in Chord, information about its
“b-block” (i.e., its own b successors and b predecessors) and all b-blocks of its power-of-two fingers. The value of b
is chosen based on an assumed upper bound on the “normal” rate of change. When the algorithm isin an ideal state,
each process’ finger table containsits b-block, as well as ab-block for each of its power-of-two fingers. However, this
information can degrade from an ideal state as a result of processjoins and failures.

MultiChord includeslightweight mechanisms, based on periodic background gossi ping, for maintaining the system
in anearly ideal state in the face of limited change, i.e., limited joins and failures. Each process: continually sends
its own b-block to its b successors and b predecessors, which allows them to update their finger tables. In addition,
process i continually “pings’ its power-of-two fingers, who respond by returning their own b-blocks. These periodic
exchanges of information between a process and the processes in its finger table allow the system to gravitate back
toward an ideal state in the face of changes. Like Chord, MultiChord does not differentiate between a process failure
and departure. When a process fails or leaves, processes who maintain process: in their finger tables will removeit
when it expires.

When a new process i joins the system, it first populates its finger table with its b-block, and the b-blocks of its
power-of-two fingers. Like in Chord, a process i uses the lookup operation to find its power-of-two fingers. There



are two other instances when a process : invokes alookup: (i) when aclient at location ¢ explicitly invokes alookup
operation for a specified target, and (iii) when it decides to refresh its finger table.

Like Chord, MultiChord implements the lookup operation in an iterative fashion. Consider a process i that per-
formsalookup on value z. At every iteration (stage), process: sends a query to the best known predecessor for x. Let
process k be this predecessor. Upon receiving the query, process k checks whether it knows the process responsible
for z—that is, whether itsimmediate successor is responsible for z—, and if yes, it sends the answer back to processi.
Otherwise process k sendsits best known predecessor for x to 7. MultiChord generalizesthis procedure: at every stage
process: sends ¢ > 1 queriesto the best known ¢ predecessorsfor z. In turn, process k responds with its best known
¢ predecessors of z. Aswe will show this redundancy increases the resilience of the lookup in the face of changes.

Thevalueof ¢ ischosento belarger than the number of changesthat “normally” occur in a“small” interval of time,
in alimited region of the ring. The length of this small interval of time is assumed to be sufficient for the system to
recover from alimited number of changesin the relevant region of thering. The admissible rate of changeis quantified
in Section 3.

1.2 Notations

[ Notation | Comments |
PId the set of physical processidentifiers (e.g., |P address and port number)
XId the set of logical identifiers; 0 < i, < N, for any iy, € XId
GId the set of general identifiers of the form g = (i, zx), where i, € PId, x, € XId
XtoP, PtoX one-to-one correspondence from X1d to PId, and itsinverse.
succ(x, k, R) the k™" successor of z inring R
pred(z, k, R) the k** predecessor of z in R

succset(z, k, R) | successor set of z; succset(x,k, R) = {succ(z,l,R): 0 < ¢ <k}
psuccset(x,k, R) | proper successor set of z; psuccset(z, k, R) = {succ(z,l,R) : 1 < ¢ < k}
predset(z, k, R) predecessor set of z; predset(z,k, R) = {pred(z,¢,R) : 0 < ¢ < k}
ppredset(xz,k, R) | proper predecessor set of z; predset(z, k, R) = {pred(z,{,R): 1 < ¢ < k}
block(z,k, R) block of z; block(z, k, R) = succset(z,k, R) U predset(z, k, R)

Table 1: Notations used in this paper.

Table 1 shows the main notations used in this paper. Each process is identified by a physical identifier (e.g., IP
address and port number), and alogical identifier in identifier space0..2" — 1, where N = 2™. A ring R isanonempty
subset of logical identifiers (X1d), ordered in a clockwise direction.

The k" successor of  in R is denoted by succ(z, k, R). For k = 0, suce(z,0, R) = z if z € R, andis otherwise
undefined. If & > 1 then suce(z, k, R) isthe k*" value encountered when moving clockwisein R — z starting from the
position of z, if |R — x| > k, and is otherwise undefined. The k*" predecessor of = is defined similarly (see Table 1).

2 TheMultiChord Protocol

In this section we present the details of the MultiChord protocol.

2.1 Process Automaton: Signature

For the rest of this section, we fix a physical addressi € PId, and describe the process automaton for location i,
MultiChord ;. Throughout this section, we use me as an abbreviation for the general identifier GId g with g.phys =i
and g.log = PtoX (i), where g.phys and g.log dencte the physical identifier, and the logical identifier of g, respec-
tively. Formally, MultiChord; isatimed 1/O automaton, as defined in Chapter 23 of [3].

Thesignatureof MultiChord; isgivenin Figure 1. The external signature describestheinputsand outputs (primar-
ily, client invocations and responses) by which the MultiChord service interacts with its environment. The external
signature includes join, lookup and receive inputs and corresponding acknowledgments. We do not include special
“leave” requests and responses in this paper; instead, we treat leaves as failures. We do not consider rejoining after a



failure. Theinternal signature consists of transitions that implement join and lookup protocols, and maintain the finger
tablesin the face of alimited rate of change.

Input: Internal:
join(J);, J afinite subset of PId — {i} join-ping;
lookup(z);, z € XId neighbor-refresh;
receive(m); ;, m € Msg,j € PId chord-ping;
stabilize(z);, z € XId
Output: garbage-collect(f);, f € Finger
join-ack;
lookup-ack(H);, H C GId Time-passage:
send(m); j, m € Msg, j € PId time-passage(t), t € RT

Figure 1: MultiChord; : Signature

2.2 Process Automaton: Data Types and Constants

Table 2 shows the data structures and the message formats used by the MultiChord protocol. |n addition we definetwo
operations on sets of fingers:
1. update(F, F"), which computes F' U F'; if afinger f belongsto both sets of fingers F and F’ then f inherits
the highest expiration time, ezptime, that it hasin the two sets.
2. truncate(F,t), which boundsthe ezptime of eachfinger f € F'tot, i.e, f.ezptime := max(f.exptime, t).

| Notation | Comments |

Finger finger data structure; consists of fields: (gid € GId, exptime € RZ° U {o0})
Reqld request identifier set, partitioned into subsets ReqId (i), ¢ € PId; used to identify lookup instances
Request used to implement one lookup stage; consists of fields: (id € Reqld, stage € NT | target € XId)
JoinRecord used to keep track of progressin aprocess attempt to join the system; consists of

fields: (reqids C Reqld, comp C Reqld, acktime € RZ° U {co})
ClientRecord used to keep track of client-initiated lookup requests at a particular location; consists of fields:

(regids C Reqld, comp C Reqld, acked C Reqld(i))
LookupMsg lookup message; consists of fields: (tag = lookup, id € Reqld, stage € NT | target € XId)

LookupRespMsg lookup response message, (tag = lookup-resp, id € Reqld, stage € N¥ | preds € Set[Finger))
LookupCompMsg | lookup completion msg., (tag = lookup-completion, id € Reqld, stage € NT, block € Set[Finger])

PingMsg ping message used to refresh finger information, (tag = ping, ping)

BlockMsg message used to send a block to another message, (tag = block, block € Set[Finger])

T. the timeout value for expiration of entriesin the finger table

Ty the time between scheduling gossiping messages, i.e., PingMsg and BlockMsg messages

T; the time from when a joining process has received all its responses until it respondsto its client
b number of proper predecessors and successors that a process maintains about itself

and its power-of-two fingers
number of responses that a client returnsin response to alookup request; ¢ < b

o

Table 2: Data structures and message formats used in MultiChord.

MultiChord uses only five types of messages. Lookup, LookupRespMsg and LookupRespCompletion to imple-
ment join and lookup operations, and PingMsg and BlockMsg to maintain the finger tables in the face of changes.

In addition, MultiChord uses the following time constants: (1) T, the time between schedul ed gossiping messages,
(2) T., thetimeout value for expiration of entriesin the finger table, and (3) 7}, the time from when ajoining process
has completed its systematic collection of responses until it respondsto its client.

Finally, MultiChord uses two constants b and ¢. Constant b representsthe level of redundancy used by a processto
maintain routing information. In particular, each process maintainsits b proper successors and b proper predecessors,
and b proper successors and b proper predecessors of each of its power-of-two fingers. Constant ¢ representsthe level
of redundancy used to perform lookups, the basic operations in MultiChord. During lookup operations, each process
issues ¢ concurrent queries, which makesit highly likely that at least one processwill respond. The value of ¢ ischosen



to be larger than the number of changes that are likely to occur in an arc of the ring, in intervals of some reasonable
length. The length of thisinterval should be sufficiently long to allow recovery from recent changes. Thevalue of b is
usually larger than ¢; ¢ must be large enough to ensure aresponse under “normal” conditions (with bounded changes),
while b must be large enough to support the infrastructure maintenance protocol.

2.3 Process Automaton: State

The state of MultiChord; consists of the state variables listed in Figure 2. Note that our initializations of these
variables assign tuples to record-valued variables. We use the convention that the order of the components in the
tuplesis the same as the order presented in the definitions of the record types.

State variables: Derived variables:

status € {idle, joining, active}, initialy idle local-ring = {x € XId : 3f € fingers|f.log = x|}

join € JoinRecord, initidly (0,0, co) Forz € XId, k > 0:

client € .ClientRecord., m't]a_”y (0,0,0) f-succset(z, k) = {f € fingers : f.log € succset(x, k, local-ring)}
used-reqids C Reqld(i), Inlt_l_ally 0 f-psuccset(z, k) = {f € fingers : f.log € psuccset(x, k, local-ring)}
requests € Set[]_{equest'},.l.nltlally 0 f-predset(z, k) = {f € fingers : f.log € predset(zx,k, local-ring)}
fingers € Set[Finger], initially {(me,_o<_3?} f-ppredset(z,k) = {f € fingers : f.log € ppredset(z, k, local-ring)}
out-queue, asequence of Msg X PId, initially empty f-block(z, k) = {f € fingers : f.log € block(z, k, local-ring)}

ping-time € RZ% U oo, initialy co
nbr-refresh-time € RZ°% U oo, initidly oo
failed, aBoolean, initidly false

Figure2: MultiChord; : State

The status variable keepstrack of the state of processi. The join variable keepstrack of the progress of thejoining
protocol for process i, and the client variable keeps track of the progress of all client-initiated lookups at location i.
The fingers variable contains a set of fingers, which represent process i's best knowledge of the current members
of the ring (including their expiration times). The used-reqids variable keeps track of which request identifiersin
Reqld(i) have already been used; it is used to model the generation of uniqueidentifiers. The requests variable keeps
track of the set of requests that have been initiated at |ocation i; these may be generated on behalf of the local joining
protocol, local client lookup requests, or heavyweight stabilization. The out-queue variable is a buffer for messages
that process i has generated and has not yet sent.

The nbr-refresh-time and ping-time variables are used to schedule the gossip messages; nbr-refresh-time is
used by process i to schedule sending of its own block to its nearby neighbors, whereas ping-time is used by process
1 to schedule “ping” messages to request block information from other processes. Finally, the failed variableisaflag
saying whether processi has failed.

Process i also maintains some derived variables, which also appear in Figure 2. The derived variable local-ring is
defined to be the set of logical identifiers that appear in i's fingers variable, that is, local-ring representsi’s current
local view of the global ring. Other derived variables are defined to give various successor and predecessor sets, with
respect to the local-ring. For example, f-suceset(x, k) is defined to be the set of fingersin the current finger set whose
logical identifiers are among the & successors of z in the current local-ring; if = appearsin local-ring then this set
include x itself.

2.4 Process Automaton: Transitions

In this section we present the main transitions in MultiChord. Section 2.4.1 describes the basic transitions such as
message sending, garbage-collection, and time-passage transitions. Section 2.4.2 shows the transitionsinvolved in the
joining protocol, and Section 2.4.3 presents the transitionsinvolved in the stabilization protocol. Finally, Section 2.4.4
describes transitions involved in the client lookup protocol.

2.4.1 Basic Transitions

Figures 3(a)-(c) shows three basic transitions: sending, garbage-collection, and time-passage transitions.

A send transition simply removesthe first Msg from out-queue and sendsit to the indicated destination, using an
assumed point-to-point network. Process i can do this only if it has at least begun the protocol, and has not failed.
A garbage-collect transition removes an entry from its fingers set when the entry’s exzptime has been reached. A



time-passage transitions advances the time until the next event, i.e., scheduling times of pinging, acknowledging
the client, or neighbor-refreshing, and the exptime of any finger in the fingers set. Time may not pass at al if the
out-queue is nonempty; this implies that messages in the out-queue are sent out immediately, without any time

passage.

Output send(m); ;) Internal garbage-collect(f); time—pa's'sag'e(t)
Precondition: Precondition: Pre_oond|t|9n.
—failed —failed if ~failed then . -
status # idle status = active now +t < ping-time
(m,j) = head(out-queue) f € fingers now +t < ]om.ack—tzmg
Effect: f.ezptime < now now + t < nbr-refresh-time '
remove head (out-queue) Effect: vVfe ﬁngers : not;u +t < f.exptime
— _ out-queue IS empl
fingers := fingers — {f} Effect:
@ (b) now := now + t(C)

Figure 3: (8) Sending transitions; (b) Garbage-collection transition; () Time passage transitions.

