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Abstract. We describe an algorithm for deciding the first-order multisorted theory BAPA,
which combines 1) Boolean algebras of sets of uninterpretedelements (BA) and 2) Pres-
burger arithmetic operations (PA). BAPA can express the relationship between integer vari-
ables and cardinalities of sets, and supports arbitrary quantification over both sets and inte-
gers.
Our motivation for BAPA is deciding verification conditionsthat arise in the static analysis
of data structure consistency properties. Data structuresoften use an integer variable to keep
track of the number of elements they store; an invariant of such a data structure is that the
value of the integer variable is equal to the number of elements stored in the data structure.
When the data structure content is represented by a set, the resulting constraints can be cap-
tured in BAPA. BAPA formulas with quantifier alternations arise when annotations contain
quantifiers themselves, or when proving simulation relation conditions for refinement and
equivalence of program fragments. Furthermore, BAPA constraints can be used to extend
the techniques for proving the termination of integer programs to programs that manipulate
data structures, and have applications in constraint databases.
We give a formal description of a decision procedure for BAPA, which implies the decid-
ability of the satisfiability and validity problems for BAPA. We analyze our algorithm and
obtain an elementary upper bound on the running time, thereby giving the first complexity
bound for BAPA. Because it works by a reduction to PA, our algorithm yields the decidabil-
ity of a combination of sets of uninterpreted elements with any decidable extension of PA.
Our algorithm can also be used to yield a space-optimal decision procedure for BA though
a reduction to PA with bounded quantifiers.
We have implemented our algorithm and used it to discharge verification conditions in the
Jahob system for data structure consistency checking of Java programs; our experience with
the algorithm is promising.

1 Introduction

Program analysis and verification tools can greatly contribute to software reliability, es-
pecially when used throughout the software development process. Such tools are even
more valuable if their behavior is predictable, if they can be applied to partial programs,
and if they allow the developer to communicate the design information in the form of
specifications. Combining the basic idea of [22,28] with decidable logics leads to anal-
ysis tools that have these desirable properties. Such analyses are precise (because for-
mulas represent loop-free code precisely) and predictable(because the checking of ver-
ification conditions terminates either with a realizable counterexample or with a sound
claim that there are no counterexamples).

A key challenge in this approach to program analysis and verification is to identify
a logic that captures an interesting class of program properties, but is nevertheless de-
cidable. In [41–43,80] we identify the first-order theory ofBoolean algebras (BA) as a
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useful language for reasoning about dynamically allocatedobjects:BA allows express-
ing generalized typestate properties and reasoning about data structures as dynamically
changing sets of objects.BA is known to be decidable [45,67].

The motivation for this paper is the fact that we often need toreason not only about
the data structure content, but also about the size of the data structure. For example, we
may want to express the fact that the number of elements stored in a data structure is
equal to the value of an integer variable that is used to cachethe data structure size, or
we may want to introduce a decreasing integer measure on the data structure to show
program termination. These considerations lead to a natural generalization of the first-
order theory ofBA of sets, a generalization that allows integer variables in addition
to set variables, and allows stating relations of the form|A| = k meaning that the
cardinality of the setA is equal to the value of the integer variablek. Once we have
integer variables, a natural question arises: which relations and operations on integers
should we allow? It turns out that, using only theBA operations and the cardinality
operator, we can already define all operations ofPA. This leads to the structureBAPA,
which properly generalizes bothBA andPA.

As we explain in Section 2, a version ofBAPA was shown decidable already in [19]
(which also proves the well-known Feferman-Vaught theorem[29, Section 9.6] about
the products of first-order theories). Recently, a decisionprocedure for a fragment of
BAPA without quantification over sets was presented in [79], castas a multi-sorted the-
ory. Starting from [43] as our motivation, we have observed in [38] the decidability of
the full BAPA (which was initially left open in [79]). After our report [38], an algorithm
for a language betweenBA andBAPA was presented in [62] as a way of evaluating
queries in constraint databases. The constraints in [62] allow only constant integer pa-
rameters and not integer variables; moreover, [62] still leaves open the complexity of
the algorithm.

Our paper gives the first formal description of a decision procedure for the full
first-order theory ofBAPA. Furthermore, we analyze our decision procedure and show
that it yields an elementary upper bound on the complexity ofBAPA. Our result is
the first upper complexity bound onBAPA; along with a lower bound fromPA, we
obtain a good estimate ofBAPA worst-case complexity. We have also implemented our
decision procedure; we report on our initial experience in using the decision procedure
in the context of a system for checking data structure consistency.

Contributions. We summarize the contributions of our paper as follows.

1. As amotivation for BAPA, we show in Section 3 how BAPA constraints can be
used for program analysis and verification by expressing 1) data structure invari-
ants, 2) the correctness of procedures with respect to theirspecifications, 3) simu-
lation relations between program fragments, and 4) termination conditions for pro-
grams that manipulate data structures.

2. We present analgorithm α (Section 4) that translatesBAPA sentences intoPA

sentences by translating set quantifiers into integer quantifiers. The algorithm is
surprisingly simple (the entire source code is included in the Appendix, Section 12)
and shows a deep connection betweenBA andPA.

3. We analyze our algorithmα and show that it yields anelementary upper boundon
the worst-case complexity of the validity problem forBAPA sentences that is close
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to the bound onPA sentences themselves (Section 5). This is the first complexity
bound forBAPA, and is the main contribution of this paper.

4. We discuss our experience in using ourimplementation of BAPA to discharge
verification conditions generated in the Jahob verificationsystem [34].

5. In addition, we note the following related complexity, decidability and undecidabil-
ity results:
(a) We show thatPA sentences generated by translating pureBA sentences can be

checked for validity in singly exponential space, which is agood bound in the
light of alternating exponential lower bound forBA (Section 5.2).

(b) We show how to extend our algorithm toinfinite setsand predicates for distin-
guishing finite and infinite sets (Section 10).

(c) We examine the relationship of our results to the monadicsecond-order logic
(MSOL) of strings (Section 11). In contrast to the undecidability of MSOL with
equicardinality operator (Section 11.2), we identify a combination of MSOL
over trees withBA that isdecidable. This result follows from the fact that our
algorithmα enables addingBA operations to any extension ofPA, including
decidable extensions such as MSOL over strings (Section 11.1).

A preliminary version of our results, including the algorithm and complexity analysis
appear in [38], which also contains some background on quantifier elimination.

2 The First-Order Theory BAPA

Figure 3 presents the syntax of Boolean Algebra with Presburger Arithmetic (BAPA),
which is the focus of this paper. We next present some justification for the operations in
Figure 3. Our initial motivation forBAPA was the use ofBA to reason about data struc-
tures in terms of sets [40]. Our language forBA (Figure 1) allows cardinality constraints
of the form|A| = C whereC is aconstantinteger. Such constant cardinality constraints
are useful and enable quantifier elimination for the resulting language [45,67]. However,
they do not allow stating constraints such as|A| = |B| for two setsA andB, and cannot
represent constraints on changing program variables. Consider therefore the equicardi-
nality relationeqcard(A, B) that holds iff|A| = |B|, and considerBA extended with re-
lationeqcard(A, B). Define the ternary relationplus(A, B, C) ⇐⇒ (|A| = |B|+|C|)
by the formula∃x1. ∃x2. x1∩x2 = ∅ ∧ C = x1∪x2 ∧ eqcard(A, x1)∧eqcard(B, x2).
The relationplus(A, B, C) allows us to express addition using arbitrary sets as rep-
resentatives for natural numbers. Moreover, we can represent integers as equivalence
classes of pairs of natural numbers under the equivalence relation (x, y) ∼ (u, v) ⇐⇒
x+ v = u+ y. This construction allows us to express the unary predicateof being non-
negative. The quantification over pairs of sets represents quantification over integers,
and quantification over integers with the addition operation and the predicate “being
non-negative” can express allPA operations, presented in Figure 2. Therefore, a natural
closure under definable operations leads to our formulationof the languageBAPA in
Figure 3, which contains both sets and integers.

