
Stephen J. Garland, Nancy A. Lynch, Joshua A. Tauber, and Mandana Vaziri
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

August 14, 2003

1Editorial note: Additions are currently being made to this document. These additions largely concern the formal semantics of IOA, usage of software tools with IOA, and annotations of IOA programs for use with these tools. Notes within the document indicate sections currently being extended.
Abstract

IOA is a simple formal language for modeling distributed systems as collections of interacting state machines, called input/output automata. The IOA Toolkit supports a range of validation methods, including simulation and machine-checked proofs. This manual and reference guide defines the IOA language.

Research on IOA has been supported in part by the following sponsors:

- DARPA under contracts N00014-92-J-1795 and N66001-99-2-891702 monitored by the Office of Naval Research and contract F19628-95-C-0018 monitored by Hanscom Air Force Base;

- the National Science Foundation under grants CCR-9504248 and CCR-9225124;

- by the Air Force Office of Scientific Research and the Office of Naval Research under contract F49620-94-1-0199;

- NTT under contract MIT9904-12; and

- Draper Laboratory under IRaD project 5005.
Contents

I IOA Tutorial

1 Introduction
 1.1 I/O automata .. 1
 1.2 Executions and traces .. 4
 1.3 Operations on automata 4
 1.4 Properties of automata 4

2 Using IOA to formalize descriptions of I/O automata 5

3 Data types in IOA descriptions 7

4 IOA descriptions for primitive automata 8
 4.1 Automaton names and parameters 8
 4.2 Action signatures ... 8
 4.3 State variables ... 9
 4.4 Transition relations 10
 4.4.1 Transition parameters 10
 4.4.2 Preconditions ... 11
 4.4.3 Effects .. 11
 4.4.4 Local parameters 15
 4.5 Tasks ... 16

5 IOA notations for operations on automata 17
 5.1 Composition .. 17
 5.2 Specialization .. 19
 5.3 Hiding output actions in a composition 19

6 IOA descriptions of properties of automata 19
 6.1 Invariants ... 20
 6.2 Simulation relations 20

II IOA Data Types

7 Built-in primitive types 22
 7.1 Booleans .. 23
 7.2 Integers .. 23
 7.3 Natural numbers .. 23
 7.4 Real numbers ... 24
 7.5 Characters ... 24
 7.6 Strings ... 24
8 Built-in type constructors 24
 8.1 Arrays .. 24
 8.2 Finite sets 25
 8.3 Finite multisets 25
 8.4 Finite sequences 25
 8.5 Finite mappings 25
 8.6 Null elements 26

9 Data type semantics 26
 9.1 Axiomatic specifications 27
 9.2 Axiom schemes 29
 9.3 Combining LSL specifications 30
 9.4 Renaming sorts and operators in LSL specifications 30
 9.5 Stating intended consequences of LSL specifications 31
 9.6 Recording assumptions in LSL specifications ... 33
 9.7 Built-in operators, overloading, and qualification .. 34
 9.8 Shorthands 34

10 User-defined data types in IOA 36

III IOA Reference Manual 39

11 Logical preliminaries 39
 11.1 Syntax .. 39
 11.2 Semantics 40
 11.3 Further terminology 41

12 Lexical syntax 41

13 IOA specifications 42

14 Type and type constructor definitions 43

15 Automaton definitions 44

16 Primitive automata 45
 16.1 Primitive automaton definitions 45
 16.2 Automaton states 46
 16.3 Automaton transitions 47
 16.4 Automaton tasks 49

17 Composite automata 50

18 Statements about automata 51

IV LSL Reference Manual 53

19 Lexical syntax 53
20 Traits
21 Sort and operator declarations
22 Axioms
23 Shorthands for sorts
24 Trait references
25 Consequences
26 Converts

V Appendices

A Axioms for built-in data types and type constructors
 A.1 Auxiliary traits ... 62
 A.2 Booleans ... 63
 A.3 Characters ... 64
 A.4 Integers ... 65
 A.5 Natural numbers ... 66
 A.6 Real numbers .. 67
 A.7 Strings ... 68
 A.8 Arrays .. 69
 A.9 Finite mappings ... 70
 A.10 Finite multisets .. 71
 A.11 Null elements .. 72
 A.12 Finite sequences ... 73
 A.13 Finite sets ... 74

B Software tools for IOA
 B.1 ioaCheck: a static semantic checker for IOA and LSL 75
 B.2 Intermediate language .. 76
 B.3 ioa2lsl and ioa2isabelle: interfaces to theorem provers 80

C Bibliography

iii
Part I

IOA Tutorial

The Input/Output (I/O) automaton model, developed by Nancy Lynch and Mark Tuttle [11], models components in asynchronous concurrent systems as labeled transition systems. Lynch’s book, Distributed Algorithms [10], describes many algorithms in terms of I/O automata and contains proofs of various properties of these algorithms.

IOA is a precise language for describing I/O automata and for stating their properties. It extends and formalizes the descriptive notations used in Distributed Algorithms, uses Larch specifications [8] to define the semantics of abstract data types and I/O automata, and supports a variety of analytic tools. These tools range from light weight tools, which check the syntax of automaton descriptions, to medium weight tools, which simulate the action of an automaton, and to heavier weight tools, which provide support for proving properties of automata.

The document is organized as follows. Part I contains an informal introduction to I/O automata and a tutorial for IOA. The tutorial consists largely of examples that illustrate different aspects of the language; reading it should be sufficient to begin writing complete IOA descriptions. Part II describes the data types available for use in IOA descriptions. Finally, Parts III and IV present the formal syntax and semantics of the language.

1 Introduction

I/O automata provide a mathematical model suitable for describing asynchronous concurrent systems. The model provides a precise way of describing and reasoning about system components that interact with each other and that operate at different speeds. It also permits components that have been described as I/O automata to be composed into larger automata.

1.1 I/O automata

An I/O automaton is a simple type of state machine in which the transitions are associated with named actions. The actions are classified as either input, output, or internal. The inputs and outputs are used for communication with the automaton’s environment, whereas internal actions are visible only to the automaton itself. The input actions are assumed not to be under the automaton’s control, whereas the automaton itself controls which output and internal actions should be performed.

![Diagram of a process](image_url)

Figure 1.1: A process

A typical example of an I/O automaton is a process in an asynchronous distributed system. Figure 1.1 shows the interface of one such process. The circle represents the automaton, named P_i,

1This example is essentially the same as the example in Distributed Algorithms [10], Chapter 8.
where \(i \) is a process index, and the arrows represent input and output actions. An incoming arrow is an input action, and an outgoing arrow is an output action. Internal actions are not shown. Process \(P_i \) can receive inputs of the form \(\text{init}(v)_i \), each of which represents the receipt of an input value \(v \), and it can produce outputs of the form \(\text{decide}(v)_i \), each of which represents a decision on the value of \(v \). In order to reach a decision, process \(P_i \) may communicate with other processes using a message passing system. \(P_i \)'s interface to the message system consists of output actions of the form \(\text{send}(m)_{i,j} \), each of which represents sending a message \(m \) to some process named \(P_j \), and input actions of the form \(\text{receive}(m)_{i,j} \), each of which represents receiving a message \(m \) from process \(P_j \). When \(P_i \) performs any of the indicated actions (or any internal action), it may also change state.

![Figure 1.2: A channel](image)

Another example of an I/O automaton is a FIFO message channel. Figure 1.2 shows the interface of a typical channel automaton, \(C_{i,j} \), where \(i \) and \(j \) are process indices. Its input actions have the form \(\text{send}(m)_{i,j} \), and its output actions have the form \(\text{receive}(m)_{i,j} \).

Process and channel automata can be composed as shown in Figure 1.3, by matching the output actions of one automaton with the input actions of another. Thus, each output action \(\text{send}(m)_{i,j} \) of a process automaton is matched and performed together with an input action \(\text{send}(m)_{i,j} \) of some channel automaton, and each input action \(\text{receive}(m)_{i,j} \) of a process automaton is matched and performed together with an output action \(\text{receive}(m)_{i,j} \) of some other channel automaton. Actions are performed one at a time, indivisibly, in any order.

More precisely, an I/O automaton \(A \) consists of the following five components:

- a *signature*, which lists the disjoint sets of input, output, and internal actions of \(A \),
- a (not necessarily finite) set of *states*, usually described by a collection of state variables,
- a set of *start* (or *initial*) *states*, which is a non-empty subset of the set of all states,
- a *state-transition relation*, which contains triples (known as *steps* or *transitions*) of the form (state, action, state), and
- an optional set of *tasks*, which partition the internal and output actions of \(A \).

An action \(\pi \) is said to be *enabled* in a state \(s \) if there is another state \(s' \) such that \((s, \pi, s') \) is a transition of the automaton. Input actions are enabled in every state; i.e., automata are not able to "block" input actions from occurring. The *external* actions of an automaton consist of its input and output actions.

The transition relation is usually described in *precondition-effect* style, which groups together all transitions that involve a particular type of action into a single piece of code. The precondition is a predicate on the state indicating the conditions under which the action is permitted to occur. The effect describes the changes that occur as a result of the action, either in the form of a simple program or in the form of a predicate relating the pre-state and the post-state (i.e., the states before and after the action occurs). Actions are executed indivisibly.
Figure 1.3: Composing channel and process automata
1.2 Executions and traces

An execution fragment of an I/O automaton is either a finite sequence \(s_0, \pi_1, s_1, \pi_2, \ldots, \pi_n, s_n \), or an infinite sequence \(s_0, \pi_1, s_1, \pi_2, \ldots \), of alternating states \(s_i \) and actions \(\pi_i \) such that \((s_i, \pi_{i+1}, s_{i+1}) \) is a transition of the automaton for every \(i \geq 0 \). An execution is an execution fragment that begins with a start state. A state is reachable if it occurs in some execution. The trace of an execution is the sequence of external actions in that execution.

The task partition is an abstract description of "tasks" or "threads of control." It is used to define fairness conditions on an execution of the automaton; these conditions require the automaton to continue, during its execution, to give fair turns to each of its tasks. A task is said to be enabled in a state if some action in the task is enabled in that state. In a fair execution, whenever some task remains enabled, some action in that task will eventually be performed. Thus, in fair executions, actions in one task partition do not prevent actions in another from occurring. If no task partition is specified, then all actions are assumed to belong to a single task.

1.3 Operations on automata

The operation of composition allows an automaton representing a complex system to be constructed by composing automata representing individual system components. The composition identifies actions with the same name in different component automata. When any component automaton performs a step involving an action \(\pi \), so do all component automata that have \(\pi \) in their signatures. The hiding operation "hides" output actions of an automaton by reclassifying them as internal actions; this prevents them from being used for further communication and means that they are no longer included in traces. The renaming operation changes the names of an automaton's actions, to facilitate composing that automaton with others that were defined with different naming conventions.

1.4 Properties of automata

An invariant of an automaton is any property that is true in all reachable states of the automaton.

An automaton \(A \) is said to implement an automaton \(B \) provided that \(A \) and \(B \) have the same input and output actions and that every trace of \(A \) is also trace of \(B \). In order to show that \(A \) implements \(B \), one can use a simulation relation between states of \(A \) and states of \(B \) such that, loosely speaking, every start state of \(A \) is related to a start state of \(B \) and every reachable state of \(A \) is related to a state of \(B \) reached by the same series of external actions.

![Figure 1.4: Forward simulation relation](image)

4
For the purpose of a formal definition, we assume that A and B have the same input and output actions. A relation R between the states of A and B is a forward simulation\(^2\) with respect to invariants I_A and I_B of A and B if

- every start state of A is related (via R) to a start state of B, and
- for all states s of A and u of B satisfying the invariants I_A and I_B such that $R(s, u)$, and for every step $(s, π, s')$ of A, there is an execution fragment $α$ of B starting with u, containing the same external actions as $π$, and ending with a state u' such that $R(s', u')$.

A general theorem is that A implements B if there is a forward simulation from A to B.

Similarly, a relation R between the states of A and B is a backward simulation\(^3\) with respect to invariants I_A and I_B of A and B if

- every state of A that satisfies I_A corresponds (via R) to some state of B that satisfies I_B,
- if a start state s of A is related (via R) to a state u of B that satisfies I_B, then u is a start state of B, and
- for all states s, s' of A and u' of B satisfying the invariants such that $R(s', u')$, and for every step $(s, π, s')$ of A, there is an execution fragment $α$ of B ending with u', containing the same external actions as $π$, and starting with a state u satisfying I_B such that $R(s, u)$.

Another general theorem is that A implements B if there is an image-finite backward simulation from A to B. Here, a relation R is image-finite provided that for any x there are only finitely many y such that $R(x, y)$. Moreover, the existence of any backward simulation from A to B implies that all finite traces of A are also traces of B.

2 Using IOA to formalize descriptions of I/O automata

We illustrate the nature of I/O automata, as well as the use of the language IOA to define the automata, by a few simple examples. Figure 2.1 contains a simple IOA description for an automaton, Adder, that gets two integers as input and subsequently outputs their sum. The first line declares the name of the automaton. The remaining lines define its operation. The signature consists of input actions $\text{add}(i, j)$, one for each pair of values of i and j, and output actions $\text{result}(k)$, one for each value of k. The type int, used to represent integers, is a built-in type in IOA (see Section 7.2).

The automaton Adder has two state variables: value is an integer that is used to hold a sum, and ready is a boolean that is set to true whenever a new sum has been computed. The initial value of value is arbitrary since it is not specified; ready is initially false.

The transitions of the automaton Adder are given in precondition/effect style. The input action $\text{add}(i, j)$ has no precondition, which is equivalent to its having true as a precondition. This is the case for all input actions; that is, every input action in every automaton is enabled in every state. The effect of $\text{add}(i, j)$ is to change value to the sum of i and j and to set ready to true. The output action $\text{result}(k)$ can occur only when it is enabled, that is, only in states where its precondition $k = \text{value} \land \text{ready}$ is true. Its effect is to set ready back to false. Traces of Adder are sequences of external actions such as

\(^2\)In some previous work such relations are called weak forward simulations.

\(^3\)In some previous work such relations are called weak backward simulations.
automaton Adder
signature
 input add(i, j: Int)
 output result(k: Int)
states
 value: Int,
 ready: Bool := false
transitions
 input add(i, j)
 eff value := i + j;
 ready := true
 output result(k)
 pre k = value ∧ ready
 eff ready := false

Figure 2.1: IOA description of an adder

add(3, 2), result(5), add(1, 2), add(-1, 1), result(0), ...
that start with an add action, in which every result action returns the sum computed by the last
add action, and in which every pair of result actions must be separated by one or more add actions.

automaton ReliableChannel(M, Index: type, i, j: Index)
signature
 input send(m: M, const i, const j)
 output receive(m: M, const i, const j)
states
 buffer: Seq[M] := {}
transitions
 input send(m, i, j)
 eff buffer := buffer ⊕ m
 output receive(m, i, j)
 pre buffer ≠ {} ∧ m = head(buffer)
 eff buffer := tail(buffer)

Figure 2.2: IOA description of a reliable communication channel

Another simple automaton, ReliableChannel, is shown in Figure 2.2. This automaton represents
a reliable communication channel, as illustrated in Figure 1.2, which neither loses nor reorders
messages in transit. The automaton is parameterized by the type M of messages that can be in
transit on the channel, by the type Index of process indices, and by two values, i and j, which
represent the indices of processes that use the channel for communication. The signature consists
of input actions, send(m, i, j), and output actions, receive(m, i, j), one for each value of m.
The keyword const in the signature indicates that i and j are terms (not variables, as in adder),
whose values are fixed by the values of the automaton’s parameters.

The state of the automaton ReliableChannel consists of a buffer, which is a sequence of messages
(i.e., an element of type Seq[M]) initialized to the empty sequence {}. Section 8.4 describes the
type constructor Seq and operators on sequences such as {}, ⊕, head, and tail.

The input action send(m, i, j) has the effect of appending m to buffer (here, ⊕ is the append
operator). The output action receive(m, i, j) is enabled when buffer is not empty and has the
message m at its head. The effect of this action is to remove the head element from buffer.
The rest of Part I shows in more detail how IOA can be used to describe I/O automata.

3 Data types in IOA descriptions

IOA enables users to define the actions and states of I/O automata abstractly, using mathematical notations for sets, sequences, etc., without having to provide concrete representations for these abstractions. Some mathematical notations are built into IOA; others can be defined by the user.

The data types Bool, Int, Nat, Real, Char, and String can appear in IOA descriptions without explicit declarations. Section 7 describes the operators available for each of these types.

Compound data types can be constructed using the following type constructors and used without explicit declarations. Section 8 describes the operators available for types constructed in any of these fashions.

- $\text{Array}[I_1, \ldots, I_n, E]$ is an n-dimensional array of elements of type E indexed by elements of types I_1, \ldots, I_n.

- $\text{Map}[D_1, \ldots, D_n, R]$ is a finite partial mapping of elements of an n-dimensional domain with type $D_1 \times \cdots \times D_n$ to elements of a range with type R. Mappings differ from arrays in that they are defined only for finitely many elements of their domains (and hence may not be totally defined).

- $\text{Seq}[E]$ is a finite sequence of elements of type E.

- $\text{Set}[E]$ is a finite set of elements of type E.

- $\text{Mset}[E]$ is a finite multiset of elements of type E.

- $\text{Null}[E]$ is isomorphic to E extended by a single element nil.

In this tutorial, we describe operators on the built-in data types informally when they first appear in an example.

Users can define additional data types, as well as redefine built-in types, in one of two ways. First, they can explicitly declare enumeration, tuple, and union types analogous to those found in many common programming languages. For example,

```plaintext
  type Color = enumeration of red, white, blue
  type Msg = tuple of source, dest: Process, contents: String
  type Fig = union of sq: Square, circ: Circle
```

Section 9.8 describes the operators available for each of these types. Second, users can refer to an auxiliary specification that defines the syntax and semantics of a data type, as in

```plaintext
  axioms Queue for Q[\_\_] % Supplies axioms for Q[Int], Q[Set[Nat]], ...
  axioms Peano for Nat % Overrides built-in axioms for Nat
  axioms Graph(V, E) % Supplies axioms for graphs
```

These auxiliary specifications are written in the *Larch Shared Language (LSL)*; see Sections 9 and 10.

In this report, some operators are displayed using mathematical symbols that do not appear on the standard keyboard. Table 3.1 shows the input conventions for entering these symbols. The standard meanings of the logical operators are built into LSL and IOA. The meanings of the datatype operators are defined by the LSL specifications for the built-in datatypes in Section 9.
Logical Operator

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>∀</td>
<td>For all</td>
<td>(\forall)</td>
</tr>
<tr>
<td>∃</td>
<td>There exists</td>
<td>(\exists)</td>
</tr>
<tr>
<td>¬</td>
<td>Not</td>
<td>(\neg)</td>
</tr>
<tr>
<td>≠</td>
<td>Not equals</td>
<td>(\neq)</td>
</tr>
<tr>
<td>∧</td>
<td>And</td>
<td>(\wedge)</td>
</tr>
<tr>
<td>∨</td>
<td>Or</td>
<td>(\vee)</td>
</tr>
<tr>
<td>⇒</td>
<td>Implies</td>
<td>(\Rightarrow)</td>
</tr>
<tr>
<td>⇔</td>
<td>If and only if</td>
<td>(\iff)</td>
</tr>
</tbody>
</table>

Datatype Operator

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤</td>
<td>Less than or equal</td>
<td>(\leq)</td>
</tr>
<tr>
<td>≥</td>
<td>Greater than or equal</td>
<td>(\geq)</td>
</tr>
<tr>
<td>∈</td>
<td>Member of</td>
<td>(\in)</td>
</tr>
<tr>
<td>≠</td>
<td>Not a member</td>
<td>(\notin)</td>
</tr>
<tr>
<td>⊆</td>
<td>Proper subset of</td>
<td>(\subseteq)</td>
</tr>
<tr>
<td>⊇</td>
<td>Subset of</td>
<td>(\supseteq)</td>
</tr>
<tr>
<td>⊂</td>
<td>Proper superset of</td>
<td>(\supset)</td>
</tr>
<tr>
<td>⊃</td>
<td>Superset of</td>
<td>(\supseteq)</td>
</tr>
<tr>
<td>⊣</td>
<td>Append element</td>
<td>(-)</td>
</tr>
<tr>
<td>⊢</td>
<td>Prepend element</td>
<td>(-)</td>
</tr>
</tbody>
</table>

Table 3.1: Typographical conventions

4 IOA descriptions for primitive automata

Explicit descriptions of primitive automata specify their names, action signatures, state variables, transition relations, and task partitions. All but the last of these elements must be present in every primitive automaton description.

4.1 Automaton names and parameters

The first line of an automaton description consists of the keyword `automaton` followed by the name of the automaton (see Figures 2.1 and 2.2). As illustrated in Figure 2.2, the name may be followed by a list of formal parameters enclosed within parentheses. There are two kinds of automaton parameters. An individual parameter (such as `i:Index` and `j:Index`) consists of an identifier with its associated type, and it denotes a fixed element of that type. A type parameter (such as `K:Type` and `Channel:Type`) consists of an identifier followed by the keyword `type`, and it denotes a type.\(^4\)

4.2 Action signatures

The signature for an automaton is declared in IOA using the keyword `signature` followed by lists of entries describing the automaton's input, internal, and output actions. Each entry contains a name and an optional list of parameters enclosed in parentheses. There are two kinds of action parameters. A varying parameter (such as `m:M` in Figure 2.2) consists of an identifier with its associated type, and it denotes an arbitrary element of that type. A fixed parameter (such as `const i` and `const j`) consists of the keyword `const` followed by a term denoting a fixed element of its type. Neither kind of parameter can have `type` as its type. Each entry in the signature denotes a set of actions, one for each assignment of values to its varying parameters.

\(^4\)In the future, IOA may also allow relations (e.g., `<`) and functions as automaton parameters.
It is possible to constrain the values of the varying parameters for an entry in the signature using the keyword `where` followed by a predicate, that is, by a boolean-valued expression. Such constraints restrict the set of actions denoted by the entry. For example, the signature

```plaintext
signature
  input add(i, j: Int) where i > 0 ∧ j > 0
  output result(k: Int) where k > 1
```

could have been used for the automaton `Adder` to restrict the values of the input parameters to positive integers and the value of the output parameter to integers greater than 1.

4.3 State variables

As in the above examples, state variables are declared using the keyword `states` followed by a comma-separated list of state variables and their types. State variables can be initialized using the assignment operator `:=` followed either by an expression or by a nondeterministic choice. The order in which state variables are declared makes no difference: state variables are initialized simultaneously, and their initial values cannot refer to the value of any state variable.