2.4.2 TransitionsInvolved in the Joining Protocol

Like Chord, in MultiChord a process uses |ookupsto popul ateits finger table when it joins the system. Where the two
protocols differ isin the amount of state required to join the system. Whereas in Chord a processis required to know
only a set of successor processes, in MultiChord a process is required to know a set of processes (i.e., a b-block) for
each of its power-of-two fingers. Aswe will show in Section 3 this redundancy increases the resilience of the protocol
in the face of changes.

Next, we present the details of the transitionsinvolved when processi joins the system. Theseinclude:

1. Thejoin, transitions, by which the client at location ¢ requeststo join.

2. The receive transitions for lookup, lookup-resp, and lookup-comp messages, which are involved in initialy
populating processi’s finger Set.

3. Thejoin-ping transitions and the receive transitions for ping messages; these are used to complete the finger set
before process i respondsto the client.

4. Thejoin-ack; transitions, by which process+ respondsto its client.

Figure 4 showsthe join and join-ack transitions. In ajoin(.J); transition, processor : initiates joining by submitting
aset J of PIds of other processes that should already be members of the system. Process i handles the join request
only if it hasnot failed and has not previously begun joining. To handlethe join request, the processfirst setsits status
to joining and schedulesiits ping task. If J = @, the process is already done and schedules its response to the client.
Otherwise, if .J # 0, process i launches a set of lookup requests, one for itself and one for each of its power-of-two
SUCCESSOrS.

When all these requests have completed, and when sufficient additional time has passed (as determined by a
scheduled ack-time being reached), process  can report back to the client with a join-ack; transition. When it does
S0, it convertsits status to active and schedules its nbr-refresh task.

Asin Chord, MultiChord implements an iterative lookup protocol. The processing of a lookup request involves
threetypes of transitions, which appear in Figure 5. When processi receives alookup message, it handlesthis message
only if it is already active, that is, if it has completed its joining protocol. In order to handle the lookup message, it
sends either a lookup-resp or alookup-comp message, depending on whether it thinks that the search has reached its
goal. Thetest for completion is that, according to i’s current information, target « is among the ¢ proper predecessors
of the target. In the case of alookup-comp message, processi sends back its best information about the target’s block
of radius b. In the case of alookup-resp message, process i sends back its ¢ best proper predecessorsfor the target.

When process i receives a lookup-resp message for the current stage of a current request, it updates its finger
table with the information contained in the preds field of the incoming message. Then because the request is not
completed, process: generates a new batch of lookup messages for the next stage of the same request. This next stage

LIn either case, process i first truncates al fingers' ezptimesto now plus the maximum timeout value T ; this is because i’s entry for itself has
exptime = oo, but we do not want others to record ezptime = oo for .



Input join(J); Output join-ack;

Effect: Precondition:
if =failed then —failed

if status = idle then status = joining
status := joining join.reqids C join.comp
ping-time := now join.acktime = now
if J = 0 then join.acktime := now Effect:
ese status := active

forz € {me.log} U {me.log + 2% : 0 <k <n —1}do nbr-refresh-time := now

choose rid € Reqld(i) — used-reqids
used-reqids := used-reqids — {rid}
join.reqids := join.reqids U {rid}
requests := requests U {(rid,1,z)}
forj € Jdo

add ((lookup, rid, 1, ), j) to out-queue

Figure 4: Client-level transitionsrelated to joining

Input receive(lookup, 7, s,x); ; Input receive(lookup-comp, 7, F); ;
Effect: Effect:
if —failed then if —~failed then
if status = active then new-fingers ;= {f € F : f.exptime > now})
if me.log € ppredset(zx, ¢, local-ring) then fingers := update(fingers, new-fingers)
block := truncate(f-block(me.log,b), now + T.) if r € join.reqids then
add ((lookup-comp,r, s, block), j) to out-queue join.comp := join.comp U {r}
ese if join.reqids C join.comp and join.acktime = oo then
preds := truncate(f-ppredset(z,c), now + T¢) join.acktime := now + T}
add ((lookup-resp,, s, preds), j) t0 out-queue if r € client.reqids then

client.comp := client.comp U {r}
Input receive(lookup-resp,r, s, F'); ;
Effect:
if —failed then
new-fingers := {f € F : f.exptime > now})
fingers := update(fingers, new-fingers)
if Iz[(r, s, x) € requests)] then
choose z where (r, s, ) € requests
requests := requests — {(r,s,z)} U{(r,s + 1,2)}
for f € f-ppredset(x,c) do
add ((lookup,r, s + 1,z), f.gid.phys) to out-queue

Figure 5: Transitions of the lookup protocol

has the next-higher stage number, which is recorded in the request record. The messages for the new stage are sent
to the ¢ currently-known best proper predecessors of the target. Note that the number of messages does not increase
exponentially at each stage; the protocol limits the the number of messagesto c.

When processi receivesalookup-comp message for the current stage of acurrent request, it updatesits finger table
with the information in the block field of the incoming message. Asin the lookup-resp case, process i increments the
request’s stage number, to register the fact that some response for this stage has arrived. If the current request is part of
1'sjoining protocol, then the completion of thisrequest is recorded in the join record; if this representsthe completion
of the last request, then process i also schedulesthe client acknowledgment. On the other hand, if the request is being
done on behalf of a client-initiated lookup, the completion is recorded in the client record (see Appendix A).

During the joining protocol, process periodically pingsits power-of-two fingers for their b-blocks. The relevant
transitions are the join-ping transitions and the receive transitionsfor ping messages and their responses (see Figure 6).

Process i performs a join-ping transition while it is joining, whenever ping-time is reached. When it does so,
it sends ping messages to the c-blocks of al targets for which lookup requests have aready completed. This allows
process: to augment and refresh its information about completed requests while finishing the joining protocol. When
processi receivesa ping message, it responds by sending back its b-block, in ablock message. When processi receives
ablock message, it updatesits finger table with the new information.



Internal join-ping; Input receive(ping);,i

Precondition: Effect:

—failed if —failed then

status = joining if status = active then

ping-time = now block := truncate(f-block(me.log,b), now + T.)
Effect: add ((block, block), j) to out-queue

for r € requests wherer.id € join.comp do

for f € f-block(r.target,c) do Input receive(block, F'); ;
add ((ping), f.gid.phys) t0 out-queue Effect:
ping-time := now + Ty if —failed then

if status = active then
new-fingers := {f € F : f.exptime > now}
fingers := update(fingers, new-fingers)

Figure 6: Transitionsrelated to pinging during the join protocol

2.4.3 TranstionsInvolved in Stabilization

Once process is active, it performs several types of transitionsto maintain its finger table. The protocol includes two
kinds of stabilization: normal case, lightweight stabilization, and a heavier-weight stabilization.

In the lightweight stabilization protocol, process periodically sendsits b-block to its nearby neighbors (the mem-
bers of its b-block), and periodically pings processes in the vicinity of its power-of-two successors, so that they send
i their current b-blocks. The transitions involved in this lightweight stabilization protocol are the neighbor-refresh
transitions, the chord-ping transitions, and the receive transitions for ping and block messages. Note that the pseu-
docode for ping and block transitions has already been presented in Figure 6, while the pseudocode neighbor-refresh
and chord-ping transitions appearsin Figure 7(a)-(b).

Internal neighbor-refresh; Internal chord-ping; Internal stabilize(x);

Precondition: Precondition: Precondition:
—failed —failed —failed
status = active status = active status = active
nbr-refresh-time = now ping-time = now Effect:

Effect: Effect: choose rid € Reqld (i) — used-reqids
for f € f-block(me.log,b) do fork € {0,...,n—1} do used-reqids := used-reqids — {rid}

add ((block,f—block(me.log, b))7 for f € f-block(me.log + Qk, C) do requests := requests U {(rid, 1,7;)}
f.gid.phys) to out-queue add ((ping), f-gid.phys) 10 out-queue  for f € f-ppredset(z,c) do
nbr-refresh-time := now + Ty ping-time := now + Ty add ((lookup, rid, 1, ), f.gid.phys)
(a) (b) 10 out queu(ec)

Figure 7: Transition related to stabilization.

In the heavyweight stabilization protocol is similar to the Chord stabilization protocol (see Figure 7(c)). Processi
(for any reason, unspecified here) may try to obtain new information about any target . Most commonly, such atarget
will be one of its power-of-two successors. For example, process : might execute stabilize(x); for each z of the form
PtoX (i) + 2*, at regular intervals, or when it suspects that its information is out-of-date.

2.4.4 Transitions Related to Client L ookups

The transitions related to client-initiated lookup operations include the receive transitions already described, plus the
lookup and lookup-ack transitions. These last two appear in Figure 8.

When process i receives a client-initiated lookup request, it handles it in much the same way it handles a request
in the joining protocol. Namely, it chooses and records a request identifier, and sends a lookup message to each of
the ¢ best proper predecessors it knows for the target identifier. An exception: If process i believesit is one of the ¢
best predecessors, it does not bother sending out any lookup messages, but ssimply records the fact that the lookup is
done. A lookup-ack can occur when arequest is done but not yet acknowledged to the client. In this case, the response
includes information about process i’s current ¢ best predecessors for the target.



Input lookup(z); Output lookup-ack(H);

Effect: Precondition:
if =failed then —failed
if status = active then r € requests
choose rid € Reqld(i) — used-reqids r.id € client.comp — client.acked
used-reqids := used-reqids — {rid} H = {f.gid : f € f-ppredset(r.target,c)}
if me.log € ppredset(z, c,local-ring) then Effect:
client.comp := client.comp U {rid} client.acked := client.acked U {r.id}
else

client.reqids := client.reqids U {rid}
requests := requests U {(rid,1,x)}
for f € f-ppredset(z,c) do
add ((lookup, rid, 1, x), f.gid.phys) t0 out-queue

Figure 8: Transitions for client lookup

3 Summary of Analysis Results

In this section we give a short and informal summary of our analysis results. Appendix A presents the proofs of these
results.

We make the following assumptions about the environment: (1) all processes are time-synchronized, (2) the mes-
sage delay is bounded above by d, and there is no message loss, (3) during an interval of time T, + 2d, the number of
join-ack events among processesin an “arc” of thering containing at most b + 1 processesis at most joinbd, and (4)
during an interval of time T, the number of failed processesin an “arc” of the ring containing at most b + 1 processes
isat most failbd.

Then we show that if these assumptions hold, and furthermore, if the following constraints are satisfied:

LT, >Ty+2dand T, > 5(T, + 2d)

2. ¢ > Tjoinbd + 4 failbd

3. b > 2c+ 3joinbd + max(2joinbd, failbd)
we prove that all lookup operations are correct. In particular we prove the following result:

Theorem 3.1. Every good execution « satisfies 27, 4 6d-lookup-correctness.

The notion of e-Lookup-correctnessis defined asfollows: supposethat alookup-ack(H); event occursin 3 at time
t, in response to a prior lookup(z);. Let 5’ be the portion of 5 ending with the given lookup-ack(H); event. Then
there existsaring R such that:

1. R C aug-ring(8'),
2. global-ring(B') — {PToX (j) : join-ack; occursat atime > ¢ —e} C R, and
3. H = ppredset(z,c, R).

Furthermore, we show that in the absence of any other events in the system the lookup latency is bounded. More
formally, we prove the following result:

Theorem 3.2. Suppose that « is a good execution, «’ a finite prefix of o containing at least 2¢ + 1 join-ack events.
Suppose that:

1. Thefinal step of &' isa lookup; step in which ¢ initiates request r, with target .
2. No other requests (on behalf of joins, client lookups, or stabilizes) are active at any time > (time(a') — Te.
Then reguest r terminates with a receive(lookup-comp) step, at atimethat is < (time(a’) + 4(log N + 1)d.

In order to prove these results, in Appendix A we first prove a series of results asserting that the basic routing
infrastructure is maintained correctly by the joining and refresh protocols.

While the deterministic assumptions on the bounded number of joins (joinbd) and failures (failbd) alow usto
prove strong analytical results, these assumptions are not always realistic. We consider this issue in Appendix B,
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Figure 9: (a) Thelookup failure versusthe rate of change; (b) the average path length and the 90-th percent confidence
interval as afunction of changerate.

where we give bounds on the probability that these assumptions hold in a steady state system in which processesjoin
according to a Poisson process and have alifetime drawn from an exponential distribution. In particular, we compute
the mean time between two violations of these assumptions as

) (c/3:XTj(b+1))2
Tf > NJ e 4NT;(b+1) ) (1)

where \ represents the normalized rate of change (i.e., the rate of change in the entire system divided by the number
of processes NV in the system), ¢/3 > AT;(b+ 1), and b > 13¢/6.

4 Simulation Results

In this section we evaluate our agorithm by simulation. Our goal is twofold. First, we want to get a sense of how
much we can push the protocol in practice before it breaks, i.e., before we start to see lookup failures. Second, we
want to see how the protocol performs on the average case. We use the average number of stagesin alookup as the
metric to evaluate the performance of MultiChord.

We have developed an event driven simulator that accurately implements the protocol at the message level. In all
simulations, weuseT, = 10 sec, T; = 11 sec, and T, = 55 sec. The message propagation delay isbounded by d = 50
ms. Note that these values satisfy the constraints presented in Section 3, i.e, T; > T, + 2d and T, > 5(T, + 2d).
Each process schedul es heavy stabilization every 60 sec.

