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Abstract. We describe an algorithm for deciding the first-order maltisd theory BAPA,
which combines 1) Boolean algebras of sets of uninterpreteients (BA) and 2) Pres-
burger arithmetic operations (PA). BAPA can express thati@iship between integer vari-
ables and cardinalities of sets, and supports arbitrargtéfication over both sets and inte-
gers.

Our motivation for BAPA is deciding verification conditiotisat arise in the static analysis
of data structure consistency properties. Data structiftes use an integer variable to keep
track of the number of elements they store; an invariant ohsudata structure is that the
value of the integer variable is equal to the number of elésstiored in the data structure.
When the data structure content is represented by a seggshking constraints can be cap-
tured in BAPA. BAPA formulas with quantifier alternationss& when annotations contain
quantifiers themselves, or when proving simulation retationditions for refinement and
equivalence of program fragments. Furthermore, BAPA caitgs can be used to extend
the techniques for proving the termination of integer paogs to programs that manipulate
data structures, and have applications in constraint datebh

We give a formal description of a decision procedure for BARAich implies the decid-
ability of the satisfiability and validity problems for BAPAVe analyze our algorithm and
obtain an elementary upper bound on the running time, tigggisfing the first complexity
bound for BAPA. Because it works by a reduction to PA, our gthm yields the decidabil-
ity of a combination of sets of uninterpreted elements with decidable extension of PA.
Our algorithm can also be used to yield a space-optimal idecocedure for BA though
a reduction to PA with bounded quantifiers.

We have implemented our algorithm and used it to dischargéoagion conditions in the
Jahob system for data structure consistency checking afplagrams; our experience with
the algorithm is promising.

1 Introduction

Program analysis and verification tools can greatly countelo software reliability, es-
pecially when used throughout the software developmertga® Such tools are even
more valuable if their behavior is predictable, if they cardlpplied to partial programs,
and if they allow the developer to communicate the desigorination in the form of
specifications. Combining the basic idea of [22, 28] withidable logics leads to anal-
ysis tools that have these desirable properties. Such sembre precise (because for-
mulas represent loop-free code precisely) and predicthblzause the checking of ver-
ification conditions terminates either with a realizablem@rexample or with a sound
claim that there are no counterexamples).

A key challenge in this approach to program analysis andigation is to identify
a logic that captures an interesting class of program ptiggebut is nevertheless de-
cidable. In [41-43, 80] we identify the first-order theoryBdolean algebraBA) as a
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useful language for reasoning about dynamically allocatgects:BA allows express-
ing generalized typestate properties and reasoning aldausttuctures as dynamically
changing sets of objectBA is known to be decidable [45, 67].

The motivation for this paper is the fact that we often neeg&son not only about
the data structure content, but also about the size of tleestiatcture. For example, we
may want to express the fact that the number of elementscsiore data structure is
equal to the value of an integer variable that is used to c@hdata structure size, or
we may want to introduce a decreasing integer measure orataesttucture to show
program termination. These considerations lead to a najareeralization of the first-
order theory ofBA of sets, a generalization that allows integer variablesdiditaon
to set variables, and allows stating relations of the for#th = k& meaning that the
cardinality of the setd is equal to the value of the integer variallleOnce we have
integer variables, a natural question arises: which riatand operations on integers
should we allow? It turns out that, using only tB& operations and the cardinality
operator, we can already define all operationBAf This leads to the structuiRAPA,
which properly generalizes boBA andPA.

As we explain in Section 2, a versionBAPA was shown decidable already in [19]
(which also proves the well-known Feferman-Vaught theof28n Section 9.6] about
the products of first-order theories). Recently, a decigimtedure for a fragment of
BAPA without quantification over sets was presented in [79], aast multi-sorted the-
ory. Starting from [43] as our motivation, we have observefB8] the decidability of
the full BAPA (which was initially left open in [79]). After our report [38an algorithm
for a language betweeBA and BAPA was presented in [62] as a way of evaluating
queries in constraint databases. The constraints in [G2}alnly constant integer pa-
rameters and not integer variables; moreover, [62] s@iVés open the complexity of
the algorithm.

Our paper gives the first formal description of a decisioncpdure for the full
first-order theory oBAPA. Furthermore, we analyze our decision procedure and show
that it yields an elementary upper bound on the complexitBAPA. Our result is
the first upper complexity bound dBAPA; along with a lower bound fronPA, we
obtain a good estimate &APA worst-case complexity. We have also implemented our
decision procedure; we report on our initial experiencesimgi the decision procedure
in the context of a system for checking data structure ctarsiy.

Contributions. We summarize the contributions of our paper as follows.

1. As amotivation for BAPA, we show in Section 3 how BAPA constraints can be
used for program analysis and verification by expressingaig dtructure invari-
ants, 2) the correctness of procedures with respect tospetifications, 3) simu-
lation relations between program fragments, and 4) tertiinaonditions for pro-
grams that manipulate data structures.

2. We present amlgorithm « (Section 4) that translatd3APA sentences int®A
sentences by translating set quantifiers into integer diest The algorithm is
surprisingly simple (the entire source code is includeti@Appendix, Section 12)
and shows a deep connection betw8&nandPA.

3. We analyze our algorithm and show that it yields aslementary upper boundon
the worst-case complexity of the validity problem ®APA sentences that is close



to the bound orPA sentences themselves (Section 5). This is the first coniplexi

bound forBAPA, and is the main contribution of this paper.

4. We discuss our experience in using émplementation of BAPA to discharge

verification conditions generated in the Jahob verificasipgtem [34].

5. In addition, we note the following related complexitycattability and undecidabil-
ity results:

(a) We show thaPA sentences generated by translating f#esentences can be
checked for validity in singly exponential space, which goad bound in the
light of alternating exponential lower bound fBA (Section 5.2).

(b) We show how to extend our algorithmitdinite setsand predicates for distin-
guishing finite and infinite sets (Section 10).

(c) We examine the relationship of our results to the monadond-order logic
(MSOL) of strings (Section 11). In contrast to the undecilitgtof MSOL with
equicardinality operator (Section 11.2), we identify a ddmation of MSOL
over trees wittBA that isdecidable This result follows from the fact that our
algorithma enables addin@A operations to any extension BA, including
decidable extensions such as MSOL over strings (Sectidl).11.

A preliminary version of our results, including the algbrit and complexity analysis
appear in [38], which also contains some background on diearglimination.

2 The First-Order Theory BAPA

Figure 3 presents the syntax of Boolean Algebra with Pregsukrithmetic BAPA),
which is the focus of this paper. We next present some justifin for the operations in
Figure 3. Our initial motivation foBAPA was the use dBA to reason about data struc-
tures in terms of sets [40]. Our language B3k (Figure 1) allows cardinality constraints
of the form|A| = C whereC' is aconstaninteger. Such constant cardinality constraints
are useful and enable quantifier elimination for the resglnguage [45,67]. However,
they do not allow stating constraints such.as= | B| for two setsA andB, and cannot
represent constraints on changing program variables.i@emtberefore the equicardi-
nality relationeqcard(A, B) that holdsifffA| = | B|, and consideBA extended with re-
lationeqcard(A, B). Define the ternary relatigsius(A, B, C) < (|4] = |B|+]|C|)

by the formuladz; . 3zo. 21Nz = O A C = 21 Uzo A eqcard(A, 21) Aeqcard(B, x2).