The argument above also explains why we attribute the decidability of BAPA to [19,
Section 8], which showed the decidability ofBA over sets extended with the equicardi-
nality relationeqcard, using the decidability of the first-order theory of the addition of
cardinal numbers.
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F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |
∃x.F | ∀x.F

A ::= B1 = B2 | B1 ⊆ B2 |
| B| = C | | B| ≥ C

B ::= x | 0 | 1 | B1 ∪ B2 | B1 ∩ B2 | Bc

C ::= 0 | 1 | 2 | . . .

Fig. 1.Formulas of Boolean Algebra (BA)

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |
∃k.F | ∀k.F

A ::= T1 = T2 | T1 < T2 | C dvdT

T ::= C | T1 + T2 | T1 − T2 | C · T

C ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 2. Formulas of Presburger Arithmetic (PA)

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |

∃x.F | ∀x.F | ∃k.F | ∀k.F

A ::= B1 = B2 | B1 ⊆ B2 |

T1 = T2 | T1 < T2 | C dvd T

B ::= x | 0 | 1 | B1 ∪ B2 | B1 ∩ B2 | Bc

T ::= k | C | MAXC | T1 + T2 | T1 − T2 | C · T | | B|

C ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 3. Formulas of Boolean Algebras with Presburger Arithmetic (BAPA)

The languageBAPA has two kinds of quantifiers: quantifiers over integers and quan-
tifiers over sets; we distinguish between these two kinds by denoting integer variables
with symbols such ask, l and set variables with symbols such asx, y. We use the
shorthand∃+k.F (k) to denote∃k.k ≥ 0 ∧ F (k) and, similarly∀+k.F (k) to denote
∀k.k ≥ 0 ⇒ F (k). In summary, the language ofBAPA in Figure 3: 1) subsumes the
language ofPA in Figure 2; 2) subsumes the language ofBA in Figure 3; and 3) con-
tains non-trivial combination of these two languages in theform of using the cardinality
of a set expression as an integer value.

The semantics of operations in Figure 3 is the expected one. We interpret integer
operations in standard way, and interpret sets in boolean algebra over subsets of a fi-
nite sets. TheMAXC constant denotes the size of the finite universeU , so we require
MAXC = |U| in all models. (Our results also extend to infinite sets, see Section 10 for
the discussion.)

3 Applications of BAPA

This section illustrates the importance ofBAPA constraints. Section 3.1 shows the uses
of BAPA constraints to express and verify data structure invariants as well as procedure
preconditions and postconditions. Section 3.2 shows how a class of simulation relation
conditions can be proved automatically using a decision procedure forBAPA. Finally,
section 3.3 shows howBAPA can be used to express and prove termination conditions
for a class of programs.
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3.1 Verifying Data Structure Consistency

Figure 4 presents a procedureinsert in a language that directly manipulates sets. Such
languages can either be directly executed [18, 66] or can be derived from executable
programs using an abstraction process [41, 43]. The programin Figure 4 manipulates
a global set of objectscontent and an integer fieldsize. The program maintains an
invariantI that the size of the setcontent is equal to the value of the variablesize.
The insert procedure inserts an elemente into the set and correspondingly updates the
integer variable. The requires clause (precondition) of the insert procedure is that the
parametere is a non-null reference to an object that is not stored in the set content.
The ensures clause (postcondition) of the procedure is thatthe size variable after the
insertion is positive. Note that we represent references toobjects (such as the procedure
parametere) as sets with at most one element. An empty set represents a null reference;
a singleton set{o} represents a reference to objecto. The value of a variable after
procedure execution is indicated by marking the variable name with a prime.

var content : set;
var size : integer;
invariant I ⇐⇒ (size = |content|);

procedure insert(e : element)
maintains I

requires |e| = 1 ∧ |e ∩ content| = 0
ensures size′ > 0
{

content := content ∪ e;
size := size + 1;

}

Fig. 4. An Example Procedure

n

|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content|
o

content := content ∪ e; size := size + 1;
n

size′ > 0 ∧ size′ = |content′|
o

Fig. 5. Hoare Triple forinsert Procedure

∀e. ∀content. ∀content′. ∀size. ∀size′.

(|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content| ∧
content′ = content ∪ e ∧ size′ = size + 1) ⇒

size′ > 0 ∧ size′ = |content′|

Fig. 6.Verification Condition for Figure 5

In addition to the explicit requires and ensures clauses, the insert procedure main-
tains an invariant,I, which captures the relationship between the size of the setcontent

and the integer variablesize. The invariantI is implicitly conjoined with the requires
and the ensures clause of the procedure. The Hoare triple [28] in Figure 5 summarizes
the resulting correctness condition for theinsert procedure.

Figure 6 presents a verification condition corresponding tothe Hoare triple in Fig-
ure 5. Note that the verification condition contains both setand integer variables, con-
tains quantification over these variables, and relates the sizes of sets to the values of
integer variables. Our small example leads to a particularly simple formula; in general,
formulas that arise in the compositional analysis of set programs with integer variables
may contain alternations of existential and universal variables over both integers and
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sets. This paper shows the decidability of such formulas andpresents the complexity of
the decision procedure.

3.2 Proving Simulation Relation Conditions

Another example of whereBAPA constraints are useful is when proving that a given re-
lation on states is a simulation relation between two program fragments. Figure 7 shows
one such example. The concrete procedurestart1 manipulates two sets: a set of running
processes and a set of suspended processes in a process scheduler. The procedurestart1
inserts a new process into the set of running processes, unless there are already too many
running processes. The procedurestart2 is a version of the procedure that operates in
a more abstract state space: it maintains only the union of all processes and a num-
ber of running processes. Figure 7 shows a forward simulation relationr between the
transition relations forstart1 andstart2. The standard simulation relation diagram con-
dition [46] is∀s1.∀s′1.∀s2.(t1(s1, s

′

1)∧r(s1, s2)) ⇒ ∃s′2. (t2(s2, s
′

2)∧r(s2 , s
′

2)). In the
presence of preconditions,t1(s1, s

′

1) = (pre1(s1) ⇒ post1(s1, s
′

1)) andt2(s2, s
′

2) =
(pre2(s2) ⇒ post2(s2, s

′

2)), and sufficient conditions for simulation relation are:

1. ∀s1.∀s2.r(s1, s2) ∧ pre2(s2) ⇒ pre1(s1)
2. ∀s1.∀s′1.∀s2.∃s′2. r(s1, s2) ∧ post1(s1, s

′

1) ∧ pre2(s2) ⇒ post2(s2, s
′

2) ∧ r(s2, s
′

2)

Figure 7 showsBAPA formulas that correspond to the simulation relation conditions in
this example. Note that the secondBAPA formula has a quantifier alternation, which
illustrates the relevance of quantifiers inBAPA.

var R : set;
var S : set;

procedure start1(x)
requires x 6⊆ R ∧ |x| = 1 ∧ |R| < MAXR

ensures R′ = R ∪ x ∧ S′ = S

{
R := R ∪ x;

}

var P : set;
var k : set;

procedure start2(x)
requires x 6⊆ P ∧ |x| = 1 ∧ k < MAXR

ensures P′ = P ∪ x ∧ k′ = k + 1
{

P := P ∪ x;
k := k + 1;

}

Simulation relationr:
r((R, S), (P, k)) = (P = R ∪ S ∧ k = |R|)

Simulation relation conditions inBAPA:
1. ∀x,R, S, P, k.(P = R ∪ S ∧ k = |R|) ∧ (x 6⊆ P ∧ |x| = 1 ∧ k < MAXR) ⇒

(x 6⊆ R ∧ |x| = 1 ∧ |R| < MAXR)
2. ∀x,R, S, R′, S′, P, k.∃P′, k′.((P = R ∪ S ∧ k = |R|) ∧ (R′ = R ∪ x ∧ S′ = S) ∧

(x 6⊆ P ∧ |x| = 1 ∧ k < MAXR)) ⇒
(P′ = P ∪ x ∧ k′ = k + 1) ∧ (P′ = R′ ∪ S′ ∧ k′ = |R′|)

Fig. 7. Proving simulation relation inBAPA

3.3 Proving Termination of Programs

We next show howBAPA is useful for proving program termination. A standard tech-
nique for proving termination of a loop is to introduce a ranking functionf that maps
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var iter : set;

procedure iterate()
{

while iter 6= ∅ do

var e : set;
e := choose iter;
iter := iter \ e;
process(e);

done

}

Fig. 8. Terminating program

Ranking function:
f (s) = |s|

Transition relation:
t(iter, iter′) = (∃e. |e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