A nondeterministic choice (of the form `choose variable where predicate`) selects an arbitrary value of the variable that satisfies the predicate. When a nondeterministic choice is used to initialize a state variable, there must be some value of the variable that satisfies the predicate. If the predicate is true for all values of the variable, then the effect is the same as if no initial value had been specified for the state variable.

```plaintext
automaton Choice
  signature
    output result(i: Int)
  states
    num: Int := choose n where 1 ≤ n ∧ n ≤ 3
  transitions
    output result(i)
    pre i = num
```

Figure 4.1: Example of nondeterministic choice of initial value for state variable

For example, in the automaton `Choice` (Figure 4.1), the state variable `num` is initialized nondeterministically to some value of the variable `n` that satisfies the predicate `1 ≤ n ∧ n ≤ 3`, i.e., to one of the values `1, 2, or 3` (the value of `n` must be an integer because it is constrained to have the same type, `Int`, as the variable `num` to which it will be assigned). Traces of the automaton `Choice` are sequences of identical output actions (in which the parameter `i` has the value assigned initially to the state variable `num`).

It is also possible to constrain the initial values of all state variables taken together, whether or not initial values are assigned to any individual state variable. This can be done using the keyword `initially` followed by a predicate (involving state variables and automaton parameters), as illustrated by the definition of the automaton `Shuffle` in Figure 4.2.\footnote{At present, users must expand the `...` in the definition of the type `cardIndex` by hand. In the future, IOA may provide more convenient notations for integer subranges.}

In Figure 4.2, the initial values of the variable `cut` and the array `name` of strings are constrained so that `name[1], ..., name[52]` are sorted in two pieces, each in increasing order, with the piece after the `cut` containing smaller elements than the piece before the `cut`. The constraint following `initially` limits only the initial values of the state variables, not their subsequent values. (Note...
type cardIndex = enumeration of 1, 2, 3, ..., 52

automaton Shuffle
 signature
 internal swap(i, j: cardIndex)
 output deal(a: Array[cardIndex, String])
 states
 dealt: Bool := false,
 name: Array[cardIndex, String],
 cut: cardIndex
 initially \forall i: cardIndex (i \neq 52 \land i \neq cut \Rightarrow name[i] \prec name[succ(i)])
 \land name[52] \prec name[1]
 transitions
 internal swap(i, j; local temp: String)
 pre \neg-dealt
 eff temp := name[i];
 name[i] := name[j];
 name[j] := temp
 output deal(a)
 pre \neg-dealt \land a = name
 eff dealt := true

Figure 4.2: Example of a constraint on initial values for state variables

that the scope of the initially clause is the entire set of state variable declarations.) The type
Array[cardIndex, String] of the state variable name consists of arrays indexed by elements of type
cardIndex and containing elements of type String (see Section 8.1). The swap actions transpose
pairs of strings, until a deal action announces the contents of the array; then no further actions
occur.

When the type of a state variable is an Array, Map, or tuple (Section 9.8), IOA also treats the
elements of the array or mapping, or the fields in the tuple, as state variables, to which values can
be assigned without affecting the values of the other elements in the array or mapping or of the
fields in the tuple.

4.4 Transition relations

Transitions for the actions in an automaton’s signature are defined following the keyword transitions. A transition definition consists of an action type (i.e., input, internal, or output), an
action name with optional parameters, an optional where clause, an optional precondition, and an
optional effect.

4.4.1 Transition parameters

Two kinds of parameters can be specified for a transition: ordinary parameters, corresponding
to those in the automaton’s signature, and additional local parameters (described below in Sec-
tion 4.4.4). The ordinary parameters accompanying an action name in a transition definition must
match those accompanying the action name in the automaton’s signature, both in number and in
type. However, the keyword const does not appear in transition parameters, and all transition
parameters are treated as terms.
The simplest way to construct the parameter list for an action name in a transition definition is to erase the keyword `const` and the type modifiers from the parameter list in the signature; thus, in Figure 2.2,

```plaintext
input send(m: M, const i, const j)
```
in the signature of `ReliableChannel` is shortened to `input send(m, i, j)` in the transition definition. (See Section 16.3 for more details.)

More than one transition definition can be given for an entry in an automaton's signature. For example, the transition definition for the `swap` actions in the `Shuffle` automaton (Figure 4.2) can be split into two parts:

```plaintext
internal swap(i, j) where i ≠ j
  pre ¬dealnt
  eff temp := name[i];
  name[i] := name[j];
  name[j] := temp

internal swap(i, i)
  pre ¬dealnt
```
The second of these two transition definitions does not change the state, because it has no `eff` clause.

4.4.2 Preconditions

A precondition can be defined for a transition of an output or internal action using the keyword `pre` followed by a predicate, that is, by a boolean-valued expression. Preconditions cannot be defined for transitions of input actions. All variables in the precondition must be parameters of the automaton, be state variables, appear in the parameter list for the transition definition, be `local` parameters, or be quantified explicitly in the precondition. If no precondition is given, it is assumed to be true.

An action is said to be `enabled` in a state if there are some values for the `local` parameters of one of its transition definitions that satisfy both the `where` clause and, together with the state variables, the precondition for that transition definition. Input actions, whose transitions have no preconditions, are always enabled.

4.4.3 Effects

The effect of a transition, if any, is defined following the keyword `eff`. This effect is generally defined in terms of a (possibly nondeterministic) program that assigns new values to state variables. The amount of nondeterminism in a transition can be limited by a predicate relating the values of state variables in the post-state (i.e., in the state after the transition has occurred) to each other and to their values in the pre-state (i.e., in the state before the transition occurs).

If the effect is missing, then the transition has none; i.e., it leaves the state unchanged.

Using programs to specify effects A program is a list of statements, separated by semicolons. Statements in a program are executed sequentially. There are three kinds of statements:

- assignment statements,
- conditional statements, and
- `for` statements.
Assignment statements An assignment statement changes the value of a state or local variable. The statement consists of the state or local variable followed by the assignment operator := and either an expression or a nondeterministic choice (indicated by the keyword choose). As noted in Section 4.3, the elements in an array or mapping used as a state or local variable, or the fields in a tuple used as a state or local variable, are themselves considered as separate variables and can appear on the left side of the assignment operator.

The expression or nondeterministic choice in an assignment statement must have the same type as the state or local variable. The value of the expression is defined mathematically, rather than computationally, in the state before the assignment statement is executed. The value of the expression then becomes the value of the state or local variable in the state after the assignment statement is executed. Execution of an assignment statement does not have side-effects; i.e., it does not change the value of any state or local variable other than the one on the left side of the assignment operator.

axioms Subsequence for Seq[___]

automaton LossyChannel(M: type)

signature
input send(m: M),
crash
output receive(m: M)

states
buffer: Seq[M] := {}

transitions
input send(m)
 eff buffer := buffer ∪ m
input crash
 eff buffer := choose b where b ≤ buffer
output receive(m)
 pre buffer ≠ {} ∧ m = head(buffer)
 eff buffer := tail(buffer)

Figure 4.3: IOA description of a lossy communication channel

The definition of the crash action in the LossyChannel automaton (Figure 4.3) illustrates the use of the choose ... where construct to constrain the sequence chosen as the new value of the state variable buffer to be a nondeterministically chosen subsequence of the old value. LossyChannel is a modification of the reliable communication channel (Figure 2.2) in which the additional input action crash may cause the sequence buffer to lose messages (but not to reorder them).

The axioms statement at the beginning of Figure 4.3 identifies an auxiliary specification (Figure 4.4), which overrides the default axioms for the built-in type constructor Seq[E] for the sequence data type (see Section 8.4) to add a definition for the subsequence relation ≤ appearing in the definition of transitions for the crash action. Because this relation is not one of the built-in operators provided by IOA for the sequence data type, we must introduce it in an auxiliary specification that defines both its syntax (i.e., that it is a binary relation on sequences) and its properties (i.e., that a subsequence does not reorder elements, and that it need not contain consecutive elements from

6If a program consists of more than a single assignment statement, then the states before and after the assignment statements in the program may be intermediate states, which do not appear in the execution fragments of the automaton.
the larger sequence). Figure 4.4 conveys this information by presenting a recursive definition for \(\leq \). Section 9 provides more information about how to read and write such auxiliary specifications.

\[
\text{Subsequence} (E) : \text{trait} \\
\text{includes Sequence} (E) \\
\text{introduces } \preceq : \text{Seq}[E], \text{Seq}[E] \rightarrow \text{Bool} \\
\text{asserts with } e, e_1, e_2 : E, s, s_1, s_2 : \text{Seq}[E] \\
\{\} \preceq s; \\
\neg ((s \vdash e) \preceq \{\}); \\
(s_1 \vdash e_1) \preceq (s_2 \vdash e_2) \leftrightarrow (s_1 \vdash e_1) \preceq s_2 \lor (s_1 \preceq s_2 \land e_1 = e_2)
\]

Figure 4.4: Auxiliary specification with recursive definition of subsequence operator

An abbreviated form of nondeterministic choice can be used in the assignment statement to express the fact that a transition can change the value of a state variable, without specifying what the new value may be. Such a nondeterministic choice consists of the keyword \texttt{choose} alone, without a subsequent variable or \texttt{where} clause. The statement \(x := \texttt{choose} \) is equivalent to the somewhat longer statement \(x := \texttt{choose} y \texttt{where} \texttt{true} \). Both of these statements give a transition a license to change the value of the state variable \(x \) arbitrarily. As described below, constraints on the new values for modified variables, if any, can be given in an \texttt{ensuring} clause for the entire effect.

\textbf{Conditional statements} A conditional statement is used to select which of several program segments to execute in a larger program. It starts with the keyword \texttt{if} followed by a predicate, the keyword \texttt{then}, and a program segment; it ends with the keyword \texttt{fi}. In between, there can be any number of \texttt{elseif} clauses (each of which contains a predicate, the keyword \texttt{then}, and a program segment), and there can be a final \texttt{else} clause (which also contains a program segment). Figure 4.5 illustrates the use of a conditional statement in defining an automaton that distributes input values into one of three sets. Section 8.2 describes the set data type and the operators \{\} and \texttt{insert}.

\begin{verbatim}
automaton Distribute
 signature
 | input get(i: Int)
 states
 | small: Set[Int] := \{\},
 | medium: Set[Int] := \{\},
 | large: Set[Int] := \{\},
 | bound1: Int,
 | bound2: Int
 initially bound1 < bound2
transitions
 input get(i)
 | eff if i < bound1 then small := insert(i, small)
 | elseif i < bound2 then medium := insert(i, medium)
 | else large := insert(i, large)
 fi
\end{verbatim}

Figure 4.5: Example of a conditional statement

\textbf{For statements} A \texttt{for} statement is used to perform a program segment once for each value of a variable that satisfies a given condition. It starts with the keyword \texttt{for} followed by a variable,
a clause describing a set of values for this variable, the keyword do, a program segment, and the keyword od.

\[
\text{type Packet} = \text{tuple of contents: Message, source: Node, dest: Set[Node]}
\]

\[
\text{automaton Multicast}
\]

\[
\text{signature}
\]

\[
\text{input mcast(m: Message, i: Node, I: Set[Node])}
\]

\[
\text{internal deliver(p: Packet)}
\]

\[
\text{output read(m: Message, j: Node)}
\]

\[
\text{states}
\]

\[
\text{network: Mset[Packet] := {}},
\]

\[
\text{queue: Array[Node, Seq[Packet]]}
\]

\[
\text{initially } \forall \ i: \text{Node} \ (\text{queue}[i] = \{\})
\]

\[
\text{transitions}
\]

\[
\text{input mcast(m, i, I)}
\]

\[
\text{eff network := insert([m, i, I], network)}
\]

\[
\text{internal deliver(p)}
\]

\[
\text{pre p \in network}
\]

\[
\text{eff for j: Node in p.dest do queue[j] := queue[j] \+ p od;}
\]

\[
\text{network := delete(p, network)}
\]

\[
\text{output read(m, j)}
\]

\[
\text{pre queue[j] \neq \{\} \land head(queue[j]).contents = m}
\]

\[
\text{eff queue[j] := tail(queue[j])}
\]

Figure 4.6: Example showing use of a for statement

Figure 4.6 illustrates the use of a for statement in a high-level description of a multicast algorithm. Its first line defines the Packet data type to consist of triples [contents, source, dest], in which contents represents a message, source the Node from which the message originated, and dest the set of Nodes to which the message should be delivered. The state of the multicast algorithm consists of a multiset network, which represents the packets currently in transit, and an array queue, which represents, for each Node, the sequence of packets delivered to that Node, but not yet read by the Node.

The mcast action inserts a new packet in the network; the notation [m, i, I] is defined by the tuple data type (Section 9.8) and the insert operator by the multiset data type (Section 8.3). The deliver action, which is described using a for statement, distributes a packet to all nodes in its destination set (by appending the packet to the queue for each node in the destination set and then deleting the packet from the network). The read action receives the contents of a packet at a particular Node by removing that packet from the queue of delivered packets at that Node.

There are two ways to describe the set of values for the control variable in a for statement. The first consists of the keyword in followed by an expression denoting a set (Section 8.2) or multiset (Section 8.3) of values of the appropriate type, in which case the program following the keyword do is executed once for each value in the set or multiset. The second consists of the keyword where followed by a predicate, in which case the program is executed once for each value satisfying the predicate. These executions of the program occur in an arbitrary order. However, IOA requires that the effect of a for statement be independent of the order in which executions of its program occur.
Using predicates on states to specify effects The results of a program can be constrained by a predicate relating the values of state variables after a transition has occurred to the values of state variables before the transition began. Such a predicate is particularly useful when the program contains the nondeterministic choose operator. For example,

\[
\text{input crash}
\text{eff buffer := choose}
\text{ensuring buffer' \leq buffer}
\]

is an alternative, but equivalent way of describing the crash action in LossyChannel (Figure 4.3). The assignment statement indicates that the crash action can change the value of the state variable buffer. The predicate in the ensuring clause constrains the new value of buffer in terms of its old value. A primed state variable in this predicate (i.e., buffer') indicates the value of the variable in the post-state; an unprimed state variable (i.e., buffer) indicates its value in the pre-state. For another example,

\[
\text{eff name[i] := choose;}
\text{name[j] := choose}
\text{ensuring name'[i] = name[j] \land name'[j] = name[i]}
\]

is an alternative way of writing the effect clause of the swap action in Shuffle (Figure 4.2). The assignment statements indicate that the array name may be modified at indices i and j, and the ensuring clause constrains the modifications. This notation allows us to eliminate the local variable temp needed previously for swapping.

There are important differences between where clauses attached to nondeterministic choose operators and ensuring clauses. A where clause restricts the value chosen by a choose operator in a single assignment statement, and variables appearing in the where clause denote values in the state before the assignment statement is executed. An ensuring clause can be attached to an entire eff clause; unprimed variables appearing in an ensuring clause denote values in the state before the transition represented by the entire eff clause occurs, and primed variables denote values in the state after the transition has occurred.

4.4.4 Local parameters

In addition to its ordinary parameters, a transition definition can contain "local parameters," which can be used for two purposes. As illustrated in Figure 4.2, they can be used as temporary state variables. In addition, they can be used to relate the postcondition for a transition to its precondition, as illustrated in Figure 4.7.

\[
\text{automaton LossyBuffer(M: type)}
\text{signature}
\text{input get(m: M)}
\text{output put(m: M)}
\text{states}
\text{buff: Mset[M] := {}}
\text{transitions}
\text{input get(m)}
\text{eff buff := insert(m, buff)}
\text{output put(m; local n: M)}
\text{pre m \in buff \land n \in buff \land (m \neq n \lor \text{count}(n, buff) > 1)}
\text{eff buff := delete(m, delete(n, buff))}
\]

Figure 4.7: Example of the use of local parameters
The automaton LossyBuffer represents a message channel that loses a message each time it transmits one. The state of the automaton consists of a multiset buff of messages of type \(m \). The input action for the channel, get\((m)\), simply adds the message \(m \) to buff. The output action, put\((m)\), delivers \(m \) while dropping another message, given by the local parameter \(n \). The precondition ensures that both \(m \) and \(n \) a remembers of the multiset buff and, if \(m \) and \(n \) happen to be the same message, that buff contains two copies of this message.

Local parameters to which no values are assigned provide syntactic sugar for defining transitions. It is possible to define transitions without them by using explicit quantification. For example, the transition for the put action in Figure 4.7 can be rewritten as follows:

\[
\text{output put}(m) \\
\quad \text{pre } \exists n: M \ (m \in \text{buff} \land n \in \text{buff} \land (m \neq n \lor \text{count}(m, \text{buff}) > 1)) \\
\quad \text{eff } \text{buff} := \text{choose} \\
\quad \quad \text{ensuring } \exists n: M \ (m \in \text{buff} \land n \in \text{buff} \\
\quad \quad \quad \land (m \neq n \lor \text{count}(m, \text{buff}) > 1) \\
\quad \quad \quad \land \text{buff'} = \text{delete}(m, \text{delete}(n, \text{buff})))
\]

In general, to eliminate local parameters to which no values are assigned, one quantifies them explicitly in the precondition for the transition, and then repeats the quantified precondition as part of the effect.

4.5 Tasks

A final, but optional part in the description of an I/O automaton is a partition of the automaton's output and internal actions into a set of disjoint tasks (see Section 1.1. This partition is indicated by the keyword tasks followed by a list of the sets in the partition. If the keyword tasks is omitted, and no task partition is given, all output and internal actions are presumed to belong to the same task.

To see why tasks are useful, consider the automaton Shuffle described in Figure 4.2. The traces of this automaton can be either infinite sequences of swap actions, a finite sequence of swap actions, or a finite sequence of swap actions followed by a single deal action: nothing in the description in Figure 4.2 requires that a deal action ever occur. By adding

\[
\text{tasks } \{\text{swap}(i, j); \} \{\text{deal}(a)\}
\]

to the description of Shuffle, we can place all swap actions in one task (or thread of control) and all deal actions in another. The definition of a fair execution of an I/O automaton requires that, whenever a task remains enabled, some action in that task will eventually be performed. Thus this task partition for Shuffle prevents swap actions from starving a deal action in any fair execution.

There are no fairness requirements, however, on the actions within the same task: the description of Shuffle does not require that every pair of elements in the array will eventually be interchanged.

If we wished to impose this stronger requirement, we could place each swap action into a separate task by amending the task definition to

\[
\text{tasks } \{\text{swap}(i, j) \text{ for } i, j: \text{Int}; \} \{\text{deal}(a)\}
\]

The keyword for indicates that there is one task for each assignment of values to the variables following the keyword. For another example, the task partition

\[
\text{tasks } \{\text{deliver}(p); \} \{\text{read}(m, j) \text{ for } j: \text{Node} \}
\]

for the Multicast automaton places the read actions for different nodes in different tasks, so that the execution of read actions for one node cannot starve execution of receive actions for another.

The values of variables appearing in task definitions can be constrained further by where clauses, either within the braces or following the for clauses. Variables that appear in a task definition, but not in the for clause for that task, are universally quantified: they take on all values allowed by the where clauses in the action signatures and in the task definition.
5 IOA notations for operations on automata

We often wish to describe new automata in terms of previously defined automata. IOA provides notations for composing several automata, for hiding some output actions in an automaton, and for specializing parameterized automata.\footnote{In the future IOA may also provide notations for renaming actions.}

5.1 Composition

We illustrate composition by describing the LeLann-Chang-Roberts (LCR) leader election algorithm as a composition of process and channel automata.

In this algorithm, a finite set of processes arranged in a ring elect a leader by communicating asynchronously. The algorithm works as follows. Each process sends a unique string representing its name, which need not have any special relation to its index, to its right neighbor. When a process receives a name, it compares it to its own. If the received name is greater than its own in lexicographic order, the process transmits the received name to the right; otherwise the process discards it. If a process receives its own name, that name must have traveled all the way around the ring, and the process can declare itself the leader.

type Status = enumeration of waiting, elected, announced

automaton Process(I: type, i: I)
 assumes RingIndex(I, String)
 signature
 input receive(m: String, const left(i), const i)
 output send(m: String, const i, const right(i)) where m \geq name(i),
 leader(const name(i), const i)
 states
 pending: Mset[String] := {name(i)},
 status: Status := waiting
 transitions
 input receive(m, j, i) where m > name(i)
 eff pending := insert(m, pending)
 input receive(m, j, i) where m < name(i)
 input receive(name(i), j, i)
 eff status := elected
 output send(m, i, j)
 pre m \in pending
 eff pending := delete(m, pending)
 output leader(m, i)
 pre status = elected
 eff status := announced
 tasks
 {send(m, j, right(j))};
 {leader(m, j)}

Figure 5.1: IOA specification of election process

Figure 5.1 describes such a process, which is parameterized by the type \(I \) of process indices and by a process index \(i \). The \textit{assumes} clause identifies an auxiliary specification, RingIndex (Figure 5.2), that imposes restrictions on the type \(I \). This specification requires that there be
a ring structure on I induced by the operators \texttt{first}, \texttt{right}, and \texttt{left}, and that \texttt{name} provide a one-one mapping from indices of type I to names of type \texttt{String}.

\begin{verbatim}
RingIndex(I, J): trait
 introduces
 first: \rightarrow I
 left, right: I \rightarrow I
 name: I \rightarrow J
 asserts with i, j: I
 sort I generated by first, right;
 \exists i (right(i) = first);
 right(i) = right(j) \Leftrightarrow i = j;
 left(right(i)) = i;
 name(i) = name(j) \Leftrightarrow i = j
 implies with i: I
 right(left(i)) = i
\end{verbatim}

Figure 5.2: Auxiliary specification for a finite ring of process identifiers

The \texttt{type} declaration on the first line of Figure 5.1 declares \texttt{Status} to be an enumeration (Section 9.8) of the values \texttt{waiting}, \texttt{elected}, and \texttt{announced}.