The relationplus(A4, B, C) allows us to express addition using arbitrary sets as rep-
resentatives for natural numbers. Moreover, we can reptéstegers as equivalence
classes of pairs of natural numbers under the equivaletatéore(x, y) ~ (u,v) <=

x + v = u +y. This construction allows us to express the unary predifdteing non-
negative. The quantification over pairs of sets represamstification over integers,
and quantification over integers with the addition operatind the predicate “being
non-negative” can express & operations, presented in Figure 2. Therefore, a natural
closure under definable operations leads to our formulatighe languag&APA in
Figure 3, which contains both sets and integers.

The argument above also explains why we attribute the ditiiyaof BAPA to [19,
Section 8], which showed the decidability®A over sets extended with the equicardi-
nality relationeqcard, using the decidability of the first-order theory of the aitati of
cardinal numbers.
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The languag8APA has two kinds of quantifiers: quantifiers over integers arahgu
tifiers over sets; we distinguish between these two kindsdmoting integer variables
with symbols such a#,! and set variables with symbols such ag,. We use the
shorthand3™ k. F (k) to denotedk.k > 0 A F(k) and, similarlyv™k.F(k) to denote
Vk.k > 0 = F(k). In summary, the language 8fAPA in Figure 3: 1) subsumes the
language oPA in Figure 2; 2) subsumes the languageBaéf in Figure 3; and 3) con-
tains non-trivial combination of these two languages inftiien of using the cardinality
of a set expression as an integer value.

The semantics of operations in Figure 3 is the expected orenWrpret integer
operations in standard way, and interpret sets in boolegabed over subsets of a fi-
nite sets. TheVIAXC constant denotes the size of the finite univéfseo we require
MAXC = || in all models. (Our results also extend to infinite sets, ssién 10 for
the discussion.)

3 Applications of BAPA

This section illustrates the importanceBAPA constraints. Section 3.1 shows the uses
of BAPA constraints to express and verify data structure invasiasivell as procedure
preconditions and postconditions. Section 3.2 shows hdass of simulation relation
conditions can be proved automatically using a decisiocgutare foBAPA. Finally,
section 3.3 shows hoBAPA can be used to express and prove termination conditions
for a class of programs.



3.1 \Verifying Data Structure Consistency

Figure 4 presents a proceduneert in a language that directly manipulates sets. Such
languages can either be directly executed [18, 66] or carebgedl from executable
programs using an abstraction process [41, 43]. The progrdfigure 4 manipulates

a global set of objectsontent and an integer fieldize. The program maintains an
invariant I that the size of the sefontent is equal to the value of the variabieze.
Theinsert procedure inserts an elemeninto the set and correspondingly updates the
integer variable. The requires clause (precondition) efitkert procedure is that the
parametek is a non-null reference to an object that is not stored in #ieantent.
The ensures clause (postcondition) of the procedure isthieaize variable after the
insertion is positive. Note that we represent referencebjects (such as the procedure
parametee) as sets with at most one element. An empty set representsrafietence;

a singleton sefo} represents a reference to objectThe value of a variable after
procedure execution is indicated by marking the variabfeeaith a prime.

var content : set;
var size : integer;
invariant | <= (size = |content|);

procedure insert(e : element)
maintains [
requires |e| = 1 A |e N content| =0

P
?nsures size’ > 0 {|e| = 1A |eNcontent| = 0 A size = |content|}
content := content U ¢; content := content U e; size := size + 1;
size := size + 1;
} {size’ > 0 Asize' = |content’|}
Fig. 4. An Example Procedure Fig. 5. Hoare Triple forinsert Procedure

Ve. Vcontent. Vcontent'. Vsize. Vsize’.
(le] = 1 A |e N content| = 0 A size = |content| A
content’ = content U e A size’ =size + 1) =
size’ > 0 A size’ = |content|

Fig. 6. Verification Condition for Figure 5

In addition to the explicit requires and ensures clausesiptiart procedure main-
tains an invariant], which captures the relationship between the size of theosetnt
and the integer variablgze. The invariantl is implicitly conjoined with the requires
and the ensures clause of the procedure. The Hoare triplén[B8gure 5 summarizes
the resulting correctness condition for tiheert procedure.

Figure 6 presents a verification condition correspondintpéoHoare triple in Fig-
ure 5. Note that the verification condition contains bothaset integer variables, con-
tains quantification over these variables, and relatesites ®f sets to the values of
integer variables. Our small example leads to a partiquianmple formula; in general,
formulas that arise in the compositional analysis of segjams with integer variables
may contain alternations of existential and universalal@gs over both integers and



sets. This paper shows the decidability of such formulagmaesents the complexity of
the decision procedure.

3.2 Proving Simulation Relation Conditions

Another example of whe@APA constraints are useful is when proving that a given re-
lation on states is a simulation relation between two pnagragments. Figure 7 shows
one such example. The concrete procedtmel manipulates two sets: a set of running
processes and a set of suspended processes in a processesciibe procedurstartl
inserts a new process into the set of running processesathiere are already too many
running processes. The procedsta&t? is a version of the procedure that operates in
a more abstract state space: it maintains only the unionl gfratesses and a num-
ber of running processes. Figure 7 shows a forward simula&tationr between the
transition relations fostart1 andstart2. The standard simulation relation diagram con-
dition [46]iSVs;1.Vs] . Vsa.(t1(s1, $1) Ar(s1, s2)) = Ts5. (t2(s2, s5) Ar(sz2, s5)). Inthe
presence of preconditions,(s1, s}) = (pre;(s1) = posty(s1, s])) andta(se, s5) =
(pres(s2) = post,(se, s5)), and sufficient conditions for simulation relation are:

1. Vs1.Vs2.r(s1, S2) A prey(s2) = pre,(s1)

2. Vs1.Vs1.Vs2.3s5. 7(s1, 82) A post, (s1,81) A prey(s2) = posty(sz, sh) A r(s2, s5)

Figure 7 show8APA formulas that correspond to the simulation relation caodg in
this example. Note that the secoBAPA formula has a quantifier alternation, which
illustrates the relevance of quantifiersBAPA.

var P : set;

var R : set; var k : set:
. b

var S : set;

procedure start2(x)
requiresz Z P A |z| =1 A k < MAXR
ensuresP' =PUz Ak  =k+1

procedure startl(z)
requires z Z RA |z| =1 A |R| < MAXR
ensuresR' = RUzAS =S

{ {
P:=PUu;
R:=RUu; K= k4 1;

} }

Simulation relatiorr:
r((R,S), (P,k)) = (P=RUSAk=R|)

Simulation relation conditions iBAPA:
1.Vz,R,S,P,k.(P=RUSAk=|R))A(z € PA|z| =1 Ak < MAXR) =
(x Z RA|z| = 1A |R| < MAXR)
2.Vz,R,S,R",S", P,k AP K.(P=RUSAk=|R)A (R =RUzAS =S)A
(x Z PA|z|] =1 Ak < MAXR)) =
(PP=PUzAK =k+1)A (PP =R US'AK =|R|)
Fig. 7. Proving simulation relation iBAPA

3.3 Proving Termination of Programs

We next show hovBAPA is useful for proving program termination. A standard tech-
nique for proving termination of a loop is to introduce a remgkfunction f that maps



var iter : set;