Termination condition inBAPA:
∀iter.∀iter′. (∃e.|e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

⇒ |iter′| < |iter|

Fig. 9. Termination proof for Figure 8

program state into a non-negative integer, and the prove that the value of the func-
tion decreases at each loop iteration. In other words, ift(s, s′) denotes the relation-
ship between the state at the beginning and end of the procedure, then the condition
∀s.∀s′.t(s, s′) ⇒ f(s) > f(s′) holds. Figure 8 shows an example program that pro-
cesses each element of the initial value of setiter; this program can be viewed as ma-
nipulating an iterator over a data structure that implements a set. Using the the ability to
take cardinality of a set allows us to define a natural rankingfunction for this program.
Figure 9 shows the termination proof based on such ranking function. Note that, because
the loop contains a local variable, the resulting loop transition relation contains an ex-
istential quantifier. The resulting termination conditioncan be expressed as a formula
that belongs toBAPA, and can be discharged using our decision procedure. In general,
we can reduce the termination problem of programs that manipulate both sets and in-
tegers to showing a simulation relation with a fragments of aterminating program that
manipulates only integers, which can be proved terminatingusing techniques [55–57].
The simulation relation condition can be proved correct using ourBAPA decision pro-
cedure whenever the simulation relation is expressible with aBAPA formula.

4 Decision Procedure forBAPA

This section presents our algorithm, denotedα, which reduces aBAPA sentence to an
equivalentPA sentence with the same number of quantifier alternations andan expo-
nential increase in the total size of the formula. This algorithm has several desirable
properties:

1. Given the space and time bounds forPA sentences [61], the algorithmα yields
reasonable space and time bounds for decidingBAPA sentences (Section 5).

2. The algorithmα does not eliminate integer variables, but instead producesan equiv-
alent quantifiedPA sentence. The resultingPA sentence can therefore be decided
usinganydecision procedure forPA, including the decision procedures based on
automata [23,31,44].

3. The algorithmα can eliminate set quantifiers from any extension ofPA. We thus
obtain a technique for adding a particular form of set reasoning to every extension
of PA, and the technique preserves the decidability of the extension. One example
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of decidable theory that extendsPA is MSOL over strings, see See Section 11 for
the discussion.

4. For simplicity we present the algorithmα as a decision procedure for formulas
with no free variables, but the algorithm can be used to transform and simplify
formulas with free variables as well, because it transformsone quantifier at a time
starting from the innermost one. Because of this feature, wecan use the algorithm
α to project out local state components from formulas that describe invariants and
transition relations, and simplify the resulting formulas.

We next describe the algorithmα for transforming aBAPA sentenceF0 into a PA

sentence. As the first step of the algorithm, transformF0 into prenex form
Qpvp. . . . Q1v1. F (v1, . . . , vp) (1)

whereF is quantifier-free, and each quantifierQivi is of one the forms∃k, ∀k, ∃y, ∀y
wherek denotes an integer variable andy denotes a set variable.

The next step of the algorithm is to separateF into BA part andPA part. To achieve
this, replace each formulax = y wherex andy are sets, with the conjunctionx ⊆
y ∧ y ⊆ x, and replace each formulax ⊆ y with the equivalent formula|x ∩ yc| = 0.
In the resulting formula, each setx occurs in some term|t(x)|. Next, use the same
reasoning as when generating disjunctive normal form for propositional logic to write
each set expressiont(x) as a union of cubes (regions in Venn diagram [74]) of the form∧n

i=1 xαi

i wherexαi

i is eitherxi or xc
i ; hence there arem = 2n cubess1, . . . , sm.

Suppose thatt(x) = sj1 ∪ . . . sja
; then replace the term|t(x)| with the term

∑a

i=1 |sji
|.

In the resulting formula, each setx appears in an expression of the form|si| wheresi is
a cube. For eachsi introduce a new variableli. Then the resulting formula is equivalent
to

Qpvp. . . . Q1v1.

∃+l1, . . . , lm.
Vm

i=1
|si| = li ∧ G1

(2)

whereG1 is aPA formula andm = 2n. Formula (2) is the starting point of the main
phase of algorithmα. The main phase of the algorithm successively eliminates quanti-
fiersQ1v1, . . . , Qpvp while maintaining a formula of the form

Qpvp . . . Qrvr.

∃+l1 . . . lq.
Vq

i=1
|si| = li ∧ Gr

(3)

whereGr is aPA formula,r grows from1 to p + 1, andq = 2e wheree for 0 ≤ e ≤ n
is the number of set variables amongvp, . . . , vr. The lists1, . . . , sq is the list of all2e

partitions formed from the set variables amongvp, . . . , vr.
We next show how to eliminate the innermost quantifierQrvr from the formula (3).

During this process, the algorithm replaces the formulaGr with a formulaGr+1 which
has more integer quantifiers. Ifvr is an integer variable then the number of setsq re-
mains the same, and ifvr is a set variable, thenq reduces from2e to 2e−1. We next
consider each of the four possibilities∃k, ∀k, ∃y, ∀y for the quantifierQrvr.

Consider first the case∃k. Becausek does not occur in
∧q

i=1 |si| = li, simply move
the existential quantifier toGr and letGr+1 = ∃k.Gr, which completes the step.

For universal quantifiers, observe that

¬(∃+
l1 . . . lq.

q
^

i=1

|si| = li ∧ Gr)
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is equivalent to∃+l1 . . . lq.
∧q

i=1 |si| = li ∧ ¬Gr, because the existential quantifier is
used as a let-binding, so we may first substitute all valuesli into Gr, then perform the
negation, and then extract back the definitions of all valuesli. Given that the universal
quantifier∀k can be represented as a sequence of unary operators¬∃k¬, from the elim-
ination of∃k we immediately obtain the elimination of∀k; it turns out that it suffices
to letGr+1 = ∀k.Gr.

We next show how to eliminate an existential set quantifier∃y from

∃y. ∃+
l1 . . . lq.

q
^

i=1

|si| = li ∧ Gr (4)

which is equivalent to∃+l1 . . . lq. (∃y.
∧q

i=1 |si| = li) ∧ Gr. This is the key step of
the algorithm and relies on the following lemma, whose proofis in Section 9.

Lemma 1. Let b1, . . . , bn be finite disjoint sets, andl1, . . . , ln, k1, . . . , kn be natural
numbers. Then the following two statements are equivalent:(1) There exists a finite set
y such that

∧n

i=1 |bi ∩ y| = ki ∧ |bi ∩ yc| = li and (2)
∧n

i=1 |bi| = ki + li. Moreover,
the statement continues to hold if for any subset of indicesi the conjunct|bi ∩ y| = ki

is replaced by|bi ∩ y| ≥ ki or the conjunct|bi ∩ yc| = li is replaced by|bi ∩ yc| ≥ li,
provided that|bi| = ki + li is replaced by|bi| ≥ ki + li, as indicated in Figure 10.

original formula eliminated form
∃y. . . . |b ∩ y| ≥ k ∧ |b ∩ yc| ≥ l . . . |b| ≥ k + l

∃y. . . . |b ∩ y| = k ∧ |b ∩ yc| ≥ l . . . |b| ≥ k + l

∃y. . . . |b ∩ y| ≥ k ∧ |b ∩ yc| = l . . . |b| ≥ k + l

∃y. . . . |b ∩ y| = k ∧ |b ∩ yc| = l . . . |b| = k + l

Fig. 10.Rules for Eliminating Quantifiers from Boolean Algebra Expressions

In the quantifier elimination step, assume without loss of generality that the set variables
s1, . . . , sq are numbered such thats2i−1 ≡ s′i ∩ yc ands2i ≡ s′i ∩ y for some cubes′i.
Then apply Lemma 1 and replace each pair of conjuncts

|s′i ∩ y
c| = l2i−1 ∧ |s′i ∩ y| = l2i

with the conjunct|s′i| = l2i−1 + l2i, yielding formula

∃+
l1 . . . lq.

q′
^

i=1

|s′i| = l2i−1 + l2i ∧ Gr (5)

for q′ = 2e−1. Finally, to obtain a formula of the form (3) forr + 1, introduce fresh
variablesl′i constrained byl′i = l2i−1 + l2i, rewrite (5) as

∃+
l
′

1 . . . l
′

q′ .

q′
^

i=1

|s′i| = l
′

i ∧ (∃l1 . . . lq.

q′
^

i=1

l
′

i = l2i−1 + l2i ∧ Gr)

and let
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Gr+1 ≡ ∃+
l1 . . . lq.

q′
^

i=1

l
′

i = l2i−1 + l2i ∧ Gr (6)

This completes the description of elimination of an existential set quantifier∃y.
To eliminate a set quantifier∀y, proceed analogously: introduce fresh variablesl′i =

l2i−1 + l2i and letGr+1 ≡ ∀+l1 . . . lq. (
∧q′

i=1 l′i = l2i−1 + l2i) ⇒ Gr, which can be
verified by expressing∀y as¬∃y¬.