The automaton \texttt{Process} has two state variables: \texttt{pending} is a multiset of strings, and \texttt{status} has type \texttt{Status}. Initially, \texttt{pending} is set to \{\texttt{name(i)}\} and \texttt{status} to \texttt{waiting}. As described above, there are three possible transitions for the input action \texttt{receive(m, const left(i), const i)}, depending on how the string \texttt{m} received from the \texttt{Process} automaton to the left of automaton \texttt{i} compares with the name of automaton \texttt{i}. These transitions are described in three separate transition definitions; they could just as well have been described in a single definition using a conditional statement. The value of the first parameter of \texttt{receive} is constrained by \texttt{where} clauses in the first two transition definitions and is fixed in the third. The parameter \texttt{j} in each of these transition definitions is constrained to equal \texttt{left(i)} by the the action signature. Also as described above, there are two kinds of output actions: \texttt{send(m, i, right(i))}, which simply sends a message in \texttt{pending} to the \texttt{Process} automaton to the right in the ring, and \texttt{leader(m, i)}, which announces successful election. The value of the parameter \texttt{m} in \texttt{leader} action is constrained to equal \texttt{name(i)} by the signature of that action. Finally, the two kinds of output actions are placed in separate tasks, so that a \texttt{Process} automaton whose status is \texttt{elected} must eventually perform a \texttt{leader} action.

\begin{verbatim}
automaton LCR(I: type)
 assumes RingIndex(I, String)
 components
 P[i: I]: Process(I, i);
 C[i: I]: ReliableChannel(String, I, i, right(i))
\end{verbatim}

Figure 5.3: IOA specification of LCR algorithm

The full LCR leader election algorithm is described in Figure 5.3 as a composition of a set of process automata connected in a ring by reliable communication channels (Figures 1.2 and 2.2). The \texttt{assumes} statement on the first line repeats the assumption about the type \texttt{I} of process indices in Figure 5.1. The keyword \texttt{components} introduces a list of named components: one \texttt{Process} automaton, \texttt{P[i]}, and one \texttt{ReliableChannel} automaton, \texttt{C[i]}, for each element \texttt{i} of type \texttt{I}. The component \texttt{C[i]} is obtained by instantiating the type parameters \texttt{M} and \texttt{Index} for the
ReliableChannel automaton (Figure 2.2) with the actual types String and I of messages and process indices, and the parameters i and j with the values i and right(i), so that channel C[i] connects process P[i] to its right neighbor. The output actions send(m, i, right(i)) of P[i] are identified with the input actions send(m, i, right(i)) of C[i], and the input actions receive(m, left(i), i) of P[i] are identified with the output actions receive(m, left(i), i) of C[left(i)], which is ReliableChannel(String, I, left(i), i) because RingIndex implies that right(left(i)) = i. Since all input actions of the channel and process subautomata are identified with output actions of other subautomata, the composite automaton contains only output actions.

5.2 Specialization

A parameterized automaton description defines a set of automata rather than a single automaton. For example, LCR defines a set of automata, operating on rings of varying size, rather than a single automaton, operating on a ring with a fixed size. We can use the composition mechanism in IOA to fix, for example, the size of the ring at 4. In Figure 5.4, the type statement explicitly identifies abcd as an enumerated type with four elements, and the axioms statement defines a ring structure on these four elements, which discharges the assumption in the definition of the single component.

type abcd = enumeration of a, b, c, d
axioms RingIndex(abcd, String)

automaton LCR4
 components theOnly: LCR(abcd)

Figure 5.4: IOA specification of four-process LCR algorithm

Even though the description of LCR4 is not parameterized, it still defines a set of automata rather than single automaton: Figure 5.4 says nothing about how names are assigned to automata. We could pin down such details by creating and referring to an additional auxiliary specification, which defines the values of name(a), name(b), name(c), and name(d). But often it is not necessary to pin details down to such an extent, because the properties of an algorithm that are most of interest do not depend on these details.

5.3 Hiding output actions in a composition

IOA allows us to reclassify some (or all) of the output actions in a composite automaton as internal actions. Thus, for example, if we wish to hide the send and receive actions leading to the election of a leader in LCR4, we can use a hidden statement, as in Figure 5.5.

automaton LCR4a
 components theOnly: LCR4
 hidden receive(m, i, j), send(m, i, j)

Figure 5.5: IOA specification with hidden actions

6 IOA descriptions of properties of automata

IOA permits users to describe state invariants of I/O automata or simulation relations between I/O automata.
6.1 Invariants

Invariants are described using the keywords invariant of followed by the name of an automaton, a colon, and then a predicate. For example, the following invariant for the LCR automaton states that at most one process is ever elected as the leader.

\[
\text{invariant of LCR: } P[i].\text{status} = \text{elected} \land P[j].\text{status} = \text{elected} \Rightarrow i = j
\]

A state in a composite automaton is named by the name of the component to which it belongs followed by a dot followed by the state variable name, as shown in the invariant described above.\(^8\)

6.2 Simulation relations

Simulation relations provide a convenient mechanism for showing that one automaton implements another, i.e., that every trace of one is a trace of the other. In order to illustrate various simulation relations, we describe a modification, DelayedLossyChannel (Figure 6.1), of the LossyChannel (Figure 4.3) automaton. In DelayedLossyChannel, the crash action does not result in the immediate loss of messages from the queue; rather, it marks messages as losable by subsequent internal lose actions.

\textit{axioms MarkedMessage for Mark[__]}\n
\textit{automaton DelayedLossyChannel(M: type)}\n
\textbf{signature}\n
\begin{itemize}
 \item \textbf{input} insert(m: M), crash
 \item \textbf{output} remove(m: M)
 \item \textbf{internal} lose
\end{itemize}

\textbf{states} buffer: Seq[Mark[M]] := {}\n
\textbf{transitions}\n
\begin{itemize}
 \item \textbf{input} insert(m)
 \begin{itemize}
 \item \textbf{eff} buffer := buffer \plus [m, false]
 \end{itemize}
 \item \textbf{output} remove(m)
 \begin{itemize}
 \item \textbf{pre} buffer \neq {} \land head(buffer).msg = m
 \item \textbf{eff} buffer := tail(buffer)
 \end{itemize}
 \item \textbf{input} crash
 \begin{itemize}
 \item \textbf{eff} buffer := mark(buffer)
 \end{itemize}
 \item \textbf{internal} lose
 \begin{itemize}
 \item \textbf{eff} buffer := choose
 \begin{itemize}
 \item ensuring subseqMarked(buffer', buffer)
 \end{itemize}
 \end{itemize}
\end{itemize}

Figure 6.1: Specification of an implementation of a lossy channel

The \textit{axioms} statement in Figure 6.1 identifies a user-written specification (shown later in Figure 10.1) that defines a type constructor Mark[__] for types such as Mark[M] or Mark[String] of "marked messages." This specification defines a marked message to be a pair \([m, b]\) of a message and a boolean value, the components of which can be extracted by the operators .msg and .mark. It also defines an operator mark that sets all marks in a sequence to true, an operator messages that given a sequence of marked messages returns the corresponding sequence of messages, and a relation subseqMarked that holds when the only messages missing from a sequence have marks of true.

\(^8\)In the future, IOA may permit the name of the component to be omitted when there is no ambiguity (i.e., when only one component has a state variable with a given name).
The automaton DelayedLossyChannel implements the automaton LossyChannel, because all of its traces are also traces of LossyChannel. One way of showing that this is the case is to define a relation between the states of DelayedLossyChannel and those of LossyChannel and to show that this relation is a forward simulation (see Section 1.4). The following assertion in IOA defines such a relation.

forward simulation from DelayedLossyChannel **to** LossyChannel:

| messages(DelayedLossyChannel.buffer) = LossyChannel.buffer |

It is also true that every trace of LossyChannel is a trace of DelayedLossyChannel, i.e., that the two automata have the same set of traces. One way to show this reverse inclusion is to define a relation between the states of LossyChannel and those of DelayedLossyChannel and to show that this relation is a backward simulation. The following assertion describes such a relation.

backward simulation from LossyChannel **to** DelayedLossyChannel:

\[\exists s : \text{Seq}[\text{Mark}[M]] \ (\text{subseqMarked}(s, \text{DelayedLossyChannel.buffer}) \wedge \text{LossyChannel.buffer} = \text{messages}(s)) \]

In order to establish that relations defined in these fashions are actually forward and backward simulation relations, the user must demonstrate that these relations satisfy the definitions given for simulation relations in Section 1.4. The key element in such a demonstration is usually the identification, for each step of one automaton, of an execution fragment of the other that contains the same external actions.

Editorial note: Need to add example of such an identification here, together with the formal syntax for describing identifications in the reference manual. In general, the identification is a definition by cases.
Part II

IOA Data Types

IOA specifications can employ various data types, both built-in and user-defined.

- The primitive data types Bool, Char, Int, Nat, Real, and String can be used without explicit declarations. Section 7 describes the operators available for each of these types.

- Other primitive data types can be introduced as type parameters to automaton definitions, as in the channel automaton described in Figure 2.2, which is parameterized by the types M and Index.

- Compound data types formed using the type constructors Array, Map Mset, Null, Seq, and Set can be used without explicit declarations. Section 8 describes the operators available for these types.

- Compound data types formed using the keywords enumeration, tuple, and union can be used with explicit declarations, as in

  ```
  type Color = enumeration of red, white, blue
  type Msg = tuple of source, dest: Process, contents: String
  type Fig = union of sq: Square, circ: Circle
  ```

Sections 9.8 and 23 describe the operators available for these data types.

- User-defined data types, as well as additional operators on the above primitive and compound data types, can be introduced (or required to have certain properties) by indicating auxiliary specifications, as in

  ```
  axioms RingIndex(abcd, String)
  axioms Stack for Stack[___]
  assumes TotalOrdering(T, <)
  ```

These auxiliary specifications, which users write as traits in the Larch Shared Language (LSL), provide both the syntax and semantics for all operators introduced in this fashion. Sections 9 and 10 describe how to write LSL traits and how to incorporate them into IOA specifications by means of the axioms statement.

In this section we describe the built-in types informally and list their operators. Appendix A defines the properties of these types and operators formally via sets of axioms in multisorted first-order logic (see Section 11). Data types and operators are defined abstractly, not in terms of any particular representation or implementation. In particular, operators are defined without any reference to a “state” or “store,” so they cannot have “side-effects.”

The equality (==), inequality (!=), and conditional (if then else) operators are available for all data types in IOA (the ___’s are placeholders for the arguments of these operators).

7 Built-in primitive types

The following built-in primitive types and operators require no declaration.
7.1 Booleans

The boolean data type, bool, provides constants and operators for the set \{true, false\} of logical values. Syntactically, the operator \neg binds more tightly than the operators \land and \lor, which bind more tightly than ->, which binds more tightly than <=>. Appendix A.2 defines the semantics of this data type.

<table>
<thead>
<tr>
<th>Operators for bool</th>
<th>Sample input</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>true, false</td>
<td>true, false</td>
<td>The values true and false</td>
</tr>
<tr>
<td>\neg</td>
<td>\neg p</td>
<td>Negation (not)</td>
</tr>
<tr>
<td>\land, \lor</td>
<td>p \land q, p \lor q</td>
<td>Conjunction (and), disjunction (or)</td>
</tr>
<tr>
<td>-></td>
<td>p -> q</td>
<td>Implication (implies)</td>
</tr>
<tr>
<td><=></td>
<td>p <=> q</td>
<td>Logical equivalence (if and only if)</td>
</tr>
</tbody>
</table>

7.2 Integers

The integer data type, Int, provides constants and operators for the set of (positive and negative) integers. Appendix A.4 defines the semantics of this data type.

<table>
<thead>
<tr>
<th>Operators for Int</th>
<th>Sample input</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1, ...</td>
<td>123</td>
<td>Non-negative integers</td>
</tr>
<tr>
<td>-</td>
<td>-x</td>
<td>Additive inverse (unary minus)</td>
</tr>
<tr>
<td>abs</td>
<td>abs(x)</td>
<td>Absolute value</td>
</tr>
<tr>
<td>pred, succ</td>
<td>succ(x)</td>
<td>Predecessor, successor</td>
</tr>
<tr>
<td>+, -, *,</td>
<td>x + (y*z)</td>
<td>Addition, subtraction, multiplication</td>
</tr>
<tr>
<td>min, max</td>
<td>min(x, y)</td>
<td>Minimum, maximum</td>
</tr>
<tr>
<td>div, mod</td>
<td>mod(x, y)</td>
<td>Integer quotient, modulus</td>
</tr>
<tr>
<td><, \leq, >, \geq</td>
<td>x <= y</td>
<td>Less (greater) than (or equal to)</td>
</tr>
</tbody>
</table>

Syntactically, all binary operators bind equally tightly, so that expressions must be parenthesized, as in ((x*y) + z) > 3, to indicate the arguments to which operators are applied.\(^9\)

7.3 Natural numbers

The natural number data type, Nat, provides constants and operators for the set of non-negative integers. The operators and constants are as for Int, except that there are no unary operators - or abs, there is an additional operator ** for exponentiation, and the value of x-y is defined to be 0 if x < y. Appendix A.5 defines the semantics of this data type.

Syntactically, integer constants (e.g., 1) and operators (e.g., -) are distinct from natural number constants and operators that have the same typographical representation. Sometimes such overloaded operators can be distinguished from context (e.g., the 1 in the expression abs(-1) must be an integer constant, because abs and unary - are operators over the integers, but not over the

\(^9\)In the future, IOA may define a binding order for the symbols commonly used in arithmetic.
natural numbers). At other times, users must distinguish which operators or constants are meant by qualifying expressions with types, as in $x > 0 : \text{Nat}$.

7.4 Real numbers

The real number data type, \texttt{Real}, provides constants and operators for the set of real numbers. Again, the operators and constants are as for \texttt{Int}, except that there are no operators \texttt{pred}, \texttt{succ}, \texttt{div}, and \texttt{mod}, and there are additional operators \texttt{/} and \texttt{**} for division and exponentiation. Appendix A.6 defines the semantics of this data type.

7.5 Characters

The character data type, \texttt{Char}, provides constants and operators for letters and digits.10 Appendix A.3 defines the semantics of this data type.

<table>
<thead>
<tr>
<th>Operators for \texttt{Char}</th>
<th>Sample input</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A', ..., 'Z', 'a', ..., 'z', '0', ..., '9'</td>
<td>'J'</td>
<td>Letters and digits</td>
</tr>
<tr>
<td><, ≤, >, ≥</td>
<td>'A' ≤ 'Z'</td>
<td>ASCII ordering</td>
</tr>
</tbody>
</table>

7.6 Strings

The string data type, \texttt{String}, provides constants and operators for lexicographically ordered sequences of characters. It provides operators as described for \texttt{Seq[Char]} (see Section 8.4) as well as the ordering relations <, ≤, >, and ≥. Appendix A.7 defines the semantics of this data type.

8 Built-in type constructors

The following built-in type constructors and operators require no declaration.

8.1 Arrays

For each $n > 0$, the array data type \texttt{Array[II, ..., In, E]} provides constants and operators for n-dimensional arrays of elements of type E indexed by elements of types I_1, \ldots, I_n. Appendix A.8 defines the semantics of this data type.

<table>
<thead>
<tr>
<th>Operators for \texttt{Array[II, ..., In, E]}</th>
<th>Sample input</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>\texttt{constant(e)}</td>
<td>Array with all elements equal to e</td>
</tr>
<tr>
<td>\texttt{[...] \ldots [...]}</td>
<td>\texttt{a[i], b[i, j]}</td>
<td>Element indexed by i (and j) in arrays a, b</td>
</tr>
<tr>
<td>assign</td>
<td>\texttt{assign(a, i, e)}</td>
<td>Array a', equal to a except that $a'[i] = e$</td>
</tr>
<tr>
<td></td>
<td>\texttt{assign(b, i, j, e)}</td>
<td>Array b' equal to b except that $b'[i, j] = e$</td>
</tr>
</tbody>
</table>

The dimension of the array denoted by \texttt{constant(e)} is determined by an explicit qualification, as in \texttt{constant(e):Array[I1,I,E]}, or by context, as in \texttt{constant(e)[i]}.

10Additional character constants may be provided in a future version of IOA.
8.2 Finite sets

The set data type, Set[E], provides constants and operators for finite sets of elements of type E. Appendix A.13 in defines the semantics of this data type.

<table>
<thead>
<tr>
<th>Operators for Set[E]</th>
<th>Sample input</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>{}</td>
<td>Empty set</td>
</tr>
<tr>
<td>{...}</td>
<td>{e}</td>
<td>Set containing e alone</td>
</tr>
<tr>
<td>insert</td>
<td>insert(e, s)</td>
<td>Set containing e and all elements of s</td>
</tr>
<tr>
<td>delete</td>
<td>delete(e, s)</td>
<td>Set containing all elements of s, but not e</td>
</tr>
<tr>
<td>∈</td>
<td>e \in s</td>
<td>True iff e is in s</td>
</tr>
<tr>
<td>∪, ∩, −</td>
<td>(s \∪ s') − (s \∩ s')</td>
<td>Union, intersection, difference</td>
</tr>
<tr>
<td>⊂, ⊆, ⊇, ⊃</td>
<td>s \subseteq s'</td>
<td>(Proper) subset (superset)</td>
</tr>
<tr>
<td>size</td>
<td>size(s)</td>
<td>Size (an Int) of s</td>
</tr>
</tbody>
</table>

8.3 Finite multisets

The multiset data type, Mset[E], provides constants and operators for finite multisets of elements of type E. Its operators are those for Set[E], except that there is an additional operator count such that count(e, s) is the number (an Int) of times an element e occurs in a multiset s. Appendix A.10 defines the semantics of this data type.

8.4 Finite sequences

The sequence data type, Seq[E], provides constants and operators for finite sequences of elements of type E. Appendix A.12 defines the semantics of this data type.

<table>
<thead>
<tr>
<th>Operators for Seq[E]</th>
<th>Sample input</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>{}</td>
<td>Empty sequence</td>
</tr>
<tr>
<td>⊕</td>
<td>s ⊕ e</td>
<td>Sequence with e appended to s</td>
</tr>
<tr>
<td>⊖</td>
<td>e ⊖ s</td>
<td>Sequence with e prepended to s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∈</td>
<td>e \in s</td>
<td>True iff e is in s</td>
</tr>
<tr>
<td>head, last</td>
<td>head(s)</td>
<td>First (last) element in sequence</td>
</tr>
<tr>
<td>init, tail</td>
<td>tail(s)</td>
<td>All but first (last) elements in sequence</td>
</tr>
<tr>
<td>len</td>
<td>len(s)</td>
<td>Length (an Int) of s</td>
</tr>
<tr>
<td>...[...]</td>
<td>s[n]</td>
<td>nth (an Int) element in s</td>
</tr>
</tbody>
</table>

8.5 Finite mappings

For each n > 0, the mapping data type Map[D1, ..., Dn, R] provides constants and operators for finite partial mappings of elements of domain type D1 × ⋯ Dn to elements of range type R.
Appendix A.9 defines the semantics of this data type.
Finite mappings differ from arrays in that they may not be defined for all elements of D.

Operators for $\text{Map}[D_1, \ldots, D_n, R]$

<table>
<thead>
<tr>
<th>Sample input</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td>empty</td>
</tr>
<tr>
<td>__[_, \ldots, _]</td>
<td>m[d], m2[d, e]</td>
</tr>
<tr>
<td>defined</td>
<td>defined(m, d)</td>
</tr>
<tr>
<td>update</td>
<td>update(m, d, r)</td>
</tr>
</tbody>
</table>

8.6 Null elements

The data type $\text{Null}[E]$ contains a copy of each element of the underlying data type E, plus one additional element nil. Appendix A.11 defines the semantics of this data type.

Operators for $\text{Null}[E]$

<table>
<thead>
<tr>
<th>Sample input</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>embed</td>
<td>embed(e)</td>
</tr>
<tr>
<td>.val</td>
<td>n.val</td>
</tr>
</tbody>
</table>

9 Data type semantics

IOA describes the semantics of abstract data types by means of axioms expressed in the Larch Shared Language (LSL). Users need to refer to LSL specifications only if they have questions about the precise mathematical meaning of some operator or if they wish to introduce new operators or data types.\footnote{Some tool builders may wish to provide other, equivalent definitions for the built-in data types, e.g., using some other mathematical formalism or in terms of procedures written in some programming language.}

This section provides a tutorial introduction to LSL. It is taken from Chapter 4 of [8], but has been updated to reflect several changes to LSL, most significantly the addition of explicit quantification. LSL is a member of the Larch family of specification languages [8], which supports a two-tiered, definitional style of specification. Each specification has components written in two languages: LSL, which is independent of any programming language, and a so-called interface language tailored specifically for a programming language (as LCL is tailored for C) or for a mathematical model of computation (as IOA is tailored for I/O automata). Interface languages are used to specify interfaces between program components and the effects of executing those components. By tailoring interface languages to programming languages or mathematical models, Larch makes it easy to describe the details of an interface (e.g., how program modules communicate) in a fashion that is familiar to users.

Interface languages rely on definitions from auxiliary specifications, written in LSL, to provide semantics for the data types a program manipulates. An LSL specification, known as a trait, describes a collection of sorts (i.e., non-empty sets of elements) and operators (i.e., functions mapping tuples of elements to elements), by means of axioms written in first-order logic. For example, the Sequences trait shown in Figure 9.1 describes some properties of finite sequences of elements of
Sequences(E): trait
 introduces
 {} : → Seq[E]
 -terminated: E, Seq[E] → Seq[E]
 last: Seq[E] → E
 init: Seq[E] → Seq[E]
 asserts with s: Seq[E], e: E
 sort Seq[E] generated freely by {}, -;
 last(e ⊢ s) = (if s = {} then e else last(s));
 init(e ⊢ s) = (if s = {} then {} else e ⊢ init(s));
 implies with s1, s2: Seq[E], e1, e2: E
 e1 ⊢ s1 = e2 ⊢ s2 ⇒ e1 = e2 ∧ s1 = s2;
 e1 ⊢ s1 ≠ {}

Figure 9.1: Simplified LSL specification for sequences

a sort E. The `introduces` clause lists the sorts and operators being specified, the `asserts` clause defines their properties, and the `implies` clause calls attention to some (purported) consequences of these properties. In the `introduces` clause, the `_`'s are placeholders for the arguments of the infix operator `⊢`. In the `asserts` clause, the `generated freely` by axiom asserts that all sequences can be obtained by prepending a finite number of elements (using the operator `⊢`) to the empty sequence `{}`, and the remaining axioms provide inductive definitions of the `last` and `init` operators; note that `last(())` and `init(())` are not defined. The `implies` clause calls attention to the fact that two elements of the freely generated sort `Seq[E]` are equal if and only if they were generated in the same fashion; this fact distinguishes sequences from sets, where the order in which elements are inserted does not matter.

Larch distinguishes the idealized sorts of elements described in LSL (such as arbitrarily long sequences) from the actual types of elements involved in a computation (such as sequences of some limited length). Larch also distinguishes between mathematical operations on sorts (such as `last`, which is not specified completely) and computational procedures (such as one that returns the first element in a sequence, which may either return an "error" element or raise an exception if the sequence is empty). Each data type in an IOA program is interpreted as a sort in LSL, and the results of computations are specified in terms of operators whose meanings have been defined in LSL.

9.1 Axiomatic specifications

LSL's basic unit of specification is a `trait`. Consider, for example, the specification for some properties of sets given in Figure 9.2. This specification is similar to conventional algebraic specifications, as would be written in many languages [1, 3]. The trait has a name, `Set0`, which is independent of the names appearing in it for data abstractions (e.g., `Set[E]`) or for operators (e.g., `ε`).

The part of the trait following the keyword `introduces` declares a list of `operators`, each with its `signature` (the sorts of its `domain` and `range`). An operator is a total function that maps a tuple of values of its domain sorts to a value of its range sort. It is important to note that an operator in LSL is always a total function even if its value is not specified for every element of its domain. For example, `{}` is in the domain of the function `last` in Figure 9.1, even though no value is specified for `last({})`. Nonetheless, `last({})` denotes a fixed element of sort `E`.