. Ranking function:
procedure iterate() £(s) = Is|

while iter 7 () do Transition relation:

vare: set; t(iter, iter’) = (Je. |e] = 1 Ae C iter Aiter’ = iter \ e)
e := choose iter;
iter := iter \ ; Termination condition irBAPA:

process(e); Viter.Viter’. (Je.le] = 1 A e C iter Aiter’ = iter \ )
done = liter’| < |iter|

}

] o Fig. 9. Termination proof for Figure 8
Fig. 8. Terminating program

program state into a non-negative integer, and the provettieavalue of the func-
tion decreases at each loop iteration. In other words(sifs’) denotes the relation-
ship between the state at the beginning and end of the prozeithen the condition
Vs.Vs'.t(s,s’) = f(s) > f(s') holds. Figure 8 shows an example program that pro-
cesses each element of the initial value ofisat this program can be viewed as ma-
nipulating an iterator over a data structure that implemarstet. Using the the ability to
take cardinality of a set allows us to define a natural rankimgtion for this program.
Figure 9 shows the termination proof based on such rankimgtion. Note that, because
the loop contains a local variable, the resulting loop titeorsrelation contains an ex-
istential quantifier. The resulting termination conditicen be expressed as a formula
that belongs t®APA, and can be discharged using our decision procedure. Irgene
we can reduce the termination problem of programs that nodatip both sets and in-
tegers to showing a simulation relation with a fragments @frminating program that
manipulates only integers, which can be proved terminaisigg techniques [55-57].
The simulation relation condition can be proved correatgsiurBAPA decision pro-
cedure whenever the simulation relation is expressible aBAPA formula.

4 Decision Procedure forBAPA

This section presents our algorithm, denatedvhich reduces 8APA sentence to an
equivalentPA sentence with the same number of quantifier alternationsaarekpo-
nential increase in the total size of the formula. This athan has several desirable
properties:

1. Given the space and time bounds R sentences [61], the algorithm yields
reasonable space and time bounds for deciBiABA sentences (Section 5).

2. The algorithnm does not eliminate integer variables, but instead prodarcesuiv-
alent quantifiedPA sentence. The resultim@A sentence can therefore be decided
usingany decision procedure fdPA, including the decision procedures based on
automata [23, 31, 44].

3. The algorithn can eliminate set quantifiers from any extensioPAf We thus
obtain a technique for adding a particular form of set reampto every extension
of PA, and the technique preserves the decidability of the eiden®ne example



of decidable theory that extenéé is MSOL over strings, see See Section 11 for
the discussion.

4. For simplicity we present the algorithm as a decision procedure for formulas
with no free variables, but the algorithm can be used to foarmsand simplify
formulas with free variables as well, because it transfoonmes quantifier at a time
starting from the innermost one. Because of this featurezameuse the algorithm
« to project out local state components from formulas thatudles invariants and
transition relations, and simplify the resulting formulas

We next describe the algorithma for transforming aBAPA sentenceF; into a PA
sentence. As the first step of the algorithm, transféginto prenex form
QpUp. ... Q1v1. F(v1,...,vp) )

whereF' is quantifier-free, and each quantifi@fv; is of one the formsk, vk, Jy, Vy
wherek denotes an integer variable apdenotes a set variable.

The next step of the algorithm is to separatanto BA part andPA part. To achieve
this, replace each formula = y wherexz andy are sets, with the conjunctian C
y Ay C x, and replace each formulaC y with the equivalent formulér N y¢| = 0.
In the resulting formula, each setoccurs in some tern(x)|. Next, use the same
reasoning as when generating disjunctive normal form foppsitional logic to write
each set expressiafr) as a union of cubes (regions in Venn diagram [74]) of the form
A,z wherex{ is eitherz; or z¢; hence there arev = 2™ cubessy, ..., Sm.
Suppose that(z) = s;, U. .. s;,; then replace the terfa(z)| with the term}_¢_, |s;,
In the resulting formula, each setappears in an expression of the fojsy] wheres; is
a cube. For each; introduce a new variablg. Then the resulting formula is equivalent
to

Qp’l)p.,,,lel. (2)
T, A Jsil =1 A Ga

whereG; is aPA formula andm = 2". Formula (2) is the starting point of the main
phase of algorithna. The main phase of the algorithm successively eliminatestiu

fiersQqv1, ..., Qpvp, While maintaining a formula of the form
QpUp ... Qruy. @)
3+l1 .. lq. /\?:1 |81| =1 N G,

whereG,. is aPA formula,r grows froml top + 1, andg = 2¢ whereefor0 < e <n
is the number of set variables amonyg. . ., v,. The listsy, ..., s, is the list of all2¢
partitions formed from the set variables amang. . ., v,.

We next show how to eliminate the innermost quantifjen,. from the formula (3).
During this process, the algorithm replaces the forntglavith a formulaG,.,1 which
has more integer quantifiers.df is an integer variable then the number of sgte-
mains the same, and if. is a set variable, theq reduces fron2¢ to 2¢~1. We next
consider each of the four possibilitiés, vk, 3y, Vy for the quantifiei, v,.

Consider first the casgk. Because: does not occur if\?_, |s;| = {;, simply move
the existential quantifier t¢',. and letG,.,1 = 3k.G,., which completes the step.

For universal quantifiers, observe that
q

(30 g Nlsil =1 A Gy)

=1



is equivalenttad*ly ... l,. AL, |s;| =1 A —G,, because the existential quantifier is
used as a let-binding, so we may first substitute all valuggo G,., then perform the
negation, and then extract back the definitions of all valugSiven that the universal
quantifiervk can be represented as a sequence of unary operatbrs from the elim-
ination of 3k we immediately obtain the elimination of%; it turns out that it suffices
toletG, ;1 = Vk.G,.

We next show how to eliminate an existential set quantifiefrom

q
Jy. 3 g Nsil =1 A Gy 4)
i=1

which is equivalent tad* i ... 1. (3y. AL, |si| = ;) A G,. This is the key step of
the algorithm and relies on the following lemma, whose pisafi Section 9.

Lemma 1. Letby,...,b, be finite disjoint sets, and, ..., 1., k1,..., k, be natural
numbers. Then the following two statements are equival@hfhere exists a finite set
y such that\"; |b; Ny| = k; A b Ny°| =1; and )AL, |bi| = k; + I;. Moreover,
the statement continues to hold if for any subset of inditke conjunctb; N y| = k;

is replaced byb; N y| > k; or the conjunctb; N y°| = I; is replaced byb; Ny°| > 1,
provided thaib;| = k; + I; is replaced byb;| > k; + [;, as indicated in Figure 10.

original formula eliminated form
Jy. . Ny kADBNYT =1 .. [B[=k+1
Jy. ... bnyl=kANY>1...| b >k+I
Jy. ... byl >kADBOY=1...| |b>k+I
Jy. ... bnyl=kANy|=1...| |b=k+I

Fig. 10.Rules for Eliminating Quantifiers from Boolean Algebra Eegsions

In the quantifier elimination step, assume without loss ofegality that the set variables
s1,..., 84 are numbered such that;,_; = s, Ny° andsy; = s; Ny for some cube’.
Then apply Lemma 1 and replace each pair of conjuncts

lsi Ny = laic1 A |s;Ny| = los
with the conjuncts;| = lz;—1 + l2;, yielding formula

’

q
3+l1...lq. /\ |S;| =loi—1 +lai N Gy (5)

=1

for ¢/ = 2°~1. Finally, to obtain a formula of the form (3) for+ 1, introduce fresh
variableg constrained by, = ly;_1 + l2;, rewrite (5) as

q q
Iy NIsil =1 A @l g NT=laia + 12 A Gy)
=1 =1

and let



q
Grr =301, /\ I =1lgi—1 +1l2i A Gr (6)

i—1

This completes the description of elimination of an exis&iset quantifiedy.