After eliminating all quantifiers as described above, we obtain a formula of the form
∃+l. |U| = l∧Gp+1(l). We define the result of the algorithm, denotedα(F0), to be the
PA sentenceGp+1(MAXC).

This completes the description of the algorithmα. Given that the validity ofPA

sentences is decidable, the algorithmα is a decision procedure forBAPA sentences.

Theorem 2. The algorithmα described above maps eachBAPA-sentenceF0 into an
equivalentPA-sentenceα(F0).

Formalization of the algorithm α. To formalize the algorithmα, we have imple-
mented it the functional programming language O’Caml; Section 12 contains the source
code of the implementation. As an illustration, when we run the implementation on the
BAPA formula in Figure 6 which represents a verification condition, we immediately
obtain thePA formula in Figure 11. Note that the structure of the resulting formula
mimics the structure of the original formula: every set quantifier is replaced by the cor-
responding block of quantifiers over non-negative integersconstrained to partition the
previously introduced integer variables. Figure 12 presents the correspondence between
the set variables of theBAPA formula and the integer variables of the translatedPA for-
mula. Note that the relationshipcontent′ = content ∪ e translates into the conjunction
of the constraints|content′ ∩ (content ∪ e)c| = 0 ∧ |(content ∪ e) ∩ content′

c| = 0,
which reduces to the conjunctionl100 = 0 ∧ l011 + l001 + l010 = 0 using the transla-
tion of set expressions into the disjoint union of partitions, and the correspondence in
Figure 12.

The subsequent sections explore the consequences of the existence of the algorithm
α, including an upper bound on the computational complexity of BAPA sentences and
the combination ofBA with proper extensions ofPA. We explain our experience with
using the implementation in Section 6.

5 Complexity

In this section we analyze the algorithmα from Section 4 and obtain space and time
bounds onBAPA from the corresponding space and time bounds forPA. We then show
that the new decision procedure meets good worst-case spacebounds forBA if applied
to BA formulas. Moreover, by construction, our procedure reduces to the procedure for
Presburger arithmetic formulas if there are no set quantifiers. In summary, our decision
procedure is reasonable forBA, does not impose any overhead for purePA formulas,
and the complexity of the generalBAPA validity has the same height of the tower of
exponentials as the complexity ofPA itself.
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∀+l1.∀
+l0. MAXC = l1 + l0 ⇒

∀+l11.∀
+l01.∀

+l10.∀
+l00.

l1 = l11 + l01 ∧ l0 = l10 + l00 ⇒
∀+l111. ∀

+l011. ∀
+l101. ∀

+l001.

∀+l110. ∀
+l010. ∀

+l100. ∀
+l000.

l11 = l111 + l011 ∧ l01 = l101 + l001 ∧
l10 = l110 + l010 ∧ l00 = l100 + l000 ⇒

∀size.∀size ′.

(l111 + l011 + l101 + l001 = 1 ∧
l111 + l011 = 0 ∧
l111 + l011 + l110 + l010 = size ∧
l100 = 0 ∧
l011 + l001 + l010 = 0 ∧
size ′ = size + 1) ⇒
(0 < size ′ ∧
l111 + l101 + l110 + l100 = size ′)

Fig. 11. The translation of theBAPA sentence
from Figure 6 into aPA sentence

general relationship:
li1,...,ik

= |seti1
q ∩ set

i2
q+1 ∩ . . . ∩ set

ik
S |

q = S − (k − 1)
S − number of set variables

in this example:
set1 = content′

set2 = content

set3 = e

l000 = |content′
c
∩ contentc ∩ ec|

l001 = |content′
c
∩ contentc ∩ e|

l010 = |content′
c
∩ content ∩ ec|

l011 = |content′
c
∩ content ∩ e|

l100 = |content′ ∩ contentc ∩ ec|
l101 = |content′ ∩ contentc ∩ e|
l110 = |content′ ∩ content ∩ ec|
l111 = |content′ ∩ content ∩ e|

Fig. 12. The Correspondence between In-
teger Variables in Figure 11 and Set Vari-
ables in Figure 6

5.1 An Elementary Upper Bound

We next show that the algorithm in Section 4 transforms aBAPA sentenceF0 into aPA

sentence whose size is at most one exponential larger and which has the same number
of quantifier alternations.

If F is a formula in prenex form, letsize(F ) denote the size ofF , and letalts(F )
denote the number of quantifier alternations inF . Define the iterated exponentiation
functionexpk(x) by exp0(x) = x andexpk+1(x) = 2expk(x). We have the following
lemma.

Lemma 3. For the algorithmα from Section 4 there is a constantc > 0 such that
size(α(F0)) ≤ 2c·size(F0) andalts(α(F0)) = alts(F0). Moreover, the algorithmα runs
in 2O(size(F0)) space.

We next consider the worst-case space bound onBAPA. Recall first the following
bound on space complexity forPA.

Fact 1 [20, Chapter 3] The validity of aPA sentence of lengthn can be decided in
spaceexp2(O(n)).

From Lemma 3 and Fact 1 we conclude that the validity ofBAPA formulas can be
decided in spaceexp3(O(n)). It turns out, however, that we obtain better bounds on
BAPA validity by analyzing the number of quantifier alternationsin BA andBAPA

formulas.

Fact 2 [61] The validity of aPA sentence of lengthn and the number of quantifier
alternationsm can be decided in space2nO(m)

.

From Lemma 3 and Fact 2 we obtain our space upper bound, which implies the upper
bound on deterministic time.

11



Theorem 4. The validity of aBAPA sentence of lengthn and the number of quantifier
alternationsm can be decided in spaceexp2(O(mn)), and, consequently, in determin-
istic timeexp3(O(mn)).

If we approximate quantifier alternations by formula size, we conclude thatBAPA va-
lidity can be decided in spaceexp2(O(n2)) compared toexp2(O(n)) bound for Pres-
burger arithmetic from Fact 1. Therefore, despite the exponential explosion in the size
of the formula in the algorithmα, thanks to the same number of quantifier alternations,
our bound is not very far from the bound for Presburger arithmetic.

5.2 BA as a Special Case

We next analyze the result of applying the algorithmα to a BA sentenceF0. By a
BA sentence we mean aBA sentence without cardinality constraints, containing only
the standard operations∩,∪, c and the relations⊆, =. At first, it might seem that the
algorithmα is not a reasonable approach to decidingBA formulas given that the best
upper bounds forPA are worse than the corresponding bounds forBA. However, we
identify a special form ofPA sentencesPABA = {α(F0) | F0 is in BA} and show
that such sentences can be decided in2O(n) space, which is good forBA [32]. Our
analysis shows that using binary representations of integers that correspond to the sizes
of sets achieves a similar effect to representing these setsas bitvectors, although the two
representations are not identical.

LetS be the number of set variables in the initial formulaF0 (recall that set variables
are the only variables inF0). Let l1, . . . , lq be the set of free variables of the formula
Gr(l1, . . . , lq); thenq = 2e for e = S + 1 − r. Let w1, . . . , wq be integers specifying
the values ofl1, . . . , lq. We then have the following lemma.

Lemma 5. For eachr where1 ≤ r ≤ S the truth value ofGr(w1, . . . , wq) is equal to
the the truth value ofGr(w̄1, . . . , w̄q) wherew̄i = min(wi, 2

r−1).