Every operator used in a trait must be declared; signatures are used to sort-check `terms` in
Set0: trait introduces

\{\}: \rightarrow \text{Set}[E]
insert: E, \text{Set}[E] \rightarrow \text{Set}[E]
\in: E, \text{Set}[E] \rightarrow \text{Bool}
size: \text{Set}[E] \rightarrow \text{Int}
0, 1: \rightarrow \text{Int}
++: Int, Int \rightarrow \text{Int}
\geq: Int, Int \rightarrow \text{Bool}

asserts with s, s': Set[E], e, e': E
\forall e (e \in s \Leftrightarrow e \in s') \Rightarrow s = s';
\neg(e \in \{}\};
e \in \text{insert}(e', s) \Leftrightarrow e = e' \lor e \in s;
size(\{}) = 0;
size(\text{insert}(e, s)) = size(s) + (\text{if } e \in s \text{ then } 0 \text{ else } 1)

Figure 9.2: A trait specifying some properties of sets

much the same way as expressions are type-checked in programming languages. Primitive sorts are denoted by identifiers (such as E and Int); sorts constructed from other sorts (in a manner defined by the trait) are denoted by identifiers for sort constructors (such as Set) applied to the other sorts (as in Set[E]). All sorts are declared implicitly by their appearance in signatures.

Double underscores (__) in an operator declaration indicate that the operator will be used in mixfix terms. For example, \in, +, and \geq are declared as binary infix operators. Infix, prefix, postfix, and bracketing operators (such as __+__, __-, __!, __{__}, __[__], and if __ then __ else __) are integral parts of many familiar mathematical and programming notations, and their use can contribute substantially to the readability of specifications.

LSL’s grammar for mixfix terms is intended to ensure that legal terms parse as readers expect—even without studying the grammar. LSL has a simple precedence scheme for operators:

- postfix operators that consist of a dot followed by an identifier (as in field selectors such as .first) bind most tightly;
- bracketing operators that begin with a left delimiter (e.g., [) and end with a right delimiter (e.g.,]) bind more tightly than
- the logical quantifiers \forall (for all) and \exists (there exists), which bind more tightly than
- other user-defined operators and the built-in propositional operator \neg (not), which bind more tightly than
- the built-in equality and inequality operators = and \neq which bind more tightly than
- the built-in propositional operators \and (and) and \or (or), which bind more tightly than
- the built-in propositional operator \imp (implies), which binds more tightly than
- the built-in propositional operator \iff (if and only if), which binds more tightly than
- the built-in conditional operator if __ then __ else __.

28
For example, the term \(p \leftrightarrow x + w \cdot a \cdot b = y \lor z \) can be written without parentheses and is equivalent to the fully parenthesized term \(p \leftrightarrow ((x + ((w \cdot a) \cdot b)) = y) \lor z \). LSL allows unparenthesized infix terms with multiple occurrences of an operator at the same precedence level, but not different operators; it associates such terms from left to right. Fully parenthesized terms are always acceptable. Thus \(x \land y \land z \) is equivalent to \((x \land y) \land z \), but \(x \lor y \land z \) must be written as \((x \lor y) \land z \) or as \(x \lor (y \land z) \), depending on which is meant.

The part of the trait following the keyword asserts constrains the operators by means of formulas, that is, by terms of sort bool constructed from variables declared following the keyword with, operators declared in the trait, built-in operators, and quantifiers. The last three formulas in the trait Set0 are equations, which consist of two quantifier-free terms of the same sort, separated by = or \(\leftrightarrow \).

Each trait defines a theory (a set of formulas) in multisorted first-order logic (see Section 11). Each theory contains the trait's assertions, the conventional axioms of first-order logic, everything that follows from them, and nothing else. This loose semantic interpretation guarantees that formulas in the theory follow only from the presence of assertions in the trait—never from their absence. This is in contrast to algebraic specification languages based on initial algebras [7] or final algebras [15]. Using the loose interpretation ensures that all theorems proved about an incomplete specification remain valid when it is extended.

Each trait should be consistent: it must not define a theory containing the formula \(\text{false} \). Consistency is often difficult to prove and is undecidable in general. Inconsistency is often easier to detect and can be a useful indication that there is something wrong with a trait.

9.2 Axiom schemes

At times, it can be difficult to find adequate sets of axioms that assert some property of interest. Consider, for example, the problem of asserting that the set \(\text{Nat} \) of natural numbers contains the integers \(0, 1, 2, \ldots \) and nothing else. A natural approach is to assert that the set \(\text{Nat} \) is the smallest set containing \(0 \) and closed under the successor operation \(\text{suc} \) (defined by \(\text{suc}(n) = n + 1 \)):

\[
\forall s: \text{Set}\[\text{Nat}\] \ (0 \in s \land \forall n: \text{Nat} \ (n \in s \Rightarrow \text{suc}(n) \in s)) \Rightarrow \forall n: \text{Nat} \ (n \in s)
\]

However, the axioms in the trait Set0 do not imply the existence of enough elements of sort Set[E] to give this assertion its intended meaning: these axioms remain true if Set[E] is interpreted as containing only finite sets of elements of sort E, in which case no element of Set[\text{Nat}] is closed under suc and the assertion about \(\text{Nat} \) is vacuously true.

There are several ways to remedy this problem. One is to posit some special, unaxiomatized relationship between the sort Set[E] and the sort E (i.e., that Set[E] contains all sets of elements of E). However, this approach creates another problem, namely, whether to posit other special relationships between similar notations such as Seq[E] or Map[E,E] and the sort E. Another approach, which avoids this problem, is to enlarge Set0 with axioms like \(\exists s: \text{Set}\[\text{Nat}\] \forall n: \text{Nat} \ (n \in s) \) that force Set[E] to contain sufficiently many sets of elements of E. Unfortunately, no finite set of axioms suffices to force the existence of all potentially interesting sets of elements of E.

For reasons such as this, LSL provides another statement, the generated by statement, for use in defining theories that would otherwise require infinitely many axioms. A generated by statement (such as the first axiom in the trait Sequences) asserts that a list of operators is a complete set of generators for a sort. That is, each value of the sort is equal to one that can be described using just those operators. For example, the statement

\textbf{sort Nat generated freely by} 0, \text{suc}

asserts that all values of sort Nat can be constructed by finitely many applications of the operator suc to the constant 0. In addition, the keyword freely indicates that the generators for Nat provide
unique representations for the natural numbers (i.e., that $\text{succ}(n) \neq 0$ and $\text{succ}^i(0) = \text{succ}^i(0)$ if and only if $i = j$). Similarly, the statement

\textbf{sort Set[E] generated by} $\{\}$, \textbf{insert}

asserts that all values of sort $\text{Set}[E]$ can be constructed by finitely many applications of \text{insert} to $\{\}$, that is, that all values of sort $\text{Set}[E]$ are finite sets. In this case, the absence of the keyword \textbf{freely} suggests that the generators for $\text{Set}[E]$ do not provide unique representations for sets of elements of E; in fact, the axioms for these sets ensure that $\text{insert}(a, \text{insert}(b, \{\}))) = \text{insert}(b, \text{insert}(a, \{\})).$

A \textit{generated by} statement justifies an \textit{induction schema} for proving properties of a sort. For example, to prove $\forall s:\text{Set}[E] \ (\text{size}(s) \geq 0)$ from the axioms of Set0 and the \textit{generated by} statement for $\text{Set}[E]$, we could (try to) construct a \textit{proof by induction} with the structure

- Basis step: $\text{size}(\{\}) \geq 0$
- Induction step: $\forall s:\text{Set}[E] \ \forall e:E \ (\text{size}(s) \geq 0 \Rightarrow \text{size}(\text{insert}(e, s)) \geq 0)$

In general, a \textit{generated by} statement is equivalent to an infinite set of formulas, one for each property (such as $\text{size}(s) \geq 0$) that can be expressed in first-order logic.12

9.3 Combining LSL specifications

The trait Set0 contains four operators that it does not define: 0, 1, \ast, and \geq. Without more information about these operators, the definition of size is not particularly useful, and we cannot prove “obvious” properties such as $\text{size}(s) \geq 0$. We could add assertions to Set0 to define these operators, but it is usually better to specify such operators in a separate trait that is included by reference. This makes the specification more structured and makes it easier to reuse existing specifications. Hence we might remove the explicit introductions of these operators from Set0 and instead add an \textbf{external reference}$

\textbf{includes Integer}$

to a separate trait Integer (see Appendix A.4), which both introduces these operators and defines their properties.

The theory associated with a trait containing an \textbf{includes} clause is the theory associated with the assertions of that trait and all (transitively) included traits.

It is often convenient to combine several traits dealing with different aspects of the same operator. This is common when specifying something that is not easily thought of as a data type. For example, the trait PartialOrder1 is equivalent to the less structured trait PartialOrder2 in Figure 9.3. Both traits define a partial order to be an irreflexive, transitive order, but PartialOrder1 makes this characterization of the definition explicit.

9.4 Renaming sorts and operators in LSL specifications

The trait PartialOrder1 relies heavily on the use of the same operator symbol, \prec, and the same sort identifier, \mathbf{T}, in the two included traits. In the absence of such happy coincidences, renaming can be used to make names coincide, to keep them from coinciding, or simply to replace them with more suitable names, as in

12LSL provides an additional axiom scheme in the form of a \textbf{partitioned by} statement, which asserts that a list of operators is a complete set of \textit{observers} for a sort: all distinct values of the sort can be distinguished using just these operators. For example, the statement $\textbf{sort Set[E] partitioned by} \mathbf{[]} \textit{asserts that terms indistinguishable by the observer} \mathbf{[]} \textit{denote the same value of sort Set}[E]$. This statement is equivalent to the first axiom in the trait Set0. In general, \textbf{partitioned by} statements do not increase the descriptive power of LSL, because they can be reformulated as single axioms that contain explicit quantifiers. However, they can be used to provide proof tools with automatic methods of deduction.
Irreflexive: trait
 introduces \(-\lt\)-: T, T \to Boolean
 asserts with x: T
 \(\neg(x < x)\)

Transitive: trait
 introduces \(-\lt\lt\)-: T, T \to Boolean
 asserts with x, y, z: T
 \(x < y \land y < z \Rightarrow x < z\)

PartialOrder1: trait
 includes Irreflexive, Transitive

PartialOrder2: trait
 introduces \(-\lt\lt\)-: T, T \to Boolean
 asserts with x, y, z: T
 \(\neg(x < x)\);
 \(x < y \land y < z \Rightarrow x < z\)

Figure 9.3: Specifications of kinds of relations

includes Transitive(\(\subset\) for \(<\))
which we can use to assert that the operator \(\subset\) is transitive.

In general, a trait reference is a phrase \(Tr(name1 for name2, \ldots)\) that stands for the trait \(Tr\)
with every occurrence of \(name2\) (which must be a sort, a sort constructor, or an operator) replaced
by \(name1\), etc. If \(name2\) is a sort or a sort constructor, this renaming changes the signatures of all
operators in \(Tr\) in whose signatures \(name2\) appears. For example, the signature of the operator \(+\)
changes to \(Int, Seq[Int] \to Seq[Int]\) in the trait reference includes Sequences(Int for E).

Any sort or operator in a trait can be renamed when that trait is referenced in another trait.
Some, however, are more likely to be renamed than others. It is often convenient to single these out
so that they can be renamed positionally. For example, the header Sequences(E): trait in Figure 9.1
makes the reference includes Sequences(Int) equivalent to includes Sequences(Int for E).

9.5 Stating intended consequences of LSL specifications

It is not possible to prove the "correctness" of a specification, because there is no absolute standard
against which to judge correctness. But since specifications can contain errors, specifiers need help
in locating them. LSL specifications cannot, in general, be executed, so they cannot be tested
in the way that programs are commonly tested. LSL sacrifices executability in favor of brevity,
clarity, flexibility, generality, and abstraction. To compensate, it provides other ways to check
specifications.

This section briefly describes ways in which specifications can be augmented with redundant
information to be checked during validation. Checkable properties of LSL specifications fall into
three categories: consistency, theory containment, and completeness. As discussed earlier, the
requirement of consistency means that any trait whose theory contains the formula \(false\) is illegal.

An implies clause makes claims about theory containment. Suppose we think that a consequence
of the assertions of \(Set0\) is that the order in which elements are inserted in a set makes no difference.
To formalize this claim, we could the following clause to \(Set0\):

implies with e1, e2: E, s: Set[E]
\[
\text{insert}(e1, \text{insert}(e2, s)) = \text{insert}(e2, \text{insert}(e1, s))
\]

Properties claimed to be implied can be specified using the full power of LSL, including formulas, generated by statements, and references to other traits. Attempting to verify that properties are actually implied can be helpful in error detection. Implications also help readers confirm their understanding. Finally, they can provide useful lemmas that will simplify reasoning about specifications that use the trait.

LSL does not require that each trait define a complete theory, that is, one in which each fully quantified formula is either true or false. Many finished specifications (intentionally) do not fully define all their operators. Furthermore, it can be useful to check the completeness of some definitions long before finishing the specification of which they are part. Therefore, instead of building in a single test of completeness that is applied to all traits, LSL provides a way to include within a trait specific checkable claims about completeness, using \text{converts} clauses. Adding the clause

\text{implies converts} \in

to Set0 makes the claim that the trait's axioms fully define the operator \(\in\). This claim means that, if the interpretations of all the other operators are fixed, there is only one interpretation of \(\in\) that satisfies the axioms. (This claim cannot be proved from the axioms in Set0 alone, but can be proved from those axioms together with the induction schema associated with sort \text{Set[E]} generated by \(\{\}, \text{insert.}\).)

The claim \text{implies converts} \text{last, init} cannot be verified from the axioms for \text{Sequences} in Figure 9.1, which define the meaning of \text{last(s)} and \text{init(s)} only when \(s \neq \{\}\). This incompleteness in \text{Sequences} can be resolved by adding other axioms to the trait, perhaps \text{last(\{\}) = errorVal}. But it is generally better not to add such axioms. The specifier of \text{Sequences} should not be concerned with whether the sort \text{E} has an \text{errorVal} and should not be required to introduce irrelevant constraints on \(-___. \). Extra axioms give readers more details to assimilate; they may preclude useful specializations of a general specification; and sometimes there simply is no reasonable axiom that would make an operator convertible (consider division by 0). Error conditions and undefined values are treated best in interface specifications, as discussed below.

LSL provides an \text{exempting} clause for listing terms that are not claimed to be defined (which is different from "that are claimed to be undefined"). The claim

\text{implies with d: D}

\text{converts last, init exempting last(\{\}), init(\{\})}

means that \text{last} and \text{init} are fully defined by the trait's axioms, interpretations for the other operators (\{\} and \(-___. \), and interpretations for the two terms \text{last(\{\})} and \text{init(\{\})}. This claim can be proved by induction from the axioms of \text{Sequences}.

In IOA, the use of incompletely defined terms results in underspecification, not nondeterminism. Consider, for example, the sample automaton \text{Choice} (Figure 4.1), in which the statement

\text{num: Int := choose n where 1 \leq n \land n \leq 3}

illustrated the nondeterministic choice of an initial value for the state variable \text{num}. If we replace that statement by

\text{num: Int := someElement(i, 3)}

where \text{someElement} is specified by the trait

\text{SomeElement: trait}

\text{includes Integer}

\text{introduces someElement: Int, Int \rightarrow Int}

\text{asserts with m, n: Int}

\text{m \leq n \Rightarrow m \leq someElement(m, n) \land someElement(m, n) \leq n}

then the initial value of \text{num} is no longer nondeterministic: it is always equal to the value of \text{someElement}(1, 3). The trait \text{SomeElement} does not tell us \text{which} value this is, but it is always the \text{same} value, because \text{someElement} denotes a fixed function, not a method of computation.
9.6 Recording assumptions in LSL specifications

Some traits are suitable for use in all contexts and some only in certain contexts. Just as we write
preconditions that describe the contexts in which a procedure may be called, we write assumptions
in traits that describe the contexts in which the traits may be included. As with preconditions,
assumptions impose proof obligations on the client (i.e., the including trait), and they may be
presumed true within the included trait.

Consider, for example, specializing the Sequences trait to describe sequences of strings by com-
bining Sequences with a separate trait that defines operators for the data type String:

```
StringSequences: trait
    includes Sequences(String), String
```

The interactions between String and Sequences are limited. Nothing in Sequences(String) depends
on any particular operators being introduced in including traits, let alone their having any special
properties. Therefore Sequences needs no assumptions.

```
OrderedSequences0(E): trait
    includes Sequences
    introduces
        _<_: E, E → Bool
        _<_: Seq[E], Seq[E] → Bool
    asserts with s, s1, s2: Seq[E], e, e1, e2: E
        {} << (e ↦ s);
        ¬(s << {});
        (e1 ↦ s1) << (e2 ↦ s2) ⇔ e1 < e2 ∨ (e1 = e2 ∧ s1 << s2)
```

Figure 9.4: Preliminary specification of ordered sequences

Consider, however, specializing the Sequences trait to describe lexicographically ordered se-
quences, as in Figure 9.4. As written, OrderedSequences0 says nothing about whether the operator
< defines an ordering over E; hence there is no reason to believe that the operator ≪ defines an
ordering over Seq[E]. It is inappropriate to define < within OrderedSequences0, both because its
definition would depend on properties of the sort E (which are not specified in OrderedSequences0)
and because to define < there would overly restrict the utility of OrderedSequences0. What we need
is an assumes clause, as in the trait OrderedSequences in Figure 9.5.

```
OrderedSequences(E): trait
    assumes Transitive(E for T)
    includes Sequences
    introduces
        _<_: E, E → Bool
        _<_: Seq[E], Seq[E] → Bool
    asserts with s, s1, s2: Seq[E], e, e1, e2: E
        {} << (e ↦ s);
        ¬(s << {});
        (e1 ↦ s1) << (e2 ↦ s2) ⇔ e1 < e2 ∨ (e1 = e2 ∧ s1 << s2)
    implies trait Transitive(Seq[E] for T, ≪ for <)
```

Figure 9.5: Specification of ordered sequences

Since OrderedSequences may presume its assumptions, its theory is the same as if it had included
Transitive rather than assumed it: OrderedSequences inherits all the declarations and assertions

33
of Transitive. Therefore, the assumption of Transitive can be used to derive various properties of \texttt{OrderedSequences}, for example, that \ll is itself transitive, as claimed in the \texttt{implies} clause.

The difference between \texttt{assumes} and \texttt{includes} appears when \texttt{OrderedSequences} is used in another trait. Whenever a trait with assumptions is included or assumed, its assumptions must be \texttt{discharged}. For example, in

\begin{verbatim}
StringSequences1: trait
 includes String, OrderedSequences(String)
\end{verbatim}

the assumption to be discharged is that the (renamed) theory associated with Transitive is a subset of the theory associated with the rest of \texttt{StringSequences1} (i.e., that it is a subset of the theory associated with the trait \texttt{String}).

9.7 Built-in operators, overloading, and qualification

In our examples, we have freely used the propositional operators together with three heavily overloaded operators, if \texttt{-- then -- else --}, and \neq, which are built into LSL. This allows these operators to have appropriate syntactic precedence. More importantly, it guarantees that they have consistent meanings in all LSL specifications, so readers can rely on their intuitions about them.

Similarly, LSL can recognize decimal numerals, such as 0, 24, and 1997, without explicit declarations and definitions. In principle, each numeral could be defined within LSL, but such definitions are not likely to advance anyone's understanding of the specification. \texttt{DecimalLiterals} is a predefined quasi-trait that implicitly defines all the numerals that appear in a specification; it is included in the standard numeric traits \texttt{Natural}, \texttt{Integer}, and \texttt{Real} that are built into IOA (see Appendix A).

In addition to the built-in overloaded operators and numerals, LSL provides for user-defined overloading. Each operator must be declared in an \texttt{introduces} clause and consists of an identifier (e.g., \texttt{update}) or operator symbol (e.g., \texttt{--<--}) and a signature. The signatures of most occurrences of overloaded operators are deducible from context. Consider, for example, the trait \texttt{OrderedSequences(\texttt{< for \ll})}, in which the symbol $<$ denotes two different operators, one relating terms of sort \texttt{E}, and the other, terms of sort \texttt{Seq[E]}. The contexts in which this symbol is used determine unambiguously which operator is which.

LSL provides notations for disambiguating overloaded operators when context does not suffice. Any subterm of a term can be qualified by its sort. For example, \texttt{a:S in a:S = b} explicitly indicates that \texttt{a} is of sort \texttt{S}. Furthermore, since the two operands of $=$ must have the same sort, this qualification also implicitly defines the signatures of $=$ and \texttt{b}. These notations can be used to disambiguate the overloaded operator symbol $<$ in the last axiom in \texttt{OrderedSequences(\texttt{< for \ll})} explicitly, as in

\begin{verbatim}
(e1 \Downarrow s1):Seq[E] \ll (e2 \Downarrow s2):Seq[E] \equiv
 e1:E < e2:E \lor (e1:E = e2:E \land s1:Seq[E] \ll s2:Seq[E])
 t1:T < t2:T \lor (t1:T = t2:T \land s1:Seq[T] \ll s2:Seq[T])
\end{verbatim}

In contexts other than terms, overloaded operators can be disambiguated by directly affixing their signatures, as in \texttt{implies converts \texttt{<:Seq[E],Seq[E] \rightarrow}Bool}.

9.8 Shorthands

Enumerations, tuples, and unions provide compact, readable representations for common kinds of theories. They are syntactic shorthands for things that could be written in LSL without them.
Enumerations

The enumeration shorthand defines a finite ordered set of distinct constants and an operator that enumerates them. For example,

Status enumeration of waiting, elected, announced

is equivalent to including a trait with the body appearing in Figure 9.6.

SampleEnumeration: trait

 introduces
 waiting, elected, announced: \(\rightarrow \) Status
 succ: \(\) Status \(\rightarrow \) Status

 asserts
 sort Status generated freely by waiting, elected, announced;
 succ(waiting) = elected;
 succ(elected) = announced

Figure 9.6: Expansion of an enumeration shorthand

Tuples

The tuple shorthand is used to introduce fixed-length tuples, similar to records in many programming languages. For example,

Packet tuple of contents: Message, source: Node, dest: Set[Node]

is equivalent to including a trait with the body appearing in Figure 9.7. Each field name (e.g., source) is incorporated in two distinct operators (e.g., .source and set_source).