To eliminate a set quantifisfy, proceed analogously: introduce fresh variafles
loiz1 + 1o and letG,1 = VT ... 0. ( 3/21 Il =ls;—1 +12:) = G,, which can be
verified by expressingy as—3y—.

After eliminating all quantifiers as described above, waoba formula of the form
I U| = LA Gpy1 (). We define the result of the algorithm, denoted ), to be the
PA sentencéx, 1 (MAXC).

This completes the description of the algoritimGiven that the validity ofPA
sentences is decidable, the algorithris a decision procedure f&APA sentences.

Theorem 2. The algorithma described above maps eaBAPA-sentencery into an
equivalentPA-sentencex(Fy).

Formalization of the algorithm «. To formalize the algorithmy, we have imple-
mented it the functional programming language O’Caml; i8act2 contains the source
code of the implementation. As an illustration, when we hmimplementation on the
BAPA formula in Figure 6 which represents a verification conditiove immediately
obtain thePA formula in Figure 11. Note that the structure of the resgltiormula
mimics the structure of the original formula: every set difean is replaced by the cor-
responding block of quantifiers over non-negative integersstrained to partition the
previously introduced integer variables. Figure 12 prestte correspondence between
the set variables of thiRAPA formula and the integer variables of the transldador-
mula. Note that the relationshgontent’ = content U e translates into the conjunction
of the constraintécontent’ N (content U e)¢| = 0 A |(content U e) N content’“| = 0,
which reduces to the conjunctidm = 0 A lo11 + loo1 + lo10 = 0 using the transla-
tion of set expressions into the disjoint union of partiipand the correspondence in
Figure 12.

The subsequent sections explore the consequences of sened of the algorithm
«, including an upper bound on the computational complexXitB&APA sentences and
the combination oBA with proper extensions d?A. We explain our experience with
using the implementation in Section 6.

5 Complexity

In this section we analyze the algorithmfrom Section 4 and obtain space and time
bounds orBAPA from the corresponding space and time bound®farWe then show
that the new decision procedure meets good worst-case bpaoes foBA if applied

to BA formulas. Moreover, by construction, our procedure reduce¢he procedure for
Presburger arithmetic formulas if there are no set quargifia summary, our decision
procedure is reasonable fBA, does not impose any overhead for p&#eformulas,
and the complexity of the generBAPA validity has the same height of the tower of
exponentials as the complexity BA itself.

10



general relationship:
V1Y lo. MAXC = 11 + 1o = Liy iy = [setit Nset??  N...N set*
V1119 o1V 110.Y T loo. ' "

g=S—-(k-1)
=l +lo Ao =l + loo = S — number of set variables
V+l111. V+l011. V+l101. V+l001.
l11 = l111 +lo11 Alor = lior + loo1 A set; = content’
l10 = l110 + lo1o A loo = l100 + looo = sety = content
Vsize.Vsize. setz3 = e

in this example:

(l111 + loi1 + lio1 +loor = 1 A
l111 +lo11 =0 A
l111 + lo11 + l110 + lo1o = size A
liopo = 0 A
lo11 + loo1 + lo1o =0 A
size’ = size + 1) =

(0 < size’ A

li11 + lio1 + 1110 + l100 = size’)

looo = |content’“ N content® N e°|
loo1 = |content’® N content® N e|
lo10 = |content’® N content N e
lo11 = |content’“ N content N ¢
l100 = |content’ N content® N e°|
l101 = |content’ N content® N ¢|
l110 = |content’ N content N €|
l111 = |content’ N content N ¢|

Fig.11. The translation of theBAPA sentence Fig. 12. The Correspondence between In-
from Figure 6 into 2PA sentence teger Variables in Figure 11 and Set Vari-
ables in Figure 6

5.1 An Elementary Upper Bound

We next show that the algorithm in Section 4 transforrB&\#®A sentencéd into aPA
sentence whose size is at most one exponential larger aruth \Wwhs the same number
of quantifier alternations.

If Fis a formula in prenex form, lafize(F') denote the size of’, and letalts(F)
denote the number of quantifier alternationstin Define the iterated exponentiation
functionexp,,(z) by expy(z) = x andexp,_,(z) = 2°°+(®). We have the following
lemma.

Lemma 3. For the algorithma from Section 4 there is a constant> 0 such that
size(a(Fy)) < 2¢°7<(F) andalts(o(Fy)) = alts(Fp). Moreover, the algorithna runs
in 20(size(F0)) space.

We next consider the worst-case space boun8ARA. Recall first the following
bound on space complexity f&A.
Fact1 [20, Chapter 3] The validity of @A sentence of length can be decided in
spaceexp,(O(n)).
From Lemma 3 and Fact 1 we conclude that the validityB&PA formulas can be
decided in spacexp;(O(n)). It turns out, however, that we obtain better bounds on
BAPA validity by analyzing the number of quantifier alternatiansBA and BAPA
formulas.
Fact2 [61] The validity of aPA sentence of length and the number of quantifier
alternationsm can be decided in spa(%‘o(m).

From Lemma 3 and Fact 2 we obtain our space upper bound, whigles the upper
bound on deterministic time.
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Theorem 4. The validity of aBBAPA sentence of length and the number of quantifier
alternationsm can be decided in spaegp,(O(mn)), and, consequently, in determin-
istic timeexp;(O(mn)).

If we approximate quantifier alternations by formula size,a@nclude thaBAPA va-
lidity can be decided in spaesp,(O(n?)) compared texp,(O(n)) bound for Pres-
burger arithmetic from Fact 1. Therefore, despite the egptial explosion in the size
of the formula in the algorithm, thanks to the same number of quantifier alternations,
our bound is not very far from the bound for Presburger aréticn

5.2 BA as a Special Case

We next analyze the result of applying the algorithrmo a BA sentencely. By a
BA sentence we meanBA sentence without cardinality constraints, containing/onl
the standard operationg U, ¢ and the relations, =. At first, it might seem that the
algorithme is not a reasonable approach to decidd?y formulas given that the best
upper bounds foPA are worse than the corresponding boundsEét However, we
identify a special form oPA sentence®Agsn = {a(Fp) | Fpisin BA} and show
that such sentences can be decide@df” space, which is good foBA [32]. Our
analysis shows that using binary representations of intgbat correspond to the sizes
of sets achieves a similar effect to representing thesasdisvectors, although the two
representations are not identical.

Let S be the number of set variables in the initial forméla(recall that set variables
are the only variables itfy). Letly, ..., [, be the set of free variables of the formula
Gr(ly,...,1y); theng = 2¢fore = S +1 —r. Letwy, ..., w, be integers specifying
the values oty . . ., [,. We then have the following lemma.

Lemma 5. For eachr wherel < r < S the truth value of7, (w1, ..., w,) is equal to
the the truth value of¥,.(ws, . . ., w,) wherew; = min(w;, 2"~ 1).