We consider a network with 1,000 processes, in which processesjoin at arate \, according to a Poisson process,
and have an exponentially distributed lifetime with the mean N/)\,; thus, the number of processes in the system
remains roughly the same. In addition, we assume that the system receives lookups at a rate approximately 10 times
larger than the join and failurerate, r.

Figure 9(a) plots the lookup failure rate versus the arrival rate of new processes in the system (i.e., rate of join)
over 10,000 lookups. During each simulation there are approximately 1000 new processes that join the system, and
1000 processes that fail. We consider two cases. (i) ¢ = 2, b = 5, and (ii) ¢ = 4, b = 9. As expected, the rate of
lookup failure increases as the join rate increases. However, increasing the level of redundancy (i.e., parameters b and
c) makes a significant difference. While in case (i) we did not record any lookup failure for join rates less or equal to
0.1, in case (ii) we did not see any lookup failure for a join rate five time larger, i.e., 0.5. Furthermore, for ajoin rate
of 2.0 therate of lookup failure in the first case is about 18 times larger than in the second case.

Itisinteresting to comparethe simulation resultswith our upper bound on the meantime 7' between two violations
of the deterministic constraints. Consider the first case wherec = 2 and b = 5. Using Eq. (1), for ajoin rate of 0.5
we obtain Ty = 14 ms.? Thisis avery small value given the fact that a lookup operation is generated every 50 ms
(i.e., there are roughly 10 lookupsfor every join operation). One explanation for this large discrepancy isthat asingle
constraint violation will hurt only a small fraction of lookups, if at all. Indeed, the lookups that do not use the region
of network where the constraints are violated will not be affected.

2Hereweusec = 2, b = 5, A = 1/1000 (there is one join and one failure every 0.5 sec on average and N = 1000), and T; =11 sec.



Figure 9(b) plots the average number of stages (path length) of alookup versustherate of join for (i) ¢ = 2,b = 5,
and (ii) ¢ = 4,b = 9, respectively. There are two points worth noting. First, the average path length is significantly
smaller than in Chord; in Chord, the expected path length islog V/2, which in our case translates to 5 hops. Thisis
because in MultiChord every process maintains a much larger set of fingers than in Chord. This increases the chance
that a MultiChord process will know fingers closer to the target than an equivalent Chord process, which ultimately
will reduce the number of lookup stages. Second, as the join rate increases, the lookup path length decreases dlightly.
To understand thisrecall that in steady state the averagelifetime of anodeis N/ )\, where A, isthejoin rate. However,
it takes a process at least T, time to join the system. Thus anode will be inactive for at least f = T, A\, /N of itslife
time, which meansthat at least f NV processesin the system would be inactive on an average. Asthejoin rateincreases,
the fraction f of inactive nodes increases, which will lead to a corresponding reduction in the number of active nodes
in the system. A secondary reason is that as the join rate increases so does the failure rate. Since we do not report
failed lookups, and since the failed lookups tend to have more stages, the reported path length is an underestimation.

5 Conclusions and Future Work

In this paper we present MultiChord, a namespace management algorithm based on Chord [7]. MultiChord uses
redundancy and lightweight mechanisms to accommodate limited changesin time and space. We analyze MultiChord
and show that lookups are guaranteed to be successful and furthermorethat the lookup latency is bounded.

It would be interesting to analyze the behavior of the algorithm in situations that are less well-behaved than what
we have described in this paper. In particular, we plan to consider what happens if the rate of change exceeds our
assumed bound for some part of the execution, but at some point “stabilizes’ to obey the rate bound. In such cases,
we believe that our algorithm will eventually stabilize to a nearly-ideal state. It remainsto determineif thisis so and
determine bounds on how long this might take.
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6 Appendix A: Analysis

In this appendix we prove the results which were summarized in Section 3.

Let 8 by afinite sequence of external actionsof MultiChord, according to the external signaturejust defined. Then
we definethe global ring after 3, global-ring(3), to bethe set of XIds x such that ajoin-ackx,p(,) eventoccursin g
and no fail x,p(-) OCCUrsin 3. That is, the global ring after 3 consists of those processes that have completed joining
the system and have not failed. We extend this same definition to finite executions of untimed or timed automata that
have the given external signature.

If 8 isafinitetimed sequence of actionsin the MultiChord external signature, then we define the augmented ring
after 3, aug-ring(3), to be global-ring () U X, where X is the set of XIds x such that fail x 7, p(,) OCCUrsin 3 a a
time > (time(B) — T.. Thatis, aug-ring(a) augments global-ring () by adding in the logical identifiers of recently
failed processes. Again, we extend this definition to finite executions of timed automata that have the given external
signature.

6.1 Service Guarantees

We describe safety and latency guarantees. We do not present any liveness guarantees here, replacing them with
latency guarantees.

6.1.1 Safety

The following condition is simple a well-formedness condition, expressing basic conditions such as “the service re-
sponds only to invocations that were actually made”.

o \Well-formedness: For each i, at most one join-ack; occursin 3. Any join-ack; in 3 is preceded by ajoin(x);.
Any lookup-ack; is preceded by alookup(x); with no intervening lookup-ack(x);. If fail; occursin 3, then no
following outputs occur.

We have not formulated any interesting safety guarantees related to joining. For client lookup, we require the
following property, parameterized by e € R=°:

e e-Lookup-correctness: Suppose that a lookup-ack(H); event occurs in 5 at time ¢, in response to a prior
lookup(z);. Let 5’ be the portion of § ending with the given lookup-ack(H); event. Then there exists a
ring R such that:

1. R C aug-ring(8'),
2. global-ring(B') — { PToX (j) : join-ack; occursat atime >t —e} C R, and
3. H = ppredset(z,c, R).

6.1.2 Latency
As noted above, we replace liveness claims by latency bounds:
e e-Join-latency: Supposethat ajoin(.J); event occursin 3, at timet.

1. If J = () then a corresponding join-ack; occursat time .

2. If there exists j € J such that join-ack; occurs before the join(J);, and neither i nor j failsin 3, then a
corresponding join-ack; occursby timet + e.

e e-Lookup-latency: If alookup(z); event occursin S at time ¢ and no fail; occursin 3, then a corresponding
lookup-ack(x); occursby timet + e.

6.2 Assumptionsfor Analysis

In this section we formalize the algorithm constraints and the assumptions about the environment, which we discussed
in Section 3
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6.2.1 Restrictionson thealgorithm

Constraints on values of the constants b, ¢, d, Ty, Te, and T}:
o T;>T,+2d
o T, > 5(T, + 2d)

Scheduling assumptions:

e Thelocally controlled actions that are enabled are performed without any intervening time-passage.

6.2.2 Restrictionson the environment

Constants:
For the purpose of analysis, we introduce two constants, joinbd and failbd. We assume:

e ¢ > Tjoinbd + 4failbd
e b > 2c+ 5joinbd
® b > 2c+ 3joinbd + failbd
Restrictions on timing and failures:
e No message loss.
¢ No time passes while alocally-controlled action is enabled.

e Bounded local joins: An execution « satisfies bounded local joins provided that for any finite prefix o' of a, the
following holds.
Let z,y € XId where |global-ring(a') N [z, y]| < b+ 1. Then the number of join-ack, eventsthat occur in o'
attimes > (time(a') — (T, + 2d), where PToX (k) € [z,y], is < joinbd.
That is, at any point in the execution «, the number of recent join-ack events among processesin an “arc” of the
ring containing at most b + 1 processesis at most joinbd.

This assumption is not ideal becauseit is expressed in terms of the number of join-ack events, which are under
the control of the algorithm (rather than the environment). We could justify this assumption in terms of amore
primitive assumption that bounds the rate of join events, which are controlled by the environment. To do this,
we might need to modify the algorithm so that it schedules the join-acks so that (in the normal case) they occur
afixed amount of time after the joins. Alternatively, a probabilistic justification might be possible.

e Bounded local failures: An execution « satisfies bounded local failures provided that for any finite prefix o' of
«, the following holds.
Let z,y € XId where |global-ring(a') N [z,y]| < b+ 1. Then the number of fail, events that occur in o' at
times > (time(a’) — T,, where PToX (k) € [z,y], is< failbd.
That is, at any point in «, the number of recent fail events among processes in an arc of the ring containing at
most b + 1 processesis at most failbd.

We also need a special assumption to ensure that there are “enough” processesin the ring.
e Enough-processes An execution « satisfies enough-processes provided that it has afinite prefix o such that:

1. Atleast 2b + 1 join-ack eventsoccur in a.
2. Nofail event occursina’.
3. Inany state of « after o', the total number of live processesis always > 2b + 1.

We call the shortest such prefix o the initialization prefix.

A good execution is one that observes all the timing and failure restrictions given in this section.
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6.3 Basic Lemmas
Thefirst lemma saysthat exptimes of fingers are always > now.

Lemma 6.1. Thefollowingistruein any state that is reachable in a good execution:
If f € fingers, then f.exzptime > now.

The next lemma says that every physical identifier 7 that appearsin another process’ fingers set, or in a message
in transit, must correspond to a process whose status is active.

Lemma 6.2. Thefollowingistruein any state that is reachable in a good execution:
Supposethat f € Finger, f.phys = i, and any of the following holds:

1. f € fingers; for some j # i.

2. f € m.block for somem € BlockMsg thatisin transit.

3. f € m.preds for somem € LookupResp in transit.

4. f € m.block for somem € LookupComp in transit.
Then status; = active.

The next lemma saysthat, if aprocessfailsat atimet, then no expiration time for that processthat is greater than
t + T, ever appears anywherein the state.

Lemma 6.3. Suppose that « is a finite execution, and fail; occurs at time ¢ in «. Suppose that f € Finger and
f-phys = i. Supposethat, in £state(c), any of the following holds:

1. f € fingers; for some j # i.

2. f € m.block for somem € BlockMsg thatisin transit.

3. f € m.preds for somem € LookupResp in transit.

4. f € m.block for somem € LookupComp in transit.
Then f.exptime < t + T,.

Asa corollary to some of the previouslemmas, the following lemma says that a process that has failed more than
T. time ago does not appear in anyone’s fingers Set.

Lemma 6.4. Supposethat « is a finite execution, and fail; occurs strictly before time £¢ime(a) — T, in a. Suppose
that f € Finger and f.phys = i. Thenin (state(c), f doesnot appear in fingers; for any j # i.

Proof. By contradiction. Suppose that in {state(a), f € fingers; for aparticular j # i. Then by Lemma6.3, in
Ustate(ar), f.exptime < t + T., where ¢ is the time at which fail; occurs. Lemma 6.1 implies that, in £state(a),
f-exptime > now, that is, f.exptime > (time(a). These two inequalities together imply that ftime(a) < t + T..
This contradicts the hypothesisthat fail; occurs strictly beforetime (time(a) — T. O

6.4 Maintaining Neighbor Sets

In this section, we prove that the neighbor sets are properly maintained. We divide the work into three steps: First,
we consider what happens when there are no failures and only a bounded number of joins. Second, we consider the
general case, with unlimited failures and joins.

Theresults we prove express knowledge guaranteesfor live processes. Specifically, we show that all live processes
always know about all neighborsthat joined more than time 27, + 5d ago. Moreover, after a process has been live for
sufficiently long, it knows about all neighborsthat joined more than time d ago.

Breaking the proof up in some such way seems necessary in order to make the proof tractable. Each stage intro-
duces its own new difficulties: the first stage aready includes many of the issues involving the timing of the flow of
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information during and soon after the joining protocol. The second stage introduces issues of local knowledge—each
process maintains information about its local neighborhood only. The third stage introduces the complications of
failures, which mean that a process cannot rely on responses from any particular other process.

We expect this decomposition to be useful in constructing the general proof, because the ideas of the first stages
should be useful in the later stages. Also, the result for the first stage should be directly usable in proving the more
general results, in describing properties of the initial set-up phase.

6.4.1 Basiclemmas

The following lemma says that every block message contains a high expiration time for the sender.
The mention of a deadline for amessage in transit refers to a detailed state-machine model for atimed channel, in
which adeadlineis explicitly kept for each message. This deadlineis described in terms of absolute time.

Lemma 6.5. Let o be agood finite execution. If a block message isin transit from ¢ with deadline £ then it containsa
finger for 7 with exzptime > £ + T, — d.

6.4.2 Nofailures, limited joins

In the case we consider in this subsection, no processes fail and at most 2¢ + 1 join-acks occur. With this limited
number of join-acks, every processisin every other process c-block, so we do not have to worry about issues of local
knowledge.

The following lemma says that everyone “always’ has afinger for ig, with a “sufficiently high” expiration time.
The precise statement of thisis rather complicated, because many different cases are covered.

Lemma 6.6. Let o be a good finite execution that contains no fail events, and contains at least one and at most 2¢ + 1
join-ack events. Let iy denote the process that performs thefirst join-ack in a.. Leti € PId.
Then in {state(a):

1. If status; = joining and a contains a receive(lookup-comp).. ; event for target PToX (i), then there exists
f € fingers; with f.phys = i, such that:
(a) One of thefollowing holds:
i. f.exptime > ping-time; + 2d.
ii. Thereisa ping messagein out-queue; addressed to ig and f.exptime > now + 2d.
iii. Thereisa ping messagein transit from to ig with deadline £ and f.ezptime > ¢ + d.

iv. Thereisa block messagein out-queue;, addressedto i, and f.exptime > now + d.
V. Thereisa block messagein transit fromi, to i with deadline ¢, and f.exptime > .