SampleTuple: trait

 introduces
 [___, __, ___]: Message, Node, Set[Node] \(\rightarrow \) Packet
 __.contents: Packet \(\rightarrow \) Message
 __.source: Packet \(\rightarrow \) Node
 __.dest: Packet \(\rightarrow \) Set[Node]
 set_contents: Packet, Message \(\rightarrow \) Packet
 set_source: Packet, Node \(\rightarrow \) Packet
 set_dest: Packet, Set[Node] \(\rightarrow \) Packet

 asserts with \(m, m1: Message, n, m1: Node, s, s1: Set[Node] \)
 sort Packet generated freely by [___, __, ___];
 sort Packet partitioned by .contents, .source, .dest;
 \[m, n, s].contents = m;
 \[m, n, s].source = n;
 \[m, n, s].dest = s;
 set_contents([m, n, s], m1) = [m1, n, s];
 set_source([m, n, s], n1) = [m, n1, s];
 set_dest([m, n, s], s1) = [m, n, s1]

Figure 9.7: Expansion of a tuple shorthand

Unions

The union shorthand corresponds to the tagged unions found in many programming languages. For example,
Figure union of sq: Square, circ: Circle is equivalent to including a trait with the body appearing in Figure 9.8. Each field name (e.g., circ) is incorporated in three distinct operators (e.g., circ:→Figure_tag, circ:Circle→Figure, and __.circ:Figure→Circle).

SampleUnion: trait
 Figure_tag enumeration of sq, circ introduces
 sq: Square → Figure
 circ: Circle → Figure
 __.sq: Figure → Square
 __.circ: Figure → Circle
 tag: Figure → Figure_tag
 asserts with s: Square, c: Circle
 sort Figure generated freely by sq, circ;
 sort Figure partitioned by tag, __.sq, __.circ;
 tag(sq(s)) = sq;
 tag(circ(c)) = circ;
 sq(s).sq = s;
 circ(c).circ = c

Figure 9.8: Expansion of a union shorthand

10 User-defined data types in IOA

Users of IOA can define additional data types and type constructors, define additional operators for the built-in data types or type constructors, or completely redefine the built-in data types or type constructors, by providing sets of axioms (as described in Section 9) for the new data types and operators.

Defining new data types To define and use a new abstract data type, one writes axioms for the data type in LSL and incorporates these axioms into an IOA specification using either an axioms or an assumes statement. For example, the index data type used in the leader election example (Section 5.1) is defined by the axioms in the trait RingIndex (Figure 5.2). This trait provides notations for two sorts (I and J) and four operators
 \[
 \begin{align*}
 \text{first}: & \quad I \\
 \text{left}, \text{right}: & \quad I \to I \\
 \text{name}: & \quad I \to J
 \end{align*}
 \]
It also provides five axioms that constrain the properties of these operators (e.g., by requiring that different elements of type I have different names). However, it does not completely define these operators (e.g., it does not provide any concrete representation for the elements of type J).

The statement axioms RingIndex(abcd, String) appearing before the definition of the automaton LCR4 (Figure 5.4) instantiates the parameters I and J in the trait RingIndex by the actual types abcd and String, thereby introducing notations for the operators
 \[
 \begin{align*}
 \text{first}: & \quad abcd \\
 \text{left}, \text{right}: & \quad abcd \to abcd \\
 \text{name}: & \quad abcd \to String
 \end{align*}
 \]
and five axioms that define their properties. Again, the axioms do not completely define the operators; for example, they do not specify which element of abcd is the first (it need not be a), and
they do not specify which strings are used to name the elements of abcd. When reasoning about LCR4, one can rely only on the properties of the operators given by the trait RingIndex.

As in LSL (see Section 9.6), the statement **assumes** RingIndex(I, String) appearing in the definitions of the automata Process (Figure 5.1) and LCR (Figure 5.3) both provides (and defines) notations for use in the definitions of those automata and also imposes proof obligations that must be discharged whenever they are used as components of other automata. When Process is used as a component of LCR, the **assumes** statement in the definition of LCR discharges this obligation by repeating the assumption contained in the definition of Process. When LCR is used as a component of LCR4, the **axioms** statement cited above discharges this proof obligation by defining the type abcd to have the required properties.

Defining new type constructors The statement **axioms** MarkedMessage for Mark[___] appearing before the definition of the automaton DelayedLossyChannel (Figure 6.1) enables IOA to recognize types such as Mark[M] in that definition, and it provides notations and axioms for operators such as .msg and mark appearing in that definition. These notations and axioms are found in the trait MarkedMessage (Figure 10.1), which has a single type parameter corresponding to the placeholder ___ for the single argument of the type constructor Mark.

MarkedMessage(M): trait

Mark[M] tuple of msg: M, mark: Bool

includes Sequence(Mark[M]), Sequence(M)

introduces

mark: Seq[Mark[M]] → Seq[Mark[M]]
messages: Seq[Mark[M]] → Seq[M]
subseqMarked: Seq[Mark[M]], Seq[Mark[M]] → Bool

asserts with mm, mm1, mm2: Mark[M], mms, mms1, mms2: Seq[Mark[M]]
mark({}) = {};
mark(mms) = mm = [mm.msg, true];
messages({}) = {};
messages(mms) = mm = messages(mms); mm.msg;
subseqMarked(mms, {}) ⇔ mm = {};
subseqMarked({}, mm) ⇔ subseqMarked({}, mm) ∧ mm.mark;
subseqMarked(mms1 ⊑ mm1, mms2 ⊑ mm2) ⇔
(subseqMarked(mms1 ⊑ mm1, mms2) ∧ mm2.mark) ∨
(subseqMarked(mms1, mms2) ∧ mm1 = mm2)

implies with m: M, mms, mms1, mms2, mms3: Seq[Mark[M]]

subseqMarked(mms, mms);
subseqMarked(mms, [m, true]);
(subseqMarked(mms1, mms2) ∧ subseqMarked(mms2, mms3))
⇒ subseqMarked(mms1, mms3);

Figure 10.1: Definition of type constructor Mark[___]

Redefining built-in type constructors The statement **axioms** Subsequence for Seq[___] appearing before the definition of the automaton LossyChannel (Figure 4.3) overrides the built-in definition of the type constructor Seq[___]. Ordinarily, axioms for that type constructor are obtained from a built-in trait Sequence(E) (see Appendix A.12). In the presence of this **axioms** statement, axioms for Seq[___] are obtained instead from the trait Subsequence. Since Subsequence
includes **Sequence**, the new definition actually extends the old: it introduces a single new operator, \(\preceq \), and defines its properties.
Part III

IOA Reference Manual

This reference manual describes the syntax, static semantics, and logical semantics both of IOA specifications and of assertions about IOA specifications. The syntax for IOA describes, using a context-free (BNF) grammar, the notations that appear in IOA specifications and assertions. Static semantics impose restrictions on the notations allowed by this BNF grammar. A static checker can be used to detect when these restrictions are violated. The logical semantics for IOA describes, in mathematical terms, the meaning of specifications and assertions. Proof tools can provide assistance in checking assertions.

11 Logical preliminaries

The logical semantics of IOA (and LSL) are formalized in multisorted first-order logic, which serves to model precise mathematical usage. This section provides a brief, abstract overview of first-order logic.

11.1 Syntax

We start by describing an abstract syntax for mathematical expressions, that is, for expressions in multisorted first-order logic.

A vocabulary \mathcal{V} for first-order logic is a set of symbols that denote two kinds of objects: sorts, denoted by symbols in $\mathcal{V}_{\text{sorts}}$, and operators, denoted by symbols in \mathcal{V}_{ops}. In IOA and LSL, symbols such as Bool, $\text{Set}[\text{Int}]$, and \top denote sorts, and symbols such as $0: \rightarrow \text{Int}$, $_+_: \text{Int} \rightarrow \text{Int}$, $f: \rightarrow \top$, and $_\neq _: \text{S} \rightarrow \text{Bool}$ denote operators.

$\mathcal{V}_{\text{sorts}}^*$ is the set of all finite sequences of elements of $\mathcal{V}_{\text{sorts}}$, including the zero-length sequence.

The set \mathcal{V}_{sig} of signatures for a vocabulary \mathcal{V} is the set of all pairs $\langle \text{domain}, \text{range} \rangle$ in which $\text{domain} \in \mathcal{V}_{\text{sorts}}^*$ and $\text{range} \in \mathcal{V}_{\text{sorts}}$.

Associated with each operator, op, in a vocabulary \mathcal{V} is an identifier, op.id, and a signature, op.sig, in \mathcal{V}_{sig}. For example, in IOA and LSL, 0, $+$, \top, and \neq are operator identifiers and $\rightarrow \text{Int}$, $\text{Int} \rightarrow \text{Int}$, $\top \rightarrow \top$, and $\text{S} \rightarrow \text{Bool}$ are signatures (the sequence of sort symbols preceding the \rightarrow constitutes the domain, and the sort symbol following the \rightarrow is the range). The arity of an operator is the number of sort symbols in its domain. A constant is an operator of arity 0.

In general, first-order logic restricts attention to vocabularies \mathcal{V} that contain the sort symbol Bool, the 0-ary operators true and false with signature $\rightarrow \text{Bool}$, the unary operator \sim with signature $\text{Bool} \rightarrow \text{Bool}$, and the binary operators \land, \lor, \rightarrow, and \leftrightarrow with signature $\text{Bool} \rightarrow \text{Bool}$. First-order logic with equality in addition restricts attention to vocabularies \mathcal{V} that contain, for every sort S in $\mathcal{V}_{\text{sorts}}$, the binary operators $=$ and \neq with signature $\text{S} \rightarrow \text{Bool}$. For IOA and LSL, we also restrict attention to vocabularies \mathcal{V} that contain, for every sort S in $\mathcal{V}_{\text{sorts}}$, the conditional operation if.then.else. with signature $\text{Bool} \rightarrow \text{S} \rightarrow \text{Bool}$.

A variable is a symbol, v, with which is associated an identifier, v.id, and a sort, v.sort; v is a variable over \mathcal{V} if v.sort is in $\mathcal{V}_{\text{sorts}}$. In IOA and LSL, symbols such as $n: \text{Int}$ and $x: \text{Set}[\text{Int}]$ are variables.

\footnote{A logic in which $\mathcal{V}_{\text{sorts}}$ contains more than one symbol is called multisorted.}
For any vocabulary \mathcal{V}, a \mathcal{V}-term is an expression constructed, as described below, from the operators in \mathcal{V}_{ops} and some (infinite) set of variables over \mathcal{V}. Associated with each term is a sort known as the sort of that term.

- Any variable v over \mathcal{V} is a \mathcal{V}-term. Its sort is $v.sort$.

- For any operator op in \mathcal{V}_{ops} with signature $T_1, \ldots, T_n \rightarrow T$ and for any terms t_1, \ldots, t_n of sorts T_1, \ldots, T_n, the expression $op(t_1, \ldots, t_n)$ is a \mathcal{V}-term. Its sort is the range sort of op.

- For any \mathcal{V}-term t of sort Bool and any variable v over \mathcal{V}, the expressions $\forall v\ t$ and $\exists v\ t$ are \mathcal{V}-terms. Their sort is Bool. (The symbols \forall and \exists, as well as the expressions $\forall v$ and $\exists v$, are called quantifiers. The term t is the scope of the quantifiers $\forall v$ and $\exists v$.)

An occurrence of a variable in a term is *bound* if it occurs within the scope of a quantifier over that variable. An occurrence of a variable in a term is *free* if it is not bound.

For any term t, any variable v, and any term s with no free variables, $t[v \leftarrow s]$ is the term obtained from t by replacing each free occurrence of v by s.

A *formula* is a term of sort Bool. A *sentence* is a formula with no free variables.

11.2 Semantics

Given a precise syntax for expressions in multisorted first-order logic, we now provide a precise semantics. Readers may wish to skim this section, which essentially defines expressions to mean what they seem to mean. The point here is that “meaning” has meaning only with respect to particular mathematical objects, called structures. For example, an expression $x \cdot y$ might denote the product of two numbers, the composition of two functions, or the concatenation of two strings, and a statement such as $\forall x \forall y (x < y \Rightarrow \exists z (x < z \land z < y))$ might be true about some structures (e.g., the rational or real numbers), but false about others (e.g., the integers).

For any vocabulary \mathcal{V}, a \mathcal{V}-structure \mathcal{S} is a map $[\cdots]_{\mathcal{S}}$ with domain \mathcal{V} such that

- for each sort T in \mathcal{V}, $[[T]]_{\mathcal{S}}$ is a nonempty set (called the *carrier of T*) that is disjoint from $[[T']]_{\mathcal{S}}$ for any other sort T' in \mathcal{V}, and

- for each operator symbol op with signature $T_1, \ldots, T_n \rightarrow T$ in \mathcal{V}, $[[op]]_{\mathcal{S}}$ is a total function from $[[T_1]]_{\mathcal{S}} \times \cdots \times [[T_n]]_{\mathcal{S}}$ to $[[T]]_{\mathcal{S}}$.

When a vocabulary \mathcal{V} contains the symbols Bool, true, false, \neg, \land, \lor, \Rightarrow, \Leftrightarrow, $=$, or \neq, as described in Section 11.1, we restrict our attention to \mathcal{V}-structures that interpret these symbols as in Figure 11.1.

For any vocabulary \mathcal{V}, any \mathcal{V}-structure \mathcal{S}, and any \mathcal{V}-term t with no free variables, the *denotation* $[[t]]_{\mathcal{S}}$ of t is defined recursively, as follows:

- $[[op(t_1, \ldots, t_n)]]_{\mathcal{S}} = [[op]]_{\mathcal{S}}([[t_1]]_{\mathcal{S}}, \ldots, [[t_n]]_{\mathcal{S}})$

- $[[\exists v\ t']]_{\mathcal{S}} = \text{true}$ iff $[[t'[v \leftarrow c_v]]]_{\mathcal{S}'} = \text{true}$ for some $(\mathcal{V} \cup \{c_v\})$-structure \mathcal{S}' that agrees with \mathcal{S} on \mathcal{V} (i.e., such that $[[v]]_{\mathcal{S}} = [[v]]_{\mathcal{S}'}$ for all $v \in \mathcal{V}$), where c_v is a constant symbol not in \mathcal{V}_{ops} that has sort $v.sort$.

- $[[\forall v\ t']]_{\mathcal{S}} = \text{true}$ iff $[[t'[v \leftarrow c_v]]]_{\mathcal{S}'} = \text{true}$ for all $(\mathcal{V} \cup \{c_v\})$-structures \mathcal{S}' that agree with \mathcal{S} on \mathcal{V}, where c_v is a constant symbol not in \mathcal{V}_{ops} that has sort $v.sort$.

\[[\text{Bool}]\]_S = \{\text{true, false}\}

\[[\text{true}]\]_S = \text{true}

\[[\text{false}]\]_S = \text{false}

\[[\neg]_S(x) = \text{true} \text{ iff } x = \text{false}

\[[\wedge]_S(x, y) = \text{true} \text{ iff } x = \text{true} \text{ and } y = \text{true}

\[[\lor]_S(x, y) = \text{true} \text{ iff } x = \text{true} \text{ or } y = \text{true}

\[[\Rightarrow]_S(x, y) = \text{true} \text{ iff } x = \text{false} \text{ or } y = \text{true}

\[[\Leftarrow]_S(x, y) = \text{true} \text{ iff } x = y

\[[\equiv]_S(x, y) = \text{true} \text{ iff } x = y

\[[\neq]_S(x, y) = \text{true} \text{ iff } x \neq y

\[[\text{if}_-\text{then}_-\text{else}_-]_S(\text{true}, x, y) = x

\[[\text{if}_-\text{then}_-\text{else}_-]_S(\text{false}, x, y) = y

Figure 11.1: Standard interpretation of boolean sort and logical operators

11.3 Further terminology

In the following definitions, \(\mathcal{V} \) is a vocabulary, \(\phi \) is a \(\mathcal{V} \)-sentence, and \(T \) and \(T' \) are sets of \(\mathcal{V} \) sentences.

\(S \) is a model of \(\phi \) iff \(\phi \) is true in \(S \), that is, iff \(\llbracket \phi \rrbracket_S = \text{true} \).

\(T \) is consistent iff there is a \(\mathcal{V} \)-structure that is a model of every sentence in \(T \).

\(\phi \) is a (logical) consequence of \(T \) iff \(\phi \) is true in every model of \(T \).

\(T \) is a theory iff it is closed under logical consequence. It is easy to see that, if \(T \) is a theory, then \(T \) is consistent iff \(\phi \notin T \).

A theory \(T \) is an extension of a theory \(T' \) iff \(T' \subseteq T \). It is easy to see that \(T \) is an extension of \(T' \) iff every sentence in \(T' \) is a consequence of \(T \).

An extension \(T \) of \(T' \) is conservative iff \(T' \) is a set of \(\mathcal{V}' \) sentences for some \(\mathcal{V}' \subseteq \mathcal{V} \) and every \(\mathcal{V}' \)-sentence in \(T \) is also in \(T' \). In other words, an extension \(T \) of \(T' \) is conservative iff the vocabulary of \(T \) includes that of \(T' \), but all consequences of \(T \) in the vocabulary of \(T' \) are already consequences of \(T' \).

When \(S \) is clear from the context, we write \(\llbracket \cdots \rrbracket \) for \(\llbracket \cdots \rrbracket_S \).

12 Lexical syntax

We describe the syntax of IOA (and LSL) using a context-free grammar expressed in an extended version of BNF. Uppercase words and symbols enclosed in single quotation marks are terminal symbols in the grammar. All other words are nonterminal symbols. If \(x \) and \(y \) are grammatical units, then the following notations have the indicated meanings.
<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>x y</td>
<td>an x followed by a y</td>
</tr>
<tr>
<td>$x \mid y$</td>
<td>an x or a y</td>
</tr>
<tr>
<td>$x?$</td>
<td>an optional x</td>
</tr>
<tr>
<td>x^*</td>
<td>zero or more x's</td>
</tr>
<tr>
<td>x^+</td>
<td>one or more x's</td>
</tr>
<tr>
<td>x, \ast or $x; \ast$</td>
<td>zero or more x's, separated by commas or semicolons</td>
</tr>
<tr>
<td>$x, +$ or $x; +$</td>
<td>one or more x's, separated by commas or semicolons</td>
</tr>
</tbody>
</table>

The lexical grammar of IOA uses the following symbols:

- Punctuation marks: $,$ $:$ $;$ $($) $ $\{} $ $\}$ $[$ $]$ $__ $ $::=$

- Reserved words: assumes, automaton, axioms, backward, by, case, choose, components, const, do, eff, else, elseif, enumeration, ensuring, fn, for, forward, from, hidden, if, in, initially, input, internal, invariant, local, od, of, output, pre, signature, simulation, states, tasks, then, to, transitions, tuple, type, union, where.

- Beginning comment character: $%$

- IDENTIFIERS for variables, types, and functions: sequences of letters, digits, apostrophes, and underscores (except that two underscores cannot occur consecutively). The LaTeX identifiers for the Greek letters can also be used as identifiers, as can the two strings \texttt{\texttt{bot}} and \texttt{\texttt{top}}.

- OPERATORS: sequences of the characters $-$ $! $ $\# $ $\$ $ $& $ $* $ $+ $ $\cdot $ $\leq $ $\Rightarrow $ $? $ $@ $ $\ast $ $| $ $\sim $ $/$ or a backslash (\backslash) followed by one of these characters, by one of the characters $_ $ $\backslash $, or by an identifier (other than a name of a Greek letter, $\texttt{\texttt{bot}}$, or $\texttt{\texttt{top}}$).

- Whitespace: space, tab, newline.

- Reserved for future use: $'$ $''$

13 IOA specifications

An IOA specification contains four different kinds of units.

- Type definitions, used to associate sets of values and operators with state components and parameters (see Section 14).

- Automaton definitions (see Sections 16 and 17).

- Assertions about automata, e.g., invariant and simulation relations (see Section 18).

- Axiomatizations of abstract data types, formalized in the Larch Shared Language (LSL), which provide the syntax and semantics for types and operators appearing in the other three kinds of units (see Part IV).
Syntax of IOA specifications

\[\text{specification ::= trait | ioaSpec} \]
\[\text{ioaSpec ::= (axioms | typedef | automatonDef | assertion)+}\]

The IOA tools described in Appendix B expect the specification for a trait \(T\) to be stored in a file named \(T.1sl\). They expect an \(\text{ioaSpec}\) to be stored in a file with a name of the form \(<\text{filename}>.\text{ioa}\).

The syntax and semantics for the constructs mentioned, but not defined, here can be found in Section 20 (trait), Section 14 (axioms, typedef), Section 16 (automatonDef), and Section 18 (assertion).

14 Type and type constructor definitions

The syntax and semantics of the types that appear in automaton definitions are given by built-in or user-supplied LSL traits (see Sections 9 and 20). A type can be a primitive type, named by a single identifier, or a compound type, named by applying a type constructor to a list of simpler types. Each type denotes a sort (see Section 21), namely, the sort that is lexically identical to the type.

Syntax of type declarations

\[\text{typedef ::= 'type' type '=' shorthand}\]
\[\text{axioms ::= 'axioms' axiomSet,+}\]
\[\text{axiomSet ::= traitRef}\]
\[\quad | \text{traitId 'for' typeConstructor '[, ,]'}\]
\[\text{type ::= simpleType | compoundType}\]
\[\text{simpleType ::= IDENTIFIER}\]
\[\text{compoundType ::= typeConstructor [' type,+ ']}\]
\[\text{typedef ::= IDENTIFIER}\]

The syntax and semantics for shorthand and traitRef can be found in Section 9.8 and 24.

The vocabulary, \(V_{\text{spec}}\), of an \(\text{ioaSpec}\) is the union of the vocabularies of its typedefs, its axioms, and the traits defining the built-in primitive types (see Appendix A). The vocabulary of a typedef contains the defined type and the vocabulary of the defining shorthand (see Section 23). The vocabulary of an axioms is the union of the vocabularies of its traitRefs (see Section 24). (The traits named by the traitIds associated with typeConstructors do not contribute to this vocabulary.)

The type constructors associated with an \(\text{ioaSpec}\) are the built-in type constructors (see Section 8) and the typedefs defined in the axiomSets in the \(\text{ioaSpec}\).

The global theory, \(T_{\text{spec}}\), of an \(\text{ioaSpec}\) is the union of the theories of its typedefs and its axioms. The theory of a typedef is the theory of its shorthand (see Section 23). The theory of an axioms is the union of the theories of its traitRefs. (The traits named by the traitIds associated with typeConstructors do not contribute to \(T_{\text{spec}}\)).

Static semantics

- A type can be defined in at most one shorthand in an \(\text{ioaSpec}\). Editorial note: Determine whether the front-end tool checks this. What about a definition inside a trait?
• A typeConstructor can be defined in at most one axiomSet in an ioaSpec.

• The arity of a typeConstructor defined in an axiomSet is the number of placeholders between the brackets following the typeConstructor. The trait named by a traitId in an axiomSet must have the same number of traitFormals as the arity of the typeConstructor; each of those traitFormals must name a sort (not an operator) in the referenced trait.

Logical semantics

• T_{spec} must be consistent.

15 Automaton definitions

An automaton can be a primitive automaton or a composition of other automata. Its definition can be parameterized by a list of types and/or constants.