Now consider a formuld of sizen with S free variables. Then(Fy) = Gg41.
By Lemma 3size(a(Fyp)) is O(nS2%). By Lemma 5, it suffices for the outermost vari-
ablek to range over the integer interviél, 2°], and the range of subsequent variables
is even smaller. Therefore, the value of each of2fié! — 1 variables can be repre-
sented inO(.S) space, which is the same order of space used to represenartiesn
of variables themselves. This means that evaluating theutara(F) can be done in
the same spaa@(n.52°) as the size of the formula. Representing the valuation assig
ing values to variables can be doneMiS2°) space, so the truth value of the formula
can be evaluated i®(n.52%) space, which is certaing® (). We obtain the following
theorem.

Theorem 6. If F} is a pureBA formula with.S variables and of size, then the truth
value ofa(B) can be computed i®(n.52%) and therefore®(™) space.

6 Experience Using Our Decision Procedure foBAPA

We have experimented witBAPA in the context of Jahob system [34] for verifying data
structure consistency of Java programs. Jahob parsesaanee £ode annotated with
formulas in Isabelle syntax written in comments, genereg¢esication conditions, and
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uses decision procedures and theorem provers to disclhagg\erification conditions.
Jahob currently contains interfaces to the Isabelle intemtheorem prover [51], the
Simplify theorem prover [17] as well as the Omega Calculgg6t and the LASH [44]
decision procedures f&A.

Using Jahob, we have generated verification conditionsdeersl Java program
fragments that require reasoning about sets and theinitiés, for example proving
the equality relation between the number of elements int afid the integer fieldize
after they have been updated. Formulas arising from exanipl8ection 3 have also
been discharged using our current implementation. We taawedfthat Simplify is able
to deal with some of the formulas involving only sets or omjegers, but not with
formulas that relate cardinalities of operations on setsatdinalities of the individual
sets. These formulas can be proved in Isabelle, but regs&e interaction in terms
of auxiliary lemmas. On the other hand, our implementatibtine decision procedure
automatically discharges these formulas.

Our current implementation makes use of some transformatiad simplifications
to reduce formula sizes. We find that eliminating set vagalgarly by substitution is
a highly effective optimization. When using Omega Calauiats the backend for our
system, we also observed that lifting quantifiers to the ayell noticeably improve
performance. These transformations effectively extemrdrdimge of formulas that the
current system can handle. Our current implementationefittision procedure and
example formulas can be found on the website [33].

7 Related Work

Our paper is the first result that shows a complexity boundHerfirst-order theory
of BAPA. The decidability foBAPA, presented aBA with equicardinality constraints
was presented in [19] (see Section 2). A decision procedura $pecial case GAPA
was presented in [79], which allows only quantification oglementdbut not oversets

of elementsBAPA is a more general language because singleton sets canamipres
elements, so quantification over sets allows modelling tifigation over elements. [62]
(which appeared after [38]) shows the decidabilitydéf with constant cardinalities.

Presburger arithmetic. The original result on decidability dPA is [59]. The best
known bound on formula size is [20]. This decision proceduas improved in [16]
and subsequently in [52]. An analysis based on the numbeuanitifier alternations is
presented in [61]. Our implementation uses quantiferieition based Omega test [60]
which, in our current experience, outperforms other immatations we have tried.
Among the decision procedures for fllh\, [13] is the only proof-generating version,
and is based on a version of [16]. Decidable fragments dfragtic that go beyonBA
include MSOL over strings [11,31] and [9].

Boolean Algebras. The first results on decidability @A are from [45], [1, Chap-
ter 4] and use quantifier elimination, from which one can\dgesgmall model prop-
erty; [32] gives the complexity of the satisfiability probie[48] studies unification in
Boolean rings. The quantifier-free fragmentBA is shown NP-complete in [47]; see
[39] for a generalization of this result using parametaticemplexity of the Bernays-
Schonfinkel-Ramsey class of first-order logic [8, Page 2&#th can be decided us-
ing [24] or [7]. [12] gives an overview of several fragmenfsset theory including
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theories with quantifiers but no cardinality constraintsl éimeories with cardinality
constraints but no quantification over sets. Quantifiee-fimmulas are also used in
constraint solving [2, 6, 15]. Among the systems for intévaty reasoning about richer
theories of sets are Isabelle [51], HOL [26], PVS [53], TPE fist-order frameworks
such as Athena [4] can use axiomatizations of sets alongoailth to resolution-based
theorem provers such as Vampire [75] to reason about sets.

Combinations of Decidable Theories. The techniques for combininguantifier-free
theories [50,63] and their generalizations such as [71/738] are of great importance
for program verification. Our paper shows a particular coration result foquantified
formulas which add additional expressive power in writing spectfaas. Among the
general results for quantified formulas are the Fefermamgktatheorem for products
[19] and term powers [36, 37]. While we have found quantifterbe useful in several
contexts, many problems can be encoded in quantifier-freeui@s, so it is interesting
to consider a combination &APA with solvers for quantifier-free formulas [21,25,69].
Description logics [5] and two-variable logic with courdif27,54,58] support sets and
cardinalities, and additionally support relations, butrdd allow quantification over
sets.

Analyses of Dynamic Data Structures. In addition to the new technical results, one
of the contributions of our paper is to identify the uses of decision procedure for
verifying data structure consistency. We have shown BéWA enables the verifica-
tion tools to reason about sets and their sizes. This catyabiparticularly important
for analyses that handle dynamically allocated data strastwhere the number of ob-
jects is statically unbounded [35, 49, 65, 76]. Recentlgsthapproaches were extended
to handle the combinations of the constraints represenétg structure contents and
constraints representing numerical properties of datettres [14, 64]. Our result pro-
vides a systematic mechanism for building precise and piaalie versions of such
analyses. Among other constraints used for data struchalkysis,BAPA is unique

in being a complete algorithm for an expressive theory thppsrts arbitrary quanti-
fiers. As we have illustrated in Section 3, the use of quandifeeimportant for proving
verification conditions that include quantified annotasicior computing abstractions
of program fragments that involve local variables, and faving simulation relation
conditions. We has also illustrated the us&a&fPA for reasoning about termination of
programs that manipulate dynamic data structures by agsuginteger variables with
sizes of sets that specify the objects in data structuresisind techniques for proving
termination of programs with integers [55-57]. Other pblesapplications of our deci-
sion procedure include query evaluation in constraintliedas [62] and loop invariant
inference [30].

8 Conclusion

Motivated by static analysis and verification of relatioesvizeen data structure content
and size, we have presented an algorithm for deciding thedfider theory of Boolean
algebras with Presburger arithmetiRAPA), showed an elementary upper bound on the
worst-case complexity, implemented the algorithm andiadpt to several reasoning
tasks. Our experience indicates that the algorithm will beful as a component of a
decision procedure of our data structure verification syste
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APPENDIX

9 Proofs of Lemmas

Lemma 1 Letby,...,b, be finite disjoint sets, andl,...,l,, k1,...,k, be natural
numbers. Then the following two statements are equival@hfhere exists a finite set
y such that\"_, [b; Ny| = k; A |b; Ny¢| = I; and ()AL, |b;| = k; + I;. Moreover,
the statement continues to hold if for any subset of inditke conjunctb; N y| = k;

is replaced byb; N y| > k; or the conjunctb; N y¢| = [; is replaced byb; Ny°| > 1,
provided thaib;| = k; + I; is replaced byb;| > k; + [;, as indicated in Figure 10.