(b) f.exptime > now.
2. If status; = joining and o contains a receive(block);, ; event, then there exists f € fingers; with f.phys = i
such that:
(a) One of thefollowing holds:
i. f.exptime > ping-time; + 2Ty + 7d.
ii. Thereisa ping message in out-queue; addressed to iq and f.exptime > now + 27T, + 7d.
iii. Thereisa ping message in transit from« to o with deadline £ and f.exptime > ¢ 4 2T, + 6d.

iv. Thereisa block messagein out-queue; addressedtoi, and f.exptime > now + 2T, + 6d.
v. Thereisablock message in transit fromig to ¢ with deadline ¢, and f.ezptime > £ + 2T, + 5d.

(b) f.exptime > now + 2T, + 5d.
3. If status; = live thenthereexists f € fingers; with f.phys = i such that:

(a) One of thefollowing holds:
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i. f.exptime > nbr-refresh-time; + 2T, + 5d.
ii. Thereisablock messagein out-queue; addressed toig, and f.ezptime > now + 2T}, + 5d.
iii. Thereisablock messagein transit froms to io with deadline ¢ and f.ezptime > ¢ + 2T, + 4d.
iv. Thereisafinger for iin fingers,; with exptime > nbr-refresh-time; ,and f.exptime > nbr-refresh-time; +
Ty + 4d.
V. Thereisa block messagein out-queue; addressedto i, and f.exptime > now + T, + 4d.
vi. Thereisa block messagein transit fromi, to ¢ with deadline ¢, and f.exptime > ¢ + T, + 3d.

(b) f.exptime > now + T, + 3d.

4. If ablock or lookup-comp message is in an out-queue then it contains a finger for iy with exptime > now +
T, + 3d.

5. If ablock or lookup-comp message isin transit with deadline ¢ then it contains a finger for iy with ezptime >
0+ T, + 2d.

Proof. We proceed by induction on the number of stepsin « following the join-ack; .

Base: 0 steps.

Then the last step of « is join-ack; . All the conditions are easy to check.

Inductive step: Theonly actionsthat could falsify any of the claimsarereceive(lookup), send(lookup-comp), receive(lookup-comp),
join-ping, send(ping). ;,, receive(ping). ;, , send(block), receive(block), join-ack, neighbor-refresh, v, and garbage-collect.

We consider cases.

1. receive(lookup). ;.

This has the potential to falsify Property 4, in the case where a lookup-comp message is placed in out-queue;.
By inductive hypothesis, Property 3(b), in the pre-state of thefinal transition, thereexists f € fingers, such that
f-phys = ip and f.exptime > now + T, + 3d. Therefore, if alookup-comp message is placed in out-queue;
asaresult of thistransition, it contains afinger for ig with exptime > now + T, + 3d. This shows Property 4.

2. send(lookup-comp); ;

This could falsify Property 5. In the pre-state of the final transition, alookup-comp message is in out-queue;.
Therefore, by inductive hypothesis, Property 4, this message contains a finger for ig with exptime > now +
Ty + 3d. Since ¢ < now + d, we have exptime > £ + T, + 2d, as needed for Property 5.

3. receive(lookup-comp), ;.

Thiscould falsify Property 1. Before the step, alookup-comp messageisintransit to i with deadline > now. By
inductive hypothesis, Property 5, this message contains afinger for iy with exptime > now + T, + 2d. So after
the step, fingers; containsafinger f for ig with f.exptime > now + T, + 2d. Since ping-time; < now + Ty,
we havethat f.exptime > ping-time,; + 2d. This shows both parts of Property 1.

4. join-ping;.
This could falsify Property 1(a) or 2(a). For Property 1(a), suppose that status; = joining and « contains a
receive(lookup-comp)., ; event for target PToX (7). The interesting case is where 1a(i) is true just before the

step, that is, fingers; containsafinger f for ip with f.exptime > ping-time; + 2d. Since ping-time; > now,
thisimpliesthat f.exptime > now + 2d. Thisinequality is true after the step as well.

We claim that the step results in a ping message addressed to iy being placed in out-queue;; this means that
1a(ii) is satisfied in the post-state, as needed. Since we have assumed that Property 1(a)i is truein the pre-state,
we know that fingers, contains a finger for ig in the pre-state. Since a receive(lookup-comp) occursin o for
target PToX (i), we know that there exists r such that r.id € join.comp; and r.target = PToX (i). Therefore,
the join-ping deposits ping messages addressed to its entire c-block, according to itslocal ring. Thisincludesiy,
as needed.

For Property 2(a), the argument is similar to that for Property 1(a). Thistime, suppose that status; = joining
and a contains areceive(block), ; event. The interesting case is where 2a(i) is true just before the step, that is,
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fingers; contains afinger f for io with f.exptime > ping-time; 4+ 2T, + 7d. Since ping-time; > now, this
impliesthat f.exptime > now + 2T, + 7d. Thisinequality is true after the step as well.

We claim that the step results in a ping message addressed to i, being placed in out-queue;; this means that
2(a)ii is satisfied in the post-state, as needed. Since we have assumed that Property 2(a)i is truein the pre-state,
we know that fingers,; contains afinger for i in the pre-state. Since a receive(lookup-comp) occursin a for
target PToX (i), we know that there exists r such that r.id € join.comp, and r.target = PToX (i). Therefore,
the join-ping deposits ping messages addressed to its entire c-block, according to itslocal ring. Thisincludesiy,
as needed.

. send(ping); i, -

This could falsify Property 1(a) or 2(a). For Property 1(a), suppose that status; = joining and « contains a
receive(lookup-comp)., ; event for target PToX (i). Theinteresting case is where 1a(ii) is true just before the
step, that is, fingers, contains afinger f for ig with f.exptime > now + 2d and there is a ping message in
out-queuve; addressed to 7. After the step, thereis a ping messagein transit from: to i, with deadline now + d.
Taking £ = now + d, we see that 1c istrue after the step.

For Property 2(a), the argument is similar: 2(a)ii before the step implies 2(a)iii after the step.

. receive(ping); ;, -

This could falsify Property 1(a) or 2(a). For Property 1(a), suppose that status; = joining and « contains a
receive(lookup-comp)., ; event for target PToX (7). The interesting case is where 1a(iii) is true just before the
step, that is, fingers; containsafinger f for ip with f.ezptime > ¢ + d and there is a ping message in transit
from i to ip with deadline £. Since ¢ > now, we have that f.exptime > now + d. After the step, thereisa
block message in out-queue;, addressed toi. Therefore, 1a(iv) istrue just after the step.

For Property 2(a), the argument is similar: 2a(iii) before the step implies 2a(iv) after the step.

. send(block); .

This could falsify Property 1(a), 2(a), 3(a), or 5. For Property 1(a), the interesting case iswhere j = ig, k = 1,
and 1(a)iv istrue before the step, that is, fingers; containsafinger f for ip with f.exptime > now + d. Since
now + d > ¢, we havethat f.exptime > {, so that 1a(v) holds after the step.

For Property 2(a), the interesting caseiswhere j = iy, k = i, and 2(a)iv holds before the step. Then, arguing as
in the previous case, 2(a)v holds after the step.

For Property 3(a), there are two interesting cases. Thefirst iswhere j = i, k = iy, and 3(a)ii holds before the
step; in this case 3(a)iii holds after the step. The second caseiswhere j = ig, k = i, and 3(a)v holds before the
step; in this case 3(a)vi holds after the step.

For Property 5, we use Property 4 in the pre-state to show Property 5 in the post-state.

. receive(block); x

This could falsify Property 1(a), 2(a), or 3(a).

For Property 1(a), the interesting case is where j = iy, k = 4, and Property 1(a)v holds before the step. Then
by Lemma 6.5, the received message contains a finger for iy with exptime > now + T, — d. By assumptions
on the constants, the right-hand side is > 4T, + 7d, so exptime > now + 4T, + 7d. Therefore, after the step,
fingers; contains afinger for ¢y with exptime > now + 4T, + 7d > ping-time; + 2d. Thus, 1(a)i is satisfied
after the step.

For Property 2(a), theinteresting caseiswhere j = iy, k = i, and Property 2(a)v holds before the step. Arguing
asin the previous case, we see that after the step, fingers; contains afinger for i with ezptime > 47, 4+ 7d >
ping-time; + 2T, + 7d. Thus, 2(a)i is satisfied after the step.

For Property 3(a), there are two interesting cases. Thefirstiswherej = i, k = iy, and 3(a)iii is satisfied before
the step; then we claim that 3(a)iv holds after the step. The argument for this uses Lemma 6.5, applied toi. The
second caseiswhere j = ig, k = i, and 3a(vi) is satisfied before the step; in this case, 3(a)i holds after the step.
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9. join-ack;.

This could falsify Property 3(a). By inductive hypothesis, Property 2(b), in the pre-state, fingers, contains a
finger for ip with exptime > now + 2T, 4 5d. Since nbr-refresh-time; = now right after the step, 3(a)i holds
after the step.

10. neighbor-refresh;.
This could falsify Property 3(a). The interesting case is where Property 3a(i) holds in the pre-state. The step
puts ablock message in out-queue, addressed to iy. Then 3a(ii) holdsin the post-state.

11. v(?)
Thiscould falsify Property 1, 2, 3, or 4. For Property 1, there are two interesting cases. Thefirst iswhere 1(a)iv
holdsin the pre-state. But then time cannot pass, by our timing assumption (no time passes while an out-queue
is nonempty). The second possibility is that we might falsify 1(b). However, note that 1(b) follows from 1(a).
Similar arguments hold for Properties 2, 3, and 4.

12. garbage-collect.
Sincein every case, the finger whose existence is claimed has exptime > now, it cannot be garbage-collected.
Therefore, garbage-collect cannot falsify any of the claims.

O

Next, we describe knowledge that i acquires about the other processes.

Lemma6.7. Let o be a good finite execution that contains no fail events, and contains at least one and at most 2¢ + 1
join-ack events. Let i denote the process that performs the first join-ack in .. Let i € PId be such that join-ack;
occursin o attimet.

Then in state(c), one of the following holds:

1. t = now and a block message addressed to ig isin out-queue;.
2. Ablock messageisin transit from to iy with deadline ¢ + d.
3. fingers; containsafinger f for i such that one of the following holds:

(@) f.exptime > nbr-refresh-time, + T, — T}.

(b) Ablock message addressed to i isin out-queue; and f.exptime > now + T, — Tj,.

(c) Ablock messageisintransit fromi to iy with deadline ¢ and f.exptime > ¢ + T, — (T, + d).
Proof. By induction on the number of stepsin « following the join-ack;.
Base: 0 steps.
Then the last step of « isjoin-ack;. Then we claim that Property 1 holdsin the post-state. This follows becausein the
pre-state, i hasafinger for ig, by Lemma6.6, part 3(b).
Inductive step: The only actions that could falsify the claim are send(block);, receive(block);,, neighbor-refresh;,
time-passage, and garbage-collect; .

1. send(block);
This could falsify Property 1 or 3(b). However, if it does so, it makes Property 2 or 3(c) (respectively) true.

2. receive(block);,

Lemma 6.5 implies that after the step, fingers; contains afinger for i with ezptime > ( + T, — d, where £
is the deadline component of the received message. Since ¢ = nbr-refresh-time; — T, + d, (the sending time
plus d), this implies that this finger has ezptime > nbr-refresh-time; — Ty + d + T, — d, that is, exptime >
nbr-refresh-time; + T, — T,, which showsthat 3(a) is satisfied after the step.

3. neighbor-refresh,
This could falsify Property 3(a); however, if it does so then Property 3(b) holds after the step.
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4. v(i)
This could falsify Property 1 or 3(b). However, if 1 or 3(b) holdsin the pre-state, then time cannot pass, by our
timing assumptions, because an out-queue iS nonempty.

5. garbage-collect; .

Because T, > T, + d, the expiration times of the claimed fingers are al strictly greater than 0. Therefore, this
cannot falsify any of the statements.

O

The following corollary summarizes the conclusions of Lemma6.7, saying that iy has afinger for any other process i
that has joined at least time d ago, with a high expiration time. Also, any block message that is sent by io sufficiently
long after ¢ joins contains a finger for ¢ with ahigh expiration time.

Corollary 6.8. Let o be a good finite execution that contains no fail events, and contains at least one and at most
2c + 1 join-ack events. Let iy denote the process that performs the first join-ack in a. Let i € PId be such that
join-ack; occursin o at time t.

Then in {state(c), the following hold:

1. Ift +d < now then fingers, containsafinger f for i suchthat f.ezptime > now + Te — (T, + d).

2. Ift + 2d < ¢ and a block message isin transit from, with deadline ¢, then the message contains a finger for 4
suchthat f.exptime > €+ T, — (T, + 2d).

The next lemma gives guarantees about what an arbitrary process ¢ knows about another arbitrary process j. This
represents “ second-order” information, because < may need to learn thisinformation indirectly, through ig.

Lemma 6.9. Let o be a good finite execution that contains no fail events, and contains at least one and at most 2¢ + 1
join-ack events. Let iy denote the process that performs thefirst join-ack in a. Let s = £state(«). Then:

1. Supposethat s.status; = joining and « contains a receive(block);, ; event. Supposethat join-ack; occursin
atatime < (time(a) — (T, + 3d).
Then s.fingers; containsa finger f for j suchthat f.exptime > s.now + T, — (2T + 3d).