Syntax of automaton definitions

```
automatonDef ::= 'automaton' automatonName automatonFormals?
                  assumptions? (simpleBody | composition)
automatonName ::= IDENTIFIER
automatonFormals ::= '(' automatonFormal,+, ')' 
automatonFormal ::= IDENTIFIER,+: '>' (type | 'type')
assumptions ::= 'assumes' traitRef,+
```

The syntax and semantics for the constructs mentioned, but not defined, here can be found in Section 16 (simpleBody), Section 17 (composition), Section 14 (type), and Section 24 (traitRef).

An automatonFormal that contains the keyword type denotes a sequence of formal types, each element of which is simple sort (cf. Section 21) corresponding to an IDENTIFIER in the automatonFormal. An automatonFormal that contains a type denotes a sequence of formal parameters, each element of which is a constant of the sort associated with the type. An automatonFormals denotes the sequence of automaton formals obtained by concatenating the sequences of formal types and formal parameters in its automatonFormals.

The vocabulary, V_A, of an automatonDef for an automaton with automatonName A in an ioaSpec is the union of V_{spec} with the vocabularies of the traitRefs in its assumptions, enriched by the automaton formals of the automatonDef. The local theory, T_A, of this automatonDef is the union of T_{spec} and the theories of the traitRefs in the assumptions of the automatonDef.

The closures, $d(V_A)$ and $d(T_A)$, of V_A and T_A are the smallest sets X and Y such that

• $V_A \subseteq X$,

• $T_A \subseteq Y$, and

• for any sorts S_1, \ldots, S_n in X and any n-ary type constructor T associated with a trait Tr in the ioaSpec in which A is defined, the vocabulary of the traitRef $Tr(S_1, \ldots, S_n)$ is a subset of X and the theory of this traitRef is a subset of Y.
Static semantics

- There can be at most one automatonDef for a given automatonName in an ioaSpec.
- The automaton formals in an automatonDef must be distinct.
- The sort associated with a formal type in an automatonDef must not be in \(V_{\text{spec}} \).
- The sort of each formal parameter in an automatonDef for \(A \) must be in \(c(l(V_A)) \).

Logical semantics

- \(c(l(T_A)) \) must be consistent for any automatonDef for \(A \).

16 Primitive automata

16.1 Primitive automaton definitions

A primitive automaton is defined by its action signature, its states, its transitions, and (optionally) a partition of its actions into tasks.

Syntax of primitive automaton definitions

\[
\begin{align*}
\text{simpleBody} & \ ::= \ 'signature' \ formalActionList+ \ states \ transitions \ tasks? \\
\text{formalActionList} & \ ::= \ \text{actionType} \ formalAction,+ \\
\text{actionType} & \ ::= \ 'input' \ | \ 'output' \ | \ 'internal' \\
\text{formalAction} & \ ::= \ \text{actionName} \ (\text{actionFormals where}?)?
\end{align*}
\]

- \(\text{actionName} \ ::= \text{IDENTIFIER} \)
- \(\text{actionFormals} \ ::= \ '(' \ actionFormal,+, ')' \)
- \(\text{actionFormal} \ ::= \text{IDENTIFIER},+ \ '':' \ \text{type} \ | \ '\text{const}' \ \text{term} \)
- \(\text{where} \ ::= \ 'where' \ \text{predicate} \)

The syntax and semantics of states, transitions, and tasks are given in Sections 16.2, 16.3 and 16.4, respectively. The syntax and semantics of terms and predicates are given in Section 22.

Each actionFormal denotes a sequence of terms. If the actionFormal contains the keyword const, this sequence contains the single term following the keyword. Otherwise, this sequence contains a formal parameter (i.e., a constant) of the sort associated with the type in the actionFormal for each IDENTIFIER in the actionFormal.

The action pattern of a formalAction consists of its actionName, the sequence of sorts of its actionFormals, and its actionType (input, output, or internal).

Static semantics

- An actionName can appear in at most one action pattern with each of the three actionTypes in a simpleBody.
- An actionName must be associated with the same sequence of sorts in each action pattern in which it appears.
- Each formal parameter must be distinct from any other formal parameter of the same type in the same actionFormals, as well as from any automatonFormal.
• The type of each actionFormal must be in $d(V_A)$.

• Each constant or operator in a term following the keyword const in an actionFormal, or in a predicate in a where clause, must be an actionFormal in that action or in $d(V_A)$. Each variable in such a term or predicate must be a bound variable with a sort in $d(V_A)$.

• The type of a term used as a const actionFormal cannot be type.

Logical semantics

• Editorial note: Insert formal definition of the action signature of an automaton.

• A formalAction of the form $\text{name}(x: S, \text{const} \ t)$, where the term t has type T, is equivalent to the formalAction $\text{name}(x: S, y: T) \text{ where } y = t$, where $y: T$ is a new formal parameter.

16.2 Automaton states

States are records of state variables. An initial value for each variable can be specified by an expression; instead, or in addition, the initial values of all state variables can be restricted by a predicate. Expressions and predicates are terms.

Syntax of state variable definitions

```
states ::= 'states' state,+ ('initially' predicate)?
state ::= IDENTIFIER ':' type ('=' value)?
value ::= term | choice
choice ::= 'choose' (variable 'where' predicate)?
```

The syntax and semantics of predicate, term, and variable are given in Section 22.
Each state defines a state variable, which is a constant with the given IDENTIFIER and type.

Static semantics

• Each state variable must be distinct from all other state variables and from all formal parameters of the automaton.

• The type of each state variable must be in $d(V_A)$.

• The type of the initial value assigned to a state variable must be the same as the type of that state variable.

• Each constant or operator in a term assigned as the initial value of a state variable must be in $d(V_A)$. Each variable in this term must be a bound variable with a sort in $d(V_A)$.

• Each constant, operator, or variable in the predicate in a choice is similarly limited, except that the variable following the keyword choose can also appear in the predicate. The type of this variable, if specified, must be the same as the type of the state variable. The identifier for this variable must be distinct from that of any parameter or state variable of the automaton that has the same sort.

• Each constant, operator, or variable in the predicate restricting the initial values of the state variables is similarly limited, except that state variables can also appear in the predicate.
Logical semantics

- Editorial note: Insert formal definition of the sets of states and start states of an automaton. Consider phrasing in terms of "For any model of T_A, ...

- The set of start states, determined by the assignments and/or allowed by the predicates, must be nonempty. Editorial note: Rephrase in terms of formal definition.

16.3 Automaton transitions

Transitions are specified using precondition/effect notation. Preconditions are boolean-valued predicates. Effects can be described in terms of simple programs and/or restricted by predicates relating the poststate to the prestate.

Syntax of transition relations

```plaintext
transitions ::= 'transitions' transition+
transition ::= actionHead precondition? effect?
actionHead ::= 'transition' actionName
            ::= '([' term,+,']')
actionActuals ::= '([' term,+,']',' localParameters).Busy')
l:localParameters ::= 'local' variableList,+
variableList ::= IDENTIFIER,+'.' type
precondition ::= 'pre' predicates
predicate ::= predicate;+ ';'?
ext::effect ::= 'eff' program ('ensuring' predicate)?
program ::= statement;+
statement ::= assignment | conditional | loop
assignment ::= lvalue '=' value
lvalue ::= variable
          ::= lvalue '[' term,+]'
          ::= lvalue '.' IDENTIFIER
conditional ::= 'if' predicate 'then' program
              ::= ('elseif' predicate 'then' program)*
              ::= ('else' program)? 'fi'
loop ::= 'for' IDENTIFIER qualification
       ::= ('in' | 'where') term 'do' program 'od'
```

The syntax and semantics of predicate, qualification, variable, and term are given in Section 22.

Each localParameters defines a sequence of local parameters, which are constants with the IDENTIFIERS and types specified in its variableLists. Editorial note: Replace variableList by constantList.

Static semantics

- Transitions must be specified for all actionNames in the signature of the automaton.
- The actionNames for which transitions are specified must be in the signature of the automaton.

- The actionActuals for each transition must match, both in number and in type, the actionFormals for the actionName.

- The types of variables appearing in actionActuals must be determined uniquely by the types of the actionActuals. These variables are declared implicitly by their occurrence in the actionActuals and have no relation to variables used as actionFormals.

- No precondition is allowed for an input action.

- Each local parameter must be distinct from all other local parameters, from all formal parameters of the automaton, from all state variables, and from all variables in the actionActuals of the action.

- All operators, constants, and variables in a predicate in a precondition or conditional, or in a lvalue or value in an assignment, must be
 - in cl(V_A),
 - variables introduced in the actionActuals,
 - local parameters of the action,
 - state variables of the automaton,
 - variables introduced in a loop containing the predicate or term, or
 - variables in the scope of a quantifier in the predicate or term.

- All constants, operators, and variables in the predicate in an ensuring clause must satisfy the same restrictions or be primed versions of state or local variables that are modified by some assignment in the program in the effect clause. For example, if queue is a state variable that appears on the left side of an assignment, then both queue and queue' are allowed in the predicate.

- The type of the variable in a loop (i.e., the type associated with the qualification) must be in cl(V_A). The scope of the variable is the loop. The variable need not be distinct from other constants and variables used outside that scope.

Logical semantics

- The where clause in each transition definition is implicitly conjoined with the where clause for the corresponding entry in the signature.

- Each transition defines a binary relation between states of the automaton. This relation is defined by the formula

\[\exists h \ldots (pre(s) \land eff(s, s') \land ensuring(s, s')) \]

where

- \(h \ldots \) are the local parameters, if any, in the transition,
- \(pre(s) \) is the predicate in the precondition,
- \(\text{eff}(s, s') \) is a formula obtained by translating the program, if any, in the effect, as described below, and
- \(\text{ensuring}(s, s') \) is the predicate, if any, in the \texttt{ensuring} clause in the \texttt{effect}.

- The semantics of a program \(P \) is defined by translating it into an \texttt{ensuring} clause \(\text{eff} \ P \), as indicated in the following table. In that table, \(s \) and \(s' \) represent states, \(v \) is a state variable (with value \(s.v \) in state \(s \)), \(w \) is an arbitrary state variable distinct from \(v \), \(t \) is a term, \(p \) is a predicate, and \(P_1 \) and \(P_2 \) are programs.

<table>
<thead>
<tr>
<th>program (P)</th>
<th>(\text{eff} \ P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v := t)</td>
<td>(s'.v = t \land s'.w = s.w)</td>
</tr>
<tr>
<td>(P_1 ; P_2)</td>
<td>(\exists s''(\text{eff} P_1(s, s'') \land \text{eff} P_1(s'', s')))</td>
</tr>
<tr>
<td>if (p) then (P_1) fi</td>
<td>((p \rightarrow \text{eff} P_1(s, s')) \land (\neg p \rightarrow s' = s))</td>
</tr>
<tr>
<td>if (p) then (P_1) else (P_2) fi</td>
<td>((p \rightarrow \text{eff} P_1(s, s')) \land (\neg p \rightarrow \text{eff} P_2(s, s')))</td>
</tr>
<tr>
<td>for (v) in (t) do (P_1) od</td>
<td>(\forall x(x \in t \Rightarrow \text{eff}_{v=x;P_1}(s, s')))</td>
</tr>
</tbody>
</table>

- The formula \(\text{eff}(s, s') \) obtained by translating a \texttt{program} in an \texttt{effect} must be consistent.

- Identifiers for state variables in \texttt{ensuring} clauses refer to the values of the variables in the prestate, i.e., in the state before the transition is executed. Primed versions of these identifiers refer to the values of the variables in the poststate, i.e., in the state after the transition is executed.

Note that:

- Statements in a \texttt{program} are executed sequentially, not in parallel as in \texttt{UNITY} [2].

- State variables that do not appear on the left side of an \texttt{assignment} in a branch through the \texttt{program} in an \texttt{effect} clause are assumed to be unchanged on that branch.

16.4 Automaton tasks

Tasks define a partition of the actions of an automaton.

Syntax of tasks

\[
\text{tasks} \ ::= \ 'tasks' \ \text{task};^+ \\
\text{task} \ ::= \ '{' \ \text{actionSet} '}' \ \text{forClause}? \\
\text{actionSet} \ ::= \ '{' \ \text{actionName} \ ('(' \ \text{term},+, ')') \ \text{where}?}\)
\]

\[
\text{forClause} \ ::= \ 'for' \ \text{variableList},+, \text{where}\?
\]

Static semantics

- Each \texttt{actionName} in a task must be an internal or output action of the automaton.

- The number of \texttt{actionActuals} for an \texttt{actionName} must equal the number of \texttt{actionFormals} in the automaton's signature for that \texttt{actionName}.

- The type of each \texttt{actionActual} must be the same as that of the corresponding \texttt{actionFormal}.
• All operators, constants, and identifiers in a term in an actionActual or in a where clause must be in \(cl(V_A) \) or defined exactly once in a for clause associated with the task. *Editorial note: check this.*

Logical semantics

• The task definitions must define a partition of the set of all non-input actions.

• If no tasks is present, then all non-input actions are treated as belonging to a single task.

17 Composite automata

Automata can be constructed by composing a set of component automata. Composite automata identify actions in different component automata that have the same name and the same values for their parameters; when any component automaton performs a step involving an action \(\pi \), so do all component automata that have \(\pi \) in their signatures. The hiding operator reclassifies output actions as internal actions.

Syntax of composite automata definitions

\[
\begin{align*}
\text{composition} & ::= \text{'components'} \ \text{component;}^+ \ (\text{'hidden'} \ \text{actionSet})? \\
\text{component} & ::= \text{componentTag} \ (\text{'}\text{'} \ \text{componentDef})? \ \text{where}? \\
\text{componentTag} & ::= \text{componentName} \ \text{componentFormals}? \\
\text{componentName} & ::= \text{IDENTIFIER} \\
\text{componentFormals} & ::= \text{'}\text{variableList},+\text{''} \\
\text{componentDef} & ::= \text{automatonName} \ \text{automatonActuals}? \\
\text{automatonActuals} & ::= \text{'}\text{(term | type)}+,\text{''} \\
\end{align*}
\]

Static semantics

• If a component does not contain a componentDef, it is assumed to have one in which the automatonName is the same as the componentName and the automatonActuals are the variables (considered as terms) in the componentFormals.

• The variables used as componentFormals must be distinct from each other and from any automatonFormal.

• The type of each componentFormal must be in \(cl(V_A) \).

• Each automatonName must be defined in an automatonDef.

• The numbers and types of the automatonActuals must match those of the corresponding automatonFormals.

• All constants, operators, and variables in terms used as automatonActuals must be in \(cl(V_A) \), bound variables, or componentFormals.

• Similarly named actions in different component automata must have the same number and types of parameters.
- The set of internal actions for each component must be disjoint from the set of all actions for each of the other components.

- The set of output actions for each component must be disjoint from the set of output actions for each of the other components.

- Each actionName in an actionSet must occur as the name of an output action in the signature of at least one of the component automata.

Logical semantics

- Each action of the composition must be an action of only finitely many component automata.

- The signature of the composition is the union of the signatures of the component automata.

- An action is an output action of the composition if it is an output action of some component automaton.

- An action is an input action of the composition if it is an input action of some component automaton, but not an output action of any component.

- An action is an internal action of the composition if it is an internal action of some component automaton.

- The set of states of the composition is the Cartesian product of the sets of states of the component automata.

- The set of start states of the composition is the Cartesian product of the sets of start states of the component automata.

- A triple \((s, \pi, s')\) is in the transition relation for the composite automaton if, for every component automaton \(C\), \((s_C, \pi, s'_C)\) is a transition of \(C\) when \(\pi\) is an action of \(C\) and \(s_C = s'_C\) when \(\pi\) is not an action of \(C\).

*Editorial note: This document needs to describe the notations that can be used for state variables of composite automata in invariants and simulation relations. A description of these notations can be found in [14].

Editorial note: State that one can prove a theorem that allows replacement of one component by another that implements it without affecting the traces of the composite automaton.

18 Statements about automata

Assertions about automata make claims about invariants preserved by the actions of the automata or about simulation relations between two automata.

Syntax of invariant and simulation relations

```
assertion ::= invariant | simulation
invariant ::= 'invariant' 'of' automatonName ':' predicate
simulation ::= ('forward' | 'backward') 'simulation' 'from'
               automatonName 'to' automatonName ':' predicate
```
Static semantics

- Each automatonName must have been defined previously in an automatonDef.
- All operators, constants, and variables in a predicate in an assertion must be
 - in cl(\(\mathcal{V}_A\)) for (one of) the named automata,
 - state variables of (one of) the named automata, or
 - variables in the scope of a quantifier in the predicate.

Logical semantics

- An invariant must be true in all reachable states of the automaton.
- The proof obligations for simulation relationships are as defined in Section 1.4.
Part IV

LSL Reference Manual

An LSL specification defines a theory in multisorted first-order logic. It presents a set of axioms for that theory. It may also present claims about the intended consequences of these axioms.

19 Lexical syntax

The lexical grammar of LSL is the same as that of IOA (Section 12), except that it uses the following list of reserved words: asserts, assumes, by, converts, else, kenumeration, exempting, for, freely, generated, if, implies, includes, introduces, of, partitioned, sort, then, trait, traits, tuple, type, union, with.

20 Traits

The basic unit of specification in LSL is a trait, which defines a set of axioms for a logical theory and which makes claims about the consequences of that theory. The header for a trait specifies its name and an optional list of formal parameters, which can be used in references to other traits (see Section 24). The body of the trait consists of optional references to subtraits (Section 24) intermixed with shorthands defining sorts (Section 23), optionally followed by sort and operator declarations (Section 22), and claimed consequences of the axioms (Section 25).

Syntax of traits

\[
\begin{align*}
\text{trait} & : = \text{traitId} \; \text{traitFormals?} \; ':' \; 'trait' \; \text{traitBody} \\
\text{traitId} & : = \text{IDENTIFIER} \\
\text{traitBody} & : = (\text{subtrait} \mid \text{sort shorthand})^* \; \text{opDcls?} \; \text{axioms?} \; \text{consequences?}
\end{align*}
\]

21 Sort and operator declarations

Sorts in LSL can be simple sorts, which are named by a single identifier, or compound sorts, which are named by a sort constructor applied to a list of simpler sorts. Table 21.1 summarizes the ways in which operators can be declared and used in several different kinds of notations for terms.

Placeholders in operator declarations indicate where the operators arguments are placed. Signatures in operator declarations indicate the sorts of the arguments for an operator (its domain sorts) and the sort of its value (its range sort).

Syntax of operator declarations

\[
\begin{align*}
\text{opDcls} & : = \text{'}introduces\text{'} \; \text{opDcl}^+ \\
\text{opDcl} & : = \text{name,+ \; ':' \; signature \; ','} ? \\
\text{name} & : = \text{'}if\text{' \; '__' \; 'then' \; '__' \; 'else' \; '__' | '__'? \; \text{OPERATOR '__'?} | '__'? \; \text{openSym '__',} \star \; \text{closeSym '__'?} | '__'? \; \text{',} \; \text{IDENTIFIER | IDENTIFIER}
\end{align*}
\]
<table>
<thead>
<tr>
<th>Sample declaration</th>
<th>Form of term</th>
<th>Sample use</th>
</tr>
</thead>
<tbody>
<tr>
<td>f: Int -> Int</td>
<td>functional</td>
<td>$f(i)$</td>
</tr>
<tr>
<td>min: Int, Int -> Int</td>
<td>infix</td>
<td>$\min(i, j)$</td>
</tr>
<tr>
<td>0: -> Int</td>
<td>zeroary</td>
<td>0</td>
</tr>
<tr>
<td><: Int, Int -> Bool</td>
<td>prefix</td>
<td>$i < j$</td>
</tr>
<tr>
<td>____: Int, Int -> Int</td>
<td>postfx</td>
<td>$i!$</td>
</tr>
<tr>
<td>__!: Int, Int -> Int</td>
<td>''</td>
<td>$s.last$</td>
</tr>
<tr>
<td>__.last: Seq[Int] -> Int</td>
<td>bracketed</td>
<td>$a[i]$</td>
</tr>
<tr>
<td>[]: A, Int -> V</td>
<td>''</td>
<td>${x}$</td>
</tr>
<tr>
<td>{}: E -> Set[E]</td>
<td>''</td>
<td>{}</td>
</tr>
<tr>
<td>if__then__else__: Bool, S, S -> S</td>
<td>conditional</td>
<td>if $x < 0$ then $-x$ else x</td>
</tr>
<tr>
<td></td>
<td>quantified</td>
<td>$\forall x \exists y(x < y)$</td>
</tr>
</tbody>
</table>

Table 21.1: Sample operator declarations and use in terms

- `openSym` ::= ' | ' | ' | '\(' | '\<'
- `closeSym` ::= ' | ' | ' | '\)' | '\>'
- `operator` ::= name (':=' signature)?
- `signature` ::= domain '->' range
- `domain` ::= sort,*
- `range` ::= sort
- `sort` ::= simpleSort | compoundSort
- `simpleSort` ::= IDENTIFIER
- `compoundSort` ::= sortConstructor ' | ' | '+ ' |
- `sortConstructor` ::= IDENTIFIER

The optional comma at the end of an opDcl is required if the following opDcl begins with a left bracket.

Static semantics

- The number of __ placeholders in the name in an opDcl must be the same as the number of sorts in the domain of its signature.

- The __ placeholder cannot be omitted from a name of the form __ IDENTIFIER in an opDcl.

- The signature of the operators true and false must be ->Bool. Declarations for these operators are built into LSL.
The signature of the logical operators \(\equiv, \Rightarrow, \land, \lor \) must be \(\text{Bool,Bool} \rightarrow \text{Bool} \). Declarations for these operators are built into LSL.

The signature of the operators \(=, \neq \) must be \(S,S \rightarrow \text{Bool} \) for some sort \(S \). Declarations for these operators are built into LSL for each sort \(S \) that occurs in an opDecl or shorthand (see Section 23).

The signature of the operator \(\text{if_then_else_} \) must be \(\text{Bool},S,S \rightarrow S \) for some sort \(S \). A declaration for this operator is built into LSL for each sort \(S \) that occurs in an opDecl or shorthand (see Section 23).

Logical semantics

- A sort denotes a non-empty set of elements.\(^{14}\)
- Different sorts denote disjoint sets of elements.
- An opDecl defines a list of operators, each with a given name and signature.
- Each operator denotes a total function from tuples of elements in its domain sorts to an element in its range sort.

Formal semantics

22 Axioms

Axioms in LSL are either formulas in multisorted first-order logic or abbreviations for sets of formulas. A limited amount of operator precedence, as illustrated in the following table, is used when parsing terms (see Section 9.1).