Proof. (=) Suppose that there exists a gedatisfying (1). Becausk Ny andb; N y¢
are disjoint,|b;| = |b; Ny| + |b; Ny°|, so|b;| = k; + I; when the conjuncts are
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|b; Nyl = k; A b Ny°| = 1;, and|b;| > k; + 1; if any of the original conjuncts have
inequality.

(<) Suppose that (2) holds. First consider the case of eqemlBiuppose thlt;| =
k; + l; for each of the pairwise disjoint sebs, . .., b,. For eachh; choose a subset
y; C b; such thaty;| = k;. Becausab;| = k; + 1;, we havelb; N y¢| = I;. Having
chosenyy, ..., yn, lety = U;_, vi. Fori # j we haveb; Ny; = 0 andb; Ny§ = b;, 0
b; Ny = y; andb; Ny° = b; Ny<. By the choice ofy;, we conclude thay is the desired
set for which (1) holds. The case of inequalities is analegéar example, in the case
b Nyl > ki A |b; N y°| = 1;, choosey; C b; such thaty;| = [b;| — L.

Lemma 3. For the algorithma from Section 4 there is a constant> 0 such that
size(a(Fp)) < 2¢17(F0) andalts(a(Fy)) = alts(Fy). Moreover, the algorithna runs
in 20(size(F0)) space.

Proof. To gain some intuition on the size af Fy) compared to the size df,, compare
first the formula in Figure 11 with the original formula in kig 6. Letn denote the
size of the initial formulafy and letS be the number of set variables. Note that the
following operations are polynomially bounded in time apéae: 1) transforming a
formula into prenex form, 2) transforming relatiohs = b, andb; C by into the
form |b] = 0. Introducing set variables for each partition and replgaach|b| with

a sum of integer variables yields formuf whose size is bounded &y(n2°5) (the
last S factor is because representing a variable from the sét afariables requires
spacdog K). The subsequent transformations introduce the existiteger quantifiers,
whose size is bounded by and introduce additionallg®~1' 4 ... +2+1=2% -1
new integer variables along with the equations that defiamttiNote that the defining
equations always have the forth = l;,_; + l2; and have size bounded t. We
therefore conclude that the size®fF; ) is O(nS(2° + 2°)) and therefore (n.S2°),
which is certainlyO(2¢™) for anyc > 1. Moreover, note that we have obtained a more
precise bound(n.52°) indicating that the exponential explosion is caused onlgdty
variables. Finally, the fact that the number of quantifiéeralations is the same i,
anda(Fp) is immediate because the algorithm replaces one set geamtith a block

of corresponding integer quantifiers.

Lemma 5. For eachr wherel < r < S the truth value of+, (w1, ..., w,) is equal to
the the truth value ofs,.(w, . . ., w,) wherew; = min(w;, 2"~ 1).

Proof. We prove the claim by induction. Fer = 1, observe that the translation of a
quantifier-free part of the pur@A formula yields aPA formula F; whose all atomic
formulas are of the formy;, + ... + 1;, = 0, which are equivalent tts;/';:1 li; = 0.
Therefore, the truth-value df; depends only on whether the integer variables are zero
or non-zero, which means that we may restrict the variablastérval(0, 1].

For the inductive step, consider the elimination of a setatde, and assume that
the property holds fot7, and for allg tuples of non-negative integets;, . .., wq.
Let ¢ = ¢/2 andwy,...,w;, be a tuple of non-negative integers. We show that
Gri1(wy,. .., wy, ) is equivalent tai, 1 (wy, . . ., wy,).

Suppose first thaf, 1 (@7, . . .,w;,) holds. Then for each; there arewy;_; and
wy; such thatw, = wug;—1 + ug; andG,.(us, ..., uq). We define witnessess, . . . , w,

K2

as follows. Ifw] < 27, then letws;_; = ug;—1 andwsy; = ug;. If w} > 27 then either
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U2;—1 > 271 or Ug; > 2r—1 (or bOth). Ifug;_1 > 2T71, then |et’w2i,1 = U}; — U9,
and wo; = ug;. Note thatGT(...,wgi,l,...) g GT(...,Ugifl,...) S
G,(...,2"=1 ...) by induction hypothesis because bat)) _; > 2"~ ! andwsy;_; >
2= Forwy,...,w, chosen as above we therefore have = wq;_1 + wy; and
Gy (w1, ..., w,), which by definition ofG, ;1 means thaG, 1 (w}, ... ,w;,) holds.
Conversely, suppose th@t. 1 (v, . .., w;,) holds. Then there are, . .., w, such
thatGr(wl, C ,U}q) andwg = wWo;_1 + woy. If we;_1 < 2r—1 andwgi < woy; then
’w; < 2" so |et’u,2i,1 = W2;—1 andu% = wo;. If wo;_1 > 2r—1 andwgi > wo;
then letug;—1 = 2771 andug; = 271 If we;—1 > 2771 andwsy; < 271! then let

Ugi—1 = 2" — wy; andug; = wo;. By induction hypothesis we hav&, (u1, ..., u,) =
Gr(w1, ..., w,). Furthermoreys; 1 + ug; = w;, SOG41(wy, . . ., Wy, ) by definition
of Gr+1.

10 BAPA with Potentially Infinite Sets

We next sketch the extension of our algoritan{Section 4) to the case when the uni-
verse of the structure may be infinite, and the underlyingu@ge has the ability to
distinguish between finite and infinite sets. Infinite sets wseful in program analy-
sis for modelling pools of objects such as those arising imadlyic object allocation.
This section presents an approach that avoids directlynéag about cardinalities of
infinite sets and thus remains within the languag@Af (As was observed in [19], an
alternative is to use a generalizationR# that admits infinite cardinals.)

We generalize the language BAPA and the interpretation &APA operations as
follows.

1. Introduce unary predicatén(b) which is true iff b is a finite set. The predicate
fin(b) allows us to generalize our algorithm to the case of infiniteverse, and
additionally gives the expressive power to distinguishueetn finite and infinite
sets. For example, usirfg(b) we can express bounded quantification over finite or
over infinite sets.

. Define|b| to be the integer zero ifis infinite, and the cardinality df if b is finite.

. Introduce propositional variables denoted by lettechsasp, ¢, and quantifica-
tion over propositional variables. Extend also the undegdyPA formulas with
propositional variables, which is acceptable because iablarp can be treated
as a shorthand for an integer froff, 1} if each use op as an atomic formula is
interpreted as the atomic formula = 1). Our extended algorithm uses the equiv-
alencedfin(b) < p to represent the finiteness of sets just as it uses the egsatio
|b| = [ to represent the cardinalities of finite sets.

4. Introduce a propositional constafiNU such thaftfin(i/) < FINU. This proposi-
tional constant enables equivalence preserving quangifi@ination over the set
of models that includes both models with finite univeté@nd the models with
infinite universe/.

Denote the resulting extended langu&jfePA>°.
The following lemma generalizes Lemma 1 for the case of dfigsl

[OSIN\N]

Lemma?7. Letby,...,b, be disjoint setsly,...,l,, ki,..., k, be natural numbers,
andpi,...,pn,q1,...,q, be propositional values. Then the following two statements
are equivalent:
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1. There exists a sgtsuch that

3

[b; Ny| = ks A (fin(bs Ny) < pi) A @
i=1 |bz N yc| =10l A (fln(bl M yc)<:>qi)

N (0i AN ai = [bil = ki +1:) A 6)
i=1 (fin(bi) < (pi A i)

Proof. (=) Suppose that there exists a gsttisfying (7). Fronb; = (b;Ny)U(b;Ny°),
we havefin(b;) < (p; A ¢;). Furthermore, ifp; andg; hold, then botth; Ny andb; N y*©
are finite so the relatiofb;| = |b; Ny| + |b; N y°| holds.