2. Supposethat s.status; = active and join-ack; occursin a at atime > ftime(a) — (T, + 2d). Suppose that
join-ack; occursin o at atime < (time(a) — (21}, + 5d). Then s.fingers,; contains a finger f for j such that
f.exptime > s.now + T, — (3T, + 5d).

3. Suppose that s.status; = active and join-ack; occursin « at atime < ftime(a) — (T, + 2d). Suppose that
join-ack; occursin o at atime < £time(a) — (T + 2d). Then s.fingers; contains a finger f for j such that
f-exptime > s.now + T, — (2T, + 2d).

The proofsare based on conveying information through io. These proofsare not inductive; rather, they rest directly on
previously-proved lemmas.

Proof. 1. Assumethat s.status; = joining and a containsareceive(block);,,; event. Also supposethat join-ack;
occursin a a atime < ftime(a) — (T, + 3d).
Lemma 6.6, Part 1(b), implies that whenever i sends a ping message during its joining protocol, it has a finger
for ig. Thus, by the limitation on the number of join-ack events, i, isincluded in the set of destinations of the
ping message.
We claim that, in o, processi receives ablock message from iy sent by i in response to a ping message sent by
i atatime > s.now — (T + 2d). For if not, then the latest block message received by i from i, isaresponseto
aping sent by ¢ at atime < s.now — (T, + 2d). But then it must be that another ping message is sent by i at a
time < s.now — 2d, and this receives a response by the end of «, a contradiction.
Sincethetime of the join-ack; is < s.now — (T, + 3d), it must be < s'.now —d, where s' isthe state just before
ip sends this block message. Therefore, by Corollary 6.8, Part 1, in state s', fingers;, contains a finger for j
with ezptime > s'.now + T, — (T, + d). Therefore, in state s, which is at most time T, + 2d later, fingers;
containsafinger for j with exptime > s.now + T, — (2T, + 3d), as needed.
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2. Supposethat s.status; = active and join-ack; occursin « at atime > (time (o) — (T, + 2d). Also suppose that
join-ack; occursin o at atime < (time(a) — (2T, + 5d).

By the inductive hypothesis, Part 1, we know that, just before the join-ack;, fingers; containsafinger for j with
exptime > now + T. — (2T, + 3d). Therefore, in state s, which isat most time T, + 2d later, fingers; contains
afinger for j with exptime > s.now + T. — (31, + 5d), as needed.

3. Suppose that s.status; = active and join-ack; occursin « at atime < ftime(a) — (T, + 2d). Suppose that
join-ack; occursin a a atime < (time(a) — (T + 2d).

Corollary 6.8, Part 1, implies that in any state s’ of a with s'.now > t' + d, fingers; contains afinger for i
with ezptime > s'.now + T, — (T, + d). Since T. > T, + d and because of the limitation on the number of
join-ack events, i isincluded in the set of destinations of every block message sent by i, in such astate s'.

We claim that, in «, process i receives a block message from i sent by i at atime > s.now — (T, + d). For
if not, then the latest block message received by i from ig is sent by i at atime < s.now — (T + d). But then
it must be that another block message is sent by io (as part of aneighbor-refresh; ) at atime < s.now — d, and
thisarrives at ¢ by the end of «, a contradiction.

Now fix s’ to be the state just before iq sends this block message; thus, s'.now > s.now — (T, + d). Putting
thisinequality together with the assumption that the join-ack; occursat atime < s.now — (T, + 2d), we may
conclude that the join-ack; occurs at atime < s’.now — d. Therefore, by Corollary 6.8, Part 1, in state s',
fingers,; containsafinger for j with exptime > s'.now + T, — (T, +d). Therefore, in state s, which is at most
timeT, + d later, fingers, containsafinger for j with exptime > s.now + T, — (2T, + 2d), as needed.

O

Thefollowing lemmadescribesinformation that i is guaranteed to have after receiving alookup-comp message. It rep-
resents “third-order” information, because the lookup-comp message could be conveying “ second-order” information
fromits sender.

Lemma6.10. Let o bea good finite execution that containsno fail events, and containsat least one and at most 2¢+ 1
join-ack events. Leti,j € PId. Supposethat status; = joining and a: contains a receive(lookup-comp).. ; event for
target PToX (i). Suppose that join-ack; occursin a, at atime < (time(a) — (37, + 8d).

Then in state(c), fingers; containsa finger for j with exptime > now.

Proof. (Sketch:) If the time when process i receives the lookup-comp message is < ftime(a) — (T + 2d), then i
also receives ablock message from iy before the end of .. In this case the result follows from Lemma 6.9, Part 1.

On the other hand, if the time when process i receivesthe lookup-comp messageis > (time(a) — (T, + 2d), then
the result follows from Lemma 6.9, part 2, applied to the sender of the message. In applying this lemma, we add time
T, + 3d (d for the message delay and T, + 2d for the time that might have elapsed from the receive(lookup-comp))
to the age of the known processes and subtract this from the expiration time of the finger. This uses the fact that
T. > 4T, + 9d. O

The next series of results bound how long it takes for a process i to become an “authority”, like ig. That is, it knows
about all processes that have joined more than time d ago. The first case is where another process j joins sufficiently
long after ¢ so that j knows about i at the point whereit joins.

Lemma 6.11. Let « be a good finite execution that contains no fail events, and contains at least one and at most
2c¢ + 1 join-ack events. Suppose that join-ack; and join-ack; occur in a at times ¢ and #', respectively, and where
t+Ty+3d <t <now—d.

Thenin Zstate(a), fingers, containsafinger for j with exptime > now + T, — (T, + d).

Proof. Wefirst claimthat, at any pointin « after thejoin-ack;, fingers; containsafinger for i with ezptime > now.
Lemma 6.9, Part 1, implies that, in the state immediately before the join-ack ;, fingers; contains afinger for i with
exptime > now + T, — (2T, + 4d). Thereafter in o, throughtime ' + T, + 2d, fingers; containsafinger for i with
exptime > now + T, — (3T, + 6d). Also, at any time after t' + T}, + 2d in o, Lemma®6.9, Part 2impliesthat fingers;
contains afinger for ¢ with ezptime > now + T, — (3T, + 6d). Combining these two facts, we concludethat, at any
time after the join-ack;, fingers; containsafinger for i with exptime > now + T, — (3T, + 6d) > now.
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Immediately after the join-ack;, and at intervals of T, thereafter, process j performsaneighbor-refresh;;, in which
it sends a block message containing afinger for itself with exptime = T.. By the argument in the previous paragraph,
i isincluded in the destination set of each such block message. At the end of «, some such message must have arrived
at s which was sent by j at atime > (time(a) — (T, + d). Therefore, in £state(a), fingers; contains a finger for j
with ezptime > now + T, — (T, + 2d), as needed. O

The second caseiswhere i and j both join long enough before the end of the execution.

Lemma 6.12. Let o be a good finite execution that contains no fail events, and contains at least one and at most
2c¢ + 1 join-ack events. Suppose that join-ack; and join-ack; occur in o at times ¢ and ¢/, respectively, where ¢, <
Ltime(a) — (2T + 3d).

Thenin {state(a), fingers; containsafinger for j with exptime > now + T, — (T, + d).

Proof. By Corollary 6.8, Part 1, by time dtrictly less than (time(a) — (2T, + 2d), fingers; contains fingers for
both ¢ and j, each with ezptime > now + T. — (T, + 2d). Then by time strictly less than ¢time(a) — (T + d),
J receives a block message from iy telling j about i, resulting in fingers; containing a finger for i, with exptime >
now + T, — (2T, + 3d). And then by time strictly less than (time(a), i receives a block message directly from j
telling ¢ about j, and producing the needed finger. O

Thefollowing corollary saysthat if process: has joined more than time 37, + 6d ago, it isan “authority”, in the sense
that it knows about all processes j that has joined more than time d ago.

Corollary 6.13. Let a be a good finite execution that contains no fail events, and contains at least one and at most
2c + 1 join-ack events. Suppose that join-ack; and join-ack; occur in « at times ¢ and t', respectively, where t <
ltime(a) — (3T, + 6d) and t’ < Ltime(a) — d.

Thenin {state(a), fingers; containsafinger for j with ezxptime > now + T, — (T, + d).

Proof. Thisfollowsfrom the two previouslemmas. O

6.4.3 Joinsand failures

Now we use the ideas in the previous section to talk about what happens when we have unlimited joins and aso
failures. Now, instead of relying on i, asan “authority”, processes rely on neighborsthat happen to have been around
long enough. Because of the failures, we now consider the augmented ring as well as the actual global ring.

From now on, | am being slightly sloppy by writing just 7 instead of PToX (i) in many places. Thisisdonefor the
sake of readability. | hopeit does not cause any confusion. The first lemma relates various neighborhoodsin the same
ring.

Lemma6.14. Let R beanyring, i,j, k € PId.

1. Ifj € block(i,e1, R) and k € block(i,ez2, R), then j € block(k,e; + e2, R).

2. Ifj € suceset(i, e, R), k € succset(i, ez, R),and k ¢ succset(i,es, R), thenj € block(k, max (e; — e3, ez), R).
Proof. Straightforward. O
The following lemma asserts the existence of neighborsthat have joined along time ago.

Lemma 6.15. Assume that ¢ > e; + es + egjoinbd. Let a be a good finite execution, R = global-ring(c). Let
i € PId. Supposethat |R| > ¢ + 1. Then:

1. Thereexists k € PId such that

(@) k € succset(i,c— e, R).

(b) k ¢ succset(i,ea, R).

(c) join-ack,, occursat atime < (time(a) — e3(Ty + 2d)
(d) fail; doesnot occur in a.
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2. Thereexists k € PId such that

(@) k € predset(i,c — e, R).

(b) k ¢ predset(i,es, R).

(c) join-ack,, occursat atime < £time(a) — e3(Ty + 2d)
(d) fail, doesnot occur in a.

Proof. We prove Part 1; Part 2 is analogous. There are at least ¢ — (e; + e2) processes in the set difference
succset(i,c — e1, R) — succset(i, ez, R). Of these, a most ezjoinbd perform a join-ack at times > fltime(a) —
es(Ty +2d). Sincec > e; + ey +egjoinbd, it must bethat at least one of these processes, call it k, performsa join-ack
at atime < ftime(a) — e3(T, + 2d). Thisk satisfies al the listed properties. O

The next lemma relates neighborhoodsin the global ring to neighborhoodsin the augmented ring.
Lemma 6.16. Let o be a good finite execution, e € N, ¢, j € PId.

1. If j € psuccset(i, e, global-ring(a)) then j € psuceset (i, e + failbd, aug-ring(a)).

2. If j € ppredset(i, e, global-ring(a)) then j € ppredset(i, e + failbd, aug-ring(c)).

3. If j € succset(i, e, global-ring(a)) then j € succset (i, e + failbd, aug-ring(c)).

4. If j € predset(i, e, global-ring(«)) then j € predset(i, e + failbd, aug-ring(c)).
5. If j € block(i, e, global-ring(a)) then j € block(i, e + failbd, aug-ring(c)).

Proof. (Sketch) These follow because at most failbd processesin the given region appear in aug-ring(«) but notin
global-ring (). O

The next lemma says that neighborsin the augmented ring are also neighborsin the local ring.

Lemma6.17. Let a be a good finite execution, s = £state(a).
1. If j € succset(i, e, aug-ring(a)) and fingers, containsa finger for j, then j € succset(i, e, s.local-ring;).
2. If j € predset(i, e, aug-ring(a)) and fingers; containsafinger for j, then j € predset(i, e, s.local-ring;).
3. Ifj € block(i, e, aug-ring(a)) and fingers; contains a finger for j, then j € block (i, e, s.local-ring;).

Proof. We show Part 1; therest are similar. If j ¢ succset(i, e, s.local-ring;), then it must be that there are at least
e elements of s.local-ring;) in theinterval (i, j). But each of these is an element of aug-ring(«)), which contradicts
the assumption that j € succset(i, e, aug-ring(a)). O

The next lemma el ates the augmented ring at some point to the global ring at a point not too far in the past.

Lemma6.18. Let « bea goodfiniteexecution, o’ aprefix of a with time(a’) > Ltime(a)—Te. If i € global-ring(a'),
theni € aug-ring(a).

Proof. By the definition of aug-ring. O

The next lemma says that a neighbor in the augmented ring at a particular time is a neighbor in the global ring at a
point not too far in the past.

Lemma 6.19. Let o be a good finite execution, o’ a prefix of a with £iime(a') > ltime(a) — T.. Lete € N and
i,j € PId. Suppose j € global-ring(c'). Then:

1. If j € psuccset(i, e, aug-ring(a)) then j € psuceset (i, e, global-ring(a’)).

2. If j € ppredset(i, e, aug-ring(a)) then j € ppredset (i, e, global-ring(a’)).
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3. Ifj € suceset(i, e, aug-ring(a)) then j € predset(i, e, global-ring(a')).
4. If j € predset(i, e, aug-ring(a)) then j € predset(i, e, global-ring(a')).
5. If j € block(i, e, aug-ring(a)) then j € block (i, e, global-ring(a')).