Now consider a formulaF0 of sizen with S free variables. Thenα(F0) = GS+1.
By Lemma 3,size(α(F0)) is O(nS2S). By Lemma 5, it suffices for the outermost vari-
ablek to range over the integer interval[0, 2S], and the range of subsequent variables
is even smaller. Therefore, the value of each of the2S+1 − 1 variables can be repre-
sented inO(S) space, which is the same order of space used to represent the names
of variables themselves. This means that evaluating the formulaα(F0) can be done in
the same spaceO(nS2S) as the size of the formula. Representing the valuation assign-
ing values to variables can be done inO(S2S) space, so the truth value of the formula
can be evaluated inO(nS2S) space, which is certainly2O(n). We obtain the following
theorem.

Theorem 6. If F0 is a pureBA formula withS variables and of sizen, then the truth
value ofα(B0) can be computed inO(nS2S) and therefore2O(n) space.

6 Experience Using Our Decision Procedure forBAPA

We have experimented withBAPA in the context of Jahob system [34] for verifying data
structure consistency of Java programs. Jahob parses Java source code annotated with
formulas in Isabelle syntax written in comments, generatesverification conditions, and
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uses decision procedures and theorem provers to discharge these verification conditions.
Jahob currently contains interfaces to the Isabelle interactive theorem prover [51], the
Simplify theorem prover [17] as well as the Omega Calculator[60] and the LASH [44]
decision procedures forPA.

Using Jahob, we have generated verification conditions for several Java program
fragments that require reasoning about sets and their cardinalities, for example proving
the equality relation between the number of elements in a list and the integer fieldsize
after they have been updated. Formulas arising from examples in Section 3 have also
been discharged using our current implementation. We have found that Simplify is able
to deal with some of the formulas involving only sets or only integers, but not with
formulas that relate cardinalities of operations on sets tocardinalities of the individual
sets. These formulas can be proved in Isabelle, but require user interaction in terms
of auxiliary lemmas. On the other hand, our implementation of the decision procedure
automatically discharges these formulas.

Our current implementation makes use of some transformations and simplifications
to reduce formula sizes. We find that eliminating set variables early by substitution is
a highly effective optimization. When using Omega Calculator as the backend for our
system, we also observed that lifting quantifiers to the top level noticeably improve
performance. These transformations effectively extend the range of formulas that the
current system can handle. Our current implementation of the decision procedure and
example formulas can be found on the website [33].

7 Related Work

Our paper is the first result that shows a complexity bound forthe first-order theory
of BAPA. The decidability forBAPA, presented asBA with equicardinality constraints
was presented in [19] (see Section 2). A decision procedure for a special case ofBAPA

was presented in [79], which allows only quantification overelementsbut not oversets
of elements.BAPA is a more general language because singleton sets can represent
elements, so quantification over sets allows modelling quantification over elements. [62]
(which appeared after [38]) shows the decidability ofBA with constant cardinalities.

Presburger arithmetic. The original result on decidability ofPA is [59]. The best
known bound on formula size is [20]. This decision procedurewas improved in [16]
and subsequently in [52]. An analysis based on the number of quantifier alternations is
presented in [61]. Our implementation uses quantifer-elimination based Omega test [60]
which, in our current experience, outperforms other implementations we have tried.
Among the decision procedures for fullPA, [13] is the only proof-generating version,
and is based on a version of [16]. Decidable fragments of arithmetic that go beyondPA

include MSOL over strings [11,31] and [9].

Boolean Algebras. The first results on decidability ofBA are from [45], [1, Chap-
ter 4] and use quantifier elimination, from which one can derive small model prop-
erty; [32] gives the complexity of the satisfiability problem. [48] studies unification in
Boolean rings. The quantifier-free fragment ofBA is shown NP-complete in [47]; see
[39] for a generalization of this result using parameterized complexity of the Bernays-
Schönfinkel-Ramsey class of first-order logic [8, Page 258]which can be decided us-
ing [24] or [7]. [12] gives an overview of several fragments of set theory including

13



theories with quantifiers but no cardinality constraints and theories with cardinality
constraints but no quantification over sets. Quantifier-free formulas are also used in
constraint solving [2,6,15]. Among the systems for interactively reasoning about richer
theories of sets are Isabelle [51], HOL [26], PVS [53], TPS [3]; first-order frameworks
such as Athena [4] can use axiomatizations of sets along withcalls to resolution-based
theorem provers such as Vampire [75] to reason about sets.

Combinations of Decidable Theories.The techniques for combiningquantifier-free
theories [50,63] and their generalizations such as [71–73,77,78] are of great importance
for program verification. Our paper shows a particular combination result forquantified
formulas, which add additional expressive power in writing specifications. Among the
general results for quantified formulas are the Feferman-Vaught theorem for products
[19] and term powers [36, 37]. While we have found quantifiersto be useful in several
contexts, many problems can be encoded in quantifier-free formulas, so it is interesting
to consider a combination ofBAPA with solvers for quantifier-free formulas [21,25,69].
Description logics [5] and two-variable logic with counting [27,54,58] support sets and
cardinalities, and additionally support relations, but donot allow quantification over
sets.

Analyses of Dynamic Data Structures. In addition to the new technical results, one
of the contributions of our paper is to identify the uses of our decision procedure for
verifying data structure consistency. We have shown howBAPA enables the verifica-
tion tools to reason about sets and their sizes. This capability is particularly important
for analyses that handle dynamically allocated data structures where the number of ob-
jects is statically unbounded [35,49,65,76]. Recently, these approaches were extended
to handle the combinations of the constraints representingdata structure contents and
constraints representing numerical properties of data structures [14,64]. Our result pro-
vides a systematic mechanism for building precise and predictable versions of such
analyses. Among other constraints used for data structure analysis,BAPA is unique
in being a complete algorithm for an expressive theory that supports arbitrary quanti-
fiers. As we have illustrated in Section 3, the use of quantifiers is important for proving
verification conditions that include quantified annotations, for computing abstractions
of program fragments that involve local variables, and for proving simulation relation
conditions. We has also illustrated the use ofBAPA for reasoning about termination of
programs that manipulate dynamic data structures by associating integer variables with
sizes of sets that specify the objects in data structures andusing techniques for proving
termination of programs with integers [55–57]. Other possible applications of our deci-
sion procedure include query evaluation in constraint databases [62] and loop invariant
inference [30].

8 Conclusion

Motivated by static analysis and verification of relations between data structure content
and size, we have presented an algorithm for deciding the first-order theory of Boolean
algebras with Presburger arithmetic (BAPA), showed an elementary upper bound on the
worst-case complexity, implemented the algorithm and applied it to several reasoning
tasks. Our experience indicates that the algorithm will be useful as a component of a
decision procedure of our data structure verification system.
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45. L. Loewenheim.Über mögligkeiten im relativkalkül.Math. Annalen, 76:228–251, 1915.
46. Nancy Lynch and Frits Vaandrager. Forward and backward simulations – Part I: Untimed

systems.Information and Computation, 121(2), 1995.
47. Kim Marriott and Martin Odersky. Negative boolean constraints. Technical Report 94/203,

Monash University, August 1994.
48. Ursula Martin and Tobias Nipkow. Boolean unification: The story so far.Journal of Symbolic

Computation, 7(3):275–293, 1989.
49. Anders Møller and Michael I. Schwartzbach. The Pointer Assertion Logic Engine. InProc.

ACM PLDI, 2001.
50. Greg Nelson. Techniques for program verification. Technical report, XEROX Palo Alto

Research Center, 1981.
51. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.Isabelle/HOL: A Proof Assistant

for Higher-Order Logic, volume 2283 ofLNCS. Springer-Verlag, 2002.
52. Derek C. Oppen. Elementary bounds for presburger arithmetic. In Proceedings of the fifth

annual ACM symposium on Theory of computing, pages 34–37. ACM Press, 1973.
53. S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system. In Deepak

Kapur, editor,11th CADE, volume 607 ofLNAI, pages 748–752, jun 1992.
54. Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity results for first-order

two-variable logic with counting.SIAM J. on Computing, 29(4):1083–1117, 2000.
55. Andreas Podelski and Andrey Rybalchenko. A complete method for synthesis of linear

ranking functions. InVMCAI’04, 2004.
56. Andreas Podelski and Andrey Rybalchenko. Transition invariants. InLICS’04, 2004.
57. Andreas Podelski and Andrey Rybalchenko. Transition predicate abstraction and fair termi-

nation. InPOPL’05, 2005.
58. Ian Pratt-Hartmann. Complexity of the two-variable fragment with (binary-coded) counting

quantifiers.CoRR, cs.LO/0411031, 2004.
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APPENDIX

9 Proofs of Lemmas

Lemma 1 Let b1, . . . , bn be finite disjoint sets, andl1, . . . , ln, k1, . . . , kn be natural
numbers. Then the following two statements are equivalent:(1) There exists a finite set
y such that

∧n

i=1 |bi ∩ y| = ki ∧ |bi ∩ yc| = li and (2)
∧n

i=1 |bi| = ki + li. Moreover,
the statement continues to hold if for any subset of indicesi the conjunct|bi ∩ y| = ki

is replaced by|bi ∩ y| ≥ ki or the conjunct|bi ∩ yc| = li is replaced by|bi ∩ yc| ≥ li,
provided that|bi| = ki + li is replaced by|bi| ≥ ki + li, as indicated in Figure 10.