(<) Suppose that (8) holds. For eactve choose a subsgt C b;, depending on
the truth values op; andg;, as follows.

1. If bothp; andg; are true, thetin(b;) holds, sa; is finite. Choosey; as any subset
of b; with k; elements, which is possible sineghask; + [; elements.

2. If p;, does not hold, bug; holds, therfin(b;) does not hold, s#; is infinite. Choose
y; as any finite set with; elements and lef; = b;\ y} be the corresponding cofinite
set.

3. Analogously, ifp; holds, butg; does not hold, theb,; is infinite; choosgy; as any
finite subset ob; with k; elements.

4. If p; andg; are both false, theb; is also infinite; every infinite set can be written
as a disjoint union of two infinite sets, so lgtbe one such set.

Lety = J;~, yi- As in the proof of Lemma 1, we have Ny = y; andb; N y° = y¢.
By construction ofyq, . .., y, we conclude that (7) holds.

The algorithmx for BAPA® is analogous to the algorithm f&APA. In each step,
the new algorithm maintains a formula of the form

QpUp - .. Qruy.
3+l1 e lq. le «..Pq-
(/\?:1 |81| =1 A (fln(81)<:>pz)) A Gr

As in Section 4, the algorithm eliminates an integer quaantifi by lettingG,.; =

Jk.G, and eliminates an integer quantifigr by letting G, 1 = Vk.G... Furthermore,
just as the algorithm in Section 4 uses Lemma 1 to reduce ausettifier to integer
quantifiers, the new algorithm uses Lemma 7 for this purpbise.algorithm replaces

Jy. I 1y Tpr .. pg.
(AL, [sil = 1 A (fin(si) & pi)) A Gy

with
(NZ1 Isil = LA (fin(si) < i) A Gria

for ¢’ = ¢/2, and
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Gry1 = 3. .1y Tp1, ..., pg.
(/\3;1 (p2i—1 Ap2i = 1} = loi1 +l2) A
(Vi (p2im1 A pzi)) )
A Gy

For the quantifie¥y the algorithm analogously generates

Gr+1 = V+11 cee lq. Vpl, <oy Pgq-
(/\3:1 (p2i—1 Ap2i = U} = lai—1 + lai) A
(h (P21 A p2i)))
= G,

After eliminating all quantifiers, the algorithm obtains arrhula of the form
It 3p. U] = LA (fin(UU) < p) A Gpia(l, p). We define the result of the algorithm
to be thePA sentence,, 1 (MAXC, FINU).

This completes our description of the generalized algorithfor BAPA*°. The

complexity analysis from Section 5 also applies to the galimad version. We also
note that our algorithm yields an equivalent formula over family of models. A sen-
tence is valid in a set of models iff it is valid on each moddiefiefore, the validity
of a BAPA™ sentenceF) is given by applying to the formula(F,)(MAXC, FINU)
a form of universal quantifier over all pait81AXC, FINU) that determine the char-
acteristics of the models in question. For example, for thkdity over the models
with infinite universe we use(Fy)(0, false), for validity over all finite models we use
Vk.a(Fp)(k, true), and for the validity over all models we use thé& formula

a(Fo)(0, false) A Vk.a(Fo) (k, true).
We therefore have the following result.

Theorem 8. The algorithm above effectively reduces the validitB APA> sentences
to the validity of Presburger arithmetic formulas with trese number of quantifier al-
ternations, and the increase in formula size exponentighénumber of set variables;
the reduction works for each of the following: 1) the set dfrabdels, 2) the set of
models with infinite universe only, and 3) the set of all mgaeth finite universe.

11 Relationship with MSOL over Strings

The monadic second-order logic (MSOL) over strings is a didde logic that can
encode Presburger arithmetic by encoding addition usirggsutcessor symbol and
guantification over sets. This logic therefore simultarshpaupports sets and integers,
so it is natural to examine its relationship wiAPA. It turns out that there are two
important differences between MSOL over strings 8AdPA:
1. BAPA can express relationships of the fof| = k£ where A is a set variable and
k is an integer variable; such relation is not definable in MS®ér strings.
2. In MSOL over strings, the sets contain binary digits ofreteger whereas iBAPA
the sets containninterpreted elements

Given these differences, a natural question is to condigetécidability of an extension
of MSOL that allows stating relationjsl| = k whereA is a set of digits and is an in-
teger variable. Note that by sayiag.|A| = k A |B| = k we can expressd| = | B|, so
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we obtain MSOL with equicardinality constraints. Howewettensions of MSOL over
strings with equicardinality constraints are known to beegidable; we review some
reductions in Section 11.2. Undecidability results sucthase are what perhaps led to
the conjectures th&8APA itself is undecidable [79, Page 12]. In this paper we pointed
out thatBAPA is, in fact, decidable and proved that it has an elementarigide pro-
cedure. Moreover, we present a combinatioBAfwith MSOL overn-successors that

is still decidable.

11.1 Decidability of MSOL with Cardinalities on Uninterpre ted Sets

We next note that our algorithm also applies to monadic ss&@oder logic of one
successors, which is more expressive tRAritself [70, Page 400], [10].

Consider the multisorted langua&MSOL defined as follows. Firs3AMSOL
contains all relations of monadic second-order logic of sumecessors, whose variables
range over strings over anary alphabet and sets of such strings. Sec&#dVISOL
contains sets of uninterpreted elements and boolean algglerations on them. Third,
BAMSOL allows stating relationships of the forim| = &k wherexz is a set of un-
interpreted elements andis a string representing a natural number. BecausBAall
operations are definable in MSOL of 1-successor, the algarit applies in this case
as well. Indeed, the algorithim only needs a “lower bound” on the expressive power
of the theory of integers th&A is combined with: the ability to state constraints of
the forml, = l»;_1 + l2;, and quantification over integers. Therefore, applying a
BAMSOL formula results in an MSOL formula. This shows tB&MSOL is decidable
and can be decided using a combination of algorithrand a tool such as [31]. By
Lemma 3, the decision procedure ®AMSOL based on translation to MSOL has up-
per bound okxp,,(O(n)) using a decision procedure such as [31]. The corresponding
non-elementary lower bound follows from the lower bound cBOL itself [68].