Proof. For Part 1, supposefor the sake of contradictionthat j ¢ psuccset(i, e, global-ring(a')). Then |global-ring (a')N
(Z,7)| > e, that is, there are more than e elements of global-ring(a') in the interval properly between ¢ and j,
moving in the clockwise direction. By Lemma 6.18, every such element is also in aug-ring(a’). Therefore, j ¢
psuceset (i, e, aug-ring(a)). Thisisacontradiction.

Theproof of Part 2isanalogous. For Part 3, supposethat j € succset(i, e, aug-ring(a)). If j € psuccset(i, e, aug-ring(a))
then the conclusion follows from Part 1. The only remaining case is where j = i, but this case follows trivialy from
thefact that j € global-ring(a').

Part 4 is analogous. Part 5 follows from Parts 3 and 4. O

The following lemma summarizes facts about the knowledge of a new process at various points during and soon after
its joining protocol.

Lemma 6.20. Let « be a good finite execution, s = £state(a). Let i be a process that does not fail in «. Then:

1. Suppose that s.status; = joining and a receive(lookup-comp).. ; event for target i occurs in o at a time >
Ctime(a) — (T, +2d). Supposethat j € block (i, ¢, aug-ring(«)), join-ack; occursin o at atime < £time(a) —
(3T, + 8d), and fail; does not occur in a.

Then fingers,; containsa finger for j with exptime > now.

2. Suppose that status; = joining and a receive(lookup-comp)., ; event for target ¢ occursin « at a time <
Ctime(a) — (T, +2d). Supposethat j € block (i, b, aug-ring(«)), join-ack; occursin o at atime < £time(a) —
(T, + 3d), and fail; does not occur in a.

Then fingers, containsa finger for j with exptime > now + T. — (21, + 3d).

3. Supposethat s.status; = active and a join-ack; occursin o at atime > (time(a) — (T, + 2d). Suppose that
j € block(i, b, aug-ring(«r)), join-ack; occursin o at atime < (time() — (27, + 5d), and fail; does not occur
ina.

Then s.fingers; containsa finger for j with ezptime > s.now + T, — (3T, + 6d).

4. Supposethat s.status; = active and a join-ack; occursin o at atime < (time(a) — (T, + 2d). Suppose that
j € block(i, b, aug-ring(c)), join-ack; occursin a at atime < £time(a) — (T, + 2d), and fail; does not occur
ina.

Then s.fingers; contains a finger for j with ezptime > s.now + T, — (2T, + 2d).

5. Supposethat s.status; = active and a join-ack; occursin « at atime < (time(a) — (31, + 6d). Suppose that
j € block(i, b — failbd, aug-ring(«)), join-ack; occursin a at atime < (time(a) — d, and fail; does not occur
ina.

Then s.fingers; containsa finger for j with ezptime > s.now + T, — (T, + d).

Proof. Let R denote global-ring(a). The proof is by strong induction on the number of stepsin .
Base: Thetotal number of join-ack eventsin o isat most 2¢ + 1.

If there are no join-ack eventsin « then the statements are al vacuoudly true. If there are between oneand 2¢ + 1
join-ack eventsin « then the five claims follow from Lemma 6.10, Lemma 6.9, Parts 1, 2, and 3, and Corollary 6.13,
respectively. (This uses the fact that, in the absence of failures, aug-ring isthe same as global-ring.)

Inductive step: We assume that « contains more than 2¢ + 1 join-ack events. We assume that the result is true for all
proper prefixes of o and show it for . We show the five propertiesin turn.

1. For Part 1, suppose that s.status; = joining, areceive(lookup-comp).. ; event for target i occursin o at atime
> ltime(a) — (T, + 2d), and fail;, does not occur in «.. Also suppose that j € block (i, ¢, aug-ring(«)) and
join-ack; occursat atime < {time(a) — (3T, + 8d). We must show that s.fingers,; containsafinger for j with
positive exptime.
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Consider thefirst lookup-comp message for target ¢ that isreceived by i, and let & be the sender of this message.
Let o' be the prefix of a ending just before the receive(response) step in which k& sends this message, let

s' = Ustate(a') and let R’ = global-ring(a').

By inductivehypothesis, Parts3and 4, s'. fingers,, containsafinger for every processin succset(k, b, aug-ring(a'))
whose join-ack event occurs at atime < ftime(a’) — (21, + 5d) and that does not fail in o'. Therefore, by
Lemma6.16, s'.fingers,, containsafinger for every processin succset(k, b — failbd, R") whose join-ack event
occurs at atime < ftime(a') — (2T, + 5d). In particular, s'.fingers,, contains a finger for every processin
succset(k,min (|R' N [k, )|, b — failbd), R") whose join-ack event occursat atime < ftime(a') — (21, + 5d).
By our assumption on the join rate, at most 3joinbd processesin succset(k,b — failbd, R'") perform join-ack
eventsat times > (time(a')—(2T,+5d). Itfollowsthat s’. fingers,, containsat |east min (| R’ N [k,4)|, b — failbd)—
3joinbd fingersfor processesin R’ N [k, ).

Now we claim that £ € ppredset(i,c + 3joinbd, R'). If not, then |R' N [k,i)] > ¢ + 3joinbd. Then,
since b > ¢ + 3joinbd + failbd, we have that min (|R' N [k,i)|,b — failbd) — 3joinbd > ¢, which im-
plies that s'.fingers, contains strictly more than ¢ fingers for processes in R’ N [k,i). This implies that

k ¢ ppredset(i,c, s'.local-ring;), However, the definition of the receive(response) transitions implies that

k € ppredset(i, ¢, s'.local-ring;), which yieldsacontradiction. Therefore, k € ppredset(i, ¢ + 3joinbd, R"), as
claimed.

Since j € block(i,c, aug-ring(«)), Lemma6.19 impliesthat j € block(i,c, R'). Sincej € block(i,c, R') and
k € predset(i,c+3joinbd, R'), Lemma6.14impliesthat j € block(k, 2¢+ 3joinbd, R'). Since (by assumption
on constants) b > 2¢ + 3joinbd + failbd, we havethat j € block(k,b — failbd, R'). Therefore, by Lemma6.16,
J € block(k,b, aug-ring(a’)).

Now we use the inductive hypothesis, Parts 3 and 4, again, to conclude that s'.fingers,, containsafinger for j
with ezptime > s'.now + T, — (3T, + 6d). To apply the inductive hypothesis, we need the fact that join-ack;
occurs at atime < ftime(a’) — (27, + 5d); this follows from our assumption that join-ack; occurs at atime
< Ltime(a) — (3T, + 8d) and the fact that £time(a') > Ltime(a) — (T, + 3d).

Since j € block(k,b, aug-ring(a')) and s'.fingers,, contains a finger for j, Lemma 6.17 implies that j €
block(k, b, s".local-ring,, ). Therefore, thisfinger for j getsincluded in the block sent by % in the lookup-comp
message.

Upon receipt of this message, fingers; contains afinger for j with exptime > now + T, — (3T, + 7d). Then at
theend of a, at most time T, +2d later, fingers; containsafinger for j with exptime > s.now+T, — (4T, +9d).
Since T, > 4T, + 9d, thisimplies ezptime > s.now, as needed.

. For Part 2, suppose that status; = joining and a receive(lookup-comp).. ; event for target ¢ occursin o at a
time < (ltime(a) — (T, + 2d). Supposethat j € block(i, b, aug-ring(a)), join-ack; occursin o a atime
< Ltime(a) — (T + 3d), and fail ; does not occur in «e. We must show that fingers; contains afinger for j with
exptime > now + T, — (2T, + 3d). Without loss of generality, assumethat j € succset(i, b, aug-ring(a)).

We first claim that there exists k € PId such that k& € succset(i,c — 2failbd, R) — succset(i, 2failbd, R),
join-ack; occurs at a time < (time(a) — (47, + 10d), and fail; does not occur in «. This follows from
Lemma6.15, applied with e; = ex = 2joinbd and e3 = 5, using the assumption that ¢ > 5joinbd + 4failbd.

Now weclaimthat j € block(k,b—2failbd, aug-ring(a)). Weknowthat k € succset(i, c—failbd, aug-ring(a))).
Also, since k ¢ succset(i, 2failbd, R), we have that k ¢ succset (i, 2failbd, aug-ring(a)). Also, by assump-
tion, j € succset(i,b, aug-ring(a)). Lemma6.14, Part 2, applied withe; = ¢—failbd, e; = band ez = 2failbd,
thenimpliesthat j € block(k,b — 2failbd, aug-ring(«)), as claimed.

Processi performsajoin-ping at sometimein theleft-closed, right-openinterval [(time(a)—(Ty+2d), Ltime (o) —
2d), and ¢ receives responses for all ping messages generated by that join-ping whose destinations do not fail.
Let o' be the prefix of a ending just before the join-ping;, s' = Cstate(a’), and R' = global-ring(a').

We claimthat s'. fingers,; containsafinger for k. Since the time of the join-ack,, is < £time(c) — (4T, + 10d),
itisalso < ftime(a') — (3T, + 8d). Since k € succset(i,c — 2failbd, R), Lemma 6.16 implies that k €
succset(i, c — failbd, aug-ring(a). Therefore, by Lemma6.19, k € succset(i, c — failbd, R'). Therefore, by
Lemma6.16, k € succset(i, ¢, aug-ring(a’)). Then the inductive hypothesis, Part 1, implies that s'.fingers;
contains afinger for k.
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Since k € succset(i, ¢, aug-ring(c')) and s'.fingers, contains a finger for k, Lemma 6.17 implies that & €
block(i, c, s'.local-ring;). Therefore, during the join-ping, ¢ sends a ping message to k. Since k does not fail in
a, k responds to the ping message with a block message. Let o'’ be the prefix of a ending just before k sends
the block message, let s"” = Istate(«’), and let R" denote global-ring(a').

Since j € block(k,b — 2failbd, aug-ring(a)), Lemma 6.19 impliesthat j € block (k,b — 2failbd, R"). Then
Lemma 6.16 impliesthat j € block(k,b — failbd, aug-ring(a'")). Then by inductive hypothesis, Part 5, we
know that s”. fingers,, containsafinger for j with exptime > s".now + T, — (T + d).

Since j € block(k,b, aug-ring(a')) and s".fingers, contains a finger for j, Lemma 6.17 implies that j €
block(k,b, s" .local-ring,,). Therefore, thefinger for j isincluded in the block sent by & in its block message to
i. At most T}, + 2d time elapses from this send until the end of «, which meansthat s.fingers; contains afinger
for j with exptime > s.now + T, — (2T, + 3d), as needed.

. For Part 3, suppose that s.status; = active and ajoin-ack; occursin o at atimet¢ > ftime(a) — (T + 2d).
Supposeasothat j € block (i, b, aug-ring()), join-ack; occursat atime < £time(a) — (21, + 5d), and fail;
does not occur in oe. We must show that s. fingers; containsafinger for j with exptime > s.now +T. — (3T, +
6d). Without loss of generality, assumethat j € succset(i, b, aug-ring(a)).

The argument is similar to that for the previous case, because we argue with respect to pings and block re-
sponses near the end of thejoining protocol. By Lemma6.15, thereexists k € PId suchthat k € suceset(i, c —
2failbd, R) — succset(i, 2failbd, R), join-ack,, occurs at atime < (time(a) — (5T, + 12d), and fail,, does
not occur in «. This uses the assumption that ¢ > 6joinbd + 4failbd. Then, since k € succset(i,c —
failbd, aug-ring(a)), k ¢ succset(i, 2failbd, aug-ring(c)), and j € succset(i, b, aug-ring(a))), Lemma6.14,
Part 2, impliesthat j € block(k,b — 2failbd, aug-ring()).

Process i performs a join-ping at some time in the interval [t — (T, + 2d),t — 2d), and i receives responses
for al ping messages generated by that join-ping whose destinations do not fail in a.. Let o' be the prefix of «
ending just before the join-ping;, s’ = {state(a’), and R' = global-ring(a').

We claimthat s'. fingers; containsafinger for k. Since the time of the join-ack,, is < (time(a) — (5T, + 12d),
itisaso < ltime(a’) — (3T, + 8d). Since k isin succset(i,c — 2failbd, R), Lemma 6.16 implies that k& €
succset(i, ¢ — failbd, aug-ring(«). Therefore, by Lemma 6.19, k € succset(i,c — failbd, R'). (This uses
the assumption that 7. > 2T, + 4d.) Therefore, by Lemma6.16, k € succset(i, ¢, aug-ring(a’)). Then the
inductive hypothesis, Parts 1 and 2, imply that s'. fingers; containsafinger for .

Since k € succset(i,c, aug-ring(a')) and s'.fingers, contains a finger for k£, Lemma 6.17 implies that k£ €
block (i, c, s' local-ring;). Therefore, during the join-ping, i sends a ping message to k. Since k does not fail in
a, k responds to the ping message with a block message. Let o' be the prefix of a ending just before k& sends
the block message, let s = {state(a'"), and let R" denote global-ring(a'").

Since j € block(k,b — 2failbd, aug-ring(a)), Lemma 6.19 impliesthat j € block (k,b — 2failbd, R"). Then
Lemma 6.16 impliesthat j € block(k,b — failbd, aug-ring(a'")). Then by inductive hypothesis, Part 5, we
know that s”. fingers,, containsafinger for j with exptime > s".now + T, — (T, + d). (Here, we need the fact
that the time of the join-ack, is < £time(a”) — (3T} + 6d), and thetime of the join-ack; is < (time(a) — d.)