Proof. (⇒) Suppose that there exists a sety satisfying (1). Becausebi ∩ y andbi ∩ yc

are disjoint,|bi| = |bi ∩ y| + |bi ∩ yc|, so |bi| = ki + li when the conjuncts are
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|bi ∩ y| = ki ∧ |bi ∩ yc| = li, and|bi| ≥ ki + li if any of the original conjuncts have
inequality.

(⇐) Suppose that (2) holds. First consider the case of equalities. Suppose that|bi| =
ki + li for each of the pairwise disjoint setsb1, . . . , bn. For eachbi choose a subset
yi ⊆ bi such that|yi| = ki. Because|bi| = ki + li, we have|bi ∩ yc

i | = li. Having
choseny1, . . . , yn, let y =

⋃n

i=1 yi. Fori 6= j we havebi ∩ yj = ∅ andbi ∩ yc
j = bi, so

bi ∩ y = yi andbi ∩ yc = bi ∩ yc
i . By the choice ofyi, we conclude thaty is the desired

set for which (1) holds. The case of inequalities is analogous: for example, in the case
|bi ∩ y| ≥ ki ∧ |bi ∩ yc| = li, chooseyi ⊆ bi such that|yi| = |bi| − li.

Lemma 3. For the algorithmα from Section 4 there is a constantc > 0 such that
size(α(F0)) ≤ 2c·size(F0) andalts(α(F0)) = alts(F0). Moreover, the algorithmα runs
in 2O(size(F0)) space.

Proof. To gain some intuition on the size ofα(F0) compared to the size ofF0, compare
first the formula in Figure 11 with the original formula in Figure 6. Letn denote the
size of the initial formulaF0 and letS be the number of set variables. Note that the
following operations are polynomially bounded in time and space: 1) transforming a
formula into prenex form, 2) transforming relationsb1 = b2 and b1 ⊆ b2 into the
form |b| = 0. Introducing set variables for each partition and replacing each|b| with
a sum of integer variables yields formulaG1 whose size is bounded byO(n2SS) (the
last S factor is because representing a variable from the set ofK variables requires
spacelog K). The subsequent transformations introduce the existing integer quantifiers,
whose size is bounded byn, and introduce additionally2S−1 + . . . + 2 + 1 = 2S − 1
new integer variables along with the equations that define them. Note that the defining
equations always have the forml′i = l2i−1 + l2i and have size bounded byS. We
therefore conclude that the size ofα(F0) is O(nS(2S + 2S)) and thereforeO(nS2S),
which is certainlyO(2cn) for anyc > 1. Moreover, note that we have obtained a more
precise boundO(nS2S) indicating that the exponential explosion is caused only byset
variables. Finally, the fact that the number of quantifier alternations is the same inF0

andα(F0) is immediate because the algorithm replaces one set quantifier with a block
of corresponding integer quantifiers.

Lemma 5.For eachr where1 ≤ r ≤ S the truth value ofGr(w1, . . . , wq) is equal to
the the truth value ofGr(w̄1, . . . , w̄q) wherew̄i = min(wi, 2

r−1).

Proof. We prove the claim by induction. Forr = 1, observe that the translation of a
quantifier-free part of the pureBA formula yields aPA formulaF1 whose all atomic
formulas are of the formli1 + . . . + lik

= 0, which are equivalent to
∨k

j=1 lij
= 0.

Therefore, the truth-value ofF1 depends only on whether the integer variables are zero
or non-zero, which means that we may restrict the variables to interval[0, 1].

For the inductive step, consider the elimination of a set variable, and assume that
the property holds forGr and for all q tuples of non-negative integersw1, . . . , wq.
Let q′ = q/2 and w′

1, . . . , w
′

q′ be a tuple of non-negative integers. We show that
Gr+1(w

′

1, . . . , w
′

q′) is equivalent toGr+1(w̄
′

1, . . . , w̄
′

q′).
Suppose first thatGr+1(w̄

′

1, . . . , w̄
′

q′ ) holds. Then for eachw′

i there arew2i−1 and
w2i such thatw̄′

i = u2i−1 + u2i andGr(u1, . . . , uq). We define witnessesw1, . . . , wq

as follows. Ifw′

i ≤ 2r, then letw2i−1 = u2i−1 andw2i = u2i. If w′

i > 2r then either
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u2i−1 > 2r−1 or u2i > 2r−1 (or both). Ifu2i−1 > 2r−1, then letw2i−1 = w′

i − u2i

and w2i = u2i. Note thatGr(. . . , w2i−1, . . .) ⇐⇒ Gr(. . . , u2i−1, . . .) ⇐⇒
Gr(. . . , 2

r−1, . . .) by induction hypothesis because bothu2i−1 > 2r−1 andw2i−1 >
2r−1. For w1, . . . , wq chosen as above we therefore havew′

i = w2i−1 + w2i and
Gr(w1, . . . , wq), which by definition ofGr+1 means thatGr+1(w

′

1, . . . , w
′

q′) holds.
Conversely, suppose thatGr+1(w

′

1, . . . , w
′

q′) holds. Then there arew1, . . . , wq such
that Gr(w1, . . . , wq) andw′

i = w2i−1 + w2i. If w2i−1 ≤ 2r−1 andw2i ≤ w2i then
w′

i ≤ 2r so letu2i−1 = w2i−1 andu2i = w2i. If w2i−1 > 2r−1 andw2i > w2i

then letu2i−1 = 2r−1 andu2i = 2r−1. If w2i−1 > 2r−1 andw2i ≤ 2r−1 then let
u2i−1 = 2r − w2i andu2i = w2i. By induction hypothesis we haveGr(u1, . . . , uq) =
Gr(w1, . . . , wq). Furthermore,u2i−1 + u2i = w̄′

i, soGr+1(w̄
′

1, . . . , w̄
′

q′) by definition
of Gr+1.

10 BAPA with Potentially Infinite Sets
We next sketch the extension of our algorithmα (Section 4) to the case when the uni-
verse of the structure may be infinite, and the underlying language has the ability to
distinguish between finite and infinite sets. Infinite sets are useful in program analy-
sis for modelling pools of objects such as those arising in dynamic object allocation.
This section presents an approach that avoids directly reasoning about cardinalities of
infinite sets and thus remains within the language ofPA. (As was observed in [19], an
alternative is to use a generalization ofPA that admits infinite cardinals.)

We generalize the language ofBAPA and the interpretation ofBAPA operations as
follows.
1. Introduce unary predicatefin(b) which is true iff b is a finite set. The predicate

fin(b) allows us to generalize our algorithm to the case of infinite universe, and
additionally gives the expressive power to distinguish between finite and infinite
sets. For example, usingfin(b) we can express bounded quantification over finite or
over infinite sets.

2. Define|b| to be the integer zero ifb is infinite, and the cardinality ofb if b is finite.
3. Introduce propositional variables denoted by letters such asp, q, and quantifica-

tion over propositional variables. Extend also the underlying PA formulas with
propositional variables, which is acceptable because a variable p can be treated
as a shorthand for an integer from{0, 1} if each use ofp as an atomic formula is
interpreted as the atomic formula(p = 1). Our extended algorithm uses the equiv-
alencesfin(b)⇔ p to represent the finiteness of sets just as it uses the equations
|b| = l to represent the cardinalities of finite sets.