<table>
<thead>
<tr>
<th>Unparenthesized term</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x - y - z)</td>
<td>((x - y) - z)</td>
</tr>
<tr>
<td>(a = b + c \Rightarrow b < s(a))</td>
<td>((a = (b + c)) \Rightarrow (b < s(a)))</td>
</tr>
<tr>
<td>(a.b.c!)</td>
<td>(((a.b).c)!)</td>
</tr>
<tr>
<td>(\neg p \land \neg x.pre)</td>
<td>((\neg p) \land (\neg (x.pre)))</td>
</tr>
<tr>
<td>(\exists x(x < c) \Rightarrow c > 0)</td>
<td>((\exists x(x < c)) \Rightarrow (c > 0))</td>
</tr>
<tr>
<td>(\forall x \exists y x < y)</td>
<td>((\forall x \exists y x) < y)</td>
</tr>
<tr>
<td>(a < b + c)</td>
<td>Error</td>
</tr>
<tr>
<td>(p \land q \lor r)</td>
<td>Error</td>
</tr>
<tr>
<td>(p \Rightarrow q \Rightarrow r)</td>
<td>Error</td>
</tr>
</tbody>
</table>

\(^{14}\) LSL accords syntactic, but not semantic, meaning to compound sorts.
Syntax of axioms

\[
\begin{align*}
\text{axioms} & \ ::= \ 'asserts' \ \text{varDcls? \ axiom;}+ \ ',',? \\
\text{varDcls} & \ ::= \ 'with' \ (\text{IDENTIFIER},+ \ \text{qualification})+ \\
\text{qualification} & \ ::= \ ':'$ \ \text{sort} \\
\text{axiom} & \ ::= \ \text{predicate} \\
& \quad \mid '\text{sort}' \ \text{sort} \ ('\text{generated}' 'freely'? | 'partitioned') \\
& \quad \mid 'by' \ \text{operator},+ \\
\text{predicate} & \ ::= \ \text{term} \\
\text{term} & \ ::= \ \text{IF term \ THEN \ term \ ELSE \ term} \\
& \quad \mid \ \text{subterm} \\
\text{subterm} & \ ::= \ \text{subterm} \ (\text{OPERATOR} \ \text{subterm})+ \\
& \quad \mid (\text{quantifier} \ | \ \text{OPERATOR})* \ \text{OPERATOR} \ \text{secondary} \\
& \quad \mid (\text{quantifier} \ | \ \text{OPERATOR})* \ \text{quantifier} \ \text{primary} \\
& \quad \mid \ \text{secondary} \ \text{OPERATOR}* \\
\text{quantifier} & \ ::= \ (','^'A' \ | \ ','^'E') \ \text{variable} \\
\text{variable} & \ ::= \ \text{IDENTIFIER} \ \text{qualification}? \\
\text{secondary} & \ ::= \ \text{primary} \\
& \quad \mid \ \text{primary? \ bracketed ('.'? \ \text{primary})?} \\
\text{primary} & \ ::= \ \text{primaryHead} \ (\text{qualification} \ | \ ',.' \ \text{primaryHead})* \\
\text{primaryHead} & \ ::= \ \text{IDENTIFIER} \ ('(' \ \text{term},+ ')')? \\
& \quad \mid '('. \ \text{term} ')', \\
\text{bracketed} & \ ::= \ \text{openSym} \ \text{term},* \ \text{closeSym} \ \text{qualification}?
\end{align*}
\]

Static semantics

- Each operator in an axiom must be a built-in operator, declared in an operator declaration (Section 21), introduced by a shorthand for a sort (Section 23), or declared in a subtrait (Section 24).

- Each sort in a qualification must have been declared.

- No variable may be declared more than once in a varDcls.

- A variable cannot be declared to have the same identifier and sort as a constant (i.e., as a zero-ary operator).

- There must be unique assignment of declared operators and variables to the identifiers, OPERATORS, openSyms, and closeSyms in a term so that the arguments of each declared operator have the appropriate sorts and so that every qualified subterm has the appropriate sort.

- If a subterm contains two OPERATORS, those OPERATORS must either be the same or have different parsing precedences.

- The sort of a predicate must be Bool.

- The sort named in a generated by or a partitioned by must have been declared.

- The range of each operator in a generated by must be the named sort.
• At least one of the operators in a generated by must not have the named sort in its domain.
• Each operator in a partitioned by must have the named sort in its domain.
• The list of operators in a generated by or partitioned by must not contain duplicates.

Logical semantics

• Let S be a sort, f_1, \ldots, f_n be operators with range S, and $\bar{v}_1, \ldots, \bar{v}_m$ be disjoint sequences of variables such that $f_i(\bar{v}_i)$ is a well-formed term for $1 \leq i \leq n$. We call f_i a basis operator if no variable in \bar{v}_i has sort S; otherwise we call f_i an inductive operator. Then the axiom sort S generated by f_1, \ldots, f_n is equivalent to the infinite set of formulas that contains, for each formula $\phi(x)$ with a free variable x of sort S, the formulas

 $\phi(f_i(\bar{v}_i))$, for each i such that $1 \leq i \leq n$ and f_i is a basis operator, and
 $\phi(x_1) \land \ldots \land \phi(x_k) \Rightarrow \phi(f_i(\bar{v}_i))$, for each i, x_1, \ldots, x_k such that $1 \leq i \leq n$, f_i is an inductive operator, and x_1, \ldots, x_n are the variables of sort S in \bar{v}_i.

The axiom sort S generated freely by f_1, \ldots, f_n is equivalent to the above set of formulas extended by the formulas

$- f_i(\bar{v}_i) \neq f_j(\bar{v}_j)$, for $1 \leq i < j \leq n$, and
$- f_i(\bar{v}_i) = f_i(\bar{w}) \Rightarrow \bar{v}_i = \bar{w}$ for $1 \leq i \leq n$, where \bar{w} is a sequence of variables not in \bar{v}_i such that $f_i(\bar{w})$ is a well-formed term.

• Let S be a sort, x_1 and x_2 be variables of sort S, f_1, \ldots, f_n be operators, and $\bar{v}_1, \ldots, \bar{v}_m$ be sequences of variables not containing either x_1 or x_2 such that $f_i(x, \bar{v}_i)$ is a well-formed term for $1 \leq i \leq n$. The axiom sort S partitioned by f_1, \ldots, f_n is equivalent to the axiom

$$\forall \bar{v}_1(f_1(x_1, \bar{v}_1) = f_1(x_2, \bar{v}_1)) \land \ldots \land \forall \bar{v}_n(f_n(x_1, \bar{v}_n) = f_1(x_2, \bar{v}_n)) \Rightarrow x_1 = x_2$$

Editorial note: Generalize for functions that have multiple arguments of sort S.

23 Shorthands for sorts

LSL shorthands provide a convenient way of declaring sorts representing enumerations, tuples, and unions.

Syntax of shorthands

$$\text{shorthand ::= 'enumeration' 'of' IDENTIFIER,+}
\mid (\text{'tuple' | 'union'}) 'of' (IDENTIFIER,+ '[:' sort,)+$$

Static semantics

• The list of identifiers in an enumeration must not contain duplicates.
• The list of identifiers corresponding to a field of a particular sort in a tuple or union must not contain duplicates.
• Each sort appearing in a shorthand must differ from the sort of the shorthand itself.

57
Logical semantics

- Each shorthand is equivalent to the inclusion of a trait such as those illustrated in Figures 23.1–23.3.

Enumeration3: trait
introduces
e1, e2, e3: \(\rightarrow S\)
succ: \(S \rightarrow S\)

asserts

sort \(S\) generated freely by \(e1, e2, e3\);
succ\((e1) = e2\);
succ\((e2) = e3\)

Figure 23.1: Expansion of the shorthand \(S\) enumeration of \(e1, e2, e3\)

Tuple3: trait
introduces

\[\ldots, \ldots, \ldots\]: \(S1, S2, S3 \rightarrow S\)

\(\ldots, f1: S \rightarrow S1\)

\(\ldots, f2: S \rightarrow S2\)

\(\ldots, f3: S \rightarrow S3\)

asserts with \(x1, y1: S1, x2, y2: S2, x3, y3: S3\)

sort \(S\) generated freely by \[\ldots, \ldots, \ldots\];

sort \(S\) partitioned by \(.f1, .f2, .f3\);

\([x1, x2, x3].f1 = x1; \quad set_f1([x1, x2, x3], y1) = [y1, x2, x3];\)

\([x1, x2, x3].f2 = x2; \quad set_f2([x1, x2, x3], y2) = [x1, y2, x3];\)

\([x1, x2, x3].f3 = x3; \quad set_f3([x1, x2, x3], y3) = [x1, x2, y3]\)

Figure 23.2: Expansion of the shorthand \(S\) tuple of \(f1: S1, f2: S2, f3: S3\)

24 Trait references

Traits can incorporate axioms from other traits by inclusion. Traits can also contain assumptions, which must be discharged in order for their inclusion in other traits to have the intended meaning.

Syntax of trait references

\[
\begin{align*}
\text{subtrait} & : = \ ('\text{includes}' | '\text{assumes}') \text{traitRef}, + \\
\text{traitRef} & : = \ \text{traitId} \text{renaming?} \\
\text{traitId} & : = \ \text{IDENTIFIER} \\
\text{renaming} & : = \ ('\text{traitActual},+' \quad | \quad '()' \\
\text{replace} & : = \ \text{traitActual FOR traitFormal} \\
\text{traitActual} & : = \ \text{name} | \ \text{compoundSort} \\
\text{traitFormals} & : = \ ('\text{traitFormal},*' \quad | \quad '(' \text{traitFormal},*' ')') \\
\text{traitFormal} & : = \ \text{name signature?} | \ \text{compoundSort}
\end{align*}
\]

58
Union3: trait introduces
-- f1: S → S1 f1: S1 → S
-- f2: S → S2 f2: S2 → S
-- f3: S → S3 f3: S3 → S
 tag: S → S_tag
 succ: S_tag → S_tag
f1, f2, f3: → S_tag

asserts with x1: S1, x2: S2, x3: S3
sort S generated freely by f1, f2, f3;
sort S partitioned by .f1, .f2, .f3, tag;
f1(x1).f1 = x1; tag(f1(x1)) = f1;
f2(x2).f2 = x2; tag(f2(x2)) = f2;
f3(x3).f3 = x3; tag(f3(x3)) = f3

Figure 23.3: Expansion of the shorthand S union of f1: S1, f2: S2, f3: S3

Static semantics

- There must not be a cycle in the assumes/includes hierarchy.

- Each compoundSort used as a traitFormal must be declared in the trait.

- Each name qualified by a signature used as a traitFormal must be declared as an operator in the trait.

- Placeholders can be omitted from a name in a traitFormal if there is exactly one way to supply placeholders so as to match that name with the name of a declared operator.

- Each name used as a traitFormal, but not qualified by a signature, must be declared as a simple sort, be declared as a sort constructor, or match the name (modulo the addition of placeholders) of exactly one declared operator.

- When a name used as a traitFormal can be interpreted in more than one way as a simple sort, sort constructor, or operator, preference is given to its interpretation first as a simple sort, second as a sort constructor, and third as an operator.

- The number of actual parameters in a trait reference must not exceed the number of formal parameters in the definition of the trait.

- No operator or sort may be renamed more than once in a renaming.

- Each compoundSort used as a traitActual must correspond to a traitFormal that is a sort.

- Each name used as a traitActual must be an identifier if it corresponds to a traitFormal that is a sort. If the name contains placeholders, it must correspond to a traitFormal that is an operator with the appropriate number of domain sorts. If the name contains no placeholders, there must be a unique way of adding them to match the number of domain sorts for the corresponding traitFormal.
Logical semantics

- The assertions of a trait include the axioms asserted directly in the trait, together with the (appropriately renamed) axioms asserted in all traits (transitively) included in the trait.

- The assumptions of a trait include the (appropriately renamed) axioms of all traits (transitively) assumed by the trait.

- When trait \(A \) includes or assumes trait \(B \), the assertions and assumptions of \(A \) must imply the assumptions of \(B \).

- The assertions and assumptions of any trait must be consistent.

25 Consequences

LSL traits can contain checkable redundancy in the form of consequences that are claimed to follow from their axioms.

Syntax of consequences

\[
\text{consequences ::= 'implies' varDcls? consequence;}\; ;\; ;
\]

\[
\text{consequence ::= axiom | 'trait' traitRef,}+ \mid \text{conversion}
\]

\[
\text{conversion ::= 'converts' operator,}+ \left(\text{'exempting' term,}+\right)
\]

Static semantics

- All sorts and operators in a consequence, including those declared in an implied traitRef, must be declared in the implying trait.

- Each name in a conversion must correspond to exactly one declared operator (in the same manner as required for traitFormals).

- Each term in an exempting clause must contain some converted operator.

Logical semantics

- The assertions and assumptions of a trait must imply the non-convertion consequences of that trait.

- If a trait \(T \) is claimed to convert a set \(Ops \) of operators, then \(op(x_1, \ldots, x_n) = op'(x_1, \ldots, x_n) \) must be a logical consequence of \(T \cup T' \cup E \) for each \(op \) in \(Ops \), where
 - \(op' \) is a new operator name,
 - \(T' \) is obtained from \(T \) by replacing each occurrence of each \(op \) in \(Ops \) by \(op' \), and
 - \(E \) is the set of all formulas of the form \(t = t' \), where \(t \) is an exempted term and \(t' \) is obtained from \(t \) by replacing each occurrence of each \(op \) in \(Ops \) by \(op' \).

26 Converts

Editorial note: Write this.
Part V
Appendices

A Axioms for built-in data types and type constructors

The following axiomSets (see Section 14) are included by default in an iotaSpec and refer to the traits defined in this Appendix.

axioms Boolean, Character, Integer, Natural, Real, String,
 Array1 for Array[__,__], Array2 for Array[__,__,__], ...,
 Mapping1 for Map[__,__], Mapping2 for Map[__,__,__], ...,
 Multiset for Mset[__], Null for Null[__],
 Sequence for Seq[__], Set for Set[__]

Sufficiently many axiomSets for arrays and mappings are included to define all Array and Map constructors that appear in an iotaSpec. If a traitRef (other than to Boolean) or typeConstructor in one of these axiomSets appears explicitly in an axiomSet in an iotaSpec, that axiomSet replaces the default axiomSet described below.
A.1 Auxiliary traits

The following traits defined theories that are included in various of the traits defining the built-in data types.

AC(T, +): trait
% Associative-commutative operator
introduces _+_+: T, T → T
asserts with x, y, z: T
 x + (y + z) = (x + y) + z;
 x + y = y + x

TotalOrder(T): trait
introduces _<_, _≤_, _, _>_+, _≥_: T, T → Bool
asserts with x, y, z: T
 ¬(x < x);
 x < y ∧ y < z ⇒ x < z;
 x < y ∨ x = y ∨ y < x;
 x ≤ y ⇒ x < y ∨ x = y;
 x < y ⇒ y > x;
 x ≥ y ⇒ x > y ∨ x = y

implies with x, y, z: T
 x ≤ x;
 x ≤ y ∧ y ≤ z ⇒ x ≤ z;
 x ≤ y ∨ y ≤ x;
 x < y ⇒ ¬(x = y);

DecimalLiterals(N): trait
% This trait schema is given for documentation only. It is
% implicit in LSL. Any trait that includes or assumes it
% can use any decimal literal as a constant of sort N.
introduces
 succ: N → N
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10: → N
% and more, as needed by an including or assuming trait
asserts
 1 = succ(0);
 2 = succ(1);
 3 = succ(2);
 4 = succ(3);
 5 = succ(4);
 6 = succ(5);
 7 = succ(6);
 8 = succ(7);
 9 = succ(8);
 10 = succ(9);
% and more, as needed by an including or assuming trait
A.2 Booleans

The theory for the Boolean datatype is built into LSL and cannot be overridden. It is equivalent to the theory defined by the following trait.

Boolean trait

introduces

true, false: \rightarrow \text{Bool}

\neg:: \text{Bool} \rightarrow \text{Bool}

\neg\land, \neg\lor, \neg\Rightarrow, \neg\Leftrightarrow:: \text{Bool}, \text{Bool} \rightarrow \text{Bool}

asserts with b: \text{Bool}

sort \text{Bool} generated freely by true, false;

\neg\text{true} = \text{false};

\neg\text{false} = \text{true};

\langle\text{true} \land b\rangle = b;

\langle\text{false} \land b\rangle = \text{false};

\langle\text{true} \lor b\rangle = \text{true};

\langle\text{false} \lor b\rangle = b;

\langle\text{true} \Rightarrow b\rangle = b;

\langle\text{false} \Rightarrow b\rangle = \text{true};

\langle\text{true} \Leftrightarrow b\rangle = b;

\langle\text{false} \Leftrightarrow b\rangle = \neg b

implies with b, b1, b2, b3: \text{Bool}

traits AC(\text{Bool}, \land), AC(\text{Bool}, \lor), AC(\text{Bool}, \Rightarrow)

\neg b = b;

\neg(b1 \land b2) \iff \neg b1 \lor \neg b2;

\neg(b1 \lor b2) \iff \neg b1 \land \neg b2;

b1 \land (b2 \lor b3) \iff (b1 \land b2) \lor (b1 \land b3);

b1 \lor (b2 \land b3) \iff (b1 \lor b2) \land (b1 \lor b3);

b1 \lor (b1 \land b2) \iff b1;

b1 \land (b1 \lor b2) \iff b1;

b \lor \neg b;

b1 = b2 \lor b1 = b3 \lor b2 = b3;

b1 \Rightarrow b2 \iff \neg b1 \lor b2;

(b1 \Rightarrow b2) \land (b2 \Rightarrow b3) \Rightarrow (b1 \Rightarrow b3)
A.3 Characters

Character: trait

Char enumeration of
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'

includes TotalOrder

asserts with a: Char
a < succ(a)

In the future, IOA may provide additional notations for characters.
A.4 Integers

Integer: trait
introduces
0, 1:
 ___, abs, pred, succ: \rightarrow Int
 ___+, ___-, __*=, div, mod, min, max: Int, Int \rightarrow Int
 ___<=, ___<=, ___>=, ___>=:
asserts with x, y, z: Int
% Induction axiom
sort Int generated by 0, succ, pred;
% Inductive definitions
-0 = 0;
-succ(x) = pred(-x);
-pred(x) = succ(-x);
x + 0 = x;
x + succ(y) = succ(x+y);
x + pred(y) = pred(x+y);
x * 0 = 0;
x * succ(y) = (x*y) + x;
x * pred(y) = (x*y) + (-x);
x <= y \iff x < y \land y = y;
x > y \iff y < x;
x >= y \iff y <= x;
% Definition of ordering
implies with x, y, z: Int
 traits AC(Int, +), AC(Int, *), AC(Int, max), AC(Int, min);
succ(pred(x)) = x;
pred(succ(x)) = x;
x + 1 = succ(x);
x - 1 = pred(x);
x * 1 = x;
x + 1 \neq x;
x - 1 \neq x;
-(x) = x;
-(x + y) = (-x) + (-y);
-x * (-y) = -(x * y);
pred(x) < pred(y) \iff x < y;
pred(x) < pred(y) \iff x < y;
x < y \Rightarrow x < (y + 1);
x < y \Rightarrow x < (y + 1);
x * (y + z) = (x * y) + (x * z);
A.5 Natural numbers

Natural: trait
includes DecimalLiterals(Nat for N)
introduces
pred, succ: Nat → Nat
+-+_, --_-, -*_-, --*-_, div, mod, min, max: Nat, Nat → Nat
--<_-, --<=-, -->>_, -->=_: Nat, Nat → Bool
asserts with x, y, z: Nat
sort Nat generated by 0, succ;
pred(succ(x)) = x;
x + 0 = x;
x + succ(y) = succ(x + y);
x * 0 = 0;
x * succ(y) = (x * y) + x;
x * (y + z) = (x * y) + (x * z);
succ(x) = succ(y) ↔ x = y;
x < succ(x)
implies with x, y, z: Nat
traits AC(Nat, +), AC(Nat, *), TotalOrder(Nat)
0 ≤ x;
0 < succ(x);
¬(x < 0);
¬(succ(x) ≤ x);
succ(x) < succ(y) ↔ x < y;
x < succ(y) ⇒ x ≤ y
A.6 Real numbers

Real: trait introduces
 0, 1: Real
 - , ___ , abs: Real --> Real
 +, _-_ , _*_ , _/_, _**_, min, max: Real, Real --> Real
Cauchy: Array[Nat, Real] --> Bool
lim: Array[Nat, Real], Real --> Bool
includes AC(Real, +), AC(Real, *), TotalOrder(Real), Array[Nat, Real]
asserts with x, y, z, eps, delta: Real,
 a: Array[Nat, Real], i, j, n: Nat
% Identity elements for arithmetic operations
 x + 0 = x; x * 1 = x; x / 1 = x;
% Inverse
 x + (-x) = 0;
 x \neq 0 \Rightarrow x * (y / x) = y;
% Distributive
 x * (y + z) = (x*y) + (x*z);
% Ordering
 x \leq y \Rightarrow x + z \leq y + z;
 0 \leq x \land 0 \leq y \Rightarrow 0 \leq (x*y);
% Completeness (every Cauchy sequences has a limit)
Cauchy(a) \Rightarrow
 \forall eps (0 < eps \Rightarrow \exists n \forall i (n < i \Rightarrow abs(a[i]-a[i+1]) < eps));
limit(a, x) \Rightarrow
 \forall eps (0 < eps \Rightarrow \exists n \forall i (n < i \Rightarrow abs(a[i]-x) < eps));
Cauchy(a) \Rightarrow \exists x limit(a, x);
% Explicit definitions
 x - y = x + (-y);
 abs(x) = (if x < 0 then -x else x);
 min(x, y) = (if x < y then x else y);
 max(x, y) = (if x > y then x else y);
% Exponentiation (define x**(i/j), extend by continuity)
 x ** 0 = 1;
 x ** 1 = x;
 x ** (y + z) = (x*y)*(x*z);
 x**y*z = (x**y)**z;
\forall eps (0 < eps \Rightarrow
 \exists delta (0 < delta \land
 \forall x \forall y (abs(x-y) < delta \Rightarrow abs((z**x)-(z**y)) < eps)));
A.7 Strings

String: trait

 includes Character, Sequence(Char), TotalOrder(Seq[Char])

asserts with a, a1, a2: Char, s, s1, s2: String

 {} < a ⊥ s;
 (a1 ⊥ s1) < (a2 ⊥ s2) ⇔ a1 < a2 ∨ (a1 = a2 ∧ s1 < s2)

In the future, IOA may provide additional notations for strings.
A.8 Arrays

The following traits defines one- and two-dimensional arrays. Similar traits define higher dimensional arrays.