Since j € block(k,b, aug-ring(a'")) and s".fingers, contains afinger for j, Lemma 6.17 implies that j €
block(k,b, s" .local-ring,). Therefore, the finger for j isincluded in the block sent by & in its block message
to <. At most 27, + 4d time elapses from this send until the end of «, which means that s. fingers; contains a
finger for j with exptime > s.now + T, — (3T, + 5d), which suffices.

. For Part 4, supposethat s.status; = active and ajoin-ack; occursin o at atime < £time(a)—(T;+2d). Suppose
that j € block(i, b, aug-ring()), join-ack; occursin a a atime < (time(a) — (T, + 2d), and fail; does not
occur in a. We must show that s.fingers, contains afinger for j with ezptime > s.now + T, — (2T}, + 2d).
Without loss of generality, assumethat j € succset(i, b, aug-ring(a)).

Lemma6.15 impliesthat thereexists k € PId suchthat k € succset (i, c— 2failbd, R) — succset (i, 2failbd, R),
join-ack;, occursat atime < (time(a) — (4T, + 10d), and fail;, does not occur in «.. This uses the assumption
that ¢ > 5joinbd + 4failbd.

24



At some time in the interval [¢time(a) — (T + d), Ltime(a) — T,), k performs a neighbor-refresh,, whose
messages all arrive by the end of a. Let o' be the prefix of a ending just before this neighbor-refresh,,,
s' = Ustate(a'), and R' = global-ring(a’).

Since k € succset(i,c — 2failbd, R), Lemma6.16 impliesthat k € succset(i,c — failbd, aug-ring(«)), Also,
sincei € R, we know that i € predset(k,c — 2failbd, R) and so, by Lemma 6.16, i € predset(k,c —
failbd, aug-ring(a)). By Lemma 6.19, i € predset(k,c — failbd, R"). Therefore, by Lemma 6.16, i €
predset(k, ¢, aug-ring(a’)). Then by inductive hypothesis, Part 5, s'.fingers, contains a finger for ¢ with
exptime > Ltime(a') + T, — (T, + d).

Next, weclaimthat j € block(k,b—2failbd, aug-ring(a)). Weknowthat k € succset(i, c—failbd, aug-ring(ca)).
Also, since k ¢ succset(i, 2failbd, R), we know that k ¢ succset(i, 2failbd, aug-ring(«)). Then, since
J € suceset(i, b, aug-ring(a)), Lemma6.14 impliesthat j € block(k,b — 2failbd, aug-ring(«)), as claimed.

Therefore, by Lemma6.19, j € block(k, b—2failbd, R'). Soby Lemma6.16, j € block(k, b—failbd, aug-ring(a)).
Then by inductive hypothesis, Part 5, s'. fingers,, containsafinger for j with ezptime > (time(a’) +Te — (T +
d). Thus, s'.fingers,, containsfingersfor i and j, both with exptime > Ctime(a') + T, — (T, + d).

Since i € block(k,b, aug-ring(a’)) and s'.fingers, contains a finger for ¢, Lemma 6.17 implies that i €
block(k, b, s' local-ring,,). Therefore, i isamong thetargets of the block message sent by & during the neighbor-refresh,,.

Also, since j € block(k,b, aug-ring(a')) and s'.fingers,, contains a finger for j, Lemma 6.17 implies that
J € block(k,b, s'.local-ring,,). Therefore, thefinger for j isincluded in the block sent by & inits block message
to . When thefinger is sent, it has exptime > s'.now + T, — (T, + d). Therefore, at the end of «, whichisat
most time T, + d later, s.fingers; containsafinger for j with exptime > s.now + T, — (2T, + 2d), as needed.

. For Part 5, supposethat s.status; = active and ajoin-ack; occursin o at atime < ftime(a) — (3T, +6d). Also
supposethat j € block(i,b — failbd, aug-ring(«)), join-ack; occursin a at atime < {time(a) — d, and fail;
doesnot occur in e. We must show that s. fingers; containsafinger for j with exptime > s.now +T, — (T +d).
Without loss of generality, assume that j € succset(i,b — failbd, aug-ring(«)). Let ¢ denote the time of the
join-ack;. We consider two cases:

(@) t < Ltime(a) — (2T, + 3d).
Lemma6.15impliesthat thereexistsk € PId suchthat k € succset(i, c—2failbd, R)— succset (i, 2failbd, R),
join-ack, occurs at a time < ftime(a) — (5T, + 8d), and fail;, occursin a. Then (as in the argu-
ment for Part 2), Lemma 6.14, Part 2, impliesthat j € block(k,b — 2failbd, aug-ring(a)). Therefore,
k € block(j,b — 2failbd, aug-ring()).
Thenweclaimthat k performsaneighbor-refresh sometimeintheinterval [(time(a)— (2T, +2d), (time(a)—
(T, + 2d)). Let o' be the prefix of a ending just before this neighbor-refresh,,, let s’ = {state(a’), and
let R' = global-ring(a').
Since j € block(k,b — 2failbd, aug-ring(a)), Lemma 6.19 impliesthat j € block(k,b — 2failbd, R'),
and so by Lemma6.16, j € block(k,b — failbd, aug-ring(a’)). Also, since k € block(i,c — 2failbd, R),
we havethat i € block(k,c — 2failbd, R), so by Lemma6.16, i € block(k,c — failbd, aug-ring(c)),
by Lemma6.19, i € block(k,c — failbd, R"), so again by Lemma6.16, i € block(k, ¢, aug-ring(a’)),
i € block(k,b — failbd, aug-ring(a')).
Then by inductivehypothesis, Part 5, s'. fingers,, containsafinger for each of ¢ and j, both with exptime >
s'.now + T, — (Ty + d). Since j € block(k,b, aug-ring(a')) and s'.fingers, contains a finger for
j, Lemma 6.17 implies that j € block(k,b, s'.local-ring, ). Therefore, j is among the targets of the
block message sent by & during the neighbor-refresh,. Also, since i € block(k,b, aug-ring(a')) and
s'.fingers,, containsafinger for i, Lemma6.17 impliesthat i € block(k, b, s'.local-ring,,). Therefore, the
finger for ¢ isincluded in the block sent by & in its block message to j. When the finger is sent, it has
exptime > s'.now + T, — (T, + d).
Thisblock messagearrivesat j at atime < (time(a)— (T, +d). Then sometimeintheinterval [(time(a)—
(Ty + d), Ltime(a) — Ty), j performs aneighbor-refresh;. Let o be the prefix of o ending just before
this neighbor-refresh ;, let s = {state(a"), and let R" = global-ring(a').
Sincej € block (i, b—failbd, aug-ring(c)), wehave, by Lemma6.19, thati € block(j, b—failbd, global-ring(a'")).
So by Lemma6.16, i € block(j,b, aug-ring(a')). Also, s".fingers; contains afinger for i, because the
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finger for j that arrivesin the block message from & has not had time to expire. Then Lemma6.17 implies
thati € block(j,b,s".local-ring ;). Therefore, i is among the targets of the block message sent by ;j during
this neighbor-refresh ;.
This block message contains a finger for j, with exptime = s"”.now + T,. Therefore, at the end of «,
at most time T, + d later, s.fingers; contains afinger for j with ezptime > s.now + T, — (T, + d), as
needed.

(b) t > ltime(a) — (2T, + 3d).
Then the time between the join-ack; and join-ack; is > T, + 3d.
Lemma6.15impliesthat thereexistsk € PId suchthat k € predset(j, c—2failbd, R)—predset(j, 2failbd, R),
join-ack,, occursat atime < £time(a) — (6T, + 13d), and fail occursin «. Thisusesthe assumption that
¢ > Tjoinbd + 4failbd.
Now we claim that i € block(k,b — 3failbd, aug-ring(«)). Since k € predset(j,c — 2failbd, R),
Lemma6.16 impliesthat k € predset(j,c — failbd, aug-ring(c)). Since k ¢ predset(j, 2failbd, R), we
havethat k ¢ predset(j, 2failbd, aug-ring(«)). Sincej € block (i, b— failbd, aug-ring(«)), Lemma6.14,
Part 2, impliesthat i € block(k,b — 3failbd, aug-ring(«)), as claimed.
Process j performsajoin-ping at sometimein theinterval [t — (T, +2d),t — T}), and j receives responses
for al ping messages generated by that join-ping whose destinations do not fail, strictly beforetimet. Let
o' bethe prefix of a ending just before this join-ping;;, s' = €state(a’), and R' = global-ring(a’).
Weclaimthat s'. fingers ; containsafinger for k. Sincek € block(j, c— failbd, aug-ring(c)), Lemma6.19
impliesthat k& € block(j,c — failbd, R'), and so by Lemma6.16, k € block(j, ¢, aug-ring(a')). Then by
inductive hypothesis, Parts 1 and 2, s'. fingers; containsafinger for k.
Since k € block(j, ¢, aug-ring(a’)) and s'.fingers; contains a finger for k, Lemma 6.17 implies that
k € block(j, c, s'.local-ring ;). Therefore, during the join-ping, j sends a ping messageto k. Since k does
not fail, it responds with ablock message. Let o’ be the prefix of o ending just before k sends this block
message, let s = Istate(a’"), and R" = global-ring(a'")).
Sincei € block(k,b — 2failbd, aug-ring(a)), Lemma 6.19 implies that ¢ € block(k,b — 2failbd, R").
Then Lemma6.16 impliesthat i € block(k,b— failbd, aug-ring(a’")). Then by inductive hypothesis, Part
5, we know that s”. fingers,, contains afinger for ¢ with ezptime > now + T, — (T, + d).
Since i € block(k,b, aug-ring(a')) and s".fingers,, contains a finger for ¢, Lemma 6.17 implies that
i € block(k,b,s".local-ring, ). Therefore, the finger for i isincluded in the block sent by & in its block
message to j. Thisfinger isrecorded by j, and persists until the end of .
Immediately after the join-ack;, and at intervals of T, thereafter, process j performs a neighbor-refresh,
inwhich it sends a block message containing afinger for itself with exptime = T.
We claimthat i isincluded in the set of targets of each such block message. Thisisbecausei € block(j,b—
failbd, aug-ring(a)), so by Lemma6.16, i € block(j, b, aug-ring) at each point after the join-ack;. Then
Lemma6.17 impliesthat i € block(j, b, local-ring ;) at each point after the join-ack;, which impliesthat i
isincluded in the set of targets of each such block message.
Some such message must arriveat i that issent by j at atime > ltime(a) — (T, +d). Therefore, s.fingers;
contains afinger for j with exptime > s.now + T. — (T, + d), as needed.

O

6.5 Maintainingthe Chords

We state a lemma analogous to the main lemma of the previous section, Lemma 6.20, but for neighbors of each
particular chord position x rather than neighbors of the node i itself.

The statements of Part 1, 2, and 3 are entirely analogous to those in Lemma 6.20. However, in Part 4, the fact
that ¢ uses chord-pingsinstead of neighbor-refreshesto keep up-to-date with respect to = after the join-ack; changes
the bound dightly. Part 5, which describes situations where i obtains first-hand knowledge of j directly from j, gets
weakened considerably. This is because we have no phenomenon analogous to that of the prior case 5(b), where j
informs directly about its existence immediately after the join. So, the new Part 5 talks only about those j that are so
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close to the chord position that 7 pings j directly during its chord-pings. Since i pings only the apparent c-block of z,
thisinvolves only those j that arein this tiny neighborhood.

The proof isaso different in some interesting ways. Rather than relying on the inductive hypotheses as before, we
rely on the earlier lemma about neighborhoods, Lemma 6.20. That is because the relevant information arrives from
neighbors of the chord position x.

Lemma 6.21. Let o be a good finite execution, s = {state(a). Let i be a process that does not fail in . Let
keNO0<k<n-—1,andz = PToX (i) + 2*. Then:

1. Suppose that s.status; = joining and a receive(lookup-comp)., ; event for target z occurs in « at a time
> (time(a) — (T, + 2d). Suppose that j € block(z,c, aug-ring(a)), join-ack; occursin « at a time <
Ltime(a) — (3T, + 8d), and fail; does not occur in .

Then fingers; containsa finger for j with exptime > now.

2. Suppose that status; = joining and a receive(lookup-comp), ; event for target x occurs in « at a time <
Ctime(a) — (T, +2d). Supposethat j € block (z, b, aug-ring()), join-ack; occursin a atatime < (time(a) —
(Ty + 3d), and fail; does not occur in a.

Then fingers; containsa finger for j with exptime > now + T. — (21, + 3d).

3. Supposethat s.status; = active and a join-ack; occursin a at atime > (time(a) — (T, + 2d). Suppose that
Jj € block(z,b, aug-ring(a)), join-ack; occursin a at a time < ftime(a) — (2T, + 5d), and fail; does not
Ooccur In .

Then s.fingers; containsa finger for j with ezptime > s.now + T, — (3T, + 6d).

4. Supposethat s.status; = active and a join-ack; occursin o at atime < (time(a) — (T, + 2d). Suppose that
j € block(z,b, aug-ring(«a)), join-ack; occursin a at atime < (time(a) — (T, + 3d), and fail ; does not occur
ina.