4. Introduce a propositional constantFINU such thatfin(U)⇔FINU. This proposi-
tional constant enables equivalence preserving quantifierelimination over the set
of models that includes both models with finite universeU and the models with
infinite universeU .

Denote the resulting extended languageBAPA∞.
The following lemma generalizes Lemma 1 for the case of equalities.

Lemma 7. Let b1, . . . , bn be disjoint sets,l1, . . . , ln, k1, . . . , kn be natural numbers,
andp1, . . . , pn, q1, . . . , qn be propositional values. Then the following two statements
are equivalent:
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1. There exists a sety such that

n
^

i=1

|bi ∩ y| = ki ∧ (fin(bi ∩ y)⇔ pi) ∧
|bi ∩ yc| = li ∧ (fin(bi ∩ yc)⇔ qi)

(7)

2.

n̂

i=1

(pi ∧ qi ⇒ |bi| = ki + li) ∧
(fin(bi)⇔(pi ∧ qi))

(8)

Proof. (⇒) Suppose that there exists a sety satisfying (7). Frombi = (bi∩y)∪(bi∩yc),
we havefin(bi)⇔(pi ∧ qi). Furthermore, ifpi andqi hold, then bothbi ∩ y andbi ∩ yc

are finite so the relation|bi| = |bi ∩ y| + |bi ∩ yc| holds.
(⇐) Suppose that (8) holds. For eachi we choose a subsetyi ⊆ bi, depending on

the truth values ofpi andqi, as follows.

1. If bothpi andqi are true, thenfin(bi) holds, sobi is finite. Chooseyi as any subset
of bi with ki elements, which is possible sincebi haski + li elements.

2. If pi does not hold, butqi holds, thenfin(bi) does not hold, sobi is infinite. Choose
y′

i as any finite set withli elements and letyi = bi\y′

i be the corresponding cofinite
set.

3. Analogously, ifpi holds, butqi does not hold, thenbi is infinite; chooseyi as any
finite subset ofbi with ki elements.

4. If pi andqi are both false, thenbi is also infinite; every infinite set can be written
as a disjoint union of two infinite sets, so letyi be one such set.

Let y =
⋃n

i=1 yi. As in the proof of Lemma 1, we havebi ∩ y = yi andbi ∩ yc = yc
i .

By construction ofy1, . . . , yn we conclude that (7) holds.

The algorithmα for BAPA∞ is analogous to the algorithm forBAPA. In each step,
the new algorithm maintains a formula of the form

Qpvp . . . Qrvr.

∃+l1 . . . lq. ∃p1 . . . pq.

(
Vq

i=1
|si| = li ∧ (fin(si)⇔ pi)) ∧ Gr

As in Section 4, the algorithm eliminates an integer quantifier ∃k by lettingGr+1 =
∃k.Gr and eliminates an integer quantifier∀k by lettingGr+1 = ∀k.Gr. Furthermore,
just as the algorithm in Section 4 uses Lemma 1 to reduce a set quantifier to integer
quantifiers, the new algorithm uses Lemma 7 for this purpose.The algorithm replaces

∃y. ∃+l1 . . . lq. ∃p1 . . . pq.

(
Vq

i=1
|si| = li ∧ (fin(si)⇔ pi)) ∧ Gr

with
∃+l′1 . . . l′q′ . ∃p′

1 . . . p′

q′ .

(
Vq′

i=1
|s′i| = l′i ∧ (fin(s′i)⇔ p′

i)) ∧ Gr+1

for q′ = q/2, and
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Gr+1 ≡ ∃+l1 . . . lq. ∃p1, . . . , pq.
“

Vq′

i=1
(p2i−1 ∧ p2i ⇒ l′i = l2i−1 + l2i) ∧

(p′

i ⇔(p2i−1 ∧ p2i))
”

∧ Gr

For the quantifier∀y the algorithm analogously generates

Gr+1 ≡ ∀+l1 . . . lq. ∀p1, . . . , pq.
“

Vq′

i=1
(p2i−1 ∧ p2i ⇒ l′i = l2i−1 + l2i) ∧

(p′

i ⇔(p2i−1 ∧ p2i))
”

⇒ Gr

After eliminating all quantifiers, the algorithm obtains a formula of the form
∃+l.∃p. |U| = l ∧ (fin(U)⇔ p) ∧ Gp+1(l, p). We define the result of the algorithm
to be thePA sentenceGp+1(MAXC, FINU).

This completes our description of the generalized algorithm α for BAPA∞. The
complexity analysis from Section 5 also applies to the generalized version. We also
note that our algorithm yields an equivalent formula over any family of models. A sen-
tence is valid in a set of models iff it is valid on each model. Therefore, the validity
of a BAPA∞ sentenceF0 is given by applying to the formulaα(F0)(MAXC, FINU)
a form of universal quantifier over all pairs(MAXC, FINU) that determine the char-
acteristics of the models in question. For example, for the validity over the models
with infinite universe we useα(F0)(0, false), for validity over all finite models we use
∀k.α(F0)(k, true), and for the validity over all models we use thePA formula

α(F0)(0, false) ∧ ∀k.α(F0)(k, true).

We therefore have the following result.

Theorem 8. The algorithm above effectively reduces the validity ofBAPA∞ sentences
to the validity of Presburger arithmetic formulas with the same number of quantifier al-
ternations, and the increase in formula size exponential inthe number of set variables;
the reduction works for each of the following: 1) the set of all models, 2) the set of
models with infinite universe only, and 3) the set of all models with finite universe.

11 Relationship with MSOL over Strings

The monadic second-order logic (MSOL) over strings is a decidable logic that can
encode Presburger arithmetic by encoding addition using one successor symbol and
quantification over sets. This logic therefore simultaneously supports sets and integers,
so it is natural to examine its relationship withBAPA. It turns out that there are two
important differences between MSOL over strings andBAPA:

1. BAPA can express relationships of the form|A| = k whereA is a set variable and
k is an integer variable; such relation is not definable in MSOLover strings.

2. In MSOL over strings, the sets contain binary digits of an integer whereas inBAPA

the sets containuninterpreted elements.

Given these differences, a natural question is to consider the decidability of an extension
of MSOL that allows stating relations|A| = k whereA is a set of digits andk is an in-
teger variable. Note that by saying∃k.|A| = k ∧ |B| = k we can express|A| = |B|, so
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we obtain MSOL with equicardinality constraints. However,extensions of MSOL over
strings with equicardinality constraints are known to be undecidable; we review some
reductions in Section 11.2. Undecidability results such asthese are what perhaps led to
the conjectures thatBAPA itself is undecidable [79, Page 12]. In this paper we pointed
out thatBAPA is, in fact, decidable and proved that it has an elementary decision pro-
cedure. Moreover, we present a combination ofBA with MSOL overn-successors that
is still decidable.

11.1 Decidability of MSOL with Cardinalities on Uninterpre ted Sets

We next note that our algorithm also applies to monadic second-order logic of one
successors, which is more expressive thanPA itself [70, Page 400], [10].

Consider the multisorted languageBAMSOL defined as follows. First,BAMSOL

contains all relations of monadic second-order logic of onesuccessors, whose variables
range over strings over ann-ary alphabet and sets of such strings. Second,BAMSOL

contains sets of uninterpreted elements and boolean algebra operations on them. Third,
BAMSOL allows stating relationships of the form|x| = k wherex is a set of un-
interpreted elements andk is a string representing a natural number. Because allPA

operations are definable in MSOL of 1-successor, the algorithm α applies in this case
as well. Indeed, the algorithmα only needs a “lower bound” on the expressive power
of the theory of integers thatBA is combined with: the ability to state constraints of
the forml′i = l2i−1 + l2i, and quantification over integers. Therefore, applyingα to a
BAMSOL formula results in an MSOL formula. This shows thatBAMSOL is decidable
and can be decided using a combination of algorithmα and a tool such as [31]. By
Lemma 3, the decision procedure forBAMSOL based on translation to MSOL has up-
per bound ofexpn(O(n)) using a decision procedure such as [31]. The corresponding
non-elementary lower bound follows from the lower bound on MSOL itself [68].