Array1(I, E): trait
 introduces
 __[__]: Array[I, E], I → E
 assign: Array[I, E], I, E → Array[I, E]
 const: E → Array[I, E]
 asserts with a, a1, a2: Array[I, E], i, j: I, e: E
 assign(a, i, e)[j] = (if i = j then e else a[j]);
 const(e)[i] = e;
 ∀ i (a1[i] = a2[i]) ⇒ a1 = a2

Array2(I, J, E): trait
 introduces
 __[__, __]: Array[I, J, E], I, J → E
 assign: Array[I, J, E], I, J, E → Array[I, J, E]
 const: E → Array[I, J, E]
 asserts with a, a1, a2: Array[I, J, E], i, i1: I, j, j1: J, e: E
 assign(a, i, j, e)[i1, j1] = (if i = i1 ∧ j = j1 then e else a[i1, j1]);
 const(e)[i, j] = e;
 ∀ i ∀ j (a1[i, j] = a2[i, j]) ⇒ a1 = a2
A.9 Finite mappings

The following trait defines one- and two-dimensional mappings. Similar traits define higher dimensional mappings. Mappings differ from arrays in that they may not be defined for all values of their indices (the generated by axiom ensures that mappings are defined for only finitely many values of their indices).

Mapping₁(D, R): trait
 introduces
 empty: \rightarrow \text{Map}(D, R)
 update: \text{Map}(D, R), D, R \rightarrow \text{Map}(D, R)
 [] : \text{Map}(D, R), D \rightarrow R
 defined: \text{Map}(D, R), D \rightarrow \text{Bool}
 asserts with m: \text{Map}(D, R), d, d₁, d₂: D, r: R
 sort \text{Map}(D, R) \text{ generated by empty, update;}
 sort \text{Map}(D, R) \text{ partitioned by defined, _[_];}
 update(m, d₂, r)[d₁] = (if d₁ = d₂ then r else m[d₁]);
 \neg \text{defined}(empty, d);
 \text{defined}(update(m, d₂, r), d₁) \Leftrightarrow d₁ = d₂ \lor \text{defined}(m, d₁)
 implies with d: D
 converts _[_], defined exempting empty[d]

Mapping₂(D₁, D₂, R): trait
 introduces
 empty: \rightarrow \text{Map}(D₁, D₂, R)
 update: \text{Map}(D₁, D₂, R), D₁, D₂, R \rightarrow \text{Map}(D₁, D₂, R)
 [, _] : \text{Map}(D₁, D₂, R), D₁, D₂ \rightarrow R
 defined: \text{Map}(D₁, D₂, R), D₁, D₂ \rightarrow \text{Bool}
 asserts with m: \text{Map}(D₁, D₂, R), d₁, d₁': D₁, d₂, d₂': D₂, r: R
 sort \text{Map}(D₁, D₂, R) \text{ generated by empty, update;}
 sort \text{Map}(D₁, D₂, R) \text{ partitioned by defined, _[_, _];}
 update(m, d₁, d₂, r)[d₁', d₂'] =
 (if d₁ = d₁' \land d₂ = d₂' then r else m[d₁', d₂']);
 \neg \text{defined}(empty, d₁, d₂);
 \text{defined}(update(m, d₁, d₂, r), d₁', d₂') \Leftrightarrow
 (d₁ = d₁' \land d₂ = d₂') \lor \text{defined}(m, d₁', d₂')
 implies with d₁: D₁, d₂: D₂
 converts _[_, _], defined exempting empty[d₁, d₂]
A.10 Finite multisets

Multiset(E): trait
 includes Integer
 introduces
 {} : → Mset[E]
 {...} : E → Mset[E]
 ∈: E, Mset[E] → Bool
 ∪ _, _∩_ _, _⊆_ _, _⊇_ _, _⊂_ _, _⊃_ : Mset[E], Mset[E] → Bool
 size : Mset[E] → Int
 count : E, Mset[E] → Int

asserts with s, s1, s2 : Mset[E], e, e1, e2 : E
% Basic axioms: induction axiom, extensionality
 sort Mset[E] generated by {}, insert;
 ∀ e (count(e, s1) = count(e, s2)) ⇔ s1 = s2;
% Recursive definitions of size, count
 size({}) = 0;
 size(insert(e, s)) = size(s) + (if e ∈ s then 0 else 1);
 count(e, {}) = 0;
 count(e, insert(e1, s)) = count(e, s) + (if e = e1 then 1 else 0);
% Explicit definitions
 e ∈ s ⇔ count(e, s) > 0;
 {e} = insert(e, {});
 s1 ⊆ s2 ⇔ ∀ e (count(e, s1) ≤ count(e, s2));
 s1 ⊆ s2 ⇔ s1 ⊆ s2 ∧ s1 ≠ s2;
 s1 ⊇ s2 ⇔ s2 ⊆ s1;
 s1 ⊇ s2 ⇔ s2 ⊆ s1;
% Extensional definitions
 count(e, delete(e1, s)) = count(e, s) - (if e = e1 then 1 else 0);
 count(e, s1 ∪ s2) = count(e, s1) + count(e, s2);
 count(e, s1 ∩ s2) = min(count(e, s1), count(e, s2));
 count(e, s1 - s2) = count(e, s1) - count(e, s2);
implies with e : E, s : Mset[E]
 s = {} ⇔ ∀ e ¬(e ∈ s);
 e ∈ insert(e, s);
 ¬(e ∈ delete(e, s));
 s ∪ {} = s;
 s ∩ {} = {};
 delete (e, s) ⊆ s;
 s ⊆ insert(e, s);
 size(s) = size(delete(e, s)) + (if e ∈ s then 1 else 0)
A.11 Null elements

\texttt{Null(T)}: \texttt{trait}

\begin{itemize}
 \item \texttt{nil}: \rightarrow \texttt{Null}[T]
 \item \texttt{embed}: \texttt{T} \rightarrow \texttt{Null}[T]
 \item \texttt{__.val}: \texttt{Null}[T] \rightarrow \texttt{T}
\end{itemize}

\texttt{asserts \ with \ t: T}

\begin{itemize}
 \item sort \texttt{Null}[T] \texttt{generated \ freely \ by \ nil, \ embed;}
 \item \texttt{embed(t).val = t}
\end{itemize}

\texttt{implies \ with \ t, t1, t2: T}

\begin{itemize}
 \item \texttt{embed(t1) = embed(t2) \iff t1 = t2;}
 \item \texttt{embed(t) \neq \texttt{nil}}
\end{itemize}
A.12 Finite sequences

Sequence(E): trait
 includes Integer
 introduces

{e}: → Seq[E]
--==--: Seq[E] → Seq[E]
--™--: E, Seq[E] → Seq[E]
--||---: Seq[E], Seq[E] → Seq[E]
--∈--: E, Seq[E] → Bool
head, last: Seq[E] → E
tail, init: Seq[E] → Seq[E]
len: Seq[E] → Int

[]: Seq[E], Int → E

asserts with e, e1, e2: E, s, s1, s2: Seq[E], n: Int
 sort Seq[E] generated by {e}, ⊢:
 e ⊢ {} = {} ⊢ e;
 (e1 ⊢ s) ⊢ e2 = e1 ⊢ (s ⊢ e2);
 s || {} = s;
 s1 || (s2 ⊢ e) = (s1 || s2) ⊢ e;
 ¬(e ∈ {});
 e ∈ (s ⊢ e1) ⇔ (e ∈ s) ∨ e = e1;
 head(e ⊢ s) = e;
tail(e ⊢ s) = s;
init(s ⊢ e) = s;
last(s ⊢ e) = e;
len({}) = 0;
len(s ⊢ e) = succ(len(s));
s[0] = head(s);
n ≥ 0 ⇒ s[n+1] = tail(s)[n]

implies with e, e1, e2: E, s, s1, s2, s3: Seq[E]
 sort Seq[E] generated by {e}, ⊢E,Seq[E]→Seq[E];
 e ⊢ s ≠ {};
 s ⊢ e ≠ {};
 s ≠ {} ⇒ s = head(s) ⊢ tail(s);
 s ≠ {} ⇒ s = init(s) ⊢ last(s);
 e ∈ (e ⊢ s);
 s ≠ {} ⇒ head(s) ∈ s ∧ last(s) ∈ s
A.13 Finite sets

Set(E): trait
 includes Integer
 introduces
 {} : \rightarrow \text{Set}[E]
 {_} : E \rightarrow \text{Set}[E]
 insert, delete : E, \text{Set}[E] \rightarrow \text{Set}[E]
 _\in _ : E, \text{Set}[E] \rightarrow \text{Bool}
 _\cup _ , _\cap _ , _\setminus _ : \text{Set}[E], \text{Set}[E] \rightarrow \text{Set}[E]
 _\subseteq _ , _\supseteq _ , _\subset _ , _\supset _ : \text{Set}[E], \text{Set}[E] \rightarrow \text{Bool}
 size : \text{Set}[E] \rightarrow \text{Int}

asserts with s, s1, s2 : \text{Set}[E], e, e1, e2 : E

% Basic axioms: induction axiom, extensionality
 sort \text{Set}[E] generated by {}, insert;
 \forall e \ (e \in s1 \Rightarrow e \in s2) \Rightarrow s1 = s2;

% Recursive definitions of _\in, size
 \neg (e \in \{\}) ;
 e1 \in \text{insert}(e2, s) \Leftrightarrow e1 = e2 \lor e1 \in s ;
 \text{size}(\{\}) = 0 ;
 \text{size}(\text{insert}(e, s)) = \text{size}(s) + (if e \in s then 0 else 1) ;

% Explicit definitions
 \{e\} = \text{insert}(e, \{\}) ;
 s1 \subseteq s2 \Leftrightarrow \forall e \ (e \in s1 \Rightarrow e \in s2) ;
 s1 \supseteq s2 \Leftrightarrow s1 \subseteq s2 \land s1 \neq s2 ;
 s1 \supset s2 \Leftrightarrow s2 \subseteq s1 ;

% Extensional definitions
 e \in \text{delete}(e1, s) \Leftrightarrow e \neq e1 \land e \in s ;
 e \in (s1 \cup s2) \Leftrightarrow e \in s1 \lor e \in s2 ;
 e \in (s1 \cap s2) \Leftrightarrow e \in s1 \land e \in s2 ;
 e \in (s1 \setminus s2) \Leftrightarrow e \in s1 \land \neg (e \in s2) ;

implies with e : E, s : \text{Set}[E]
 s = \{\} \Leftrightarrow \forall e \ \neg (e \in s) ;
 e \in \text{insert}(e, s) ;
 \neg (e \in \text{delete}(e, s)) ;
 s \cup \{\} = s ;
 s \cap \{\} = \{\} ;
 \text{delete}(e, s) \subseteq s ;
 s \subseteq \text{insert}(e, s) ;
 \text{size}(s) = \text{size}(\text{delete}(e, s)) + (if e \in s then 1 else 0) ;
B Software tools for IOA

A variety of software tools support the description and analysis of distributed systems using IOA. The following tools are available for download from http://theory.lcs.mit.edu/tds/ioa.

- **ioaCheck**: a syntax and static semantic checker, which can be used to check the well-formedness of descriptions for I/O automata or as a prettyprinter to tidy up descriptions of I/O automata. (See Appendix B.1.)

- **ioaSim**: a simulator, for testing the behavior of I/O automata. (See [9].)

- An LSL data type library, which supplies specifications of the data types built into IOA (see Appendix A, as well as of other common abstract data types for use in describing I/O automata. The LSL Handbook [8] forms the basis for this library. Users can extend the library by writing additional LSL specifications (see Section 9 and Part IV).

- **ioa2ls1**: a translator from IOA into LSL, which produces formal proof obligations for verifying invariants and simulation relations that are asserted in IOA specifications. **ioa2ls1** is intended for use with the Larch Prover [5]. (See Appendix B.3.)

- **ioa2isabelle**: a similar interface between IOA and Isabelle [12], which also produces formal proof obligations for verifying invariants and simulation relations.

B.1 ioaCheck: a static semantic checker for IOA and LSL

ioaCheck checks the syntax and static semantics of IOA specifications and LSL traits. It is invoked by a command line of the form

```
ioaCheck [option ...] source-file ...
```

The names of the source files should end with either **.ioa** or **.ls1**. If no options are provided on the command line, **ioaCheck** simply reports any errors that it finds in the source files. If options are provided, they produce the following results.

- `-p` causes **ioaCheck** to prettyprint (on the standard output) the IOA source files named on the command line. **ioaCheck** will prettyprint an LSL source file only if it is the first source file named on the command line. Prettyprinting indents IOA and LSL specifications to reveal their structure, and it breaks lines that exceed the margin.

- `-path directoryList` instructs **ioaCheck** to search the directories in the colon-separated `directoryList` for additional source files. The default value of `directoryList` is `'.'`, which instructs **ioaCheck** to search only the current working directory. Whenever **ioaCheck** needs the specification of an LSL trait T, it searches for it in a file named `T.ls1`. Whenever it needs the specification of an I/O automaton named A, but cannot find that specification in one of the source files listed on the command line, it searches for it in a file named `A.ioa`.

- `-il` causes **ioaCheck** to translate the IOA and LSL source files named on the command line into an intermediate form (written to the standard output) suitable for use with other IOA tools such as the simulator. See Appendix B.2 for a description of this intermediate form.
B.2 Intermediate language

We describe syntax of the intermediate language for IOA and LSL in the same fashion as we described the syntax of IOA and LSL (see Section 12). The lexical grammar of the intermediate language uses the following symbols:

- Punctuation marks: ()
- Keywords: actions, actuals, all, apply, asserts, assign, assumes, automaton, axioms, backward, case, choose, compose, const, converts, det, eff, ensuring, enum, exempting, exists, fire, for, formals, forward, generated, generatedFreely, hidden, id, if, ignore, implies, infix, initially, input, internal, invariant, ioa, lit, locals, mixfix, ops, output, partitioned, postfix, pre, prefix, proof, ref, rename, schedule, scope, select, sim, sim.entry, sim.fire, sorts, states, subscope, task, tasks, trait, traitRef, traits, transitions, tuple, union, using, vars, where, while, with, yield
- IDENTIFIERS and OPERATORS, as for IOA and LSL.
- NUMBERS, which consist of sequences of digits. SORTIDs for sorts, which consist of the letter s followed by a NUMBER
- OPIDs for operators, which consist of the letters op followed by a NUMBER.
- VARIDs for variables, which consist of the letter v followed by a NUMBER.
- ACTIONIDs for actions, which consist of the letter a followed by a NUMBER.
- TRANSITIONIDs for transition definitions, which consist of the letter t followed by a NUMBER.

Syntax of intermediate language specifications

```
specification ::= '(' 'ioa' decls specUnit* ')
specUnit ::= automaton | assertion | trait | ioaAxioms | shorthand
ioaAxioms ::= '(' 'axioms' traitRef ')
```

Syntax of sort, operator, and variable declarations in the intermediate language

```
decls ::= '(' 'sorts ops vars ')' 
sorts ::= '(' 'sorts' sort* ')
sort ::= '(' SORTID IDENTIFIER '(' sortId* ')' 'lit'? ')' 
ops ::= '(' 'ops' op* ')
op ::= '(' OPID operator signature ')
operator ::= constant | numeral | plainOp | ifOp | infixOp
           | mixfixOp | prefixOp | postfixOp | selectOp
constant ::= '(' 'id' IDENTIFIER ')
umeral ::= '(' 'const' NUMBER ')' 
plainOp ::= '(' 'id' IDENTIFIER ')
ifOp ::= '(' 'if' ')' 
infixOp ::= '(' 'infix' OPERATOR ')' 
mixfixOp ::= '(' 'mixfix' NUMBER trueFalse trueFalse 
           openSym closeSym ')
```
postfixOp ::= '(' 'postfix' OPERATOR ')'
prefixOp ::= '(' 'prefix' OPERATOR ')
selectOp ::= '(' 'select' IDENTIFIER ')
trueFalse ::= 'true' | 'false'
signature ::= '(' 'SORTID*' ')', SORTID
vars ::= '(' 'vars' var* ')
var ::= '(' 'VARID IDENTIFIER SORTID ')

All sorts, operators, and variables in an intermediate language specification are enumerated in its decls section, which associates an internal SORTID, OPID, or VARID with each external IDENTIFIER or OPERATOR. The keyword lit indicates a sort with contents that are decimal literals. See Section 21 for definitions of openSym and closeSym.

Syntax of automaton definitions in the intermediate language

automaton ::= '(' 'automaton' automatonName formals? automatonDef ')
automatonName ::= IDENTIFIER
formals ::= '(' 'formals' formal+ ')
formal ::= term
automatonDef ::= primitive | composition

Syntax of primitive automaton definitions in the intermediate language

primitive ::= '(' 'actions states transitions? tasks? schedule? ')
actions ::= '(' 'actions' action+ ')
action ::= '(' ACTIONID actionType IDENTIFIER (formals where?)?
 extension ')
actionType ::= 'input' | 'output' | 'internal'
where ::= '(' 'where' 'term ')

Syntax of state definitions in the intermediate language

states ::= '(' 'states' state* initially? ')
state ::= '(' 'VARID value? ')
value ::= term | choice
initially ::= '(' 'initially' 'term ')

Syntax of transition definitions in the intermediate language

transitions ::= '(' 'transitions' transition+ ')
transition ::= '(' TRANSITIONID caseName ACTIONID actionActuals? locals?
 where? precondition? effect? ')
caseName ::= '(' 'case' IDENTIFIER? ')
actionActuals ::= '(' 'actuals' term+ ')
locals ::= '(' 'locals' VARID+ ')
precondition ::= '(' 'pre' predicate ')
predicate ::= term
effect ::= program ensuring?
program ::= '(' 'statement* ')

77
statement ::= assignment | conditional | loop | simStatement
assignment ::= '(' 'assign' lvalue value ')'
lvalue ::= VARID | '(' 'apply' OPID lvalue term+ ')
choice ::= '(' 'choose' '{' ('VARID term?', ')'} yieldprogram? ? ')' conditional ::= '(' 'if' '(' thenClause+ ')' program ')' thenClause ::= '(' 'predicate program ')' loop ::= '(' 'for' VARID term program ')' ensuring ::= '(' 'ensuring' predicate ')' Syntax of task definitions in the intermediate language
tasks ::= '(' 'tasks' task+ ')
task ::= '(' 'task' '(' actionSet+ ')' forClause? ')' actionSet ::= IDENTIFIER actionActuals where? forClause ::= '(' 'for' VARID+ ')

Syntax of composite automaton definitions in the intermediate language
composition ::= '(' components hidden? ')' primitive?
components ::= '(' 'compose' component+ ')
component ::= '(' IDENTIFIER automatonActuals? term ')
automatonActuals ::= '(' 'actuals' term+ ')
hidden ::= '(' 'hidden' actionSet+ ')

Syntax of invariants and simulation relations in the intermediate language
assertion ::= invariant | simulation
invariant ::= '(' 'invariant' invariantName automatonName predicate ')
invariantName ::= IDENTIFIER
simulation ::= '(' 'sim' direction automatonName automatonName predicate simDetails? ')
direction ::= 'forward' | 'backward'
simDetails ::= '(' 'proof' simStates '(' stateMap* ')' (' stateMap* ') ')
simStates ::= '(' 'states' state* ')
stateMap ::= '(' 'term value ')
stepMap ::= '(' 'sim_entry' TRANSITIONID stepFormals program ')
stepFormals ::= '(' 'formals' formal* ')

Syntax of simulator commands in the intermediate language
simStatement ::= ndrfire | ndrwhile | simfire
ndrfire ::= '(' 'fire' (TRANSITIONID actionActuals?)? ')
ndrwhile ::= '(' 'while' predicate program ')
simfire ::= '(' 'sim_fire' TRANSITIONID actionActuals?
 ('using' '(' 'variable term ')+ ? ')
schedule ::= '(' 'schedule' simStates ndrprogram ')
ndrprogram ::= '(' 'ndrStatement* ')
ndrStatement ::= assignment | conditional | ndrfire | ndrwhile
yieldprogram := '(' 'det' yieldstatement* ')'
yieldstatement := conditional | ndrwhile | ndryield
ndryield := '(' 'yield' term ')

Syntax of trait definitions in the intermediate language

trait := '(' 'trait' traitName traitFormals?
 (shorthand | traitRef)* opDcls?
 traitAxioms? consequences? ')'

traitName := IDENTIFIER
traitFormals := '(' (SORTID | OPID)+ ')

Syntax of axioms in the intermediate language

traitAxioms := '(' 'asserts' varDcls? prop+ extension ')
varDcls :=
prop := term | genPartBy | traitRef | converts
term := applicationTerm | quantifiedTerm
 | referenceTerm | literal
applicationTerm := '(' 'apply' OPID term+ ')
quantifiedTerm := '(' quantifier term ')
quantifier := ('all' | 'exists') VARID
referenceTerm := VARID | OPID | SORTID
literal := '(' 'lit' SORTID NUMBER ')
genPartBy := '(' (genPartKind SORTID OPID+ ')' genPartKind := 'generated' | 'generatedFreely' | 'partitioned'

Syntax of shorthands in the intermediate language

shorthand := enumeration | tuple | union
enumeration := '(' 'enum' SORTID OPID enumItem+ ')
enumItem := '(' '' IDENTIFIER '' OPID ')
tuple := '(' 'tuple' SORTID OPID field+ ')
field := '(' '' IDENTIFIER '' SORTID OPID OPID ')
union := '(' 'union' SORTID SORTID OPID field+ ')

The OPID in an enumeration is the successor operator for the elements of the enumerated sort identified by the SORTID, which has elements named by the IDENTIFIERS and identified by the OPIDs in the enumItems.

The OPID in a tuple names the operator that constructs elements of the tuple sort identified by the SORTID. Each field in the tuple is named by the given IDENTIFIER, has the sort identified by SORTID, and has get and set operators identified by the two OPIDs.

The two SORTIDs in a union name the union sort and its associated tag sort. The OPID names the tag operator. Each field in the union is named by the given IDENTIFIER, has the sort identified by SORTID, and has to and from operators identified by the two OPIDs.

Syntax of trait references in the intermediate language

traitRef := '(' 'traitref' '"" traitName '"" '('traitActual* ')' ')""
traitActual ::= SORTID | OPID
constructorDef ::= IDENTIFIER NUMBER '.' NUMBER

A constructorDef can appear in a traitRef only when that traitRef is part of an ioaAxioms, in which case each traitActual is a SORTID. The IDENTIFIER in the constructorDef is associated with a n-ary sort constructor defined by the given traitName, where n is the number of traitActuals, which must equal the value of the first NUMBER in the constructorDef.15

Syntax of consequences in the intermediate language

consequences ::= '(', 'implies' varDcls? prop+ extension ')'

Syntax of conversions in the intermediate language

converts ::= '(', 'converts' '(' OPID+ ')' exemption? ')'
exemption ::= '(', 'exempting' term+ ')'

Editorial note: Extra syntax to insert above.

renaming ::= '(', 'rename' replace+ ')'
renamingMap ::= replace*
replace ::= '(', traitParam traitParam ')'
operator ::= literal | OPID
sortConstructor ::= SORTID

B.3 ioa2ls1 and ioa2isabelle: interfaces to theorem provers

15Editorial note: The definition of the intermediate language may be changed by replacing the IDENTIFIER in a constructorDef with a SORTID and by eliminating the dot and the second $NUMBER, which currently is always 0.
C Bibliography

References