Then s.fingers; contains a finger for j with ezptime > s.now + T, — (2T, + 3d).

5. Supposethat s.status; = active and a join-ack; occursin « at atime < (time(a) — (21, + 4d). Suppose that
J € block(z, c — failbd, aug-ring(c)), join-ack; occursin o at atime < ftime(a) — (2T, + 5d), and fail; does
not occur in a.

Then s.fingers; containsa finger for j with ezptime > s.now + T, — (T, + 2d).

Proof. Parts1, 2, and 3, are proved similarly to before, but instead of inductive hypotheses, they use the relevant
parts of Lemma6.20.
For Part 4, we rely on the chord-ping mechanism. And again, the relevant parts of Lemma 6.20 rather than
inductive hypotheses.
For Part 5, we use Part 4 to conclude that i learns about j by time ¢time(a) — (T, + 2d), and then rely on the
chord-ping mechanism. The key isthat in thislast chord-ping, : communicates directly with (pings) .
(I

6.6 Correctnessof Lookup Results

Theorem 6.22. Every good execution « satisfies 27, + 6d-lookup-correctness.

Proof. (Sketch:) Let o’ be aprefix of « ending just before a lookup-ack(H); event, which is a response to a prior
lookup(z);. Let s' = lstate(a') and R’ = global-ring (o).

It sufficesto produce aring R such that R C aug-ring(a’), R containsevery XId in R' except possibly for those
j such that join-ack; occursin o' a atime > ¢time(a’) — (2T, + 6d), and H = ppredset(z, c, R).

Define thering R to betheunion S U T', where:

e Sisthesetof al PToX (j) € R' suchthat join-ack; occursat atime < (time(a’) — (2T + 6d).

e Tisthat set of al XIds ins'.fingers,;.
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We show that R satisfies the three properties.

Thefirst property isimmediate, because all XIdsin s'.fingers; arein aug-ring(a'). The second property is also
immediate, because S C R. For thethird property, thecodefor lookup-ack(H); impliesthat H = ppredset(z, ¢, s'.local-ring;).
We need to show that H = ppredset(x, ¢, R). Since local-ring,; isthe set of XIdsin fingers;, and that set is a subset
of R, itisenough to show that every j € ppredset(x,c, R) isasoin s'.fingers,.

So, fix j € ppredset(z,c, R). If j € T thenwe are doneso assumethat j € S. Thus, j € R’ and join-ack; occurs
atatime < t — (2T, + 6d). Sincej € ppredset(z,c, R), wehavethat j € ppredset(x,c + 3joinbd, R').

The lookup-ack(H); event follows the receipt by 7 of alookup-comp message, with no intervening time passage.
Let k be the sender of thislookup-comp message. Then k sent this message at sometime > (time(a’) — d. Let o be
the prefix of « ending just before & composed this message, s” = £state(a’), and R"” = global-ring(a').

We claim that k& € ppredset(z, c + 3joinbd, R"); the argument is like onein Lemma6.20, Part 1.

Since j € ppredset(z,c + 3joinbd, R'), it follows that j € ppredset(z,c + 3joinbd + failbd, R"). Since j €
ppredset(x,c + 3joinbd + failbd, R") and k € ppredset(x,c + 3joinbd, R"), it follows that j € block(k,c +
3joinbd + failbd, R"). Since b > ¢ + 3joinbd + 2failbd, we have that j € block(k,b — failbd, R"). Therefore,
J € block(k,b, aug-ring(a')).

By Lemma 6.20, Parts 3 and 4, s".fingers,, contains afinger for j with exptime > s".now + T, — (3T, + 6d).
This finger for j gets included in the block sent by & in the lookup-comp message. After i receives this message,
fingers; contains afinger for j with ezptime > now + T, — (3T, + 7d). Then, since T, > 3T, + 7d, s'.fingers;
containsafinger for j. Thisis what we needed to show. O

6.7 Latency Bounds
6.7.1 Latency of arequest

Theorem 6.23. Suppose that « isa good execution, o a finite prefix of « containing at least 2¢ + 1 join-ack events.
Suppose that:

1. Thefinal step of o' isa lookup; step in which i initiates request r, with target z.
2. No other requests (on behalf of joins, client lookups, or stabilizes) are active at any time > (time(a') — Te.

Then reguest r terminates with a receive(lookup-comp) step, at atimethat is < (time(a’) + 4(log N + 1)d.

Proof. (Sketch:) We first claim that, at any point during the lookup, for any process # i in the ring, the known
predecessors of the target = are “bunched together” in at most two c-blocks in the actual global ring. One of these is
the block of actual predecessors of x in the ring, and the other may be anywhere else.

Claim 6.24. At any point in « after o', and for any j # 4, all processes in ppredset(z, c, local-ring ;) that have
not failed lie within two c¢-blocks of consecutive processes in global-ring: ppredset(z, ¢, global-ring) and one other
c-block.

Proof. Everyone except i keeps only its neighborhood and chord fingers, as specified by the underlying infrastruc-
ture. These have the needed property. (Two blocks can arise if the target = is in the middle of one of j's blocks.)
O

Claim 6.25. Atany pointin « after ', and beforea actreceive(lookup-comp); event, all processesin ppredset(z,c—
4failbd, local-ring,;) that have not failed lie within two c-blocks of consecutive processesin global-ring: ppredset(z, ¢, global-ring)
and one other c-block.

Proof. (Sketch:) Thisis more complicated than the previous claim, because process i acquires fingers from other
nodes' tablesin the course of the lookup.

The ways in which process i acquires new fingers are somewhat constrained: by normal neighborhood and chord
refreshing, by receiving a lookup-resp message or by receiving alookup-comp message. We rule out the last case by
assumption—we are considering only what happens before the first receive(lookup-comp); happens.

Thus, whenever i acquires new fingers, it acquires an entire block of size at least ¢ from some other node, which
by the previous claim isincluded in only two c-blocks in the actual global ring at the time the block was sent, one of
these blocks being ppredset (x, ¢, global-ring).

28



Since at most failbd of each of these blocks could have failed before the block was sent, and at most another failbd
from each of these blocks could fail after the send and up to the point of reference, it must be that at least ¢ — 4failbd
of the newly-arrived fingers do not fail by the point of reference and lie within two ¢ blocksin global-ring, with one
of these blocks being ppredset (x, ¢, global-ring).

But this doesn’t quitetell usthat all processesin ppredset(z, c —4failbd, local-ring;) that have not failed lie within
these two c-blocks of consecutive processesin global-ring. For this, we haveto use the fact that the blocksin fingers;
that are closest to = don’t “degrade” by having too many processes fail. The reason this doesn’t happenisthat i keeps
moving the algorithm along—pinging “enough” nodes among its closest predecessors for z, and receiving responses
from many of them, which provide information about blocks that are still closer to x. O

Now the key claim describes how the “distance” to the destination z is halved every time 4d, until near the end of
the lookup:

Claim 6.26. Let e be a power of two, e < N.

Suppose that, at some point during the lookup, the clockwise distance from pred(z, ¢ — 4failbd, local-ring;) to x (in
the identifier space) is < e.

Then by time 4d later, at least one of the following holds:

1. Thelookup ends (with the receipt of a lookup-comp message).
2. fingers; contains at least ¢ — 2failbd of the members of ppredset(z, ¢, global-ring).
3. The clockwise distance from pred(z, ¢ — 4failbd, local-ring;) to z is< e/2.

Proof. (of Claim:) Assume that the lookup doesn’t end within time 4d, that is, Case 1 doesn’'t hold. Then within
time 2d, processi performsanew join-ping, which results, within an additional time 2d, in aresponse from one of the
processes corresponding to the X7dsin the assumed ppredset (x, c — 4failbd, local-ring;). (Thefact that one responds
depends on the fact that not all of these processes can have failed recently or fail during the ping-response exchange.
Thisin turn relies on our assumed bound on failure rate, and the assumption that they are all within two c-blocksin
the global ring.)

Let j be such aresponding process. If PToX (j) + 1 = z, that is, z is the immediate successor of j in the XId
space, then j sends a lookup-comp message, contradicting the fact that Case 1 doesn’t hold. So, we may assume that
z is not the immediate successor of j in the X1d space.

Then choose & to be the largest natural number such that PToX (5) + 2* € (PToX (j),z), that is, the largest
power-of-two successor of j that does not reach .

The response from j to ¢ contains a set F' of fingersrepresenting j's ¢ best predecessors for « at the time j sends
its response. There are two cases:

1. F containsonly elementsin the openinterval (PToX (j) + 2%, x). That is, only elements after the given largest
power-of-two successor of j.
In this case, after i receives the message, the clockwise distance from pred(x, ¢ — 2failbd, local-ring;) to x is
< e/2, which suffices to satisfy Case 3.

2. F contains at least one element that is not in the open interval (PToX (5) + 2%, x).

Lemma6.21 impliesthat, when j sendsthe lookup-response message, fingers; containsentriesfor all elements
of block(j + 2*,b, augmented-ring) that have not failed. Since the set F' contains at least one element that
is not in the open interval (5 + 2%, z), we claim that F' contains actual predecessors of z in the global ring,
specifically, F' containsat least ¢ — failbd of the members of ppredset(z, c, global-ring) a thetime j sendsthe
message. (Up to failbd of the fingersin F' could have already failed at the time of the send.) Just after i receives
the message, fingers; contains at least ¢ — 2failbd of the members of ppredset(z, ¢, global-ring). Thisyields
Case 2.

O

To complete the proof, we use the last claim repeatedly, as long as Case 3 holds. Since we cannot keep halving
forever, eventually, either Case 1 or Case 2 arises. If Case 1 arises first, then we are done. On the other hand, if Case
2 arisesfirst, then within only one more ping round, i receives alookup-comp message, so again we are done.
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7 Appendix B: Using Nondeter ministic Assumptions

Asdescribedin Section 3) and Appendix B our analysisin this paper isbased on deterministic assumptions. In general,
we assume that there are at most v relevant events that occur in an “arc” of the ring containing at most r processes
during atimeinterval A.

These assumptions however are not realistic for many distributed environments. In practice join and failure events
are modeled by probability distribution functions (e.g, Poisson) which makesit impossibleto put adeterministic bound
of the number of such events during an interval of time A.

To establish arelationship between the more realistic probabilistic assumptions and the deterministic assumptions
next we compute the mean time 7'y between two violations of the deterministic bounds under the probabilistic as-
sumptions. In other words, 7'y represents the expected time for which a MultiChord will remain in the quasi-ideal
state.

For tractability, we assume a system in which processes join according to a Poisson process with arrival rate A,
and that the process lifetimes are exponentialy distributed with a mean of . Assuming that the MultiChord ring isin
steady state we havel = N/, i.e., therate of joinsis equal to therate of failures or leaves. Thus, the rate of changes
iISA =2\,.

Next, we bound the probability that the deterministic assumption-that no more than v relevant events occur during
atimeinterval A inan arc of thering of r processes—isviolated.

The average number of eventsthat occur in agiven arc of the ring consisting of r processes during an interval of
timeA s

n=A-Ar/N), @

where A - X\ represents the average number of events that occur in the entire system during atime interval A, and
(r/N) representsthe fraction of these events that occur during that portion of the ring.
Because events are generated from a Poisson distribution we can apply the Chernoff bound:

Pr(X > (1+8)pu) < e /1, 3

where Pr(X > (1 + d)u) represents the probability that no more than (1 + §)u events occur in a given arc of r
processes during atimeinterval A. Takingv = (1 + J)u, the probability that the deterministic bound is violated in a
given arc of r processors during atimeinterval A is

_(w—m?

Pr(X >v)<e @ . 4

The probability p(A, r) that the deterministic bound is violated in any arc of r processors during an interval A is
bounded above by

(v—p)2

p(A,7) < NPr(X >v) < Ne & . (5)

Then the mean time Ty between two violations of the deterministic bound is

A A w-w?

Tf = p(A,r) > N e 4n (6)
Expanding . yields
T > % e %

where A = \/N represents the normalized rate of change.
Next, let us consider how do deterministic constraints presented in Section 3 map to Ineqg. (7). In particular, we
consider the following constraints:
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T, > 5Tj (8)
¢ > Tjoinbd + 4 failbd
> 2c+ 3joinbd + max(2joinbd, failbd), 9

where failbd represents the number of failuresin an arc of b + 1 processes during time T, and joinbd representsthe
number of joinsin an arc of b 4 1 processes during time T};.

Because we assume steady state, the number of failuresand joinsin an arc of b + 1 processesis roughly the same
during agiven time interval. Thismeansthat failbd = joinbdT,/T;. If wetake T, /T; = 5, the last two constraints
in Inegs. (8) become:

¢ > 2T7joinbd (20)
b > 61ljoinbd

during an interval of time T, and

c > 5.4joinbd (1)
b > 12.2j0inbd

during an interval of time T;.

Since constraints (11) imply constraints (10) next we consider only constraints (11). Let us take ¢ = 6j0inbd,
b = 13joind, valueswhich satisfy both these constraints.

Finaly, wetaker = b+ 1, A = T}, and v = 2joinbd (the factor of 2 is because v accounts for both joins and
failures during the interval 7). With these values, the expected time before the deterministic constraints are violated
(see Ineq (7)) becomes

T. (c/3:XTJ-(b+1))2
Ty > e SHCT (12)

whereb > 13¢/6.
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