11.2 Undecidability of MSOL of Integer Sets with Cardinalities

We first note that there is a reduction from the Post Correspondence Problem that shows
the undecidability of MSOL with equicardinality constraints. Namely, we can repre-
sent binary strings by finite sets of natural numbers. In thisencoding, given a position,
MSOL itself can easily express the local property that, at a given position, a string con-
tains a given finite substring. The equicardinality gives the additional ability of finding
ann-th element of an increasing sequence of elements. To encodea PCP instance, it
suffices to write a formula checking the existence of a string(represented as setA) and
the existence of two increasing sequences of equal length (represented by setsU and
D), such that for eachi, there exists a pair(aj , bj) of PCP instance such that the posi-
tion starting atUi contains the constant stringaj , andUi+1 = Ui + |aj |, and similarly
the position starting atDi containsbj andDi+1 = Di + |bj|.
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12 O’Caml source code of algorithmα

(* -------------------------------------------- *)
(* datatype of formulas *)

type ident = string

type binder = Forallset | Existsset
| Forallint | Existsint | Forallnat | Existsnat

type form =
| Not of form
| And of form list | Or of form list | Impl of form * form
| Bind of binder * ident * form
| Inteq of intTerm * intTerm | Less of intTerm * intTerm
| Seteq of setTerm * setTerm | Subseteq of setTerm * setTerm

and intTerm =
| Intvar of ident | Const of int
| Plus of intTerm list | Minus of intTerm * intTerm | Times of in t * intTerm
| Card of setTerm

and setTerm =
| Setvar of ident | Emptyset | Fullset | Complement of setTerm
| Union of setTerm list | Inter of setTerm list

let maxcard = "MAXC"

(* -------------------------------------------- *)
(* algorithm \alpha *)

(* replace Seteq and Subseteq with Card(...)=0 *)
let simplify_set_relations (f:form) : form =

let rec sform f = match f with
| Not f -> Not (sform f)
| And fs -> And (List.map sform fs)
| Or fs -> Or (List.map sform fs)
| Impl(f1,f2) -> Impl(sform f1,sform f2)
| Bind(b,id,f1) -> Bind(b,id,sform f1)
| Less(it1,it2) -> Less(it1, it2)
| Inteq(it1,it2) -> Inteq(it1,it2)
| Seteq(st1,st2) -> And[sform (Subseteq(st1,st2));

sform (Subseteq(st2,st1))]
| Subseteq(st1,st2) -> Inteq(Card(Inter[st1;Complement st2]),Const 0)
in sform f

(* split f into quantifier sequence and body *)
let split_quants_body f =

let rec vl f acc = match f with
| Bind(b,id,f1) -> vl f1 ((b,id)::acc)
| f -> (acc,f)
in vl f []

(* extract set variables from quantifier sequence *)
let extract_set_vars quants =

List.map (fun (b,id) -> id)
(List.filter (fun (b,id) -> (b=Forallset || b = Existsset))

quants)

type partition = (ident * setTerm) list

(* make canonical name for integer variable naming a cube *)
let make_name sts =

let rec mk sts = match sts with
| [] -> ""
| (Setvar _)::sts1 -> "1" ˆ mk sts1
| (Complement (Setvar _))::sts1 -> "0" ˆ mk sts1
| _ -> failwith "make_name: unexpected partition form"
in "l_" ˆ mk sts

(* make all cubes over vs *)
let generate_partition (vs : ident list) : partition =

24



let add id ss = (Setvar id)::ss in
let addc id ss = Complement (Setvar id)::ss in
let add_set id inters =

List.map (add id) inters @
List.map (addc id) inters in

let mk_nm is = (make_name is, Inter is) in
List.map mk_nm

(List.map List.rev
(List.fold_right add_set vs [[]]))

(* is the set term true in the set valuation
-- reduces to propositional reasoning *)

let istrue (st:setTerm) (id,ivaluation) : bool =
let valuation = match ivaluation with
| Inter v -> v
| _ -> failwith "wrong valuation" in
let lookup v =

if List.mem (Setvar v) valuation then true
else if List.mem (Complement (Setvar v)) valuation then fal se
else failwith "istrue: unbound var in valuation" in

let rec check st = match st with
| Setvar v -> lookup v
| Emptyset -> false
| Fullset -> true
| Complement st1 -> not (check st1)
| Union sts -> List.fold_right (fun st1 t -> check st1 || t) sts false
| Inter sts -> List.fold_right (fun st1 t -> check st1 && t) sts true
in check st

(* compute cardinality of set expression
as a sum of cardinalities of cubes *)

let get_sum (p:partition) (st:setTerm) : intTerm list =
let get_list (id,inter) = match inter with
| Inter ss -> ss
| _ -> failwith "failed inv in get_sum"
in
List.map (fun (id,inter) -> Intvar id)

(List.filter (istrue st) p)

(* replace cardinalities of sets with sums of
variables denoting cube cardinalities *)

let replace_cards (p:partition) (f:form) : form =
let rec repl f = match f with
| Not f -> Not (repl f)
| And fs -> And (List.map repl fs)
| Or fs -> Or (List.map repl fs)
| Impl(f1,f2) -> Impl(repl f1,repl f2)
| Bind(b,id,f1) -> Bind(b,id,repl f1)
| Less(it1,it2) -> Less(irepl it1,irepl it2)
| Inteq(it1,it2) -> Inteq(irepl it1,irepl it2)
| Seteq(_,_)|Subseteq(_,_) -> failwith "failed inv in repl ace_cards"
and irepl it = match it with
| Intvar _ -> it
| Const _ -> it
| Plus its -> Plus (List.map irepl its)
| Minus(it1,it2) -> Minus(irepl it1, irepl it2)
| Times(k,it1) -> Times(k, irepl it1)
| Card st -> Plus (get_sum p st)
in repl f

let apply_quants quants f =
List.fold_right (fun (b,id) f -> Bind(b,id,f)) quants f

let make_defining_eqns id part =
let rec mk ps = match ps with
| [] -> []
| (id1,Inter (st1::sts1)) :: (id2,Inter (st2::sts2)) :: ps 1

when (st1=Setvar id && st2=Complement (Setvar id) && sts1=s ts2) ->
(Inter sts1,make_name sts1,id1,id2) :: mk ps1
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| _ -> failwith "make_triples: unexpected partition form" i n
let rename_last lss = match lss with
| [(s,l,l1,l2)] -> [(s,maxcard,l1,l2)]
| _ -> lss in
rename_last (mk part)

(* -------------------------- *)
(* main loop of the algorithm *)

let rec eliminate_all quants part gr = match quants with
| [] -> gr
| (Existsint,id)::quants1 ->

eliminate_all quants1 part (Bind(Existsint,id,gr))
| (Forallint,id)::quants1 ->

eliminate_all quants1 part (Bind(Forallint,id,gr))
| (Existsnat,id)::quants1 ->

eliminate_all quants1 part (Bind(Existsnat,id,gr))
| (Forallnat,id)::quants1 ->

eliminate_all quants1 part (Bind(Forallnat,id,gr))
| (Existsset,id)::quants1 ->

let eqns = make_defining_eqns id part in
let newpart = List.map (fun (s,l’,_,_) -> (l’,s)) eqns in
let mk_conj (_,l’,l1,l2) = Inteq(Intvar l’,Plus[Intvar l1 ;Intvar l2]) in
let conjs = List.map mk_conj eqns in
let lquants = List.map (fun (l,_) -> (Existsnat,l)) part in
let gr1 = apply_quants lquants (And (conjs @ [gr])) in
eliminate_all quants1 newpart gr1

| (Forallset,id)::quants1 ->
let eqns = make_defining_eqns id part in
let newpart = List.map (fun (s,l’,_,_) -> (l’,s)) eqns in
let mk_conj (_,l’,l1,l2) = Inteq(Intvar l’,Plus[Intvar l1 ;Intvar l2]) in
let conjs = List.map mk_conj eqns in
let lquants = List.map (fun (l,_) -> (Forallnat,l)) part in
let gr1 = apply_quants lquants (Impl(And conjs, gr)) in
eliminate_all quants1 newpart gr1

(* putting everything together *)

let alpha (f:form) : form =
(* assumes f in prenex form *)
let (quants,fm) = split_quants_body f in
let fm1 = simplify_set_relations fm in
let setvars = List.rev (extract_set_vars quants) in
let part = generate_partition setvars in
let g1 = replace_cards part fm1 in
eliminate_all quants part g1
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