11.2 Undecidability of MSOL of Integer Sets with Cardinalities

We first note that there is a reduction from the Post Corredgoce Problem that shows
the undecidability of MSOL with equicardinality constresnNamely, we can repre-
sent binary strings by finite sets of natural numbers. Inghisoding, given a position,
MSOL itself can easily express the local property that, avargposition, a string con-
tains a given finite substring. The equicardinality givess dldditional ability of finding
ann-th element of an increasing sequence of elements. To ere®&P instance, it
suffices to write a formula checking the existence of a stfiegresented as sdj and
the existence of two increasing sequences of equal lengpmgsented by set$ and
D), such that for each there exists a paifa;, b;) of PCP instance such that the posi-
tion starting at/; contains the constant string, andU; 1 = U; + |a;|, and similarly
the position starting ab; containsh; andD; 1 = D; + |b;]|.
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12 O’Caml source code of algorithma:

* *

* datatype of formulas *)

type ident = string

type binder = Forallset | Existsset
| Forallint | Existsint | Forallnat | Existsnat
type form =
Not of form

And of form list | Or of form list | Impl of form * form

Bind of binder * ident * form

Inteq of intTerm * intTerm | Less of intTerm * intTerm

Seteq of setTerm * setTerm | Subseteq of setTerm * setTerm

and intTerm =
Intvar of ident | Const of int
Plus of intTerm list | Minus of intTerm * intTerm | Times of in t * intTerm
Card of setTerm

and setTerm =

Setvar of ident | Emptyset | Fullset | Complement of setTerm
Union of setTerm list | Inter of setTerm list

_—Bn——50————

let maxcard = "MAXC"

* *)
* algorithm \alpha *)

(* replace Seteq and Subseteq with Card(...)=0 *)
let simplify_set_relations (f:form) : form =

let rec sform f = match f with
Not f -> Not (sform f)
And fs -> And (List.map sform fs)
Or fs -> Or (Listmap sform fs)
Impl(f1,f2) -> Impl(sform f1,sform f2)
Bind(b,id,f1) -> Bind(b,id,sform f1)
Less(it1,it2) -> Less(itl, it2)
Inteq(itl,it2) -> Inteq(itl,it2)
Seteq(stl,st2) -> And[sform (Subseteq(stl,st2));

sform (Subseteq(st2,st1))]

Subseteq(stl,st2) -> Inteq(Card(Inter[stl;Complement st2]),Const 0)
in sform f

(* split f into quantifier sequence and body *)
let split_quants_body f =

let rec vl f acc = match f with

| Bind(b,id,f1) -> vl f1 ((b,id)::acc)

| f-> (acc,f)

in vl f

(* extract set variables from quantifier sequence *)
let extract_set_vars quants =
List.map (fun (b,id) -> id)
(List.filter (fun (b,id) -> (b=Forallset || b = Existsset))
quants)

type partition = (ident * setTerm) list

(* make canonical name for integer variable naming a cube *)
let make_name sts =

let rec mk sts = match sts with

1g->"

| (Setvar _):stsl -> "1" °~ mk stsl

| (Complement (Setvar _)):stsl -> "0" ~ mk stsl

| _ -> failwith "make_name: unexpected partition form"

in "lL" " mk sts

(* make all cubes over vs *)
let generate_partition (vs : ident list) : partition =
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let add id ss = (Setvar id)::ss in
let addc id ss = Complement (Setvar id)::ss in
let add_set id inters =

Listmap (add id) inters @

Listmap (addc id) inters in
let mk_nm is = (make_name is, Inter is) in
List.map mk_nm

(List.map List.rev

(List.fold_right add_set vs [[]]))

(* is the set term true in the set valuation
-- reduces to propositional reasoning *)
let istrue (st:setTerm) (id,ivaluation) : bool =
let valuation = match ivaluation with
| Inter v -> v
| _ -> failwith "wrong valuation" in
let lookup v =
if Listmem (Setvar v) valuation then true
else if List.mem (Complement (Setvar v)) valuation then fal
else failwith "“istrue: unbound var in valuation" in
let rec check st = match st with
| Setvar v -> lookup v
| Emptyset -> false
| Fullset -> true
| Complement stl -> not (check stl)
| Union sts -> List.fold_right (fun stl1 t -> check stl || t) sts
| Inter sts -> List.fold_right (fun stl t -> check stl && t) sts
in check st

(* compute cardinality of set expression
as a sum of cardinalities of cubes *)
let get_sum (p:partition) (st:setTerm) : intTerm list =
let get_list (id,inter) = match inter with
| Inter ss -> ss
| _ -> failwith "failed inv in get_sum"
in
Listmap (fun (id,inter) -> Intvar id)
(List.filter (istrue st) p)

(* replace cardinalities of sets with sums of
variables denoting cube cardinalities *)
let replace_cards (p:partition) (f:form) : form =
let rec repl f = match f with
Not f -> Not (repl f)
And fs -> And (List.map repl fs)
Or fs -> Or (List.map repl fs)
Impl(f1,f2) -> Impl(repl fl,repl f2)
Bind(b,id,f1) -> Bind(b,id,repl f1)
Less(it1,it2) -> Less(irepl itl,irepl it2)
Inteq(itl,it2) -> Inteq(irepl itl,irepl it2)
Seteq(_,_)|Subseteq(_,_) -> failwith “failed inv in repl
and irepl it = match it with
Intvar _ -> it

|
| Const _ -> it

| Plus its -> Plus (List.map irepl its)

| Minus(it1,it2) -> Minus(irepl itl, irepl it2)
| Times(k,itl) -> Times(k, irepl itl)

| Card st -> Plus (get_sum p st)

in repl f

let apply_quants quants f =
List.fold_right (fun (b,id) f -> Bind(b,id,f)) quants f

let make_defining_eqns id part =
let rec mk ps = match ps with
10 -> 10 ,
| (id1,Inter (stl:stsl)) :: (id2,Inter (st2::sts2)) :: ps

when (stl=Setvar id && st2=Complement (Setvar id) && stsl=s

(Inter sts1l,make_name stsl,id1,id2) :: mk psl
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| _ -> failwith "make_triples: unexpected partition form" i
let rename_last Iss = match Iss with

| I(s,,11,12)] -> [(s,maxcard,I1,12)]

| _ ->lIss in

rename_|

(* main

last (mk part)

loop of the algorithm *)

let rec eliminate_all quants part gr = match quants with

[ 0 ->9r
| (Existsint,id)::quantsl ->

eliminate_all quantsl part (Bind(Existsint,id,gr))
| (Forallint,id)::quantsl ->

eliminate_all quantsl part (Bind(Forallint,id,gr))
| (Existsnat,id)::quantsl ->

eliminate_all quantsl part (Bind(Existsnat,id,gr))
| (Forallnat,id)::quantsl ->

eliminate_all quantsl part (Bind(Forallnat,id,gr))
| (Existsset,id)::quantsl ->

let
let
let
let
let
let

eqns = make_defining_eqns id part in

newpart = Listmap (fun (s,I'._,_) -> (I's)) egns in
mk_conj (_,I'11,12) = Inteq(Intvar I',Plus[intvar 11
conjs = Listmap mk_conj eqns in

lquants = Listmap (fun (I,_) -> (Existsnat,l)) part in
grl = apply_quants Iquants (And (conjs @ [gr])) in

eliminate_all quantsl newpart grl
| (Forallset,id)::quantsl ->

let
let
let
let
let
let

eqns = make_defining_eqns id part in

newpart = Listmap (fun (s,I,_,_) -> (I's)) egns in
mk_conj (_,I11,12) = Inteq(Intvar I',Plus[Intvar |11
conjs = Listmap mk_conj eqns in

lquants = List.map (fun (I,_) -> (Forallnat,l)) part in
grl = apply_quants Iquants (Impl(And conjs, gr)) in

eliminate_all quantsl newpart grl

(* putting everything together *)

let alpha (f:form) : form =
(* assumes f in prenex form *)
let (quants,fm) = split_quants_body f in

let fml

= simplify_set_relations fm in

let setvars = List.rev (extract_set vars quants) in

let part

let g1 =

= generate_partition setvars in

replace_cards part fml in

eliminate_all quants part gl
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